1
|
Sun X, Xu S, Liu T, Wu J, Yang J, Gao XJ. Zinc supplementation alleviates oxidative stress to inhibit chronic gastritis via the ROS/NF-κB pathway in a mouse model. Food Funct 2024; 15:7136-7147. [PMID: 38887927 DOI: 10.1039/d4fo01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Zinc (Zn) is an important trace element; it is involved in the regulation and maintenance of many physiological functions in organisms and has anti-inflammatory and antioxidant properties. Chronic gastritis is closely associated with damage to the gastric mucosa, which is detrimental to the health of humans and animals. There are few studies on the effects of zinc on, for example, gastric mucosal damage, oxidative stress, inflammation and cell death in mice. Therefore, we established in vivo and in vitro models of inflammatory injury and investigated the effects of zinc supplementation in C57BL/6 mice and Ges-1 cells and examined the expression of factors associated with oxidative stress, inflammation and cell death. In this study, the results of in vivo and in vitro experiments showed that reactive oxygen species (ROS) levels increased after sodium salicylate exposure. Malondialdehyde levels increased, the activity of the antioxidant enzymes catalase and superoxide dismutase decreased, and the activity of glutathione decreased. The NF-κB signaling pathway was activated, the levels of proinflammatory factors (TNF-α, IL-1β, and IL-6) increased, and the expression of cell death-related factors (Bax, Bcl-2, Caspase3, Caspase7, Caspase9, RIP1, RIP3, and MLKL) increased. Zinc supplementation attenuated the level of oxidative stress and reduced the level of inflammation and cell death. Our study indicated that sodium salicylate induced the production of large amounts of reactive oxygen species and activated the NF-κB pathway, leading to inflammatory damage and cell death in the mouse stomach. Zinc supplementation modulated the ROS/NF-κB pathway, reduced the level of oxidative stress, and attenuated inflammation and cell death in the mouse stomach and Ges-1 cells.
Collapse
Affiliation(s)
- Xiaoran Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Shuang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Tianjing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Jiawei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Xue-Jiao Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
2
|
Peng-Winkler Y, Büttgenbach A, Rink L, Weßels I. Zinc supplementation prior to heat shock enhances HSP70 synthesis through HSF1 phosphorylation at serine 326 in human peripheral mononuclear cells. Food Funct 2022; 13:9143-9152. [DOI: 10.1039/d2fo01406h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zinc supplementation prior to heat shock increases HSP70 (Heat shock protein 70) expression, which has cytoprotective effects in tissue cells during inflammation. Effects of zinc deficiency in this regard are...
Collapse
|
3
|
Hewlings S, Kalman D. A Review of Zinc-L-Carnosine and Its Positive Effects on Oral Mucositis, Taste Disorders, and Gastrointestinal Disorders. Nutrients 2020; 12:nu12030665. [PMID: 32121367 PMCID: PMC7146259 DOI: 10.3390/nu12030665] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
Zinc-L-carnosine (ZnC), also called polaprezinc known as PepZin GI™, is a chelated compound that contains L-carnosine and zinc. It is a relatively new molecule and has been associated with multiple health benefits. There are several studies that support ZnC’s benefits in restoring the gastric lining, healing other parts of the gastrointestinal (GI) tract, improving taste disorders, improving GI disorders, and enhancing skin and liver. Oral mucositis is a common complication of cytotoxic radiotherapy and/or chemotherapy. It occurs in almost every person with head and neck cancer who receive radiotherapy. It is often overlooked because it is not considered life threatening. However, mucositis often leads to a decreased quality of life and cessation of treatment, ultimately decreasing positive outcomes. Therefore, solutions to address it should be considered. The primary mechanisms of action are thought to be localized and related to ZnC’s anti-inflammatory and antioxidant functions. Therefore, the purpose of this review is to discuss the research related to ZnC and to explore its benefits, especially in the management of conditions related to damaged epithelial cells, such as oral mucositis. Evidence supports the safety and efficacy of ZnC for the maintenance, prevention, and treatment of the mucosal lining and other epithelial tissues. The research supports its use for gastric ulcers (approved in Japan) and conditions of the upper GI and suggests other applications, particularly for oral mucositis.
