1
|
Mishra A, Omoyeni T, Singh PK, Anandakumar S, Tiwari A. Trends in sustainable chitosan-based hydrogel technology for circular biomedical engineering: A review. Int J Biol Macromol 2024; 276:133823. [PMID: 39002912 DOI: 10.1016/j.ijbiomac.2024.133823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Eco-friendly materials have emerged in biomedical engineering, driving major advances in chitosan-based hydrogels. These hydrogels offer a promising green alternative to conventional polymers due to their non-toxicity, biodegradability, biocompatibility, environmental friendliness, affordability, and easy accessibility. Known for their remarkable properties such as drug encapsulation, delivery capabilities, biosensing, functional scaffolding, and antimicrobial behavior, chitosan hydrogels are at the forefront of biomedical research. This paper explores the fabrication and modification methods of chitosan hydrogels for diverse applications, highlighting their role in advancing climate-neutral healthcare technologies. It reviews significant scientific advancements and trends chitosan hydrogels focusing on cancer diagnosis, drug delivery, and wound care. Additionally, it addresses current challenges and green synthesis practices that support a circular economy, enhancing biomedical sustainability. By providing an in-depth analysis of the latest evidence on climate-neutral management, this review aims to facilitate informed decision-making and foster the development of sustainable strategies leveraging chitosan hydrogel technology. The insights from this comprehensive examination are pivotal for steering future research and applications in sustainable biomedical solutions.
Collapse
Affiliation(s)
- Anshuman Mishra
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Temitayo Omoyeni
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden; Cyprus International University Faculty of Engineering, Nicosia 99258, TRNC, Cyprus
| | - Pravin Kumar Singh
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - S Anandakumar
- Department of Chemistry, Anna University, Chennai 600025, India
| | - Ashutosh Tiwari
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden.
| |
Collapse
|
2
|
Kaewket K, Ngamchuea K. Electrochemical detection of creatinine: exploiting copper(ii) complexes at Pt microelectrode arrays. RSC Adv 2023; 13:33210-33220. [PMID: 38025874 PMCID: PMC10647978 DOI: 10.1039/d3ra06175b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
This work develops a rapid and highly sensitive electrochemical sensor for creatinine detection at platinum microelectrode arrays (Pt-MEA). Copper(ii) ions are introduced to form the electroactive creatinine complex, which is then detected at Pt-MEA through a direct reduction reaction. Electrochemical behaviors of the creatinine complex are also explored at Pt macrodisc and microdisc electrodes in comparison with Pt-MEA. At the Pt-MEA, the linear range, sensitivity, and limit of detection of creatinine are determined to be 0.00-5.00 mM, 5401 ± 99 A m-2 M-1, and 0.059 mM (3SB/m), respectively. Notably, the Pt-MEA requires only 10 μL of sample and allows direct measurement of creatinine in synthetic urine with 97.39 ± 4.78% recovery.
Collapse
Affiliation(s)
- Keerakit Kaewket
- School of Chemistry, Institute of Science, Suranaree University of Technology 111 University Avenue, Suranaree, Muang Nakhon Ratchasima 30000 Thailand +66 (0) 44 224 637
| | - Kamonwad Ngamchuea
- School of Chemistry, Institute of Science, Suranaree University of Technology 111 University Avenue, Suranaree, Muang Nakhon Ratchasima 30000 Thailand +66 (0) 44 224 637
| |
Collapse
|
3
|
Altıntıg E, Ates A, Angın D, Topal Z, Aydemir Z. Kinetic, equilibrium, adsorption mechanisms of RBBR and MG dyes on Chitosan-Coated Montmorillonite with an Ecofriendly Approach. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Li X, Hetjens L, Wolter N, Li H, Shi X, Pich A. Charge-reversible and biodegradable chitosan-based microgels for lysozyme-triggered release of vancomycin. J Adv Res 2022; 43:87-96. [PMID: 36585117 PMCID: PMC9811367 DOI: 10.1016/j.jare.2022.02.