1
|
Gaddie CD, Senior KG, Chan C, Hoffman BE, Keeler GD. Upregulation of CD8 + regulatory T cells following liver-directed AAV gene therapy. Cell Immunol 2024; 397-398:104806. [PMID: 38244266 DOI: 10.1016/j.cellimm.2024.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Liver-directed AAV gene therapy represents a unique treatment modality for a host of diseases. This is due, in part, to the induction of tolerance to transgene products. Despite the plethora of recognized regulatory cells in the body, there is currently a lack of literature supporting the induction of non-CD4+ regulatory cells following hepatic AAV gene transfer. In this work, we show that CD8+ regulatory T cells are up-regulated in PBMCs of mice following capsid only and therapeutic transgene AAV administration. Further, we demonstrate that hepatic AAV gene transfer results in a significant increase in CD8+ regulatory T cells following experimental autoimmune encephalomyelitis induction. Notably, this response occurred only in therapeutic vector treated animals, not capsid only controls. Understanding the role these cells play in treatment efficacy will result in the development of improved AAV vectors that take advantage of the full gamut of regulatory cells within the body.
Collapse
Affiliation(s)
- Cristina D Gaddie
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Kevin G Senior
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Christopher Chan
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Brad E Hoffman
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Geoffrey D Keeler
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Gonzalez-Visiedo M, Li X, Munoz-Melero M, Kulis MD, Daniell H, Markusic DM. Single-dose AAV vector gene immunotherapy to treat food allergy. Mol Ther Methods Clin Dev 2022; 26:309-322. [PMID: 35990748 PMCID: PMC9361215 DOI: 10.1016/j.omtm.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022]
Abstract
Immunotherapies for patients with food allergy have shown some success in limiting allergic responses. However, these approaches require lengthy protocols with repeated allergen dosing and patients can relapse following discontinuation of treatment. The purpose of this study was to test if a single dose of an adeno-associated virus (AAV) vector can safely prevent and treat egg allergy in a mouse model. AAV vectors expressing ovalbumin (OVA) under an ubiquitous or liver-specific promoter were injected prior to or after epicutaneous sensitization with OVA. Mice treated with either AAV8-OVA vector were completely protected from allergy sensitization. These animals had a significant reduction in anaphylaxis mediated by a reduction in OVA-specific IgE titers. In mice with established OVA allergy, allergic responses were mitigated only in mice treated with an AAV8-OVA vector expressing OVA from an ubiquitous promoter. In conclusion, an AAV vector with a liver-specific promoter was more effective for allergy prevention, but higher OVA levels were necessary for reducing symptoms in preexisting allergy. Overall, our AAV gene immunotherapy resulted in an expansion of OVA-specific FoxP3+ CD4+ T cells, an increase in the regulatory cytokine IL-10, and a reduction in the IgE promoting cytokine IL-13.
Collapse
Affiliation(s)
- Miguel Gonzalez-Visiedo
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| | - Xin Li
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| | - Maite Munoz-Melero
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| | - Michael D Kulis
- Department of Pediatrics, Division of Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M Markusic
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Hasanpourghadi M, Novikov M, Newman D, Xiang Z, Zhou XY, Magowan C, Ertl HCJ. Hepatitis B virus polymerase-specific T cell epitopes shift in a mouse model of chronic infection. Virol J 2021; 18:242. [PMID: 34876153 PMCID: PMC8650432 DOI: 10.1186/s12985-021-01712-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection (CHB) is a significant public health problem that could benefit from treatment with immunomodulators. Here we describe a set of therapeutic HBV vaccines that target the internal viral proteins. METHODS Vaccines are delivered by chimpanzee adenovirus vectors (AdC) of serotype 6 (AdC6) and 7 (AdC7) used in prime only or prime-boost regimens. The HBV antigens are fused into an early T cell checkpoint inhibitor, herpes simplex virus (HSV) glycoprotein D (gD), which enhances and broadens vaccine-induced cluster of differentiation (CD8)+ T cell responses. RESULTS Our results show that the vaccines are immunogenic in mice. They induce potent CD8+ T cell responses that recognize multiple epitopes. CD8+ T cell responses increase after a boost, although the breadth remains similar. In mice, which carry high sustained loads of HBV particles due to a hepatic infection with an adeno-associated virus (AAV)8 vector expressing the 1.3HBV genome, CD8+ T cell responses to the vaccines are attenuated with a marked shift in the CD8+ T cells' epitope recognition profile. CONCLUSIONS Our data show that in different stains of mice including those that carry a human major histocompatibility complex (MHC) class I antigen HBV vaccines adjuvanted with a checkpoint inhibitor induce potent and broad HBV-specific CD8+ T cell responses and lower but still detectable CD4+ T cell responses. CD8+ T cell responses are reduced and their epitope specificity changes in mice that are chronically exposed to HBV antigens. Implications for the design of therapeutic HBV vaccines are discussed.
Collapse
Affiliation(s)
| | - Mikhail Novikov
- Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Dakota Newman
- Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - ZhiQuan Xiang
- Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Xiang Yang Zhou
- Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Colin Magowan
- Virion Therapeutics LLC, 7 Creek Bend Ct, Newark, DE, 19711, USA
| | | |
Collapse
|
4
|
Gernoux G, Guilbaud M, Devaux M, Journou M, Pichard V, Jaulin N, Léger A, Le Duff J, Deschamps JY, Le Guiner C, Moullier P, Cherel Y, Adjali O. AAV8 locoregional delivery induces long-term expression of an immunogenic transgene in macaques despite persisting local inflammation. Mol Ther Methods Clin Dev 2021; 20:660-674. [PMID: 33718516 PMCID: PMC7907542 DOI: 10.1016/j.omtm.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/03/2021] [Indexed: 11/25/2022]
Abstract
Adeno-associated virus (AAV) vectors are considered efficient vectors for gene transfer, as illustrated by recent successful clinical trials targeting retinal or neurodegenerative disorders. However, limitations as host immune responses to AAV capsid or transduction of limited regions must still be overcome. Here, we focused on locoregional (LR) intravenous perfusion vector delivery that allows transduction of large muscular areas and is considered to be less immunogenic than intramuscular (IM) injection. To confirm this hypothesis, we injected 6 cynomolgus monkeys with an AAV serotype 8 (AAV8) vector encoding for the highly immunogenic GFP driven by either a muscle-specific promoter (n = 3) or a cytomegalovirus (CMV) promoter (n = 3). We report that LR delivery allows long-term GFP expression in the perfused limb (up to 1 year) despite the initiation of a peripheral transgene-specific immune response. The analysis of the immune status of the perfused limb shows that LR delivery induces persisting inflammation. However, this inflammation is not sufficient to result in transgene clearance and is balanced by resident regulatory T cells. Overall, our results suggest that LR delivery promotes persisting transgene expression by induction of Treg cells in situ and might be a safe alternative to IM route to target large muscle territories for the expression of secreted therapeutic factors.