Collapse
Affiliation(s)
- Susan Hewlings
- Central Michigan University, Department of Nutrition and Dietetics Mount Pleasant, MI 48859, USA
- Correspondence:
| | - Douglas Kalman
- College of Healthcare Sciences, Nova Southeastern University, Fort Lauderdale 33314, USA;
| |
Collapse
|
4
|
Moradi-Marjaneh R, Paseban M, Moradi Marjaneh M. Hsp70 inhibitors: Implications for the treatment of colorectal cancer. IUBMB Life 2019; 71:1834-1845. [PMID: 31441584 DOI: 10.1002/iub.2157] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/12/2019] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in the world. Despite intensive advances in diagnosis and treatment of CRC, it is yet one of the leading cause of cancer related morbidity and mortality. Therefore, there is an urgent medical need for alternative therapeutic approaches to treat CRC. The 70 kDa heat shock proteins (Hsp70s) are a family of evolutionary conserved heat shock proteins, which play an important role in cell homeostasis and survival. They overexpress in various types of malignancy including CRC and are typically accompanied with poor prognosis. Hence, inhibition of Hsp70 may be considered as a striking chemotherapeutic avenue. This review summarizes the current knowledge on the progress made so far to discover compounds, which target the Hsp70 family, with particular emphasis on their efficacy in treatment of CRC. We also briefly explain the induction of Hsp70 as a strategy to prevent CRC.
Collapse
Affiliation(s)
| | - Maryam Paseban
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Moradi Marjaneh
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Klaren WD, Gibson-Corley KN, Wels B, Simmons DL, McCormick ML, Spitz DR, Robertson LW. Assessment of the Mitigative Capacity of Dietary Zinc on PCB126 Hepatotoxicity and the Contribution of Zinc to Toxicity. Chem Res Toxicol 2016; 29:851-9. [PMID: 26967026 DOI: 10.1021/acs.chemrestox.6b00022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatic levels of the essential micronutrient, zinc, are diminished by several hepatotoxicants, and the dietary supplementation of zinc has proven protective in those cases. 3,3',4,4',5-Pentachlorobiphenyl (PCB126), a liver toxicant, alters hepatic nutrient homeostasis and lowers hepatic zinc levels. The current study was designed to determine the mitigative potential of dietary zinc in the toxicity associated with PCB126 and the role of zinc in that toxicity. Male Sprague-Dawley rats were divided into three dietary groups and fed diets deficient in zinc (7 ppm Zn), adequate in zinc (30 ppm Zn), and supplemented in zinc (300 ppm). The animals were maintained for 3 weeks on these diets, then given a single IP injection of vehicle or 1 or 5 μmol/kg PCB126. After 2 weeks, the animals were euthanized. Dietary zinc increased the level of ROS, the activity of CuZnSOD, and the expression of metallothionein but decreased the levels of hepatic manganese. PCB126 exposed rats exhibited classic signs of exposure, including hepatomegaly, increased hepatic lipids, increased ROS and CYP induction. Liver histology suggests some mild ameliorative properties of both zinc deficiency and zinc supplementation. Other metrics of toxicity (relative liver and thymus weights, hepatic lipids, and hepatic ROS) did not support this trend. Interestingly, the zinc supplemented high dose PCB126 group had mildly improved histology and less efficacious induction of investigated genes than did the low dose PCB126 group. Overall, decreases in zinc caused by PCB126 likely contribute little to the ongoing toxicity, and the mitigative/preventive capacity of zinc against PCB126 exposure seems limited.