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION High-dose drug administration for the conventional treatment of inflammatory bowel disease induces cumulative toxicity and serious side effects. Currently, few reports have introduced smart carriers for intestinal inflammation targeting toward the treatment of inflammatory bowel disease. OBJECTIVES For the unique lysozyme secretory microenvironment of the inflamed intestine, vancomycin-loaded chitosan-polyaniline microgels (CH-PANI MGs) were constructed for lysozyme-triggered VM release. METHODS Aniline was first grafted to chitosan to form polymers that were crosslinked by glutaraldehyde to achieve CH-PANI MGs using the inverse (water-in-oil) miniemulsion method. Interestingly, CH-PANI MGs exhibit polyampholyte behaviour and display charge-reversible behaviour (positive to negative charges) after treatment with a NaCl solution. RESULTS The formed negatively charged N-CH-PANI MG aqueous solution is employed to load cationic vancomycin with a satisfactory loading efficiency of 91.3%, which is significantly higher than that of chitosan-based MGs. Moreover, N-CH-PANI MGs present lysozyme-triggered biodegradation and controllable vancomycin release upon the cleavage of glycosidic linkages of chitosan. In the simulated inflammatory intestinal microenvironment, vancomycin is rapidly released, and the cumulative release reaches approximately 76.9%. Remarkably, N-CH-PANI@VM MGs not only exhibit high resistance to harsh gastric acidity but also prevent the premature leakage of vancomycin in the healthy gastrointestinal tract. Encouragingly, the N-CH-PANI@VM MGs show obvious antibacterial activity against Staphylococcus aureus at a relatively low concentration of 20 μg/mL. CONCLUSION Compared to other pH-responsive carriers used to treat inflammatory bowel disease, the key advantage of lysozyme-responsive MGs is that they further specifically identify healthy and inflammatory intestines, achieving efficient inflammatory bowel disease treatment with few side effects. With this excellent performance, the developed smart MGs might be employed as a potential oral delivery system for inflammatory bowel disease treatment.
Collapse
Affiliation(s)
- Xin Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China,DWI-Leibniz-Institute for Interactive Materials e.V, 52056 Aachen, Germany,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Laura Hetjens
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nadja Wolter
- DWI-Leibniz-Institute for Interactive Materials e.V, 52056 Aachen, Germany
| | - Helin Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China,Corresponding authors at: Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China (H. Li). College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China (X. Shi). DWI-Leibniz-Institute for Interactive Materials e.V, 52056 Aachen, Germany (A. Pich).
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China,CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal,Corresponding authors at: Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China (H. Li). College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China (X. Shi). DWI-Leibniz-Institute for Interactive Materials e.V, 52056 Aachen, Germany (A. Pich).
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials e.V, 52056 Aachen, Germany,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany,Aachen Maastricht Institute for Biobased Materials, Maastricht University, 6167 RD Geleen, the Netherlands,Corresponding authors at: Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China (H. Li). College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China (X. Shi). DWI-Leibniz-Institute for Interactive Materials e.V, 52056 Aachen, Germany (A. Pich).
| |
Collapse
|
5
|
Caliskan S, Yildirim E, Anakok DA, Cete S. Design of a new biosensor platform for creatinine determination. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-021-05107-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Dong Y, Qu X, Wu G, Luo X, Tang B, Wu F, Fan L, Dev S, Liang T. Advances in the Detection, Mechanism and Therapy of Chronic Kidney Disease. Curr Pharm Des 2019; 25:4235-4250. [PMID: 31742493 DOI: 10.2174/1381612825666191119094354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/30/2019] [Indexed: 01/08/2023]
Abstract
Chronic Kidney Disease (CKD) is characterized by the gradual loss of renal mass and functions. It has become a global health problem, with hundreds of millions of people being affected. Both its incidence and prevalence are increasing over time. More than $20,000 are spent on each patient per year. The economic burden on the patients, as well as the society, is heavy and their life quality worsen over time. However, there are still limited effective therapeutic strategies for CKD. Patients mainly rely on dialysis and renal transplantation, which cannot prevent all the complications of CKD. Great efforts are needed in understanding the nature of CKD progression as well as developing effective therapeutic methods, including pharmacological agents. This paper reviews three aspects in the research of CKD that may show great interests to those who devote to bioanalysis, biomedicine and drug development, including important endogenous biomarkers quantification, mechanisms underlying CKD progression and current status of CKD therapy.
