1
|
Wang J, Shen N, Zhao K, Liao J, Jiang G, Xiao J, Jia X, Sun W, Lai S. Revealing study and breeding implications for production traits and tail characteristics in Simmental cattle by GWAS. Front Genet 2025; 16:1491816. [PMID: 39958158 PMCID: PMC11825821 DOI: 10.3389/fgene.2025.1491816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/15/2025] [Indexed: 02/18/2025] Open
Abstract
Simmental cattle are renowned for their dual purpose as meat and dairy breeds. The study recorded phenotype data from 183 Simmental cattle and performed a Genome-Wide Association Study (GWAS) analysis to elucidate the genetic mechanisms underlying milk production, body size traits, and tail characteristics. Statistical analysis of phenotype data showed that season, parity, and age at first calving (AFC) factors had a significant effect on milk production (P < 0.05). The results of GWAS on cattle linear traits revealed that the candidate genes SH3RF2, DCHS2, ADAMTS1, CAMK4, PPARGC1A, PRL, PRP6, and CORIN have been found to affect body circumference (BC) and cannon circumference (CC). Through GWAS analysis of tail traits, including Circumference over tail root (COTR) and Tail Length (TL) in Simmental cattle, candidate genes associated with tail length, such as KIF26B, ITPR2, SLC8A1, and SLIT3 were identified. Interestingly, candidate genes IL1RAP, AQP9, ITPR2, and PKD2 were also associated with metabolic inflammation in cattle tails. These genetic markers offer valuable insights into the traits of Simmental cattle, facilitating the development of molecular breeding strategies to enhance production value and provide references for breeding programs.
Collapse
Affiliation(s)
- Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Na Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Kaisen Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiayu Liao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Genglong Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jianghai Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenqiang Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wang C, Chen Y, Zhao J, Feng X, Ma R, Wang H, Xue L, Tian J, Yang L, Gu Y, Zhang J. Association of SPP1 and NCAPG genes with milk production traits in Chinese Holstein cows: polymorphism and functional validation analysis. Front Vet Sci 2024; 11:1435128. [PMID: 39545257 PMCID: PMC11561407 DOI: 10.3389/fvets.2024.1435128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/03/2024] [Indexed: 11/17/2024] Open
Abstract
Milk production traits play an important role in dairy cattle breeding, and single nucleotide polymorphisms can be used as effective molecular markers for milk production trait marker-assisted breeding in dairy cattle. Based on the results of the preliminary GWAS, candidate genes SPP1 and NCAPG associated with milk production traits were screened. In this study, the aim was to screen and characterize the SNPs of SPP1 and NCAPG genes about milk production traits. Two SNPs and one haplotype block of the SPP1 gene and four SNPs and one haplotype block of the NCAPG gene were obtained by amplification, sequencing and association analysis, and all six SNPs were located in the exon region. Association analysis showed that all six SNPs were significantly associated with milk protein percentage. Linkage disequilibrium analysis showed that 2 SNPs of SPP1 (g. 36,700,265 C > T and g. 36,693,596 C > A) constituted a haplotype that correlated with milk protein percentage, and the dominant haplotype was H2H2, which was CCTT. 4 SNPs of NCAPG (g. 37,342,705 C > A, g. 37,343,379 G > T, g. 37,374,314 C > A and g. 37,377,857 G > A) constituted a haplotype associated with milk protein percentage, 305-days milk protein yield and 305 days milk yield. Tissue expression profiling results revealed that SPP1 and NCAPG had the highest expression in mammary tissue. Interference with SPP1 and NCAPG inhibited the proliferation of Bovine mammary epithelial cells. (BMECs), down-regulated the expression of PCNA, CDK2 and CCND1, up-regulated the expression of BAX and BAD, and promoted apoptosis. Reduced triglyceride synthesis in BMECs, down-regulated the expression of DGAT1, DGAT2, LPIN1, and AGPAT6.SPP1 and NCAPG are involved in the synthesis of milk proteins, and interfering with SPP1 and NCAPG decreased the secretion of β-casein, κ-casein, and αs1-casein, as well as up-regulated the CSN2 and CSN3 expression. The above results indicate that the SNP loci of SPP1 and NCAPG can be used as potential molecular markers to improve milk production traits in dairy cows, laying the foundation for marker-assisted selection. It also proves that SPP1 and NCAPG can be used as candidate key genes for milk production traits in dairy cows, providing new insights into the physiological mechanisms of lactation regulation in dairy cows.
Collapse
Affiliation(s)
- Chuanchuan Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan, China
| | - Yafei Chen
- Yinchuan Animal Husbandry Technical Extension and Service Center, Yinchuan, China
| | - Jinyan Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan, China
| | - Xiaofang Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan, China
| | - Ruoshuang Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan, China
| | - Hua Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan, China
| | - Lin Xue
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan, China
| | - Jinli Tian
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan, China
| | - Lijuan Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan, China
| |
Collapse
|
3
|
Raza SHA, Khan R, Pant SD, Shah MA, Quan G, Feng L, Cheng G, Gui LS, Zan L. Genetic variation in the OPN gene affects milk composition in Chinese Holstein cows. Anim Biotechnol 2023; 34:893-899. [PMID: 34779705 DOI: 10.1080/10495398.2021.2001343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of this study was to investigate the association between genotypes and haplotypes of OPN, and milk composition in dairy cows. A total of 317 Chinese Holstein cows were genotyped via DNA sequencing in this study. Three single nucleotide polymorphisms (SNPs), g.2916G > A, g.58675C > T and g.58899C > A, and eight haplotypes were identified. Of the eight possible haplotypes, four haplotypes i.e., Hap2 (ACC; 55.30%), Hap6 (GCC, 15.6%), Hap1 (ACA, 13.6%) and Hap4 (ATC, 5.70%), were considered to be major with a cumulative estimated frequency of >90%. Single markers (g.2916G > A and g.58899C > A) and Haplotype Hap6/4 were found to be associated with an increase in butter-fat percentage (p < 0.05). Taken together, our results provided evidence that polymorphisms in OPN are associated with milk composition, and could potentially be used for marker-assisted selection in Chinese Holstein cows.