Collapse
Affiliation(s)
- William D Klaren
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa , Iowa City, Iowa 52242, United States.,Department of Occupational and Environmental Health, College of Public Health, University of Iowa , Iowa City, Iowa 52242, United States
| | | | - Brian Wels
- State Hygienic Laboratory, University of Iowa , Ankeny, Iowa 50023, United States
| | - Donald L Simmons
- State Hygienic Laboratory, University of Iowa , Ankeny, Iowa 50023, United States
| | - Michael L McCormick
- Free Radical and Radiation Biology Program, University of Iowa Carver College of Medicine , Iowa City, Iowa 52242, United States
| | - Douglas R Spitz
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa , Iowa City, Iowa 52242, United States.,Free Radical and Radiation Biology Program, University of Iowa Carver College of Medicine , Iowa City, Iowa 52242, United States
| | - Larry W Robertson
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa , Iowa City, Iowa 52242, United States.,Department of Occupational and Environmental Health, College of Public Health, University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
6
|
TAKANARI J, NAKAHIGASHI J, SATO A, WAKI H, MIYAZAKI S, UEBABA K, HISAJIMA T. Effect of Enzyme-Treated Asparagus Extract (ETAS) on Psychological Stress in Healthy Individuals. J Nutr Sci Vitaminol (Tokyo) 2016; 62:198-205. [DOI: 10.3177/jnsv.62.198] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | | | - Hideaki WAKI
- Graduate School of Health Science, Teikyo Heisei University
| | - Shogo MIYAZAKI
- Graduate School of Health Science, Teikyo Heisei University
- Faculty of Health Care, Teikyo Heisei University
- Research Institute of Oriental Medicine, Teikyo Heisei University
| | - Kazuo UEBABA
- Graduate School of Health Science, Teikyo Heisei University
- Faculty of Health Care, Teikyo Heisei University
- Research Institute of Oriental Medicine, Teikyo Heisei University
| | - Tatsuya HISAJIMA
- Graduate School of Health Science, Teikyo Heisei University
- Faculty of Health Care, Teikyo Heisei University
- Research Institute of Oriental Medicine, Teikyo Heisei University
| |
Collapse
|
7
|
Bittencourt A, Porto RR. eHSP70/iHSP70 and divergent functions on the challenge: effect of exercise and tissue specificity in response to stress. Clin Physiol Funct Imaging 2015; 37:99-105. [DOI: 10.1111/cpf.12273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/01/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Aline Bittencourt
- Department of Biochemistry; Institute of Basic Health Sciences; Federal University of Rio Grande do Sul (UFRGS); Porto Alegre RS Brazil
| | - Rossana Rosa Porto
- Department of Neuroscience; Institute of Basic Health Sciences; Federal University of Rio Grande do Sul (UFRGS); Porto Alegre RS Brazil
| |
Collapse
|
8
|
Ito T, Ono T, Sato A, Goto K, Miura T, Wakame K, Nishioka H, Maeda T. Toxicological assessment of enzyme-treated asparagus extract in rat acute and subchronic oral toxicity studies and genotoxicity tests. Regul Toxicol Pharmacol 2014; 68:240-9. [DOI: 10.1016/j.yrtph.2013.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/26/2013] [Accepted: 12/26/2013] [Indexed: 12/31/2022]
|
9
|
Ito T, Sato A, Ono T, Goto K, Maeda T, Takanari J, Nishioka H, Komatsu K, Matsuura H. Isolation, structural elucidation, and biological evaluation of a 5-hydroxymethyl-2-furfural derivative, asfural, from enzyme-treated asparagus extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9155-9159. [PMID: 24000899 DOI: 10.1021/jf402010c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A novel 5-hydroxymethyl-2-furfural (HMF; 1) derivative, which is named asfural (compound 2), was isolated from enzyme-treated asparagus extract (ETAS) along with HMF (1) as a heat shock protein 70 (HSP70) inducible compound. The structure of compound 2 was elucidated on the basis of its spectroscopic data from HREIMS and NMR, whereas the absolute configuration was determined using chiral HPLC analysis, compared to two synthesized compounds, (S)- and (R)-asfural. As a result, compound 2 derived from ETAS was assigned as (S)-(2-formylfuran-5-yl)methyl 5-oxopyrrolidine-2-carboxylate. When compound 2, synthesized (S)- and (R)-asfural, and HMF (1) were evaluated in terms of HSP70 mRNA expression-enhancing activity in HL-60 cells, compound 2 and (S)-asfural significantly increased the expression level in a concentration-dependent manner. HMF (1) also showed significant activity at 0.25 mg/mL.