Collapse
Affiliation(s)
- Gwladys Gernoux
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Mickaël Guilbaud
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Marie Devaux
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Malo Journou
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Virginie Pichard
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Nicolas Jaulin
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Adrien Léger
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Johanne Le Duff
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | | | - Caroline Le Guiner
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Philippe Moullier
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Yan Cherel
- INRA UMR 703, PAnTher, ONIRIS, 44307 Nantes, France
| | - Oumeya Adjali
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| |
Collapse
|
5
|
Poupiot J, Costa Verdera H, Hardet R, Colella P, Collaud F, Bartolo L, Davoust J, Sanatine P, Mingozzi F, Richard I, Ronzitti G. Role of Regulatory T Cell and Effector T Cell Exhaustion in Liver-Mediated Transgene Tolerance in Muscle. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:83-100. [PMID: 31649958 PMCID: PMC6804827 DOI: 10.1016/j.omtm.2019.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
Abstract
The pro-tolerogenic environment of the liver makes this tissue an ideal target for gene replacement strategies. In other peripheral tissues such as the skeletal muscle, anti-transgene immune response can result in partial or complete clearance of the transduced fibers. Here, we characterized liver-induced transgene tolerance after simultaneous transduction of liver and muscle. A clinically relevant transgene, α-sarcoglycan, mutated in limb-girdle muscular dystrophy type 2D, was fused with the SIINFEKL epitope (hSGCA-SIIN) and expressed with adeno-associated virus vectors (AAV-hSGCA-SIIN). Intramuscular delivery of AAV-hSGCA-SIIN resulted in a strong inflammatory response, which could be prevented and reversed by concomitant liver expression of the same antigen. Regulatory T cells and upregulation of checkpoint inhibitor receptors were required to establish and maintain liver-mediated peripheral tolerance. This study identifies the fundamental role of the synergy between Tregs and upregulation of checkpoint inhibitor receptors in the liver-mediated control of anti-transgene immunity triggered by muscle-directed gene transfer.
Collapse
Affiliation(s)
- Jérôme Poupiot
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | | | | | - Pasqualina Colella
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Fanny Collaud
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Laurent Bartolo
- UMR 1151, Necker-Institut Enfants Malades-Molecular Medicine Center, Paris, France
| | - Jean Davoust
- UMR 1151, Necker-Institut Enfants Malades-Molecular Medicine Center, Paris, France
| | | | | | - Isabelle Richard
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| |
Collapse
|
6
|
Keeler GD, Markusic DM, Hoffman BE. Liver induced transgene tolerance with AAV vectors. Cell Immunol 2019; 342:103728. [PMID: 29576315 PMCID: PMC5988960 DOI: 10.1016/j.cellimm.2017.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/24/2022]
Abstract
Immune tolerance is a vital component of immunity, as persistent activation of immune cells causes significant tissue damage and loss of tolerance leads to autoimmunity. Likewise, unwanted immune responses can occur in inherited disorders, such as hemophilia and Pompe disease, in which patients lack any expression of protein, during treatment with enzyme replacement therapy, or gene therapy. While the liver has long been known as being tolerogenic, it was only recently appreciated in the last decade that liver directed adeno-associated virus (AAV) gene therapy can induce systemic tolerance to a transgene. In this review, we look at the mechanisms behind liver induced tolerance, discuss different factors influencing successful tolerance induction with AAV, and applications where AAV mediated tolerance may be helpful.
Collapse
Affiliation(s)
- Geoffrey D Keeler
- Department of Pediatrics, Div. Cell and Molecular Therapy, University of Florida, United States
| | - David M Markusic
- Department of Pediatrics, Div. Cell and Molecular Therapy, University of Florida, United States
| | - Brad E Hoffman
- Department of Pediatrics, Div. Cell and Molecular Therapy, University of Florida, United States; Department of Neuroscience, University of Florida, United States.
| |
Collapse
|
7
|
Gessler DJ, Tai PWL, Li J, Gao G. Intravenous Infusion of AAV for Widespread Gene Delivery to the Nervous System. Methods Mol Biol 2019; 1950:143-163. [PMID: 30783972 PMCID: PMC7339923 DOI: 10.1007/978-1-4939-9139-6_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is a fascinating and intricate set of biological structures that we have yet to fully understand. Studying the in vivo function of the CNS and finding novel methods for treating neurological disorders have been particularly challenging. One difficulty is correcting genetic disorders afflicting the CNS in a targeted manner. Recombinant adeno-associated viruses (rAAVs) have emerged as promising therapeutic tools for treating genetic defects of the CNS, due to their excellent safety profile and ability to cross the blood-brain barrier (BBB). While stereotactic injection of AAV is promising for localized gene delivery, it is less desirable for some applications because of the technique's invasiveness and limited intraparenchymal spread. Alternatively, intravascular administration can achieve widespread delivery of rAAV to the CNS. In this chapter, we will discuss the prevalent routes of administration to deliver rAAV to the CNS via intravenous (IV) injection in mice. We will highlight key considerations for using rAAV, and the advantages and disadvantages of each administration method. We will also briefly discuss intravenous delivery in larger animal models, factors that may impact experimental interpretations, and outlooks for clinical translation.
Collapse
Affiliation(s)
- Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jia Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
8
|
Toscano MG, de Haan P. How Simian Virus 40 Hijacks the Intracellular Protein Trafficking Pathway to Its Own Benefit … and Ours. Front Immunol 2018; 9:1160. [PMID: 29892296 PMCID: PMC5985306 DOI: 10.3389/fimmu.2018.01160] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/09/2018] [Indexed: 12/29/2022] Open
Abstract
Viruses efficiently transfer and express their genes in host cells and evolve to evade the host's defense responses. These properties render them highly attractive for use as gene delivery vectors in vaccines, gene, and immunotherapies. Among the viruses used as gene delivery vectors, the macaque polyomavirus Simian Virus 40 (SV40) is unique in its capacity to evade intracellular antiviral defense responses upon cell entry. We here describe the unique way by which SV40 particles deliver their genomes in the nucleus of permissive cells and how they prevent presentation of viral antigens to the host's immune system. The non-immunogenicity in its natural host is not only of benefit to the virus but also to us in developing effective SV40 vector-based treatments for today's major human diseases.
