1
|
Ye Y, Cao Z. Glucose Metabolism and Glucose Transporters in Head and Neck Squamous Cell Carcinoma. Cancer Invest 2024:1-18. [PMID: 39324504 DOI: 10.1080/07357907.2024.2407424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Head and neck squamous cell carcinoma ranks seventh globally in malignancy prevalence, with persistent high mortality rates despite treatment advancements. Glucose, pivotal in cancer metabolism via the Warburg effect, enters cells via glucose transporters, notably GLUT proteins. Glycolysis, aerobic oxidation, and the pentose phosphate pathway in glucose metabolism significantly impact HNSCC progression. HNSCC exhibits elevated expression of glucose metabolism enzymes and GLUT proteins, correlating with prognosis. Heterogeneity in HNSCC yields varied metabolic profiles, influenced by factors like HPV status and disease stage. This review highlights glucose metabolism's role and potential as therapeutic targets and cancer imaging tracers in HNSCC.
Collapse
Affiliation(s)
- Yanyan Ye
- Department of Otolaryngology, Shulan (Hangzhou) Hospital, affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zaizai Cao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Hassan AMIA, Zhao Y, Chen X, He C. Blockage of Autophagy for Cancer Therapy: A Comprehensive Review. Int J Mol Sci 2024; 25:7459. [PMID: 39000565 PMCID: PMC11242824 DOI: 10.3390/ijms25137459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The incidence and mortality of cancer are increasing, making it a leading cause of death worldwide. Conventional treatments such as surgery, radiotherapy, and chemotherapy face significant limitations due to therapeutic resistance. Autophagy, a cellular self-degradation mechanism, plays a crucial role in cancer development, drug resistance, and treatment. This review investigates the potential of autophagy inhibition as a therapeutic strategy for cancer. A systematic search was conducted on Embase, PubMed, and Google Scholar databases from 1967 to 2024 to identify studies on autophagy inhibitors and their mechanisms in cancer therapy. The review includes original articles utilizing in vitro and in vivo experimental methods, literature reviews, and clinical trials. Key terms used were "Autophagy", "Inhibitors", "Molecular mechanism", "Cancer therapy", and "Clinical trials". Autophagy inhibitors such as chloroquine (CQ) and hydroxychloroquine (HCQ) have shown promise in preclinical studies by inhibiting lysosomal acidification and preventing autophagosome degradation. Other inhibitors like wortmannin and SAR405 target specific components of the autophagy pathway. Combining these inhibitors with chemotherapy has demonstrated enhanced efficacy, making cancer cells more susceptible to cytotoxic agents. Clinical trials involving CQ and HCQ have shown encouraging results, although further investigation is needed to optimize their use in cancer therapy. Autophagy exhibits a dual role in cancer, functioning as both a survival mechanism and a cell death pathway. Targeting autophagy presents a viable strategy for cancer therapy, particularly when integrated with existing treatments. However, the complexity of autophagy regulation and the potential side effects necessitate further research to develop precise and context-specific therapeutic approaches.
Collapse
Affiliation(s)
| | - Yuxin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
- Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
- Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| |
Collapse
|
3
|
Abdullah KM, Sharma G, Qais FA, Khan I, Takkar S, Kaushal JB, Kanchan RK, Sarwar T, Chakravarti B, Siddiqui JA. Hydroxychloroquine interaction with phosphoinositide 3-kinase modulates prostate cancer growth in bone microenvironment: In vitro and molecular dynamics based approach. Int J Biol Macromol 2024; 266:130912. [PMID: 38513896 DOI: 10.1016/j.ijbiomac.2024.130912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Patients with advanced prostate cancer (PCa) are more likely to develop bone metastases. Tumor cells thrive in the bone microenvironment, interacting with osteoblasts and osteoclasts. Given the PI3K/AKT pathway's metastatic potential and signal integration's ability to modulate cell fates in PCa development, drugs targeting this system have great therapeutic promise. Hydroxychloroquine (HCQ) is an anti-malarial medication commonly used to treat clinical conditions such as rheumatology and infectious disorders. We explored the anti-neoplastic effect of HCQ on PC3 and C4-2B cell lines in the bone microenvironment. Interestingly, HCQ treatment substantially decreases the viability, proliferation, and migration potential of PCa cells in the bone microenvironment. HCQ induces apoptosis and cell cycle arrest, even in the presence of osteoblast-secreted factors. Mechanistically, HCQ inhibited the activity of the PI3K/AKT signaling pathway, which ultimately regulates the proliferation and migration of PCa cells in the bone. The binding energy for docking HCQ with PI3K was -6.7 kcal/mol, and the complex was stabilized by hydrogen bonds, hydrophobic forces, and van der Waals forces. Molecular simulations further validated the structural integrity of the HCQ-PI3K complex without altering PI3K's secondary structure. Our findings underscore the efficacy of HCQ as a potential therapeutic agent in treating PCa.