Collapse
Affiliation(s)
- Tomohiro Ito
- Research and Development Division, Amino Up Chemical Company, Ltd. , 363-32 Shin-ei, Kiyota, Sapporo 004-0839, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Choi HS, Lim JY, Chun HJ, Lee M, Kim ES, Keum B, Seo YS, Jeen YT, Um SH, Lee HS, Kim CD, Ryu HS, Sul D. The effect of polaprezinc on gastric mucosal protection in rats with ethanol-induced gastric mucosal damage: comparison study with rebamipide. Life Sci 2013; 93:69-77. [PMID: 23743168 DOI: 10.1016/j.lfs.2013.05.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/06/2013] [Accepted: 05/22/2013] [Indexed: 02/07/2023]
Abstract
AIMS Polaprezinc (PZ), which consists of l-carnosine and zinc, is widely used to treat gastric ulcers. We compared the effects of PZ with those of rebamipide (RM) on the expression of inflammatory cytokines, antioxidants, growth factors, and heat shock proteins (HSP) in a rat model. MAIN METHODS Seventy Sprague-Dawley rats were randomly assigned to test groups according to the dose of PZ at 5, 10, or 30 mg/kg or RM at 10, 30, or 100 mg/kg. Next, we obtained ulcer indices from rats with ethanol-induced gastric mucosal damage. Western blot analysis was used to evaluate the expression of various target proteins. KEY FINDINGS Pathological ulcer indices in the PZ and RM groups were significantly lower than those in the control group. The levels of inflammatory cytokines (interleukin 1β [IL-1β], IL-6, IL-8, and tumor necrosis factor α) decreased, whereas the levels of platelet-derived growth factor-B, vascular endothelial growth factor, and nerve growth factor significantly increased after PZ administration. Furthermore, the expression of antioxidants (superoxide dismutase 1 [SOD-1], SOD-2, heme oxygenase-1, glutathione S-transferase, peroxidredoxin-1, and peroxidredoxin-5) was significantly higher in the PZ group, and the levels of HSP 90, 70, 60, 47, 27, and 10 significantly increased with an increase in PZ dose. SIGNIFICANCE In a rat model of ethanol-induced gastric mucosal damage, PZ administration ameliorated ethanol-induced mucosal injury and showed protective effects on the mucosa by reducing the levels of inflammatory cytokines and increasing the expression of antioxidant enzymes and growth factors. Furthermore, PZ showed cytoprotective effects by increasing the HSP levels.
Collapse
Affiliation(s)
- Hyuk Soon Choi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Digestive Disease and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
A comparison of the cellular actions of polaprezinc (zinc-l-carnosine) and ZnCl2. Life Sci 2012; 90:1015-9. [DOI: 10.1016/j.lfs.2012.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/08/2012] [Accepted: 05/19/2012] [Indexed: 01/08/2023]
|
12
|
Energy metabolism, proteotoxic stress and age-related dysfunction - protection by carnosine. Mol Aspects Med 2011; 32:267-78. [PMID: 22020113 DOI: 10.1016/j.mam.2011.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 10/11/2011] [Indexed: 01/09/2023]
Abstract
This review will discuss the relationship between energy metabolism, protein dysfunction and the causation and modulation of age-related proteotoxicity and disease. It is proposed that excessive glycolysis, rather than aerobic (mitochondrial) activity, could be causal to proteotoxic stress and age-related pathology, due to the generation of endogenous glycating metabolites: the deleterious role of methylglyoxal (MG) is emphasized. It is suggested that TOR inhibition, exercise, fasting and increased mitochondrial activity suppress formation of MG (and other deleterious low molecular weight carbonyl compounds) which could control onset and progression of proteostatic dysfunction. Possible mechanisms by which the endogenous dipeptide, carnosine, which, by way of its putative aldehyde-scavenging activity, may control age-related proteotoxicity, cellular dysfunction and pathology, including cancer, are also considered. Whether carnosine could be regarded as a rapamycin mimic is briefly discussed.