Collapse
Affiliation(s)
- Yu Dong
- Department of Urology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011, Nanning, China
| | - Xiaosheng Qu
- National Engineering Laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, No. 189, Changgang Road, 530023, Nanning, China
| | - Gang Wu
- Department of Urology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011, Nanning, China
| | - Xiangdong Luo
- Department of Urology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011, Nanning, China
| | - Botao Tang
- Department of Urology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011, Nanning, China
| | - Fangfang Wu
- National Engineering Laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, No. 189, Changgang Road, 530023, Nanning, China
| | - Lanlan Fan
- School of Pharmacy, Guangxi University of Chinese Medicine, 530001, Nanning, China
| | - Sooranna Dev
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369, Fulham Road, London SW10 9NH, United Kingdom
| | - Taisheng Liang
- Department of Urology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011, Nanning, China
| |
Collapse
|
7
|
Purification and Glutaraldehyde Activation Study on HCl-Doped PVA⁻PANI Copolymers with Different Aniline Concentrations. Molecules 2018; 24:molecules24010063. [PMID: 30585194 PMCID: PMC6337460 DOI: 10.3390/molecules24010063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/17/2022] Open
Abstract
In this work, we report the synthesis and purification of polyvinyl alcohol-polyaniline (PVA⁻PANI) copolymers at different aniline concentrations, and their molecular (¹H-NMR and FTIR), thermal (TGA/DTG/DSC), optical (UV⁻Vis-NIR), and microstructural (XRD and SEM) properties before and after activation with glutaraldehyde (GA) in order to obtain an active membrane. The PVA⁻PANI copolymers were synthesized by chemical oxidation of aniline using ammonium persulfate (APS) in an acidified (HCl) polyvinyl alcohol matrix. The obtained copolymers were purified by dialysis and the precipitation⁻redispersion method in order to eliminate undesired products and compare changes due to purification. PVA⁻PANI products were analyzed as gels, colloidal dispersions, and thin films. ¹H-NMR confirmed the molecular structure of PVA⁻PANI as the proposed skeletal formula, and FTIR of the obtained purified gels showed the characteristic functional groups of PVA gels with PANI nanoparticles. After exposing the material to a GA solution, the presence of the FTIR absorption bands at 1595 cm-1, 1650 cm-1, and 1717 cm-1 confirmed the activation of the material. FTIR and UV⁻Vis-NIR characterization showed an increase of the benzenoid section of PANI with GA exposure, which can be interpreted as a reduction of the polymer with the time of activation and concentration of the solution.
Collapse
|
8
|
Pundir CS, Kumar P, Jaiwal R. Biosensing methods for determination of creatinine: A review. Biosens Bioelectron 2018; 126:707-724. [PMID: 30551062 DOI: 10.1016/j.bios.2018.11.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/06/2018] [Accepted: 11/19/2018] [Indexed: 01/06/2023]
Abstract
Creatinine is a metabolic product of creatine phosphate in muscles, which provides energy to muscle tissues. Creatinine has been considered as indicator of renal function specifically after dialysis, thyroid malfunction and muscle damage. The normal level of creatinine in the serum and its excretion through urine in apparently healthy individuals is 45-140 μM and 0.8-2.0 gm/day respectively. The level of creatinine reaches >1000 μM in serum during renal, thyroid and kidney dysfunction or muscle disorder. A number of conventional methods such as colorimetric, spectrophotometric and chromatographic are available for determination of creatinine. Besides the advantages of being highly sensitive and selective, these methods have some drawbacks like time-consuming, requirement of sample pre-treatment, high cost instrumental set-up and skilled persons to operate. The sensors/biosensors overcome these drawbacks, as these are fast, easy, cost effective and highly sensitive. This review article describes the classification, operating principles, merits and demerits of various creatinine sensors/biosensors, specifically nanomaterials based biosensors. Creatinine biosensors work optimally within 2-900 s, potential range 0.1-1.0 V, pH range 4.0-10.0, temperature range 25-35 °C and had linear range, 0.004-30000 µM for creatinine with the detection limit between 0.01.01 µM and 520 µM. These biosensors measured creatinine level in sera and urine samples and had storage stability between 4 and 390 days, while being stored dry at 4 °C. The future perspective for further improvement and commercialization of creatinine biosensors are discussed.