Collapse
|
9
|
Sam MR, Zomorodipour A, Haddad-Mashadrizeh A, Ghorbani M, Kardar GA, Sam S. Functions of the Heterologous Intron-Derived Fragments Intra and Extra Factor IX-cDNA Coding Region on the Human Factor IX Expression in HepG2 and Hek-293T Cells. IRANIAN JOURNAL OF BIOTECHNOLOGY 2018; 16:e1753. [PMID: 30805387 PMCID: PMC6371630 DOI: 10.21859/ijb.1753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/03/2018] [Accepted: 01/13/2018] [Indexed: 11/27/2022]
Abstract
Background Human FIX (hFIX) gene transfer into hepatocytes has provided a novel approach for treatment of hemophilia B. To obtain an improved expression of hFIX, the functional hFIX-expressing plasmids with appropriate intron-derived fragments which facilitate transcription and promote an efficient 3′-end formation of mRNAs are required. Objectives We aim to evaluate the functions of the heterologous intron-derived fragments intra and extra hFIX-cDNA coding region with respect to the hFIX expression in the hepatocytes and kidney cells. Materials and Methods HepG2 cells as differentiated hepatocytes and Hek-293T cells as embryonic kidney cells were transfected with the different hFIX-expressing plasmids containing various combinations of the two human beta-globin (hBG) introns within the hFIX-cDNA and Kozak sequence. In the next stage, as a hepatocyte-specific sequence, the rat aldolase B intronic enhancer sequence (rABE), was isolated from the first intron of the rat aldoase B gene and inserted within the upstream CMV promoter (CMVp) and efficacies of the engineered vectors were investigated in the stably-transfected HepG2 cells. Results Our data indicate that the intron-less construct and hBG intron-I containing construct are more effective with regard to hFIX expression compared to other constructs in Hek-293 cells. In HepG2 cells, the rABE in combination with CMVp in context of intron-less plasmid induced an increase in total expression of hFIX protein dramatically; ranging from 2.3 to 40 folds increase compared to other constructs. The rABE in combination with CMVp in the hBG intron-I, hBG intron-II, and hBG intron-I,II containing plasmids induced 3.7, 2, and 1.6-fold increase in the total expression of hFIX protein, respectively. The presence of both hBG intronic sequences within the hFIX-cDNA induced a higher secretion level of hFIX than either intron-I or II alone and provided correctly spliced hFIX transcripts in HepG2 and kidney cell lines. The intron-less construct with or without rABE induced the highest hFIX mRNA levels in HepG2 and Hek-293T cells respectively compared to other constructs. Conclusions The embryonic kidney cells in addition to the differentiated hepatic cell lines could be successfully targeted by plasmid vectors. The intron-less and hBG intron-I containing plasmids represent a particular interest in producing recombinant hFIX in Hek-293T cells. The synergistic function on the hFIX expression that was achieved by combining the CMVp with the liver-specific rABE would be a useful approach for future designing of the expression cassettes for hepatocyte-mediated gene expression in hemophilia B.
Collapse
Affiliation(s)
- Mohammad Reza Sam
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Alireza Zomorodipour
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Mahdi Ghorbani
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Gholam Ali Kardar
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sohrab Sam
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| |
Collapse
|
10
|
Generation of a Vero-Based Packaging Cell Line to Produce SV40 Gene Delivery Vectors for Use in Clinical Gene Therapy Studies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 6:124-134. [PMID: 28791314 PMCID: PMC5537168 DOI: 10.1016/j.omtm.2017.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023]
Abstract
Replication-defective (RD) recombinant simian virus 40 (SV40)-based gene delivery vectors hold a great potential for clinical applications because of their presumed non-immunogenicity and capacity to induce immune tolerance to the transgene products in humans. However, the clinical use of SV40 vectors has been hampered by the lack of a packaging cell line that produces replication-competent (RC) free SV40 particles in the vector production process. To solve this problem, we have adapted the current SV40 vector genome used for the production of vector particles and generated a novel Vero-based packaging cell line named SuperVero that exclusively expresses the SV40 large T antigen. SuperVero cells produce similar numbers of SV40 vector particles compared to the currently used packaging cell lines, albeit in the absence of contaminating RC SV40 particles. Our unique SV40 vector platform named SVac paves the way to clinically test a whole new generation of SV40-based therapeutics for a broad range of important diseases.
Collapse
|
11
|
Sharma D, Al-Khalidi R, Edgar S, An Q, Wang Y, Young C, Nowis D, Gorecki DC. Co-delivery of indoleamine 2,3-dioxygenase prevents loss of expression of an antigenic transgene in dystrophic mouse muscles. Gene Ther 2016; 24:113-119. [PMID: 28004656 DOI: 10.1038/gt.2016.82] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 01/03/2023]
Abstract
A significant problem affecting gene therapy approaches aiming at achieving long-term transgene expression is the immune response against the protein product of the therapeutic gene, which can reduce or eliminate the therapeutic effect. The problem is further exacerbated when therapy involves targeting an immunogenic tissue and/or one with a pre-existing inflammatory phenotype, such as dystrophic muscles. In this proof-of-principle study, we co-expressed a model antigen, bacterial β-galactosidase, with an immunosuppressive factor, indoleamine 2,3-dioxygenase 1 (IDO1), in muscles of the mdx mouse model of Duchenne muscular dystrophy. This treatment prevented loss of expression of the transgene concomitant with significantly elevated expression of T-regulatory (Treg) markers in the IDO1-expressing muscles. Moreover, co-expression of IDO1 resulted in reduced serum levels of anti-β-gal antibodies. These data indicate that co-expression of genes encoding immunomodulatory enzymes controlling kynurenine pathways provide a viable strategy for preventing loss of transgenes targeted into dystrophic muscles with pre-existing inflammation.