Collapse
|
13
|
Sharif R, Thomas P, Zalewski P, Fenech M. Zinc deficiency or excess within the physiological range increases genome instability and cytotoxicity, respectively, in human oral keratinocyte cells. GENES AND NUTRITION 2011; 7:139-54. [PMID: 21935692 DOI: 10.1007/s12263-011-0248-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/08/2011] [Indexed: 12/13/2022]
Abstract
Zinc (Zn) is an essential component of Zn-finger proteins and acts as a cofactor for enzymes required for cellular metabolism and in the maintenance of DNA integrity. The study investigated the genotoxic and cytotoxic effects of Zn deficiency or excess in a primary human oral keratinocyte cell line and determined the optimal concentration of two Zn compounds (Zn Sulphate (ZnSO(4)) and Zn Carnosine (ZnC)) to minimise DNA damage. Zn-deficient medium (0 μM) was produced using Chelex treatment, and the two Zn compounds ZnSO(4) and ZnC were tested at concentrations of 0.0, 0.4, 4.0, 16.0, 32.0 and 100.0 μM. Cell viability was decreased in Zn-depleted cells (0 μM) as well as at 32 μM and 100 μM for both Zn compounds (P < 0.0001) as measured via the MTT assay. DNA strand breaks, as measured by the comet assay, were found to be increased in Zn-depleted cells compared with the other treatment groups (P < 0.05). The Cytokinesis Block Micronucleus Cytome assay showed a significant increase in the frequency of both apoptotic and necrotic cells under Zn-deficient conditions (P < 0.05). Furthermore, elevated frequencies of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBuds) were observed at 0 and 0.4 μM Zn, whereas these biomarkers were minimised for both Zn compounds at 4 and 16 μM Zn (P < 0.05), suggesting these concentrations are optimal to maintain genome stability. Expression of PARP, p53 and OGG1 measured by western blotting was increased in Zn-depleted cells indicating that DNA repair mechanisms are activated. These results suggest that maintaining Zn concentrations within the range of 4-16 μM is essential for DNA damage prevention in cultured human oral keratinocytes.
Collapse
Affiliation(s)
- Razinah Sharif
- CSIRO Food and Nutritional Sciences, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
14
|
Neuroprotective features of carnosine in oxidative driven diseases. Mol Aspects Med 2011; 32:258-66. [DOI: 10.1016/j.mam.2011.10.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/11/2011] [Indexed: 11/22/2022]
|
15
|
Qin Y, Naito Y, Handa O, Hayashi N, Kuki A, Mizushima K, Omatsu T, Tanimura Y, Morita M, Adachi S, Fukui A, Hirata I, Kishimoto E, Nishikawa T, Uchiyama K, Ishikawa T, Takagi T, Yagi N, Kokura S, Yoshikawa T. Heat shock protein 70-dependent protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells. J Clin Biochem Nutr 2011; 49:174-81. [PMID: 22128216 PMCID: PMC3208013 DOI: 10.3164/jcbn.11-26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 02/20/2011] [Indexed: 12/13/2022] Open
Abstract
Protection of the small intestine from mucosal injury induced by nonsteroidal anti-inflammatory drugs including acetylsalicylic acid is a critical issue in the field of gastroenterology. Polaprezinc an anti-ulcer drug, consisting of zinc and L-carnosine, provides gastric mucosal protection against various irritants. In this study, we investigated the protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of the RIE1 rat intestinal epithelial cell line. Confluent rat intestinal epithelial cells were incubated with 70 µM polaprezinc for 24 h, and then stimulated with or without 15 mM acetylsalicylic acid for a further 15 h. Subsequent cellular viability was quantified by fluorometric assay based on cell lysis and staining. Acetylsalicylic acid-induced cell death was also qualified by fluorescent microscopy of Hoechst33342 and propidium iodide. Heat shock proteins 70 protein expression after adding polaprezinc or acetylsalicylic acid was assessed by western blotting. To investigate the role of Heat shock protein 70, Heat shock protein 70-specific small interfering RNA was applied. Cell viability was quantified by fluorometric assay based on cell lysis and staining and apoptosis was analyzed by fluorescence-activated cell sorting. We found that acetylsalicylic acid significantly induced apoptosis of rat intestinal epithelial cells in a dose- and time-dependent manner. Polaprezinc significantly suppressed acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells at its late phase. At the same time, polaprezinc increased Heat shock protein 70 expressions of rat intestinal epithelial cells in a time-dependent manner. However, in Heat shock protein 70-silenced rat intestinal epithelial cells, polaprezinc could not suppress acetylsalicylic acid -induced apoptosis at its late phase. We conclude that polaprezinc-increased Heat shock protein 70 expression might be an important mechanism by which polaprezinc suppresses acetylsalicylic acid-induced small intestinal apoptosis, a hallmark of acetylsalicylic acid-induced enteropathy.