Collapse
Affiliation(s)
- C S Pundir
- Department of Biochemistry, M.D. University, Rohtak 124001, India.
| | - Parveen Kumar
- Department of Biochemistry, M.D. University, Rohtak 124001, India; Department of Zoology, M.D. University, Rohtak 124001, India
| | - Ranjana Jaiwal
- Department of Zoology, M.D. University, Rohtak 124001, India
| |
Collapse
|
9
|
Alatawi FS, Monier M, Elsayed NH. Amino functionalization of carboxymethyl cellulose for efficient immobilization of urease. Int J Biol Macromol 2018; 114:1018-1025. [DOI: 10.1016/j.ijbiomac.2018.03.142] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/14/2018] [Accepted: 03/22/2018] [Indexed: 11/26/2022]
|
10
|
Dmitriev IY, Rozova EY, Zoolshoev ZF, Nesterov PV, Kuryndin IS, Krainyukov ES, Lebedev SV, Elyashevich GK. Electromechanical Response and Structure of Chitosan–Polyaniline Composite Systems. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x18030033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Shahadat M, Khan MZ, Rupani PF, Embrandiri A, Sultana S, Ahammad SZ, Wazed Ali S, Sreekrishnan T. A critical review on the prospect of polyaniline-grafted biodegradable nanocomposite. Adv Colloid Interface Sci 2017; 249:2-16. [PMID: 28935100 DOI: 10.1016/j.cis.2017.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 10/18/2022]
Abstract
Among the various electrically conducting polymers, polyaniline (PANI) has gained attentions due to its unique properties and doping chemistry. A number of electrically conducting biodegradable polymers has been synthesized by incorporating a biodegradable content of cellulose, chitin, chitosan, etc. in the matrix of PANI. The hybrid materials are also employed as photocatalysts, antibacterial agents, sensors, fuel cells and as materials in biomedical applications. Furthermore, these biodegradable and biocompatible conducting polymers are employed in tissue engineering, dental implants and targeted drug delivery. This review presents state of the art of PANI based biodegradable polymers along with their synthesis routes and unique applications in diverse fields. In future, the synthesis of PANI-grafted biodegradable nanocomposite material is expected to open innovative ways for their outstanding applications.
Collapse
|
12
|
Teepoo S, Dawan P, Barnthip N. Electrospun Chitosan-Gelatin Biopolymer Composite Nanofibers for Horseradish Peroxidase Immobilization in a Hydrogen Peroxide Biosensor. BIOSENSORS 2017; 7:E47. [PMID: 29036932 PMCID: PMC5746770 DOI: 10.3390/bios7040047] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/18/2022]
Abstract
A biosensor based on chitosan-gelatin composite biopolymers nanofibers is found to be effective for the immobilization of horseradish peroxidase to detect hydrogen peroxide. The biopolymer nanofibers were fabricated by an electrospining technique. Upon optimization of synthesis parameters, biopolymers nanofibers, an average of 80 nm in diameter, were obtained and were then modified on the working electrode surface. The effects of the concentration of enzyme, pH, and concentration of the buffer and the working potential on the current response of the nanofibers-modified electrode toward hydrogen peroxide were optimized to obtain the maximal current response. The results found that horseradish peroxidase immobilization on chitosan-gelatin composite biopolymer nanofibers had advantages of fast response, excellent reproducibility, high stability, and showed a linear response to hydrogen peroxide in the concentration range from 0.1 to 1.7 mM with a detection limit of 0.05 mM and exhibited high sensitivity of 44 µA∙mM-1∙cm-2. The developed system was evaluated for analysis of disinfectant samples and showed good agreement between the results obtained by the titration method without significant differences at the 0.05 significance level. The proposed strategy based on chitosan-gelatin composite biopolymer nanofibers for the immobilization of enzymes can be extended for the development of other enzyme-based biosensors.
Collapse
Affiliation(s)
- Siriwan Teepoo
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand.
| | - Phanphruk Dawan
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand.
| | - Naris Barnthip
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand.