Collapse
Affiliation(s)
- D Sharma
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - R Al-Khalidi
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - S Edgar
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Q An
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Y Wang
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - C Young
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - D Nowis
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - D C Gorecki
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
12
|
Azadbakhsh AS, Sam MR, Farokhi F. Bioengineering of differentiated hepatocytes with human factor IX-expressing plasmids in vitro. Bioengineered 2016; 7:497-503. [PMID: 27458870 DOI: 10.1080/21655979.2016.1207018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
For somatic gene therapy of hemophilia B, hepatocytes as the main cellular host for expression of hFIX are attractive targets. In gene therapy protocols, an efficient expression vector equipped with cis-regulatory elements such as introns is required. With this in mind, hFIX-expressing plasmids equipped with different combinations of 2 human β-globin (hBG) introns inside the hFIX-cDNA and Kozak element were used for bioengineering of HepG2 cells as a model for differentiated hepatocytes and CHO cells a cell line generally used to produce recombinant hFIX (rhFIX). In HepG2 cells, the highest hFIX secretion level occurred for the intron-less plasmid with 8.5 to 53.8- fold increases, while in CHO cells, the hBG intron-I containing plasmid induced highest hFIX secretion level with 2.3 to 14.3-fold increases as compared to other plasmids. The first hBG intron appears to be more effective than the second one in both cell lines. The expression level was further increased upon the inclusion of the Kozak element. The highest hFIX activity was obtained from the cells that carrying the intron-less plasmids with 470 mU/ml and 25 mU/ml for HepG2 and CHO cells respectively. Secretion of active hFIX by all constructs was documented except for hBG intron-II containing construct in both cell lines. HepG2 cells were able to secret higher hFIX levels by 0.6 to 112.2-fold increases with activity by 5.3 to 16.4-fold increases compared to CHO cells transfected with the same constructs. Presence of both hBG intron-I and II inside the hFIX-cDNA provides properly spliced hFIX transcripts in both cell lines. In conclusion, the advantages of hBG introns as attractive cis-regulatory elements to obtain higher expression level of hFIX particularly in CHO cells were demonstrated. Hepatocytes could be effectively bioengineered with the use of plasmid vectors and this strategy may provide a potential in-vitro source of functional hepatocytes for ex-vivo gene therapy of hemophilias and production of rhFIX in vitro.
Collapse
Affiliation(s)
- Azadeh Sadat Azadbakhsh
- a Department of Cellular and Molecular Biotechnology , Institute of Biotechnology, Urmia University , Urmia , Iran
| | - Mohammad Reza Sam
- a Department of Cellular and Molecular Biotechnology , Institute of Biotechnology, Urmia University , Urmia , Iran
| | - Farrah Farokhi
- b Department of Histology and Embryology , Faculty of Science, Urmia University , Urmia , Iran
| |
Collapse
|
13
|
Sam MR, Azadbakhsh AS, Farokhi F, Rezazadeh K, Sam S, Zomorodipour A, Haddad-Mashadrizeh A, Delirezh N, Mokarizadeh A. Genetic modification of bone-marrow mesenchymal stem cells and hematopoietic cells with human coagulation factor IX-expressing plasmids. Biologicals 2016; 44:170-7. [PMID: 26928674 DOI: 10.1016/j.biologicals.2016.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/30/2015] [Accepted: 01/13/2016] [Indexed: 11/17/2022] Open
Abstract
Ex-vivo gene therapy of hemophilias requires suitable bioreactors for secretion of hFIX into the circulation and stem cells hold great potentials in this regard. Viral vectors are widely manipulated and used to transfer hFIX gene into stem cells. However, little attention has been paid to the manipulation of hFIX transgene itself. Concurrently, the efficacy of such a therapeutic approach depends on determination of which vectors give maximal transgene expression. With this in mind, TF-1 (primary hematopoietic lineage) and rat-bone marrow mesenchymal stem cells (BMSCs) were transfected with five hFIX-expressing plasmids containing different combinations of two human β-globin (hBG) introns inside the hFIX-cDNA and Kozak element and hFIX expression was evaluated by different methods. In BMSCs and TF-1 cells, the highest hFIX level was obtained from the intron-less and hBG intron-I,II containing plasmids respectively. The highest hFIX activity was obtained from the cells that carrying the hBG intron-I,II containing plasmids. BMSCs were able to produce higher hFIX by 1.4 to 4.7-fold increase with activity by 2.4 to 4.4-fold increase compared to TF-1 cells transfected with the same constructs. BMSCs and TF-1 cells could be effectively bioengineered without the use of viral vectors and hFIX minigene containing hBG introns could represent a particular interest in stem cell-based gene therapy of hemophilias.
Collapse
Affiliation(s)
- Mohammad Reza Sam
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran; Department of Histology and Embryology, Faculty of Science, Urmia University, Urmia, Iran.
| | - Azadeh Sadat Azadbakhsh
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran; Department of Histology and Embryology, Faculty of Science, Urmia University, Urmia, Iran
| | - Farrah Farokhi
- Department of Histology and Embryology, Faculty of Science, Urmia University, Urmia, Iran
| | - Kobra Rezazadeh
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Sohrab Sam
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Alireza Zomorodipour
- Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Nowruz Delirezh
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Aram Mokarizadeh
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
14
|
Promising coagulation factor VIII bypassing strategies for patients with haemophilia A. Blood Coagul Fibrinolysis 2014; 25:539-52. [DOI: 10.1097/mbc.0000000000000098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Sack BK, Herzog RW, Terhorst C, Markusic DM. Development of Gene Transfer for Induction of Antigen-specific Tolerance. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14013. [PMID: 25558460 PMCID: PMC4280786 DOI: 10.1038/mtm.2014.13] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gene replacement therapies, like organ and cell transplantation are likely to introduce neo-antigens that elicit rejection via humoral and/or effector T cell immune responses. Nonetheless, thanks to an ever growing body of pre-clinical studies it is now well accepted that gene transfer protocols can be specifically designed and optimized for induction of antigen-specific immune tolerance. One approach is to specifically express a gene in a tissue with a tolerogenic microenvironment such as the liver or thymus. Another strategy is to transfer a particular gene into hematopoietic stem cells or immunological precursor cells thus educating the immune system to recognize the therapeutic protein as "self". In addition, expression of the therapeutic protein in pro-tolerogenic antigen presenting cells such as immature dendritic cells and B cells has proven to be promising. All three approaches have successfully prevented unwanted immune responses in pre-clinical studies aimed at the treatment of inherited protein deficiencies, e.g. lysosomal storage disorders and hemophilia, and of type I diabetes and multiple sclerosis. In this review we focus on current gene transfer protocols that induce tolerance, including gene delivery vehicles and target tissues, and discuss successes and obstacles in different disease models.