Collapse
Affiliation(s)
- K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Imran Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Saudi Arabia
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE-68198, USA.
| |
Collapse
|
4
|
Zając A, Maciejczyk A, Sumorek-Wiadro J, Filipek K, Deryło K, Langner E, Pawelec J, Wasiak M, Ścibiorski M, Rzeski W, Tchórzewski M, Reichert M, Jakubowicz-Gil J. The Role of Bcl-2 and Beclin-1 Complex in "Switching" between Apoptosis and Autophagy in Human Glioma Cells upon LY294002 and Sorafenib Treatment. Cells 2023; 12:2670. [PMID: 38067099 PMCID: PMC10705223 DOI: 10.3390/cells12232670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Gliomas are the most malignant tumors of the central nervous system. One of the factors in their high drug resistance is avoiding programmed death (PCD) induction. This is related to the overexpression of intracellular survival pathways: PI3K-Akt/PKB-mTOR and Ras-Raf-MEK-ERK. Apoptosis and autophagy are co-existing processes due to the interactions between Bcl-2 and beclin-1 proteins. Their complex may be a molecular "toggle-switch" between PCD types. The aim of this research was to investigate the role of Bcl-2:beclin-1 complex in glioma cell elimination through the combined action of LY294002 and sorafenib. METHODS Drug cytotoxicity was estimated with an MTT test. The type of cell death was evaluated using variant microscopy techniques (fluorochrome staining, immunocytochemistry, and transmission electron microscopy), as well as the Bcl-2:beclin-1 complex formation and protein localization. Molecular analysis of PCD indicators was conducted through immunoblotting, immunoprecipitation, and ELISA testing. SiRNA was used to block Bcl-2 and beclin-1 expression. RESULTS The results showed the inhibitors used in simultaneous application resulted in Bcl-2:beclin-1 complex formation and apoptosis becoming dominant. This was accompanied by changes in the location of the tested proteins. CONCLUSIONS "Switching" between apoptosis and autophagy using PI3K and Raf inhibitors with Bcl-2:beclin-1 complex formation opens new therapeutic perspectives against gliomas.
Collapse
Affiliation(s)
- Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.M.); (J.S.-W.); (M.Ś.); (W.R.); (J.J.-G.)
| | - Aleksandra Maciejczyk
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.M.); (J.S.-W.); (M.Ś.); (W.R.); (J.J.-G.)
| | - Joanna Sumorek-Wiadro
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.M.); (J.S.-W.); (M.Ś.); (W.R.); (J.J.-G.)
| | - Kamil Filipek
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (K.F.); (K.D.); (M.T.)
| | - Kamil Deryło
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (K.F.); (K.D.); (M.T.)
| | - Ewa Langner
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland;
| | - Jarosław Pawelec
- Institute Microscopy Laboratory, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Magdalena Wasiak
- Department of Pathological Anatomy, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100 Puławy, Poland; (M.W.); (M.R.)
| | - Mateusz Ścibiorski
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.M.); (J.S.-W.); (M.Ś.); (W.R.); (J.J.-G.)
| | - Wojciech Rzeski
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.M.); (J.S.-W.); (M.Ś.); (W.R.); (J.J.-G.)
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland;
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (K.F.); (K.D.); (M.T.)
| | - Michał Reichert
- Department of Pathological Anatomy, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100 Puławy, Poland; (M.W.); (M.R.)