| |
Collapse
|
13
|
Chen CH, Ko CJ, Chuang CH, Mao CF, Liao WT, Hsieh CD. Synthesis and characterization of polyaniline co-doped with nitric acid and dodecyl benzene sulfonic acid. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-1175-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Sharma K, Kumar V, Swart-Pistor C, Chaudhary B, Swart HC. Synthesis, characterization, and anti-microbial activity of superabsorbents based on agar–poly(methacrylic acid-glycine). J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516653148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, poly(methacrylic acid-glycine)-grafted agar-based hydrogels with optimized process parameters were synthesized via a two-step green-radiation induced grafting process using microwave heating. Poly(methacrylic acid) chains were graft copolymerized onto an agar backbone using ammonium persulfate as a free radical initiator and N,N′-methylene-bis-acrylamide as a cross-linking means using microwave heating. The influence of different reaction parameters was investigated on the percentage swelling behavior of the cross-linked hydrogel networks. The prepared hydrogel networks with optimum percentage swelling were characterized by Fourier transform infrared spectroscopy, time-of-flight secondary ion mass spectrometry, scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis, using agar as a reference. The anti-bacterial activities of the prepared hydrogels against Gram-positive Staphylococcus aureus bacteria and Gram-negative Escherichia coli bacteria were investigated. Staphylococcus aureus was found to be more susceptible to the compounds compared to Escherichia coli. These results indicate that the prepared hydrogels have the potential to be applied as anti-bacterial agents.
Collapse
Affiliation(s)
- Kashma Sharma
- Department of Physics, University of the Free State, Bloemfontein, South Africa
| | - Vijay Kumar
- Department of Physics, University of the Free State, Bloemfontein, South Africa
- Department of Applied Physics, Chandigarh University, Gharuan, Mohali (Punjab), India
| | - Chantel Swart-Pistor
- Centre for Microscopy, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Babulal Chaudhary
- Science and Engineering Research Board, Department of Science & Technology, New Delhi, India
| | - Hendrik C Swart
- Department of Physics, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
15
|
Rafipour R, Kashanian S, Hashemi S, Omidfar K, Ezzati Nazhad Dolatabadi J. Apoferritin-templated biosynthesis of manganese nanoparticles and investigation of direct electron transfer of MnNPs-HsAFr at modified glassy carbon electrode. Biotechnol Appl Biochem 2016; 64:110-116. [DOI: 10.1002/bab.1466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/01/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Ronak Rafipour
- Department of Chemistry; College of Science; Kermanshah Branch; Islamic Azad University; Kermanshah Iran
| | - Soheila Kashanian
- Faculty of Chemistry; Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC); Razi University; Kermanshah Iran
- Nano Drug Delivery Research Center; Kermanshah University of Medical Sciences; Kermanshah Iran
| | - Sadegh Hashemi
- Department of Animal Science; Faculty of Agriculture; University of Tehran; Karaj Iran
| | - Kobra Omidfar
- Endocrine and Metabolism Research Center; Tehran University of Medical Sciences; Tehran Iran
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute; Tehran University of Medical Sciences; Tehran Iran
| | | |
Collapse
|
16
|
Shukla SK, Shukla SK, Govender PP, Giri NG. Biodegradable polymeric nanostructures in therapeutic applications: opportunities and challenges. RSC Adv 2016. [DOI: 10.1039/c6ra15764e] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biodegradable polymeric nanostructures (BPNs) have shown great promise in different therapeutic applications such as diagnosis, imaging, drug delivery, cosmetics, organ implants, and tissue engineering.
Collapse
Affiliation(s)
- S. K. Shukla
- Department of Polymer Science
- Bhaskaracharya College of Applied Sciences
- University of Delhi
- Delhi-110075
- India
| | - Sudheesh K. Shukla
- Department of Applied Chemistry
- University of Johannesburg
- Johannesburg
- South Africa
| | - Penny P. Govender
- Department of Applied Chemistry
- University of Johannesburg
- Johannesburg
- South Africa
| | - N. G. Giri
- Department of Chemistry
- Shivaji College
- University of Delhi
- New Delhi-110027
- India
| |
Collapse
|
17
|
Karthika J, Vishalakshi B, Naik J. Gellan gum–graft–polyaniline—An electrical conducting biopolymer. Int J Biol Macromol 2016; 82:61-7. [DOI: 10.1016/j.ijbiomac.2015.10.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
|
18
|
Faria-Tischer PCS, Costa CAR, Tozetti I, Dall'Antonia LH, Vidotti M. Structure and effects of gold nanoparticles in bacterial cellulose–polyaniline conductive membranes. RSC Adv 2016. [DOI: 10.1039/c5ra25332b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacterial cellulose (BC) and poly(aniline) (PANI) composites were successfully synthesized by in situ polymerization of aniline by ammonium persulphate (APS) in the presence and absence of gold nanoparticles.