Collapse
Affiliation(s)
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetic, The University of Agriculture Peshawar, Pakistan
| | - Sameer D Pant
- Graham Centre for Agricultural Innovation, Charles Sturt University, Australia
| | - Mujahid Ali Shah
- Faculty of Fisheries and Protection of Water, University of South Bohemia in Ceske Budejovice, Czech Republic
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Long Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lin-Sheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Singh A, Malla WA, Kumar A, Jain A, Thakur MS, Khare V, Tiwari SP. Review: genetic background of milk fatty acid synthesis in bovines. Trop Anim Health Prod 2023; 55:328. [PMID: 37749432 DOI: 10.1007/s11250-023-03754-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
Milk fat composition is an important trait for the dairy industry as it directly influences the nutritional and technological properties of milk and other dairy products. The synthesis of milk fat is a complex process regulated by a network of genes. Thus, understanding the genetic variation and molecular mechanisms regulating milk fat synthesis will help to improve the nutritional quality of dairy products. In this review, we provide an overview of milk fat synthesis in bovines along with the candidate genes involved in the pathway. We also discuss de novo synthesis of fatty acids (ACSS, ACACA, FASN), uptake of FAs (FATP, FAT, LPL), intracellular activation and channelling of FAs (ACSL, FABP), elongation (EVOLV6), desaturation (SCD, FADS), formation of triglycerides (GPAM, AGPAT, LIPIN, DGAT), and milk lipid secretion (BTN1A1, XDH, PLIN2). The genetic variability of individual fatty acids will help to develop selection strategies for obtaining a healthier milk fat profile in bovines. Thus, this review will offer a potential understanding of the molecular mechanisms that regulate milk fat synthesis in bovines.
Collapse
Affiliation(s)
- Akansha Singh
- College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, M.P, 482001, India.
| | - Waseem Akram Malla
- ICMR-National Institute of Malaria Research, Field Unit Guwahati, Assam, 781022, India
| | - Amit Kumar
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Asit Jain
- College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, M.P, 482001, India
| | - Mohan Singh Thakur
- College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, M.P, 482001, India
| | - Vaishali Khare
- College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, M.P, 482001, India
| | - Sita Prasad Tiwari
- College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, M.P, 482001, India
| |
Collapse
|
5
|
Sørensen ES, Christensen B. Milk Osteopontin and Human Health. Nutrients 2023; 15:nu15112423. [PMID: 37299387 DOI: 10.3390/nu15112423] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Osteopontin (OPN) is a multifunctional protein found in all vertebrates. OPN is expressed in many different cell types, and is consequently found in most tissues and physiological secretions. OPN is involved in a multitude of biological processes, such as activation and regulation of the immune system; biomineralization; tissue-transformative processes, including growth and development of the gut and brain; interaction with bacteria; and many more. OPN is found in the highest concentrations in milk, where it is believed to initiate and regulate developmental, immunological and physiological processes in infants who consume milk. Processes for the isolation of bovine OPN for use in infant formula have been developed, and in recent years, many studies have investigated the effects of the intake of milk OPN. The purpose of this article is to review and compare existing knowledge about the structure and function of milk OPN, with a particular focus on the effects of milk OPN on human health and disease.
Collapse
Affiliation(s)
- Esben S Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Brian Christensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
6
|
KATE RUJUTA, KALE DEEPAK, SINGH JAYA, PATIL DINESH, BAHIRAM KRUSHNA. Polymorphisms within Intron-4 and Exon-4 regions of SPP1 gene and their association with milk traits in Gaolao cattle. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2023. [DOI: 10.56093/ijans.v93i1.121380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Secreted phosphoprotein 1 (SPP1) is an acidic, phosphorylated glycoprotein found in fluids including milk and is involved in development of mammary gland and exhibits impact on milk composition and yield. The aim of study was to reveal SPP1 gene polymorphisms and association with milk traits in Gaolao cattle. Blood was collected from 280 cows and test day milk was recorded. SPP1G1-BsrI locus in intron-IV was polymorphic and frequency of TT genotype was 0.99 and CT was 0.01, respectively. The association of SPP1G1-BsrI polymorphism with milk traits revealed significant difference in Milk yield and SNF% for CT genotype as compared to TT genotype. Sequencing of SPP1G1-BsrI locus-based TT and CT genotypes revealed G-A SNP at 32nd position. The SPP1G5-SSCP locus at exon-4 region was polymorphic with frequency for A pattern as 0.95 and for B patterns as 0.05. The association study, revealed significant differences for SNF% and Lactose% for SPP1G5-SSCP pattern A as compared to pattern B. Direct sequencing of SSCP pattern A and B of SPP1G5-SSCP revealed SNPs A-G at 71st, A-C at 109th and A-C at 208th position and 02 computational SNPs, viz. C-A at 109th position and C-A at 208th position. Identified significant association needs validation in large data sets with records for development of markers for bovine milk traits.
Collapse
|
7
|
Worku D, Gowane G, Verma A. Genetic variation in promoter region of the bovine LAP3 gene associated with estimated breeding values of milk production traits and clinical mastitis in dairy cattle. PLoS One 2023; 18:e0277156. [PMID: 37205663 DOI: 10.1371/journal.pone.0277156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/20/2022] [Indexed: 05/21/2023] Open
Abstract
The purpose of this study was to identify genetic variants in the promoter and 5'UTR regions of bovine leucine amino peptidase three (LAP3) gene and analysed their associations with estimated breeding values (EBVs) of milk production traits and clinical mastitis in Sahiwal and Karan Fries cattle. Eleven SNPs were identified within the region under study of the LAP3 gene, including seven promoter variants (rs717156555: C>G, rs720373055: T>C, rs715189731: A>G, rs516876447: A>G, rs461857269: C>T, rs136548163: C>T, and rs720349928: G>A) and four 5'UTR variants (rs717884982: C>T, rs722359733: C>T, rs481631804: C>T and rs462932574: T>G). Out of them, 10 SNPs variants were found in both Sahiwal and Karan Fries cattle, with one SNP variant (rs481631804: C>T) being unique to Karan Fries cattle. Seven of these identified SNPs were chosen for association analyses. Individual SNP based association analysis revealed that two SNPs (rs720373055: T>C and rs720349928: G>A) were significantly associated with EBVs of lactation milk yield (LMY), 305-day milk yield (305dMY), and one significant association of SNP rs722359733: C>T with lactation length (LL) was observed. Haplotype based association analysis indicated that diplotypes are significantly associated with EBVs of LMY, 305dMY, and LL, individuals with H1H3 (CTACGCT/GCGTACG) being linked to higher lactation performance than other diplotypes. Further logistic regression analysis revealed that, animals with diplotype H1H3 was less susceptible to the incidence of clinical mastitis than other cows, as the odds ratio for the non-incidence of clinical mastitis was found to be low. Altogether, variations in the LAP3 gene promoter could be used as a genetic marker, most notably diplotype H1H3, may greatly benefit the simultaneous improvement of mastitis resistance and milk yield traits in dairy cattle. Moreover, bioinformatics analysis predicted that the SNPs rs720373055: T>C, rs715189731:A>G and rs720349928: G>A is located in the core promoter region and in TFBs, play key role in regulation of studied phenotypes.