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.M.); (J.S.-W.); (M.Ś.); (W.R.); (J.J.-G.)
| |
Collapse
|
5
|
Bouslama R, Dumont V, Lindfors S, Paavolainen L, Tienari J, Nisen H, Mirtti T, Saleem MA, Gordin D, Groop PH, Suetsugu S, Lehtonen S. Phosphorylation of PACSIN2 at S313 Regulates Podocyte Architecture in Coordination with N-WASP. Cells 2023; 12:1487. [PMID: 37296607 PMCID: PMC10252800 DOI: 10.3390/cells12111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Changes in the dynamic architecture of podocytes, the glomerular epithelial cells, lead to kidney dysfunction. Previous studies on protein kinase C and casein kinase 2 substrates in neurons 2 (PACSIN2), a known regulator of endocytosis and cytoskeletal organization, reveal a connection between PACSIN2 and kidney pathogenesis. Here, we show that the phosphorylation of PACSIN2 at serine 313 (S313) is increased in the glomeruli of rats with diabetic kidney disease. We found that phosphorylation at S313 is associated with kidney dysfunction and increased free fatty acids rather than with high glucose and diabetes alone. Phosphorylation of PACSIN2 emerged as a dynamic process that fine-tunes cell morphology and cytoskeletal arrangement, in cooperation with the regulator of the actin cytoskeleton, Neural Wiskott-Aldrich syndrome protein (N-WASP). PACSIN2 phosphorylation decreased N-WASP degradation while N-WASP inhibition triggered PACSIN2 phosphorylation at S313. Functionally, pS313-PACSIN2 regulated actin cytoskeleton rearrangement depending on the type of cell injury and the signaling pathways involved. Collectively, this study indicates that N-WASP induces phosphorylation of PACSIN2 at S313, which serves as a mechanism whereby cells regulate active actin-related processes. The dynamic phosphorylation of S313 is needed to regulate cytoskeletal reorganization.
Collapse
Affiliation(s)
- Rim Bouslama
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Vincent Dumont
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Sonja Lindfors
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Lassi Paavolainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00290 Helsinki, Finland
| | - Jukka Tienari
- Department of Pathology, University of Helsinki, Helsinki, and Helsinki University Hospital, 05850 Hyvinkää, Finland
| | - Harry Nisen
- Department of Urology, Helsinki University Hospital, 00029 HUS, Finland
| | - Tuomas Mirtti
- Department of Pathology, Helsinki University Hospital, 00290 Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Moin A. Saleem
- Children’s Renal Unit, Bristol Medical School, University of Bristol, Bristol BS8 1TS, UK
| | - Daniel Gordin
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Per-Henrik Groop
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Nephrology, University of Helsinki, Helsinki, and Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
| | - Shiro Suetsugu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Data Science Center, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Center for Digital Green-Innovation, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Sanna Lehtonen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Pathology, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
6
|
Kapetanaki S, Kumawat AK, Persson K, Demirel I. The Fibrotic Effects of TMAO on Human Renal Fibroblasts Is Mediated by NLRP3, Caspase-1 and the PERK/Akt/mTOR Pathway. Int J Mol Sci 2021; 22:ijms222111864. [PMID: 34769294 PMCID: PMC8584593 DOI: 10.3390/ijms222111864] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Trimethylamine N-oxide (TMAO), a product of gut microbiota metabolism, has previously been shown to be implicated in chronic kidney disease. A high TMAO-containing diet has been found to cause tubulointerstitial renal fibrosis in mice. However, today there are no data linking specific molecular pathways with the effect of TMAO on human renal fibrosis. The aim of this study was to investigate the fibrotic effects of TMAO on renal fibroblasts and to elucidate the molecular pathways involved. We found that TMAO promoted renal fibroblast activation and fibroblast proliferation via the PERK/Akt/mTOR pathway, NLRP3, and caspase-1 signaling. We also found that TMAO increased the total collagen production from renal fibroblasts via the PERK/Akt/mTOR pathway. However, TMAO did not induce fibronectin or TGF-β1 release from renal fibroblasts. We have unraveled that the PERK/Akt/mTOR pathway, NLRP3, and caspase-1 mediates TMAO’s fibrotic effect on human renal fibroblasts. Our results can pave the way for future research to further clarify the molecular mechanism behind TMAO’s effects and to identify novel therapeutic targets in the context of chronic kidney disease.