Collapse
Affiliation(s)
- Paula. C. S. Faria-Tischer
- Grupo de Pesquisa em Macromoléculas e Interfaces
- Department of Chemistry
- Federal University of Parana
- CEP 81531-980 Curitiba
- Brazil
| | - Carlos. A. R. Costa
- National Nanotechnology Laboratory (LNNano)
- National Center for Energy and Materials (CNPEM)
- Campinas
- Brazil 13083-970
| | - Izadora Tozetti
- Laboratório de Eletroquímica e Materiais (LEMA)
- Department of Chemistry
- CCE, State University of Londrina
- 86051-990 Londrina
- Brazil
| | - Luiz H. Dall'Antonia
- Laboratório de Eletroquímica e Materiais (LEMA)
- Department of Chemistry
- CCE, State University of Londrina
- 86051-990 Londrina
- Brazil
| | - Marcio Vidotti
- Grupo de Pesquisa em Macromoléculas e Interfaces
- Department of Chemistry
- Federal University of Parana
- CEP 81531-980 Curitiba
- Brazil
| |
Collapse
|
19
|
Sharma K, Kumar V, Kaith BS, Som S, Kumar V, Pandey A, Kalia S, Swart HC. Synthesis of Biodegradable Gum ghatti Based Poly(methacrylic acid-aniline) Conducting IPN Hydrogel for Controlled Release of Amoxicillin Trihydrate. Ind Eng Chem Res 2015. [DOI: 10.1021/ie5044743] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kashma Sharma
- Department
of Physics, University of the Free State, P. O. Box 339, Bloemfontein ZA9300, South Africa
| | - Vijay Kumar
- Department
of Physics, University of the Free State, P. O. Box 339, Bloemfontein ZA9300, South Africa
| | - B. S. Kaith
- Department
of Chemistry, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab 144011, India
| | - Sudipta Som
- Department
of Physics, University of the Free State, P. O. Box 339, Bloemfontein ZA9300, South Africa
| | - Vinod Kumar
- Department
of Physics, University of the Free State, P. O. Box 339, Bloemfontein ZA9300, South Africa
| | - Anurag Pandey
- Department
of Physics, University of the Free State, P. O. Box 339, Bloemfontein ZA9300, South Africa
| | - S. Kalia
- Department
of Chemistry, Bahra University, Waknaghat (Shimla Hills) 173234, District Solan, Himachal Pradesh, India
| | - H. C. Swart
- Department
of Physics, University of the Free State, P. O. Box 339, Bloemfontein ZA9300, South Africa
| |
Collapse
|
20
|
Sharma K, Kaith BS, Kalia S, Kumar V, Swart HC. Gum ghatti-based biodegradable and conductive carriers for colon-specific drug delivery. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3505-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Sharma K, Kumar V, Kaith BS, Kumar V, Som S, Pandey A, Kalia S, Swart HC. Evaluation of a conducting interpenetrating network based on gum ghatti-g-poly(acrylic acid-aniline) as a colon-specific delivery system for amoxicillin trihydrate and paracetamol. NEW J CHEM 2015. [DOI: 10.1039/c4nj01982b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of colon-specific drug delivery systems for amoxicillin trihydrate and paracetamol using gum ghatti based crosslinked hydrogels.