Collapse
Affiliation(s)
- Destaw Worku
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Gopal Gowane
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Archana Verma
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
8
|
Liu T, Ju X, Zhang M, Wei C, Wang D, Wang Z, Lan X, Huang XX. A 67-bp variable duplication in the promoter region of the ADIPOQ is associated with milk traits in Xinjiang brown cattle. Anim Biotechnol 2022; 33:1738-1745. [PMID: 33587650 DOI: 10.1080/10495398.2020.1868487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adiponectin, also known as ADIPOQ, is a hormone protein secreted by adipocytes. The ADIPOQ gene is expressed primarily in adipose tissue, and the encoded protein circulates in the bloodstream and has the potential to regulate both animal fat metabolism and hormone production. Our previous work uncovered a 67-bp variable duplication in the promoter region of ADIPOQ, which reduced the basal transcriptional activity of ADIPOQ in the 3T3_L1 cell and also inhibits the ADIPOQ mRNA expression in adipose tissue. Accordingly, the present study aimed to identify the relationship between the 67-bp structural variations in ADIPOQ promoter region and the milk traits of Xinjiang brown cattle (XJBC). The results revealed two genotypes, DD and ID, in the XJBC, and minor allelic frequency (MAF) for the 'I' allele was more than 1%. Moreover, the association analysis revealed that the 67-bp duplication in the promoter region of the ADIPOQ gene was significantly correlated with the 305 days of milk production volume, fat yield, and milk fat percentage in the XJBC (p < 0.05). These results obtained in this study suggested that the identified variable duplication could be considered as the potential genetic marker for improving milk traits of XJBC.
Collapse
Affiliation(s)
- Tingting Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Xing Ju
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Menghua Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chen Wei
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Dan Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Zhen Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xi-Xia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
9
|
Mohammadi H, Farahani AHK, Moradi MH, Mastrangelo S, Di Gerlando R, Sardina MT, Scatassa ML, Portolano B, Tolone M. Weighted Single-Step Genome-Wide Association Study Uncovers Known and Novel Candidate Genomic Regions for Milk Production Traits and Somatic Cell Score in Valle del Belice Dairy Sheep. Animals (Basel) 2022; 12:ani12091155. [PMID: 35565582 PMCID: PMC9104502 DOI: 10.3390/ani12091155] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Milk production is the most economically crucial dairy sheep trait and constitutes the major genetic enhancement purpose via selective breeding. Also, mastitis is one of the most frequently encountered diseases, having a significant impact on animal welfare, milk yield, and quality. The aim of this study was to identify genomic region(s) associated with the milk production traits and somatic cell score (SCS) in Valle del Belice sheep using single-step genome-wide association (ssGWA) and genotyping data from medium density SNP panels. We identified several genomic regions (OAR1, OAR2, OAR3, OAR4, OAR6, OAR9, and OAR25) and candidate genes implicated in milk production traits and SCS. Our findings offer new insights into the genetic basis of milk production traits and SCS in dairy sheep. Abstract The objective of this study was to uncover genomic regions explaining a substantial proportion of the genetic variance in milk production traits and somatic cell score in a Valle del Belice dairy sheep. Weighted single-step genome-wide association studies (WssGWAS) were conducted for milk yield (MY), fat yield (FY), fat percentage (FAT%), protein yield (PY), protein percentage (PROT%), and somatic cell score (SCS). In addition, our aim was also to identify candidate genes within genomic regions that explained the highest proportions of genetic variance. Overall, the full pedigree consists of 5534 animals, of which 1813 ewes had milk data (15,008 records), and 481 ewes were genotyped with a 50 K single nucleotide polymorphism (SNP) array. The effects of markers and the genomic estimated breeding values (GEBV) of the animals were obtained by five iterations of WssGBLUP. We considered the top 10 genomic regions in terms of their explained genomic variants as candidate window regions for each trait. The results showed that top ranked genomic windows (1 Mb windows) explained 3.49, 4.04, 5.37, 4.09, 3.80, and 5.24% of the genetic variances for MY, FY, FAT%, PY, PROT%, and total SCS, respectively. Among the candidate genes found, some known associations were confirmed, while several novel candidate genes were also revealed, including PPARGC1A, LYPLA1, LEP, and MYH9 for MY; CACNA1C, PTPN1, ROBO2, CHRM3, and ERCC6 for FY and FAT%; PCSK5 and ANGPT1 for PY and PROT%; and IL26, IFNG, PEX26, NEGR1, LAP3, and MED28 for SCS. These findings increase our understanding of the genetic architecture of six examined traits and provide guidance for subsequent genetic improvement through genome selection.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; (A.H.K.F.); (M.H.M.)
- Correspondence: ; Tel.: +98-9127584572
| | - Amir Hossein Khaltabadi Farahani
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; (A.H.K.F.); (M.H.M.)
| | - Mohammad Hossein Moradi
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; (A.H.K.F.); (M.H.M.)
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy; (S.M.); (R.D.G.); (M.T.S.); (B.P.); (M.T.)
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy; (S.M.); (R.D.G.); (M.T.S.); (B.P.); (M.T.)
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy; (S.M.); (R.D.G.); (M.T.S.); (B.P.); (M.T.)
| | - Maria Luisa Scatassa
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy;
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy; (S.M.); (R.D.G.); (M.T.S.); (B.P.); (M.T.)
| | - Marco Tolone
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy; (S.M.); (R.D.G.); (M.T.S.); (B.P.); (M.T.)
| |
Collapse
|
10
|
Challenging Sustainable and Innovative Technologies in Cheese Production: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10030529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is well known that cheese yield and quality are affected by animal genetics, milk quality (chemical, physical, and microbiological), production technology, and the type of rennet and dairy cultures used in production. Major differences in the same type of cheese (i.e., hard cheese) are caused by the rennet and dairy cultures, which affect the ripening process. This review aims to explore current technological advancements in animal genetics, methods for the isolation and production of rennet and dairy cultures, along with possible applications of microencapsulation in rennet and dairy culture production, as well as the challenge posed to current dairy technologies by the preservation of biodiversity. Based on the reviewed scientific literature, it can be concluded that innovative approaches and the described techniques can significantly improve cheese production.
Collapse
|
11
|
Genetic Association of PPARGC1A Gene Single Nucleotide Polymorphism with Milk Production Traits in Italian Mediterranean Buffalo. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3653157. [PMID: 33829059 PMCID: PMC8004361 DOI: 10.1155/2021/3653157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022]
Abstract
PPARGC1A gene plays an important role in the activation of various important hormone receptors and transcriptional factors involved in the regulation of adaptive thermogenesis, gluconeogenesis, fiber-type switching in skeletal muscle, mitochondrial biogenesis, and adipogenesis, regulating the reproduction and proposed as a candidate gene for milk-related traits in cattle. This study identified polymorphisms in the PPARGC1A gene in Italian Mediterranean buffaloes and their associations to milk production and quality traits (lactation length, peak milk yield, fat and protein yield, and percentage). As a result, a total of seven SNPs (g.-78A>G, g.224651G>C, g.286986G>A, g.304050G>A, g.325647G>A, g.325817T>C, and g.325997G>A) were identified by DNA pooled sequencing. Analysis of productivity traits within the genotyped animals revealed that the g.286986G>A located at intron 4 was associated with milk production traits, but the g.325817T>C had no association with milk production. Polymorphisms in g.-78A>G was associated with peak milk yield and milk yield, while g.304050G>A and g.325997 G>A were associated with both milk yield and protein percentage. Our findings suggest that polymorphisms in the buffalo PPARGC1A gene are associated with milk production traits and can be used as a candidate gene for milk traits and marker-assisted selection in the buffalo breeding program.