Collapse
Affiliation(s)
- Brandon K Sack
- Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02115. USA
| | - David M Markusic
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
16
|
Borkham-Kamphorst E, Huss S, Van de Leur E, Haas U, Weiskirchen R. Adenoviral CCN3/NOV gene transfer fails to mitigate liver fibrosis in an experimental bile duct ligation model because of hepatocyte apoptosis. Liver Int 2012; 32:1342-53. [PMID: 22698069 DOI: 10.1111/j.1478-3231.2012.02837.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/15/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS CCN3/NOV, a matricellular protein of the CYR61-CTGF-NOV (CCN) family, comprises six secreted proteins that associate specifically with the extracellular matrix. CCN proteins lack specific high-affinity receptors; instead, they regulate crucial biological processes, such as fibrosis, by signalling via integrins and proteoglycans. Recent studies have linked overexpression of CCN3/NOV to mitigate kidney fibrosis. This study aims to investigate CCN3/NOV overexpression in liver fibrogenesis in vivo. METHODS The biological efficacy of adenoviral expressed CCN3/NOV directed under transcriptional control of the constitutively active Cytomegalovirus promoter (Ad-NOV) was analysed in a bile duct ligation model and in cultured primary hepatocytes. RESULTS AND CONCLUSIONS Even though Ad-NOV gene transfer in a 3-week bile duct ligation mouse model showed the expected high levels of CCN3/NOV in both mRNA and protein, it failed to reduce liver fibrogenesis, but instead enhanced hepatocyte apoptosis. Furthermore, overexpressed CCN3/NOV in cultured primary hepatocytes resulted in decreased levels of CCN2/CTGF, the profibrotic marker protein in liver fibrosis. Both Ad-NOV and Ad-CTGF induced reactive oxygen species production, enhanced p38 and JNK activation. Therefore, we conclude that CCN3/NOV overexpression in vivo is insufficient to mitigate liver fibrogenesis because of the induction of hepatocyte injury and apoptosis.
Collapse
Affiliation(s)
- Erawan Borkham-Kamphorst
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital Aachen, Aachen, Germany.
| | | | | | | | | |
Collapse
|
17
|
Wang J, Faust SM, Rabinowitz JE. The next step in gene delivery: molecular engineering of adeno-associated virus serotypes. J Mol Cell Cardiol 2010; 50:793-802. [PMID: 21029739 DOI: 10.1016/j.yjmcc.2010.10.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 12/29/2022]
Abstract
Delivery is at the heart of gene therapy. Viral DNA delivery systems are asked to avoid the immune system, transduce specific target cell types while avoiding other cell types, infect dividing and non-dividing cells, insert their cargo within the host genome without mutagenesis or to remain episomal, and efficiently express transgenes for a substantial portion of a lifespan. These sought-after features cannot be associated with a single delivery system, or can they? The Adeno-associated virus family of gene delivery vehicles has proven to be highly malleable. Pseudotyping, using AAV serotype 2 terminal repeats to generate designer shells capable of transducing selected cell types, enables the packaging of common genomes into multiple serotypes virions to directly compare gene expression and tropism. In this review the ability to manipulate this virus will be examined from the inside out. The influence of host cell factors and organism biology including the immune response on the molecular fate of the viral genome will be discussed as well as differences in cellular trafficking patterns and uncoating properties that influence serotype transduction. Re-engineering the prototype vector AAV2 using epitope insertion, chemical modification, and molecular evolution not only demonstrated the flexibility of the best-studied serotype, but now also expanded the tool kit for molecular modification of all AAV serotypes. Current AAV research has changed its focus from examination of wild-type AAV biology to the feedback of host cell/organism on the design and development of a new generation of recombinant AAV delivery vehicles. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".
Collapse
Affiliation(s)
- Jinhui Wang
- Thomas Jefferson University Center for Translational Medicine, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
18
|
A new genetic vaccine platform based on an adeno-associated virus isolated from a rhesus macaque. J Virol 2009; 83:12738-50. [PMID: 19812149 DOI: 10.1128/jvi.01441-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We created a hybrid adeno-associated virus (AAV) from two related rhesus macaque isolates, called AAVrh32.33, and evaluated it as a vaccine carrier for human immunodeficiency virus type 1 (HIV-1) and type A influenza virus antigens. The goal was to overcome the limitations of vaccines based on other AAVs, which generate dysfunctional T-cell responses and are inhibited by antibodies found in human sera. Injection of a Gag-expressing AAVrh32.33 vector into mice resulted in a high-quality CD8(+) T-cell response. The resulting Gag-specific T cells express multiple cytokines at high levels, including interleukin-2, with many having memory phenotypes; a subsequent boost with an adenovirus vector yielded a brisk expansion of Gag-specific T cells. A priming dose of AAVrh32.33 led to high levels of Gag antibodies, which exceed levels found after injection of adenovirus vectors. Importantly, passive transfer of pooled human immunoglobulin into mice does not interfere with the efficacy of AAVrh32.33 expressing nucleoproteins from influenza virus, as measured by protection to a lethal dose of influenza virus, which is consistent with the very low seroprevalence to this virus in humans. Studies of macaques with vectors expressing gp140 from HIV-1 (i.e., with AAVrh32.33 as the prime and simian adenovirus type 24 as the boost) demonstrated results similar to those for mice with high-level and high-quality CD8(+) T-cell responses to gp140 and high-titered neutralizing antibodies to homologous HIV-1. The biology of this novel AAV hybrid suggests that it should be a preferred genetic vaccine carrier, capable of generating robust T- and B-cell responses.
Collapse
|
19
|
LoDuca PA, Hoffman BE, Herzog RW. Hepatic gene transfer as a means of tolerance induction to transgene products. Curr Gene Ther 2009; 9:104-14. [PMID: 19355868 DOI: 10.2174/156652309787909490] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The liver is a preferred target organ for gene therapy not only for liver-specific diseases but also for disorders that require systemic delivery of a protein. Diseases that could benefit from hepatic gene transfer include hemophilia, metabolic disorders, lysosomal storage disorders, and others. For a successful delivery of the transgene and sustained expression, the protocol must avoid immune responses in order to be efficacious. A growing number of studies have demonstrated that liver-directed transfer can induce transgene product-specific immune tolerance. Tolerance obtained via this route requires optimal engineering of the vector to eliminate transgene expression in antigen presenting cells while restricting high levels of therapeutic expression to hepatocytes. Innate immune responses may prevent tolerance induction, cause toxicity, and have to be minimized. Discussed in our review is the crucial role of CD4(+)CD25(+) regulatory T cells in tolerance to the hepatocyte-derived gene product, the immunobiology of the liver and our current understanding of its tolerogenic properties, current and proposed research as to the mechanisms behind the liver's unique cellular environment, as well as development of the tools for tolerance induction such as advanced vector systems.