Collapse
Affiliation(s)
- Stefania Kapetanaki
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- Nephrology Department, Karolinska University Hospital, 171 76 Solna, Sweden
- Nephrology Department, Karolinska University Hospital, 141 86 Huddinge, Sweden
- Correspondence: ; Tel.: +46-1930-3000
| | - Ashok Kumar Kumawat
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- Cardiovascular Research Center, School of Medical Sciences, Örebro University, 701 82 Örebro, Sweden
| | - Katarina Persson
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- iRiSC—Inflammatory Response and Infection Susceptibility Center, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- iRiSC—Inflammatory Response and Infection Susceptibility Center, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| |
Collapse
|
7
|
Wang Z, Cui X, Hao G, He J. Aberrant expression of PI3K/AKT signaling is involved in apoptosis resistance of hepatocellular carcinoma. Open Life Sci 2021; 16:1037-1044. [PMID: 34632072 PMCID: PMC8477673 DOI: 10.1515/biol-2021-0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/04/2021] [Accepted: 07/25/2021] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K)/AKT signaling is a crucial pathway for cell survival and proliferation, which are regulated by several growth factors and activated receptors. Upregulated PI3K/AKT signaling molecules were reported in several cancers and they are associated with altered cellular functions, leading to oncogenesis. Here, we have examined the implications of elevated PI3K/AKT expression in the apoptosis resistance of human hepatocellular carcinoma (HCC) Huh7 cells. We showed that PI3K/AKT signaling is significantly upregulated in Huh7 cells by quantitative polymerase chain reaction and protein expression analysis. Also, perversely upregulated PI3K/AKT signaling Huh7 cells are highly resistant to treatment with chemotherapy drugs (docetaxel and sorafenib) and acquired apoptosis resistance through downregulation of tumor suppressor protein PTEN (phosphatase and tensin homolog deleted on chromosome ten). Hence, we have investigated the effect of PTEN overexpression on apoptosis induction in Huh7 cells. We showed that PTEN overexpressed Huh7 cells became more sensitive toward the aforesaid drugs and induced apoptotic cell death due to intracellular reactive oxygen species (ROS) generation. Concurrently, the overexpression of PTEN leads to the activation of mitochondria facilitated intrinsic apoptosis, evidenced by upregulated cytochrome C, caspase 3, and caspase 9. Collectively, our data suggest that the aberrant expression of PI3K/AKT signaling contributes to apoptosis resistance in HCC.
Collapse
Affiliation(s)
- Zhuangqiang Wang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 Longcheng Street, Taiyuan 030032, Shanxi, China
| | - Xiaopeng Cui
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan 030032, Shanxi, China
| | - Gaopeng Hao
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 Longcheng Street, Taiyuan 030032, Shanxi, China
| | - Jiefeng He
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 Longcheng Street, Taiyuan 030032, Shanxi, China
| |
Collapse
|
8
|
Rascio F, Spadaccino F, Rocchetti MT, Castellano G, Stallone G, Netti GS, Ranieri E. The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Cancers (Basel) 2021; 13:3949. [PMID: 34439105 PMCID: PMC8394096 DOI: 10.3390/cancers13163949] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
The PI3K/AKT pathway is one of the most frequently over-activated intracellular pathways in several human cancers. This pathway, acting on different downstream target proteins, contributes to the carcinogenesis, proliferation, invasion, and metastasis of tumour cells. A multi-level impairment, involving mutation and genetic alteration, aberrant regulation of miRNAs sequences, and abnormal phosphorylation of cascade factors, has been found in multiple cancer types. The deregulation of this pathway counteracts common therapeutic strategies and contributes to multidrug resistance. In this review, we underline the involvement of this pathway in patho-physiological cell survival mechanisms, emphasizing its key role in the development of drug resistance. We also provide an overview of the potential inhibition strategies currently available.
Collapse
Affiliation(s)
- Federica Rascio
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Federica Spadaccino
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| | - Maria Teresa Rocchetti
- Cell Biology Unit, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Giuseppe Castellano
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Giovanni Stallone
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Giuseppe Stefano Netti
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| | - Elena Ranieri
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| |
Collapse
|
9
|