Collapse
|
12
|
Factors influencing milk osteopontin concentration based on measurements from Danish Holstein cows. J DAIRY RES 2021; 88:89-94. [PMID: 33622420 DOI: 10.1017/s0022029921000054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Our objective was to determine the content of the bioactive protein osteopontin (OPN) in bovine milk and identify factors influencing its concentration. OPN is expressed in many tissues and body fluids, with by far the highest concentrations in milk. OPN plays a role in immunological and developmental processes and it has been associated with several milk production traits and lactation persistency in cows. In the present study, we report the development of an enzyme linked immunosorbent assay (ELISA) for measurement of OPN in bovine milk. The method was used to determine the concentration of OPN in milk from 661 individual Danish Holstein cows. The median OPN level was determined to 21.9 mg/l with a pronounced level of individual variation ranging from 0.4 mg/l to 67.8 mg/l. Breeding for increased OPN in cow's milk is of significant interest, however, the heritability of OPN in milk was found to be relatively low, with an estimated value of 0.19 in the current dataset. The variation explained by the herd was also found to be low suggesting that OPN levels are not affected by farm management or feeding. Interestingly, the concentration of OPN was found to increase with days in milk and to decrease with parity.
Collapse
|
13
|
Wu X, Zhou X, Xiong L, Pei J, Yao X, Liang C, Bao P, Chu M, Guo X, Yan P. Transcriptome Analysis Reveals the Potential Role of Long Non-coding RNAs in Mammary Gland of Yak During Lactation and Dry Period. Front Cell Dev Biol 2020; 8:579708. [PMID: 33324637 PMCID: PMC7723986 DOI: 10.3389/fcell.2020.579708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
The mammary gland is a remarkably dynamic organ of milk synthesis and secretion, and it experiences drastic structural and metabolic changes during the transition from dry periods to lactation, which involves the expression and regulation of numerous genes and regulatory factors. Long non-coding RNA (lncRNA) has considered as a novel type of regulatory factors involved in a variety of biological processes. However, their role in the lactation cycle of yak is still poorly understood. To reveal the involved mechanism, Ribo-zero RNA sequencing was employed to profile the lncRNA transcriptome in mammary tissue samples from yak at two physiological stages, namely lactation (LP) and dry period (DP). Notably, 1,599 lncRNA transcripts were identified through four rigorous steps and filtered through protein-coding ability. A total of 59 lncRNAs showed significantly different expression between two stages. Accordingly, the results of qRT-PCR were consistent with that of the transcriptome data. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that target genes of differentially expressed lncRNAs (DELs) were involved in pathways related to lactation, such as ECM-receptor interaction, PI3K-Akt signaling pathway, biosynthesis of amino acids and focal adhesion etc. Finally, we constructed a lncRNA-gene regulatory network containing some well known candidate genes for milk yield and quality traits. This is the first study to demonstrate a global profile of lncRNA expression in the mammary gland of yak. These results contribute to a valuable resource for future genetic and molecular studies on improving milk yield and quality, and help us to gain a better understanding of the molecular mechanisms underlying lactogenesis and mammary gland development of yak.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xian Guo
- Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
14
|
KUMAR MANOJ, RATWAN POONAM, DAHIYA SP. Potential candidate gene markers for milk fat in bovines: A review. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i5.104601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In dairy animals, the principal goal of selection is to improve quality and quantity of milk. Genetic information inferred from single nucleotide polymorphism (SNP) primarily linked to Quantitative Trait Loci (QTL) can be used to improve selection for milk and milk constituent traits in bovines. Selection for a marker allele known to be associated with a beneficial QTL increases the frequency of that allele and hence, dairy performance can be enhanced. One of the potential benefit of selection based on molecular marker is that the marker genotypes can be determined in a dairy animal just after birth. Thus, marker information can be used to predict an animal's genotype before its actual performance recording for a trait is available, which considerably reduces generation interval and thus improves genetic gain in a herd for milk and its constituent traits. This review article is an attempt to comprehend the idea behind marker based selection for milk fat and genes regulating milk fat with significant effects that can be targeted specifically in selection of superior dairy animals. Once an association is established, itcan be utilized in a marker assisted breeding program for improvement of bovines.
Collapse
|
15
|
Pasandideh M. Two SNPs in the bovine PPARGC1A gene are associated with the birth weight of Holstein calves. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
16
|
Pizarro M, Landi V, Navas F, León J, Martínez A, Fernández J, Delgado J. Nonparametric analysis of casein complex genes' epistasis and their effects on phenotypic expression of milk yield and composition in Murciano-Granadina goats. J Dairy Sci 2020; 103:8274-8291. [DOI: 10.3168/jds.2019-17833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/07/2020] [Indexed: 01/17/2023]
|
17
|
Goat Genomic Resources: The Search for Genes Associated with Its Economic Traits. Int J Genomics 2020; 2020:5940205. [PMID: 32904540 PMCID: PMC7456479 DOI: 10.1155/2020/5940205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/30/2020] [Accepted: 07/24/2020] [Indexed: 11/25/2022] Open
Abstract
Goat plays a crucial role in human livelihoods, being a major source of meat, milk, fiber, and hides, particularly under adverse climatic conditions. The goat genomics related to the candidate gene approach is now being used to recognize molecular mechanisms that have different expressions of growth, reproductive, milk, wool, and disease resistance. The appropriate literature on this topic has been reviewed in this article. Several genetic characterization attempts of different goats have reported the existence of genotypic and morphological variations between different goat populations. As a result, different whole-genome sequences along with annotated gene sequences, gene function, and other genomic information of different goats are available in different databases. The main objective of this review is to search the genes associated with economic traits in goats. More than 271 candidate genes have been discovered in goats. Candidate genes influence the physiological pathway, metabolism, and expression of phenotypes. These genes have different functions on economically important traits. Some genes have pleiotropic effect for expression of phenotypic traits. Hence, recognizing candidate genes and their mutations that cause variations in gene expression and phenotype of an economic trait can help breeders look for genetic markers for specific economic traits. The availability of reference whole-genome assembly of goats, annotated genes, and transcriptomics makes comparative genomics a useful tool for systemic genetic upgradation. Identification and characterization of trait-associated sequence variations and gene will provide powerful means to give positive influences for future goat breeding program.
Collapse
|
18
|
Qiu L, Fan X, Zhang Y, Teng X, Miao Y. Molecular characterization, tissue expression and polymorphisms of buffalo PPARGC1A gene. Arch Anim Breed 2020; 63:249-259. [PMID: 32775610 PMCID: PMC7405651 DOI: 10.5194/aab-63-249-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/24/2020] [Indexed: 01/18/2023] Open
Abstract
PPARGC1A exerts important functions in activating many nuclear receptors and
transcription factors that are related to energy balance. Previous studies have
shown that PPARGC1A gene is associated with lactation traits of dairy cattle.