Collapse
Affiliation(s)
- Paul A LoDuca
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
20
|
Tolerance induction to cytoplasmic beta-galactosidase by hepatic AAV gene transfer: implications for antigen presentation and immunotoxicity. PLoS One 2009; 4:e6376. [PMID: 19652717 PMCID: PMC2715858 DOI: 10.1371/journal.pone.0006376] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 06/29/2009] [Indexed: 11/19/2022] Open
Abstract
Background Hepatic gene transfer, in particular using adeno-associated viral (AAV) vectors, has been shown to induce immune tolerance to several protein antigens. This approach has been exploited in animal models of inherited protein deficiency for systemic delivery of therapeutic proteins. Adequate levels of transgene expression in hepatocytes induce a suppressive T cell response, thereby promoting immune tolerance. This study addresses the question of whether AAV gene transfer can induce tolerance to a cytoplasmic protein. Major Findings AAV-2 vector-mediated hepatic gene transfer for expression of cytoplasmic β-galactosidase (β-gal) was performed in immune competent mice, followed by a secondary β-gal gene transfer with E1/E3-deleted adenoviral Ad-LacZ vector to provoke a severe immunotoxic response. Transgene expression from the AAV-2 vector in ∼2% of hepatocytes almost completely protected from inflammatory T cell responses against β-gal, eliminated antibody formation, and significantly reduced adenovirus-induced hepatotoxicity. Consequently, ∼10% of hepatocytes continued to express β-gal 45 days after secondary Ad-LacZ gene transfer, a time point when control mice had lost all Ad-LacZ derived expression. Suppression of inflammatory T cell infiltration in the liver and liver damage was linked to specific transgene expression and was not seen for secondary gene transfer with Ad-GFP. A combination of adoptive transfer studies and flow cytometric analyses demonstrated induction of Treg that actively suppressed CD8+ T cell responses to β-gal and that was amplified in liver and spleen upon secondary Ad-LacZ gene transfer. Conclusions These data demonstrate that tolerance induction by hepatic AAV gene transfer does not require systemic delivery of the transgene product and that expression of a cytoplasmic neo-antigen in few hepatocytes can induce Treg and provide long-term suppression of inflammatory responses and immunotoxicity.
Collapse
|
21
|
Abstract
Undesired immunological responses to products of therapeutic gene replacement have been obstacles to successful gene therapy. Understanding such responses of the host immune system to achieve immunological tolerance to a transferred gene product is therefore crucial. In this article, we review relevant studies of immunological responses to gene replacement therapy, the role of immunological tolerance mediated by regulatory T cells in down-regulating the unwanted immune responses, and the interrelationship of the two topics.
Collapse
Affiliation(s)
- Saman Eghtesad
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
22
|
Antigen-specific humoral tolerance or immune augmentation induced by intramuscular delivery of adeno-associated viruses encoding CTLA4-Ig-antigen fusion molecules. Gene Ther 2008; 16:200-10. [PMID: 19037242 DOI: 10.1038/gt.2008.168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study initially sought to investigate the immunostimulatory properties of recombinant adeno-associated virus (rAAV) with a view to developing a genetic vaccine for malaria using muscle as a target tissue. To augment humoral immunity, the AAV-encoded antigen was genetically fused with CTLA4-Ig, a recombinant molecule that binds B7 costimulatory molecules. At 10(9) vg, CTLA4-Ig fusion promoted the humoral immune response 100-fold and was dependent on CTLA4-Ig binding with B7 costimulatory molecules, confirming plasmid DNA models using this strategy. In distinct contrast, 10(12)-10(13) vg of rAAV1 specifically induced long-lived humoral tolerance through a mechanism that is independent of CTLA4-Ig binding with B7. This finding was unexpected, as rAAV delivery to muscle, unlike liver, has shown that this tissue provides a highly immunogenic environment for induction of humoral immunity against rAAV transgene products. An additional unpredicted consequence of antigen fusion with CTLA4-Ig was the enhancement of antigen expression by approximately one log, an effect mapped to the hinge and Fc domain of IgG(1,) but not involving antigen dimerization or the neonatal Fc receptor. Collectively, these findings significantly advance the potential of rAAV both as a vaccine or immunotherapeutic platform for the induction of antigen-specific humoral immunity or tolerance and as a gene therapeutic delivery system.
Collapse
|
23
|
Hoffman BE, Herzog RW. Coaxing the liver into preventing autoimmune disease in the brain. J Clin Invest 2008; 118:3271-3. [PMID: 18802483 DOI: 10.1172/jci37079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The liver has several unique immunological properties that affect T cell activation and immune regulation. Recent studies have uncovered opportunities for the treatment of genetic disease by directing expression of the functional therapeutic protein to hepatocytes. In a new study in this issue of the JCI, Lüth and colleagues demonstrate that hepatic expression of a brain protein is protective against neuroinflammatory disease in a mouse model of human MS (see the related article beginning on page 3403). Suppression of autoimmunity was dependent on transgene expression in the liver and was mediated by induction of antigen-specific CD4+CD25+Foxp3+ Tregs. These findings suggest that the introduction of antigens to the liver may have potential as a preventative or therapeutic intervention for autoimmune disease.
Collapse
Affiliation(s)
- Brad E Hoffman
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
24
|
Long-term correction of inhibitor-prone hemophilia B dogs treated with liver-directed AAV2-mediated factor IX gene therapy. Blood 2008; 113:797-806. [PMID: 18957684 DOI: 10.1182/blood-2008-10-181479] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Preclinical studies and initial clinical trials have documented the feasibility of adenoassociated virus (AAV)-mediated gene therapy for hemophilia B. In an 8-year study, inhibitor-prone hemophilia B dogs (n = 2) treated with liver-directed AAV2 factor IX (FIX) gene therapy did not have a single bleed requiring FIX replacement, whereas dogs undergoing muscle-directed gene therapy (n = 3) had a bleed frequency similar to untreated FIX-deficient dogs. Coagulation tests (whole blood clotting time [WBCT], activated clotting time [ACT], and activated partial thromboplastin time [aPTT]) have remained at the upper limits of the normal ranges in the 2 dogs that received liver-directed gene therapy. The FIX activity has remained stable between 4% and 10% in both liver-treated dogs, but is undetectable in the dogs undergoing muscle-directed gene transfer. Integration site analysis by linear amplification-mediated polymerase chain reaction (LAM-PCR) suggested the vector sequences have persisted predominantly in extrachromosomal form. Complete blood count (CBC), serum chemistries, bile acid profile, hepatic magnetic resonance imaging (MRI) and computed tomography (CT) scans, and liver biopsy were normal with no evidence for tumor formation. AAV-mediated liver-directed gene therapy corrected the hemophilia phenotype without toxicity or inhibitor development in the inhibitor-prone null mutation dogs for more than 8 years.