Collapse
Affiliation(s)
- Ying Qin
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Kusumoto C, Kinugawa T, Morikawa H, Teraoka M, Nishida T, Murawaki Y, Yamada K, Matsura T. Protection by Exogenously Added Coenzyme Q(9) against Free Radical-Induced Injuries in Human Liver Cells. J Clin Biochem Nutr 2010; 46:244-51. [PMID: 20490320 PMCID: PMC2872230 DOI: 10.3164/jcbn.09-128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 01/02/2010] [Indexed: 11/22/2022] Open
Abstract
Reduced coenzyme Q(10) (CoQ(10)H(2)) is known as a potent antioxidant in biological systems. However, it is not yet known whether CoQ(9)H(2) could act as an antioxidant in human cells. The aim of this study is to assess whether exogenously added CoQ(9) can protect human liver cells against injuries induced by a water-soluble radical initiator, 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) and a lipid-soluble radical initiator, 2,2'-azobis(2,4-dimethylvaleronitrile) (AMVN). CoQ(9)-enriched cells were obtained by treatment of HepG2 cells with 10 microM CoQ(9) liposomes for 24 h. CoQ(9)-enriched cells were exposed to 10 mM AAPH and 500 microM AMVN over 4 h and 24 h, respectively. The loss of viability after treatment with AAPH or AMVN was much less in CoQ(9)-enriched cells than in naive HepG2 cells. The decrease in glutathione and the increase in thiobarbituric acid-reactive substance after treatment with AAPH or AMVN were also suppressed in CoQ(9)-enriched cells. The incubation of CoQ(9)-enriched cells with AAPH or AMVN led to a decrease in cellular CoQ(9)H(2) and reciprocal increase in cellular CoQ(9) resulting from its antioxidant function. Taken together, it was demonstrated for the first time that exogenously added CoQ(9) could prevent oxidative stress-mediated damage to human cells by virtue of its antioxidant activity.
Collapse
Affiliation(s)
- Chiaki Kusumoto
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ohata S, Moriyama C, Yamashita A, Nishida T, Kusumoto C, Mochida S, Minami Y, Nakada J, Shomori K, Inagaki Y, Ohta Y, Matsura T. Polaprezinc Protects Mice against Endotoxin Shock. J Clin Biochem Nutr 2010; 46:234-43. [PMID: 20490319 PMCID: PMC2872229 DOI: 10.3164/jcbn.09-125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 01/02/2010] [Indexed: 12/20/2022] Open
Abstract
Polaprezinc (PZ), a chelate compound consisting of zinc and l-carnosine (Car), is an anti-ulcer drug developed in Japan. In the present study, we investigated whether PZ suppresses mortality, pulmonary inflammation, and plasma nitric oxide (NO) and tumor necrosis factor (TNF)-α levels in endotoxin shock mice after peritoneal injection of lipopolysaccharide (LPS), and how PZ protects against LPS-induced endotoxin shock. PZ pretreatment inhibited the decrease in the survival rate of mice after LPS injection. PZ inhibited the increases in plasma NO as well as TNF-α after LPS. Compatibly, PZ suppressed LPS-induced inducible NO synthase mRNA transcription in the mouse lungs. PZ also improved LPS-induced lung injury. However, PZ did not enhance the induction of heat shock protein (HSP) 70 in the mouse lungs after LPS. Pretreatment of RAW264 cells with PZ suppressed the production of NO and TNF-α after LPS addition. This inhibition likely resulted from the inhibitory effect of PZ on LPS-mediated nuclear factor-κB (NF-κB) activation. Zinc sulfate, but not Car, suppressed NO production after LPS. These results indicate that PZ, in particular its zinc subcomponent, inhibits LPS-induced endotoxin shock via the inhibition of NF-κB activation and subsequent induction of proinflammatory products such as NO and TNF-α, but not HSP induction.
Collapse
Affiliation(s)
- Shuzo Ohata
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|