However, the functional role of the buffalo PPARGC1A gene is still unknown. In this
work, the complete coding sequence (CDS) of buffalo PPARGC1A was isolated and
characterized for swamp and river buffalo. The CDS length of PPARGC1A for both types
of buffalo was the same, which was composed of 2394 nucleotides and encoded
a peptide composed of 797 amino acid residues. This protein belonged to a
hydrophilic protein and contained one RRM_PPARGC1A domain (AA 674–764) without a signal peptide or a transmembrane domain. The
differential expressions of this gene in 10 buffalo tissues in lactation and
non-lactation displayed that the PPARGC1A was highly expressed in the muscle, heart,
liver, brain and kidney of both non-lactating and lactating periods, but its
expression was significantly different in the muscle, heart, liver, small
intestine, mammary gland, rumen, spleen and lung between the two periods.
Eight single nucleotide polymorphisms (SNPs) were found in buffalo, in which
the c.778C>T, c.1257G>A and c.1311G>A
were shared by two types of buffalo with similar allele frequencies, while
the c.419C>T, c.759A>G, c.920C>A,
c.926G>A and c.1509A>T were only observed in river
buffalo. The SNP419, SNP920 and SNP926 were non-synonymous, which led to the
amino acid changes of p.Ser140Phe, p.Pro307His and p.Arg309Lys. Seven
nucleotide differential sites were identified in the PPARGC1A gene between buffalo and
other Bovidae species. Phylogenetic analysis indicated that buffaloes were
independently clustered into one branch, but they were closely related to
the species of the Bos genus. The results indicate that buffalo PPARGC1A is an
inducible transcriptional coactivator involved in regulating carbohydrate
and fat metabolism. It can exert a functional role in a variety of buffalo
tissues and may participate in milk fat synthesis and development in the
mammary gland.
Collapse
Affiliation(s)
- Lihua Qiu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xinyang Fan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yongyun Zhang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.,Teaching Demonstration Center of the Basic Experiments of Agricultural Majors, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xiaohong Teng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yongwang Miao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| |
Collapse
|
19
|
Smith JL, Wilson ML, Nilson SM, Rowan TN, Oldeschulte DL, Schnabel RD, Decker JE, Seabury CM. Genome-wide association and genotype by environment interactions for growth traits in U.S. Gelbvieh cattle. BMC Genomics 2019; 20:926. [PMID: 31801456 PMCID: PMC6892214 DOI: 10.1186/s12864-019-6231-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphism (SNP) arrays have facilitated discovery of genetic markers associated with complex traits in domestic cattle; thereby enabling modern breeding and selection programs. Genome-wide association analyses (GWAA) for growth traits were conducted on 10,837 geographically diverse U.S. Gelbvieh cattle using a union set of 856,527 imputed SNPs. Birth weight (BW), weaning weight (WW), and yearling weight (YW) were analyzed using GEMMA and EMMAX (via imputed genotypes). Genotype-by-environment (GxE) interactions were also investigated. RESULTS GEMMA and EMMAX produced moderate marker-based heritability estimates that were similar for BW (0.36-0.37, SE = 0.02-0.06), WW (0.27-0.29, SE = 0.01), and YW (0.39-0.41, SE = 0.01-0.02). GWAA using 856K imputed SNPs (GEMMA; EMMAX) revealed common positional candidate genes underlying pleiotropic QTL for Gelbvieh growth traits on BTA6, BTA7, BTA14, and BTA20. The estimated proportion of phenotypic variance explained (PVE) by the lead SNP defining these QTL (EMMAX) was larger and most similar for BW and YW, and smaller for WW. Collectively, GWAAs (GEMMA; EMMAX) produced a highly concordant set of BW, WW, and YW QTL that met a nominal significance level (P ≤ 1e-05), with prioritization of common positional candidate genes; including genes previously associated with stature, feed efficiency, and growth traits (i.e., PLAG1, NCAPG, LCORL, ARRDC3, STC2). Genotype-by-environment QTL were not consistent among traits at the nominal significance threshold (P ≤ 1e-05); although some shared QTL were apparent at less stringent significance thresholds (i.e., P ≤ 2e-05). CONCLUSIONS Pleiotropic QTL for growth traits were detected on BTA6, BTA7, BTA14, and BTA20 for U.S. Gelbvieh beef cattle. Seven QTL detected for Gelbvieh growth traits were also recently detected for feed efficiency and growth traits in U.S. Angus, SimAngus, and Hereford cattle. Marker-based heritability estimates and the detection of pleiotropic QTL segregating in multiple breeds support the implementation of multiple-breed genomic selection.
Collapse
Affiliation(s)
- Johanna L Smith
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA
| | - Miranda L Wilson
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA
| | - Sara M Nilson
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA
| | - Troy N Rowan
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA
- Genetics Area Program, University of Missouri, Columbia, 65211, USA
| | - David L Oldeschulte
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA
- Genetics Area Program, University of Missouri, Columbia, 65211, USA
- Informatics Institute, University of Missouri, Columbia, 65211, USA
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA
- Genetics Area Program, University of Missouri, Columbia, 65211, USA
- Informatics Institute, University of Missouri, Columbia, 65211, USA
| | - Christopher M Seabury
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA.
| |
Collapse
|
20
|
Yuan Z, Li W, Li F, Yue X. Selection signature analysis reveals genes underlying sheep milking performance. Arch Anim Breed 2019; 62:501-508. [PMID: 31807661 PMCID: PMC6859915 DOI: 10.5194/aab-62-501-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/15/2019] [Indexed: 11/30/2022] Open
Abstract
Sheep milk is the most important feed resource for newborn lambs and an important food resource for humans. Sheep milk production and ingredients are influenced by genetic and environmental factors. In this study, we implemented selection signature analysis using Illumina Ovine SNP50 BeadChip data of 78 meat Lacaune and 103 milk Lacaune sheep, which have similar genetic backgrounds, from the Sheep HapMap project to identify candidate genes related to ovine milk traits. Since different methods can detect different variation types and complement each other, we used a haplotype-based method (hapFLK) to implement selection signature analysis. The results revealed six selection signature regions showing signs of being selected ( P < 0.001 ): chromosomes 1, 2, 3, 6, 13 and 18. In addition, 38 quantitative trait loci (QTLs) related to sheep milk performance were identified in selection signature regions, which contain 334 candidate genes. Of those, SUCNR1 (succinate receptor 1) and PPARGC1A (PPARG coactivator 1 alpha) may be the most significant genes that affect sheep milking performance, which supply a significant indication for future studies to investigate candidate genes that play an important role in milk production and quality.