Collapse
|
25
|
TLR3 signaling does not affect organ-specific immune responses to factor IX in AAV gene therapy. Blood 2008; 112:910-1. [PMID: 18650463 DOI: 10.1182/blood-2008-02-137992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Alexander IE, Cunningham SC, Logan GJ, Christodoulou J. Potential of AAV vectors in the treatment of metabolic disease. Gene Ther 2008; 15:831-9. [PMID: 18401432 DOI: 10.1038/gt.2008.64] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inborn errors of metabolism are collectively common, frequently severe and in many instances difficult or impossible to treat. Accordingly, there is a compelling need to explore novel therapeutic modalities, including gene therapy, and examine multiple phenotypes where the risks of experimental therapy are outweighed by potential benefits to trial participants. Among available gene delivery systems recombinant AAV shows special promise for the treatment of metabolic disease given the unprecedented efficiencies achieved in transducing key target tissues, such as liver and muscle, in small animal models. To date over 30 metabolic disease phenotypes have been investigated in small animal studies with complete phenotype correction being achieved in a substantial proportion. Achieving adequately widespread transduction within the central nervous system, however, remains a major challenge, and will be critical to realization of the therapeutic potential of gene therapy for many of the most clinically troubling metabolic disease phenotypes. Despite the relatively low immunogenicity of AAV vectors, immune responses are also emerging as a factor requiring special attention as efforts accelerate toward human clinical translation. Four metabolic disease phenotypes have reached phase I or I/II trials with one, targeting lipoprotein lipase deficiency, showing exciting early evidence of efficacy.
Collapse
Affiliation(s)
- I E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute and The Children's Hospital at Westmead, Wentworthville, NSW, Australia.
| | | | | | | |
Collapse
|
27
|
Hoffman BE, Dobrzynski E, Wang L, Hirao L, Mingozzi F, Cao O, Herzog RW. Muscle as a target for supplementary factor IX gene transfer. Hum Gene Ther 2007; 18:603-13. [PMID: 17594244 DOI: 10.1089/hum.2007.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Immune responses to the factor IX (F.IX) transgene product are a concern in gene therapy for the X-linked bleeding disorder hemophilia B. The risk for such responses is determined by several factors, including the vector, target tissue, and others. Previously, we have demonstrated that hepatic gene transfer with adeno-associated viral (AAV) vectors can induce F.IX-specific immune tolerance. Muscle-derived F.IX expression, however, is limited by a local immune response. Here, skeletal muscle was investigated as a target for supplemental gene transfer. Given the low invasiveness of intramuscular injections, this route would be ideal for secondary gene transfer, thereby boosting levels of transgene expression. However, this is feasible only if immune tolerance established by compartmentalization of expression to the liver extends to other sites. Immune tolerance to human F.IX established by prior hepatic AAV-2 gene transfer was maintained after subsequent injection of AAV-1 or adenoviral vector into skeletal muscle, and tolerized mice failed to form antibodies or an interferon (IFN)-gamma(+) T cell response to human F.IX. A sustained increase in systemic transgene expression was obtained for AAV-1, whereas an increase after adenoviral gene transfer was transient. A CD8(+) T cell response specifically against adenovirus-transduced fibers was observed, suggesting that cytotoxic T cell responses against viral antigens were sufficient to eliminate expression in muscle. In summary, the data demonstrate that supplemental F.IX gene transfer to skeletal muscle does not break tolerance achieved by liver-derived expression. The approach is efficacious, if the vector for muscle gene transfer does not express immunogenic viral proteins.
Collapse
Affiliation(s)
- Brad E Hoffman
- Department of Pediatrics and Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Zaldumbide A, Hoeben RC. How not to be seen: immune-evasion strategies in gene therapy. Gene Ther 2007; 15:239-46. [PMID: 18046427 DOI: 10.1038/sj.gt.3303082] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of efficient and safe vectors for gene delivery paved the way for evolution of gene therapy as a new modality for treatment of various inherited disorders and for cancer. The current vectors, viral and non-viral, have their limitations. Innate and adaptive immune responses to vector particles and components may restrict the efficiency of gene transfer and the persistence of expression of the transgene. Results from preclinical studies in animals and more recently data from clinical studies have demonstrated the potential impact of the cellular and the humoral immune response on the therapeutic efficacy. Not only the vector components, but also the transgene products may induce an immune response that negatively affects the therapeutic efficacy. The induction of a cytotoxic T-cell response to transgene-encoded peptides, as well as the production of antibodies directed against secreted proteins have been reported in preclinical and clinical studies, and these may thwart those applications that require long-term expression. Here we will review some of the options to blunt the acquired immune responses to transgene-encoded polypeptides.
Collapse
Affiliation(s)
- A Zaldumbide
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
29
|
Abstract
Haemophilia has long been considered an ideal system for validating human gene transfer (GT). However, haemophilia GT trials present a particular ethical challenge because they involve subjects whose medical condition is stabilized by standard therapies. Below, I review the ethics and risks of haemophilia GT clinical research. I propose several conditions and practices that strengthen the ethical basis for such trials. These include consultation with haemophilia advocacy organizations as trials are designed and executed, high standards of supporting evidence before trials are initiated, pretrial publication of this evidence, and the offer of indemnification for participants. I further argue against the conduct of paediatric haemophilia GT studies at this time, and raise questions about the fairness of recruiting economically disadvantaged subjects into studies that are primarily directed towards the health needs of persons in the developed world.
Collapse
Affiliation(s)
- J Kimmelman
- Department of Social Studies of Medicine Clinical Trials Research Group/Biomedical Ethics Unit Faculty of Medicine/McGill University, Montreal, QC, Canada.
| |
Collapse
|
30
|
Wang L, Figueredo J, Calcedo R, Lin J, Wilson JM. Cross-presentation of adeno-associated virus serotype 2 capsids activates cytotoxic T cells but does not render hepatocytes effective cytolytic targets. Hum Gene Ther 2007; 18:185-94. [PMID: 17324107 DOI: 10.1089/hum.2007.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Liver toxicity observed in a clinical trial of adeno-associated virus serotype 2 (AAV2) delivered systemically to patients with hemophilia was ascribed to killing of vector-transduced hepatocytes by capsid-specific T cells. This study evaluated the biology of T cell activation in response to AAV capsids in murine models. CD8(+) T cell epitopes were mapped to capsids from AAV2, AAV7, and AAV8. A tetramer generated in response to a dominant capsid epitope in BALB/c mice was shared between these AAV serotypes. Administration of AAV2 vector resulted in the activation of capsid-specific CD8(+) T cells as evidenced by binding to tetramer and production of capsid-induced interferon-gamma expression this was not observed with the AAV7 and AAV8 vectors. CD8(+) T cells specific to AAV2 capsids demonstrate functional cytolytic activity in vivo to peptide-loaded target cells. The frequency of capsid-specific T cells was much higher in liver than in blood or spleen. The performance of liver-directed AAV-mediated gene transfer was not diminished in animals with high levels of pre-existing capsid-specific T cells. We conclude that cross-presentation of AAV capsids does result in activation of cytotoxic T lymphocytes (CTLs) in a serotype-specific manner; however, there is no evidence that vector-transduced hepatocytes are targets for CTL effector activity.