Collapse
Affiliation(s)
- Kashma Sharma
- Department of Physics
- University of the Free State
- Bloemfontein ZA9300
- South Africa
| | - Vijay Kumar
- Department of Physics
- University of the Free State
- Bloemfontein ZA9300
- South Africa
| | - Balbir Singh Kaith
- Department of Chemistry
- Dr. B.R. Ambedkar National Institute of Technology
- Jalandhar
- India
| | - Vinod Kumar
- Department of Physics
- University of the Free State
- Bloemfontein ZA9300
- South Africa
| | - Sudipta Som
- Department of Physics
- University of the Free State
- Bloemfontein ZA9300
- South Africa
| | - Anurag Pandey
- Department of Physics
- University of the Free State
- Bloemfontein ZA9300
- South Africa
| | - Susheel Kalia
- Department of Chemistry
- Bahra University
- Waknaghat (Shimla Hills)
- Dist. Solan
- India
| | - Hendrik C. Swart
- Department of Physics
- University of the Free State
- Bloemfontein ZA9300
- South Africa
| |
Collapse
|
22
|
Sharma K, Kumar V, Kaith B, Kumar V, Som S, Kalia S, Swart H. Synthesis, characterization and water retention study of biodegradable Gum ghatti-poly(acrylic acid–aniline) hydrogels. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2014.10.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Quintanilha RC, Orth ES, Grein-Iankovski A, Riegel-Vidotti IC, Vidotti M. The use of gum Arabic as “Green” stabilizer of poly(aniline) nanocomposites: A comprehensive study of spectroscopic, morphological and electrochemical properties. J Colloid Interface Sci 2014; 434:18-27. [DOI: 10.1016/j.jcis.2014.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
|
24
|
Kaith BS, Sharma R, Kalia S, Bhatti MS. Response surface methodology and optimized synthesis of guar gum-based hydrogels with enhanced swelling capacity. RSC Adv 2014. [DOI: 10.1039/c4ra05300a] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Pandiselvi K, Thambidurai S. Chitosan–ZnO/polyanilne nanocomposite modified glassy carbon electrode for selective detection of dopamine. Int J Biol Macromol 2014; 67:270-8. [DOI: 10.1016/j.ijbiomac.2014.03.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
|
26
|
Synthesis and characterization of polypyrrole grafted cellulose for humidity sensing. Int J Biol Macromol 2013; 62:531-6. [DOI: 10.1016/j.ijbiomac.2013.10.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/27/2013] [Accepted: 10/11/2013] [Indexed: 11/19/2022]
|
27
|
|
28
|
Shukla SK, Mishra AK, Arotiba OA, Mamba BB. Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 2013; 59:46-58. [PMID: 23608103 DOI: 10.1016/j.ijbiomac.2013.04.043] [Citation(s) in RCA: 434] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/02/2013] [Accepted: 04/12/2013] [Indexed: 11/26/2022]
Abstract
This manuscript briefly reviews the extensive research as well as new developments on chitosan based nanomaterials for various applications. Chitosan is a biocompatible and biodegradable polymer having immense structural possibilities for chemical and mechanical modification to generate novel properties and functions in different fields especially in the biomedical field. Over the last era, research in functional biomaterials such as chitosan has led to the development of new drug delivery system and superior regenerative medicine, currently one of the most quickly growing fields in the area of health science. Chitosan is known as a biomaterial due to its biocompatibility, biodegradability, and non-toxic properties. These properties clearly point out that chitosan has greater potential for future development in different fields of science namely drug delivery, gene delivery, cell imaging, sensors and also in the treatment as well as diagnosis of some diseases like cancer. Chitosan based nanomaterials have superior physical and chemical properties such as high surface area, porosity, tensile strength, conductivity, photo-luminescent as well as increased mechanical properties as comparison to pure chitosan. This review highlights the recent research on different aspect of chitosan based nanomaterials, including their preparation and application.
Collapse
Affiliation(s)
- Sudheesh K Shukla
- Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | | | | | | |
Collapse
|
29
|
Rawal R, Pundir C. Development of electrochemical sulfite biosensor based on SOX/PBNPs/PPY modified Au electrode. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2012.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Yadav S, Devi R, Bhar P, Singhla S, Pundir C. Immobilization of creatininase, creatinase and sarcosine oxidase on iron oxide nanoparticles/chitosan-g-polyaniline modified Pt electrode for detection of creatinine. Enzyme Microb Technol 2012; 50:247-54. [DOI: 10.1016/j.enzmictec.2012.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/20/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
|
31
|
Yadav S, Kumar A, Pundir C. Amperometric creatinine biosensor based on covalently coimmobilized enzymes onto carboxylated multiwalled carbon nanotubes/polyaniline composite film. Anal Biochem 2011; 419:277-83. [DOI: 10.1016/j.ab.2011.07.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 07/20/2011] [Accepted: 07/25/2011] [Indexed: 11/25/2022]
|
32
|
Yadav S, Devi R, Kumar A, Pundir C. Tri-enzyme functionalized ZnO-NPs/CHIT/c-MWCNT/PANI composite film for amperometric determination of creatinine. Biosens Bioelectron 2011; 28:64-70. [DOI: 10.1016/j.bios.2011.06.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/22/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
|