Collapse
Affiliation(s)
- Zehu Yuan
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural
Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou
University, Lanzhou, 730020, P. R. China
| | - Wanhong Li
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural
Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou
University, Lanzhou, 730020, P. R. China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural
Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou
University, Lanzhou, 730020, P. R. China
- Engineering Laboratory of Sheep Breeding and Reproduction
Biotechnology in Gansu Province, Minqin, 733300, P. R. China
| | - Xiangpeng Yue
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural
Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou
University, Lanzhou, 730020, P. R. China
| |
Collapse
|
21
|
SHARMA UPASNA, BANERJEE PRIYANKA, JOSHI JYOTI, KAPOOR PRERNA, VIJH RAMESHKUMAR. Identification of QTLs for low somatic cell count in Murrah buffaloes. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i7.92040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mastitis, the most frequent and costly disease in buffalo, is the major cause of morbidity. The somatic cell count, an indirect indicator of susceptibility/resistance to mastitis, is a low heritable trait and thus a perfect candidate for marker assisted selection. Half sib families (12) were created and the somatic cell count was recorded at 3 stages of lactation during the first lactation of the 2,422 daughters belonging to 12 sires. Partial genome scan was carried out using interval mapping with different algorithms. The QTLs obtained for each half sib family were further subjected to meta analysis to identify chromosomal regions associated with somatic cell count on 8 chromosomes of buffalo. Four metaQTL regions were identified on chromosomes BBU1q, BBU8, and BBU10; 3 metaQTL regions on BBU2q, BBU9 and BBU15; 2 metaQTL regions on BBU6 and 1 on BBU7 of buffalo. Comparative genomics was used for finding out genes underlying the metaQTL regions; 1,065 genes were underlying the metaQTL regions in buffaloes assuming buffalo–cattle–human synteny. Genes (78) mapped to immune response. These genes are supposedly important candidate genes for further analysis. Gene ontology and network analysis was carried out on these genes. The genes identified belonged to immune response and defense mechanism. The QTL markers identified in the present analysis can be used in the breeding programs of buffalo to select the bulls, which are less susceptible to mastitis.
Collapse
|
22
|
Kułaj D, Pokorska J, Ochrem A, Dusza M, Makulska J. Effects of the c.8514C > T polymorphism in the osteopontin gene (OPN) on milk production, milk composition and disease susceptibility in Holstein-Friesian cattle. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2018.1547129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dominika Kułaj
- Zakład Hodowli Bydła, Uniwersytet Rolniczy w Krakowie, Krakow, Poland
| | - Joanna Pokorska
- Zakład Hodowli Bydła, Uniwersytet Rolniczy w Krakowie, Krakow, Poland
| | - Andrzej Ochrem
- Zakład Hodowli Bydła, Uniwersytet Rolniczy w Krakowie, Krakow, Poland
| | - Magdalena Dusza
- Zakład Hodowli Bydła, Uniwersytet Rolniczy w Krakowie, Krakow, Poland
| | - Joanna Makulska
- Zakład Hodowli Bydła, Uniwersytet Rolniczy w Krakowie, Krakow, Poland
| |
Collapse
|
23
|
Raschia MA, Nani JP, Maizon DO, Beribe MJ, Amadio AF, Poli MA. Single nucleotide polymorphisms in candidate genes associated with milk yield in Argentinean Holstein and Holstein x Jersey cows. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2018; 60:31. [PMID: 30564433 PMCID: PMC6291960 DOI: 10.1186/s40781-018-0189-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/03/2018] [Indexed: 12/04/2022]
Abstract
BACKGROUND Research on loci influencing milk production traits of dairy cattle is one of the main topics of investigation in livestock. Many genomic regions and polymorphisms associated with dairy production have been reported worldwide. In this context, the purpose of this study was to identify candidate loci associated with milk yield in Argentinean dairy cattle. A database of candidate genes and single nucleotide polymorphisms (SNPs) for milk production and composition was developed. Thirty-nine SNPs belonging to 22 candidate genes were genotyped on 1643 animals (Holstein and Holstein x Jersey). The genotypes obtained were subjected to association studies considering the whole population and discriminating the population by Holstein breed percentage. Phenotypic data consisted of milk production values recorded during the first lactation of 1156 Holstein and 462 Holstein x Jersey cows from 18 dairy farms located in the central dairy area of Argentina. From these records, 305-day cumulative milk production values were predicted. RESULTS Eight SNPs (rs43375517, rs29004488, rs132812135, rs137651874, rs109191047, rs135164815, rs43706485, and rs41255693), located on six Bos taurus autosomes (BTA4, BTA6, BTA19, BTA20, BTA22, and BTA26), showed suggestive associations with 305-day cumulative milk production (under Benjamini-Hochberg procedure with a false discovery rate of 0.1). Two of those SNPs (rs43375517 and rs135164815) were significantly associated with milk production (Bonferroni adjusted p-values < 0.05) when considering the Holstein population. CONCLUSIONS The results obtained are consistent with previously reported associations in other Holstein populations. Furthermore, the SNPs found to influence bovine milk production in this study may be used as possible candidate SNPs for marker-assisted selection programs in Argentinean dairy cattle.
Collapse
Affiliation(s)
- María Agustina Raschia
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto de Genética “Ewald A. Favret”, Nicolás Repetto y de los Reseros s/n, Hurlingham, B1686 Argentina
| | - Juan Pablo Nani
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Rafaela, Ruta Nacional 34 Km 227, Rafaela, Argentina
| | - Daniel Omar Maizon
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Anguil, Ruta Nacional 5 Km 580, Anguil, Argentina
| | - María José Beribe
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Pergamino, Ruta 32 Km 4.5, Pergamino, Argentina
| | - Ariel Fernando Amadio
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Rafaela, Ruta Nacional 34 Km 227, Rafaela, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Mario Andrés Poli
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto de Genética “Ewald A. Favret”, Nicolás Repetto y de los Reseros s/n, Hurlingham, B1686 Argentina
| |
Collapse
|
24
|
Hanuš O, Samková E, Křížová L, Hasoňová L, Kala R. Role of Fatty Acids in Milk Fat and the Influence of Selected Factors on Their Variability-A Review. Molecules 2018; 23:E1636. [PMID: 29973572 PMCID: PMC6100482 DOI: 10.3390/molecules23071636] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 11/16/2022] Open
Abstract
Fatty acids (FAs) of milk fat are considered to be important nutritional components of the diets of a significant portion of the human population and substantially affect human health. With regard to dairy farming, the FA profile is also seen as an important factor in the technological quality of raw milk. In this sense, making targeted modifications to the FA profile has the potential to significantly contribute to the production of dairy products with higher added value. Thus, FAs also have economic importance. Current developments in analytical methods and their increasing efficiency enable the study of FA profiles not only for scientific purposes but also in terms of practical technological applications. It is important to study the sources of variability of FAs in milk, which include population genetics, type of farming, and targeted animal nutrition. It is equally important to study the health and technological impacts of FAs. This review summarizes current knowledge in the field regarding sources of FA variability, including the impact of factors such as: animal nutrition, seasonal feed changes, type of animal farming (conventional and organic), genetic parameters (influence of breed), animal individuality, lactation, and milk yield. Potential practical applications (to improve food technology and consumer health) of FA profile information are also reviewed.