Zheng Y, Xie L, Xu S, Yan W, Zhang H, Meng Y, Liu J, Wei X. Effects of miR-202-5p silencing PIK3CA gene expression on proliferation, invasion, and epithelial-mesenchymal transition of cervical cancer SiHa cells through inhibiting PI3K/Akt/mTOR signaling pathway activation. Mol Cell Biochem 2021; 476:4031-4044. [PMID: 34244973 DOI: 10.1007/s11010-021-04211-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/16/2021] [Indexed: 01/30/2023]
Abstract
To explore the mechanism of miR-202-5p targeting the expression of PIK3CA and mediating the activation of PI3K/Akt/mTOR signaling pathway on the proliferation, invasion, and epithelial-mesenchymal transition (EMT) of cervical cancer. The objects of study were 105 cases of cervical cancer and their corresponding normal tissues. qRT-PCR was used to detect the expression of miR-202-5p and PIK3CA in adjacent normal tissue and cervical cancer tissue. Dual luciferase reporter assay was used to verify the targeting relationship between miR-202-5p and PIK3CA gene. Human cervical cancer cell lines HPV-16E6, SiHa, HeLa, and CaSki were purchased for our cell experiments. The expression levels of PIK3CA in the cells were detected by qRT-PCR. The cell line with higher expression levels was selected to complete the follow-up experiment. The cultured cells were transfected and divided into the miR-202-5p mimic NC group, miR-202-5p mimic group, miR-202-5p inhibitor NC group, miR-202-5p inhibitor group, siRNA-PIK3CA NC group, siRNA-PIK3CA group, miR-202-5p inhibitor NC + siRNA-PIK3CA NC group, miR-202-5p inhibitor + siRNA-PIK3CA NC group, and miR-202-5p inhibitor + siRNA-PIK3CA group. QRT-PCR was used to detect the expression of miR-202-5p. Western blot and qRT-PCR were applied to detect the mRNA and protein expression levels of related pathway proteins (PIK3CA, PI3K, PTEN, p-Akt1, and p-mTOR) and epithelial-mesenchymal transition-related factors (N-cadherin, E-cadherin, and vimentin). Cell proliferation was detected by plate colony formation assay. Transwell assay was used to detect the invasion ability of each group. When compared with the adjacent tissues, PIK3CA mRNA expression level was significantly increased and miR-202-5p expression level was significantly decreased in cervical cancer tissues (all P < 0.05). PIK3CA was a target gene of miR-202-5p. The mRNA expression level of PIK3CA in SiHa cervical cancer cells was significantly higher than that in CaSki, HeLa, and HPV-16E6 cells (all P < 0.05), and SiHa cervical cancer cells were selected to complete the follow-up experiments. When compared with the corresponding NC group, the expression of miR-202-5p in miR-202-5p mimic group was increased. In addition, the mRNA and protein expression levels of E-cadherin and PTEN in miR-202-5p mimic and siRNA-PIK3CA groups were increased, and the protein expression of p-Akt1 and p-mTOR was decreased, and also, the mRNA and protein expression levels of PIK3CA, PI3K, N-cadherin, and vimentin were decreased (all P < 0.05); in miR-202-5p inhibitor group, the expression levels of miR-202-5p, E-cadherin, and PTEN decreased, the protein expression of p-Akt1 and p-mTOR increased, and the mRNA and protein expression of PIK3CA, PI3K, N-cadherin, and vimentin increased in miR-202-5p inhibitor group (all P < 0.05); in miR-202-5p inhibitor + siRNA-PIK3CA group, the expression of miR-202-5p decreased (P < 0.05), but the mRNA and protein expression of PIK3CA, PI3K, p-Akt1, p-mTOR, N-cadherin, E-cadherin, and vimentin had no significant changes (all P > 0.05). When compared with the corresponding NC group, the number of cell clones in miR-202-5p mimic group and siRNA-PIK3CA group was decreased, and the invasion ability of miR-202-5p inhibitor group was increased, and the invasion ability was enhanced (all P < 0.05); miR-202-5p inhibitor + siRNA-PIK3CA group showed no significant change in the number of cell clones and the rate of invasion (P > 0.05). In conclusion, the overexpression of miR-202-5p can suppress PIK3CA gene expression and the activation of PI3K/Akt/mTOR signaling pathway to suppress the proliferation, invasion, and EMT of cervical cancer.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Gynecology and Obstetrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, People's Republic of China
| | - Lei Xie
- Department of Gynecology and Obstetrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, People's Republic of China
| | - Shuwen Xu
- Department of Gynecology and Obstetrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, People's Republic of China
| | - Weidong Yan
- Training & Research Support Center, Shijiazhuang Camps of the Army Engineering University, Shijiazhuang City, 050031, Hebei Province, People's Republic of China
| | - Hongzhen Zhang
- Department of Gynecology and Obstetrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, People's Republic of China
| | - Yali Meng
- Department of Gynecology and Obstetrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, People's Republic of China
| | - Jingqiao Liu
- Department of Gynecology and Obstetrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, People's Republic of China.
| | - Xujing Wei
- Department of Gynecology and Obstetrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, People's Republic of China.