Collapse
Affiliation(s)
- Lili Wang
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Factor IX (FIX) inhibitors develop in 1.5-3% of haemophilia B patients. Due to its low incidence compared with that in haemophilia A, few comparable data exist on host and treatment-related risk factors, and immunological processes associated with FIX inhibitor development. Moreover, the safety and efficacy of bypass therapy as well as the outcome predictors of successful inhibitor eradication have been poorly characterised. The lack of a useful evidence-based approach to the diagnosis and management of FIX inhibitors complicates their significant morbidity due to the frequency of allergic reactions that often herald antibody development. This review discusses what is currently known about the epidemiology, natural history and immunology of anti-FIX antibody development. It addresses several special considerations in the approach to the treatment of bleeding and inhibitor eradication. A case is made for moving forward with an integrated international collaboration for the further study of the nature and treatment of this problem.
Collapse
Affiliation(s)
- Donna DiMichele
- Pediatrics and Public Health, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
32
|
Cao O, Dobrzynski E, Wang L, Nayak S, Mingle B, Terhorst C, Herzog RW. Induction and role of regulatory CD4+CD25+ T cells in tolerance to the transgene product following hepatic in vivo gene transfer. Blood 2007; 110:1132-40. [PMID: 17438084 PMCID: PMC1939896 DOI: 10.1182/blood-2007-02-073304] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 04/12/2007] [Indexed: 12/14/2022] Open
Abstract
Gene replacement therapy is complicated by the risk of an immune response against the therapeutic transgene product, which in part is determined by the route of vector administration. Our previous studies demonstrated induction of immune tolerance to coagulation factor IX (FIX) by hepatic adeno-associated viral (AAV) gene transfer. Using a regulatory T-cell (T(reg))-deficient model (Rag-2(-/-) mice transgenic for ovalbumin-specific T-cell receptor DO11.10), we provide first definitive evidence for induction of transgene product-specific CD4(+)CD25(+) T(regs) by in vivo gene transfer. Hepatic gene transfer-induced T(regs) express FoxP3, GITR, and CTLA4, and suppress CD4(+)CD25(-) T cells. T(regs) are detected as early as 2 weeks after gene transfer, and increase in frequency in thymus and secondary lymphoid organs during the following 2 months. Similarly, adoptive lymphocyte transfers from mice tolerized to human FIX by hepatic AAV gene transfer indicate induction of CD4(+)CD25(+)GITR(+) that suppresses antibody formation to FIX. Moreover, in vivo depletion of CD4(+)CD25(+) T(regs) leads to antibody formation to the FIX transgene product after hepatic gene transfer, which strongly suggests that these regulatory cells are required for tolerance induction. Our study reveals a crucial role of CD4(+)CD25(+) T(regs) in preventing immune responses to the transgene product in gene transfer.
Collapse
Affiliation(s)
- Ou Cao
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Warrington KH, Herzog RW. Treatment of human disease by adeno-associated viral gene transfer. Hum Genet 2006; 119:571-603. [PMID: 16612615 DOI: 10.1007/s00439-006-0165-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 02/28/2006] [Indexed: 11/24/2022]
Abstract
During the past decade, in vivo administration of viral gene transfer vectors for treatment of numerous human diseases has been brought from bench to bedside in the form of clinical trials, mostly aimed at establishing the safety of the protocol. In preclinical studies in animal models of human disease, adeno-associated viral (AAV) vectors have emerged as a favored gene transfer system for this approach. These vectors are derived from a replication-deficient, non-pathogenic parvovirus with a single-stranded DNA genome. Efficient gene transfer to numerous target cells and tissues has been described. AAV is particularly efficient in transduction of non-dividing cells, and the vector genome persists predominantly in episomal forms. Substantial correction, and in some instances complete cure, of genetic disease has been obtained in animal models of hemophilia, lysosomal storage disorders, retinal diseases, disorders of the central nervous system, and other diseases. Therapeutic expression often lasted for months to years. Treatments of genetic disorders, cancer, and other acquired diseases are summarized in this review. Vector development, results in animals, early clinical experience, as well as potential hurdles and challenges are discussed.
Collapse
Affiliation(s)
- Kenneth H Warrington
- Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32615-9586, USA
| | | |
Collapse
|
34
|
Cao O, Armstrong E, Schlachterman A, Wang L, Okita DK, Conti-Fine B, High KA, Herzog RW. Immune deviation by mucosal antigen administration suppresses gene-transfer-induced inhibitor formation to factor IX. Blood 2006; 108:480-6. [PMID: 16543469 PMCID: PMC1895479 DOI: 10.1182/blood-2005-11-4668] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Formation of inhibitory antibodies is a serious complication of protein or gene replacement therapy for hemophilias, congenital X-linked bleeding disorders. In hemophilia B (coagulation factor IX [F.IX] deficiency), lack of endogenous F.IX antigen expression and other genetic factors may increase the risk of antibody formation to functional F.IX. Here, we developed a protocol for reducing inhibitor formation in gene therapy by prior mucosal (intranasal) administration of a peptide representing a human F.IX-specific CD4(+) T-cell epitope in hemophilia B mice. C3H/HeJ mice with a F.IX gene deletion produced inhibitory IgG to human F.IX after hepatic gene transfer with an adeno-associated viral vector. These animals subsequently lost systemic F.IX expression. In contrast, repeated intranasal administration of the specific peptide resulted in reduced inhibitor formation, sustained circulating F.IX levels, and sustained partial correction of coagulation following hepatic gene transfer. This was achieved through immune deviation to a T-helper-cell response with increased IL-10 and TGF-beta production and activation of regulatory CD4(+)CD25(+) T cells.
Collapse
Affiliation(s)
- Ou Cao
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Alachua, 32615, USA
| | | | | | | | | | | | | | | |
Collapse
|