Collapse
Affiliation(s)
- Oto Hanuš
- Dairy Research Institute Ltd., 16000 Prague, Czech Republic.
| | - Eva Samková
- Department of Food Biotechnologies and Agricultural Products´ Quality, Faculty of Agriculture, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| | - Ludmila Křížová
- Department of Animal Nutrition, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic.
| | - Lucie Hasoňová
- Department of Food Biotechnologies and Agricultural Products´ Quality, Faculty of Agriculture, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| | - Robert Kala
- Department of Food Biotechnologies and Agricultural Products´ Quality, Faculty of Agriculture, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
25
|
Osteopontin gene polymorphism association with milk traits and its expression analysis in milk of riverine buffalo. Trop Anim Health Prod 2017; 50:275-281. [PMID: 28963597 DOI: 10.1007/s11250-017-1426-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 09/20/2017] [Indexed: 01/28/2023]
Abstract
Osteopontin gene is regarded as a plausible candidate in mammary gland differentiation and development, expressed by variety of cells, tissues, and biological fluids including milk. The current study was performed in two phases. In the first phase, Osteopontin gene polymorphisms were identified and associated with milk composition such as ash, milk fat, SNF, lactose, and protein. In the second phase, milk samples from five healthy mastitis-free Nili Ravi buffaloes were analyzed for expression of Osteopontin gene at transition (day 15), mid (day 90), and end (day 250) stage of their second lactation. Briefly, blood samples were collected from Nili Ravi buffalo to isolate the genomic DNA, specific primers were designed for PCR amplification. The amplified PCR products were sequenced bi-directionally. Six polymorphisms were identified in the coding region and four in the intronic region of the gene. The results showed that SNP g.38329758 T > C causing substitution of valine to alanine (V127A) was associated with high milk protein. For mRNA expression analysis, somatic cells were separated from milk samples for RNA isolation. Analysis of differential gene expression data has permitted us to illustrate the expression pattern of osteopontin gene in lactating buffalo. The Osteopontin gene was found to be transcribed among all three lactation stages, but expression was observed with the highest value (fold change) in peak lactation and remained elevated till the end of lactation. Identified gene marker may be helpful for the prediction of superior animal for selection. The presented study also gave an insight into the genetic screening and lactation biology of riverine buffalo, offering direction for future research in lactating buffalo.
Collapse
|
26
|
Association of Dopamine D2 Receptor Gene Polymorphisms with Reproduction Traits in Domestic Pigeons ( Columba livia). J Poult Sci 2017; 54:13-17. [PMID: 32908403 PMCID: PMC7477188 DOI: 10.2141/jpsa.0160037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dopamine inhibited prolactin secretion via dopamine D2 receptor (DRD2) at the pituitary level, but its effects on reproduction in pigeons are unclear. In this study, Single Nucleotide Polymorphisms (SNPs) in the exons of DRD2 gene were identified and analyzed by using DNA sequencing methods in 60 female domestic pigeons (Columba livia), and the association between DRD2 polymorphisms and reproduction traits was also analyzed. Sequencing results showed that 7 nucleotide mutations were detected in the exon 1, 4, and 6 regions of DRD2 gene. The analysis revealed three genotypes (AA, AB, and BB) in exon 4 and two genotypes (AA, AB) in exon 6, in which the AA genotype was consistently dominant, and the A allele showed a dominant advantage. The C4532T genotypes located in exon 6 of DRD2 gene were significantly (P<0.05) associated with reproductive traits of pigeon. Moreover, the individuals with AB genotype had significantly higher fertility rate and total hatching number within 500 days of age than those with AA genotype (P<0.05). These findings suggested that the DRD2 gene should be included in future genetic studies of pigeon reproduction and the SNP of C4532T might be a potential candidate genetic marker for Marker-aid breeding in pigeon.
Collapse
|
27
|
Yin ZZ, Dong XY, Dong DJ, Ma YZ. Association of MYF5 and KLF15 gene polymorphisms with carcass traits in domestic pigeons (Columba livia). Br Poult Sci 2016; 57:612-618. [PMID: 27180898 DOI: 10.1080/00071668.2016.1190000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Single nucleotide polymorphisms (SNPs) in the exons of the myogenic factor 5 (MYF5) and Kruppel-like factor 15 (KLF15) genes were identified and analysed by using DNA sequencing methods in 60 female domestic pigeons (Columba livia). Five SNPs (T5067A, C5084T, C5101T, T5127A and C5154G) were detected in exon 3 of MYF5 and 6 SNPs (C1398T, C1464T, G1542A, C1929T, G1965A and A2355G) were found in exon 2 of KLF15, respectively. The analysis revealed three genotypes, in which the AA genotype was dominant and the A allele showed a dominant advantage. For the MYF5 gene, the C5084T and T5127A SNP genotypes were significantly associated with carcass traits of pigeons. Within those two SNPs, the BB genotype showed relatively higher trait association values than those of AA or AB genotypes. No significant association was observed between the KLF15 SNP genotypes and carcass traits. These results indicated that the MYF5 gene is a potential major gene affecting carcass traits in domestic pigeons. The BB genotype of the C5084T and T5127A SNPs could be a potential candidate genetic marker for marker-assisted selection in pigeon.