| |
Collapse
|
10
|
Chizenga EP, Abrahamse H. Biological Therapy with Complementary and Alternative Medicine in Innocuous Integrative Oncology: A Case of Cervical Cancer. Pharmaceutics 2021; 13:626. [PMID: 33924844 PMCID: PMC8145806 DOI: 10.3390/pharmaceutics13050626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Good medicine is based on good science, inquiry driven and open to new paradigms. For a complex disease such as cancer, a complex treatment regime that is well structured and multifactorial is indispensable. In the present day, Complementary and Alternative Medicine (CAM) therapies are being used frequently for cancer, alongside modern biological therapies and allopathic medicine, in what is called integrative oncology. In all conscience, the use of natural, less invasive interventions whenever possible is ideal. However, a comprehensive understanding of not only the etiopathology of individual cancers, but also the detailed genetic and epigenetic characteristics, the cancer hallmarks, that clearly show the blueprint of the cancer phenotype is a requisite. Different tumors have a common behavioral pattern, but their specific features at the genetic and epigenetic levels vary to a great extent. Henceforth, with so many failed attempts to therapy, drug formulations and combinations need a focused pre-assessment of the inherent features of individual cancers to destroy the tumors holistically by targeting these features. This review therefore presents innocuous therapeutic regimes by means of CAM and integrative medicine approaches that can specifically target the hallmarks of cancer, using the case of cervical cancer.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
11
|
Zhang X, Li S, Zheng M, Zhang L, Bai R, Li R, Hao S, Bai B, Kang H. Effects of the PI3K/Akt signaling pathway on the apoptosis of early host cells infected with Eimeria tenella. Parasitol Res 2020; 119:2549-2561. [PMID: 32562065 DOI: 10.1007/s00436-020-06738-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 05/31/2020] [Indexed: 12/14/2022]
Abstract
This study investigated the role of PI3K/Akt signaling pathway on host cell apoptosis in the early infection of Eimeria tenella. Chicken cecal epithelial cells were treated with apoptosis-inducer Actinomycin D (Act D) or PI3K/Akt signaling pathway inhibitor LY294002 and then infected with E. tenella. Results demonstrated that the E. tenella-infected group had less apoptosis 4-8 h after the infection and more apoptosis 12-20 h after the infection than the control group. At 4-20 h after the infection, the apoptotic/necrotic rate and the Caspase-3 activity in the Act D + E. tenella group were lower (P < 0.01) than those in the Act D-treated group. The p-Akt and NF-κB contents in the E. tenella-infected group were higher (P < 0.01) than those in the control group 4-12 h after the infection. However, the bad content and the Caspase-9/3 activity were lower (P < 0.05) in the E. tenella-infected group than in the control group. Compared with the E. tenella-infected group, the LY294002 + E. tenella group showed decreased p-Akt content and increased apoptotic/necrotic rate, bad content, NF-κB expression, membrane permeability transition pore (MPTP) openness, and Caspase-9/3 activity. Thus, the early development of E. tenella could inhibit host cell apoptosis by downregulating the Caspase-3 activity. Upregulating this activity promoted apoptosis. In addition, activating the PI3K/Akt signaling pathway inhibited the apoptosis of E. tenella host cells in the early infection by reducing the expression of the bad content, limiting the MPTP opening, and decreasing the Caspase-9 and Caspase-3 activities.
Collapse
Affiliation(s)
- Xuesong Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Shan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Mingxue Zheng
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Li Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Rui Bai
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Ruiqi Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Siyuan Hao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Bing Bai
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Huixin Kang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| |
Collapse
|
12
|
Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 2020; 10:54. [PMID: 32266056 PMCID: PMC7110906 DOI: 10.1186/s13578-020-00416-0] [Citation(s) in RCA: 365] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
The PI3 K/AKT/mTOR signalling pathway plays an important role in the regulation of signal transduction and biological processes such as cell proliferation, apoptosis, metabolism and angiogenesis. Compared with those of other signalling pathways, the components of the PI3K/AKT/mTOR signalling pathway are complicated. The regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway are important in many human diseases, including ischaemic brain injury, neurodegenerative diseases, and tumours. PI3K/AKT/mTOR signalling pathway inhibitors include single-component and dual inhibitors. Numerous PI3K inhibitors have exhibited good results in preclinical studies, and some have been clinically tested in haematologic malignancies and solid tumours. In this review, we briefly summarize the results of research on the PI3K/AKT/mTOR pathway and discuss the structural composition, activation, communication processes, regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway in the pathogenesis of neurodegenerative diseases and tumours.
Collapse
Affiliation(s)
- Fei Xu
- Department of Microbiology and Immunology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Rd, Shanghai, 201318 China
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Lixin Na
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Yanfei Li
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Linjun Chen
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| |
Collapse
|