Collapse
Affiliation(s)
- Z Z Yin
- a Animal Science College , Zhejiang University , Hangzhou , China
| | - X Y Dong
- a Animal Science College , Zhejiang University , Hangzhou , China
| | - D J Dong
- a Animal Science College , Zhejiang University , Hangzhou , China
| | - Y Z Ma
- a Animal Science College , Zhejiang University , Hangzhou , China
| |
Collapse
|
28
|
Li C, Sun D, Zhang S, Yang S, Alim MA, Zhang Q, Li Y, Liu L. Genetic effects of FASN, PPARGC1A, ABCG2 and IGF1 revealing the association with milk fatty acids in a Chinese Holstein cattle population based on a post genome-wide association study. BMC Genet 2016; 17:110. [PMID: 27468856 PMCID: PMC4963957 DOI: 10.1186/s12863-016-0418-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/20/2016] [Indexed: 02/01/2023] Open
Abstract
Background A previous genome-wide association study deduced that one (ARS-BFGL-NGS-39328), two (Hapmap26001-BTC-038813 and Hapmap31284-BTC-039204), two (Hapmap26001-BTC-038813 and BTB-00246150), and one (Hapmap50366-BTA-46960) genome-wide significant single nucleotide polymorphisms (SNPs) associated with milk fatty acids were close to or within the fatty acid synthase (FASN), peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PPARGC1A), ATP-binding cassette, sub-family G, member 2 (ABCG2) and insulin-like growth factor 1 (IGF1) genes. To further confirm the linkage and reveal the genetic effects of these four candidate genes on milk fatty acid composition, genetic polymorphisms were identified and genotype-phenotype associations were performed in a Chinese Holstein cattle population. Results Nine SNPs were identified in FASN, among which SNP rs41919985 was predicted to result in an amino acid substitution from threonine (ACC) to alanine (GCC), five SNPs (rs136947640, rs134340637, rs41919992, rs41919984 and rs41919986) were synonymous mutations, and the remaining three (rs41919999, rs132865003 and rs133498277) were found in FASN introns. Only one SNP each was identified for PPARGC1A, ABCG2 and IGF1. Association studies revealed that FASN, PPARGC1A, ABCG2 and IGF1 were mainly associated with medium-chain saturated fatty acids and long-chain unsaturated fatty acids, especially FASN for C10:0, C12:0 and C14:0. Strong linkage disequilibrium was observed among ARS-BFGL-NGS-39328 and rs132865003 and rs134340637 in FASN (D´ > 0.9), and among Hapmap26001-BTC-038813 and Hapmap31284-BTC-039204 and rs109579682 in PPARGC1A (D´ > 0.9). Subsequently, haplotype-based analysis revealed significant associations of the haplotypes encompassing eight FASN SNPs (rs41919999, rs132865003, rs134340637, rs41919992, rs133498277, rs41919984, rs41919985 and rs41919986) with C10:0, C12:0, C14:0, C18:1n9c, saturated fatty acids (SFA) and unsaturated fatty acids (UFA) (P = 0.0204 to P < 0.0001). Conclusion Our study confirmed the linkage between the significant SNPs in our previous genome-wide association study and variants in FASN and PPARGC1A. SNPs within FASN, PPARGC1A, ABCG2 and IGF1 showed significant genetic effects on milk fatty acid composition in dairy cattle, indicating their potential functions in milk fatty acids synthesis and metabolism. The findings presented here provide evidence for the selection of dairy cows with healthier milk fatty acid composition by marker-assisted breeding or genomic selection schemes, as well as furthering our understanding of technological processing aspects of cows’ milk. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0418-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cong Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Dongxiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Shengli Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Shaohua Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - M A Alim
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qin Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yanhua Li
- Beijing Dairy Cattle Center, Beijing, 100085, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing, 100085, China
| |
Collapse
|
29
|
A novel selection signature in stearoyl-coenzyme A desaturase (SCD) gene for enhanced milk fat content in Bubalus bubalis. Trop Anim Health Prod 2016; 48:1343-9. [DOI: 10.1007/s11250-016-1092-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/08/2016] [Indexed: 11/24/2022]
|
30
|
Gutiérrez-Gil B, Arranz JJ, Wiener P. An interpretive review of selective sweep studies in Bos taurus cattle populations: identification of unique and shared selection signals across breeds. Front Genet 2015; 6:167. [PMID: 26029239 PMCID: PMC4429627 DOI: 10.3389/fgene.2015.00167] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/13/2015] [Indexed: 12/11/2022] Open
Abstract
This review compiles the results of 21 genomic studies of European Bos taurus breeds and thus provides a general picture of the selection signatures in taurine cattle identified by genome-wide selection-mapping scans. By performing a comprehensive summary of the results reported in the literature, we compiled a list of 1049 selection sweeps described across 37 cattle breeds (17 beef breeds, 14 dairy breeds, and 6 dual-purpose breeds), and four different beef-vs.-dairy comparisons, which we subsequently grouped into core selective sweep (CSS) regions, defined as consecutive signals within 1 Mb of each other. We defined a total of 409 CSSs across the 29 bovine autosomes, 232 (57%) of which were associated with a single-breed (Single-breed CSSs), 134 CSSs (33%) were associated with a limited number of breeds (Two-to-Four-breed CSSs) and 39 CSSs (9%) were associated with five or more breeds (Multi-breed CSSs). For each CSS, we performed a candidate gene survey that identified 291 genes within the CSS intervals (from the total list of 5183 BioMart-extracted genes) linked to dairy and meat production, stature, and coat color traits. A complementary functional enrichment analysis of the CSS positional candidates highlighted other genes related to pathways underlying behavior, immune response, and reproductive traits. The Single-breed CSSs revealed an over-representation of genes related to dairy and beef production, this was further supported by over-representation of production-related pathway terms in these regions based on a functional enrichment analysis. Overall, this review provides a comparative map of the selection sweeps reported in European cattle breeds and presents for the first time a characterization of the selection sweeps that are found in individual breeds. Based on their uniqueness, these breed-specific signals could be considered as “divergence signals,” which may be useful in characterizing and protecting livestock genetic diversity.
Collapse
Affiliation(s)
| | - Juan J Arranz
- Departamento de Producción Animal, Universidad de León León, Spain
| | - Pamela Wiener
- Division of Genetics and Genomics, Roslin Institute and R(D)SVS, University of Edinburgh Midlothian, UK
| |
Collapse
|
31
|
Strucken EM, Laurenson YCSM, Brockmann GA. Go with the flow-biology and genetics of the lactation cycle. Front Genet 2015; 6:118. [PMID: 25859260 PMCID: PMC4374477 DOI: 10.3389/fgene.2015.00118] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/10/2015] [Indexed: 01/06/2023] Open
Abstract
Lactation is a dynamic process, which evolved to meet dietary demands of growing offspring. At the same time, the mother's metabolism changes to meet the high requirements of nutrient supply to the offspring. Through strong artificial selection, the strain of milk production on dairy cows is often associated with impaired health and fertility. This led to the incorporation of functional traits into breeding aims to counteract this negative association. Potentially, distributing the total quantity of milk per lactation cycle more equally over time could reduce the peak of physiological strain and improve health and fertility. During lactation many factors affect the production of milk: food intake; digestion, absorption, and transportation of nutrients; blood glucose levels; activity of cells in the mammary gland, liver, and adipose tissue; synthesis of proteins and fat in the secretory cells; and the metabolic and regulatory pathways that provide fatty acids, amino acids, and carbohydrates. Whilst the endocrine regulation and physiology of the dynamic process of milk production seems to be understood, the genetics that underlie these dynamics are still to be uncovered. Modeling of longitudinal traits and estimating the change in additive genetic variation over time has shown that the genetic contribution to the expression of a trait depends on the considered time-point. Such time-dependent studies could contribute to the discovery of missing heritability. Only very few studies have estimated exact gene and marker effects at different time-points during lactation. The most prominent gene affecting milk yield and milk fat, DGAT1, exhibits its main effects after peak production, whilst the casein genes have larger effects in early lactation. Understanding the physiological dynamics and elucidating the time-dependent genetic effects behind dynamically expressed traits will contribute to selection decisions to further improve productive and healthy breeding populations.
Collapse
Affiliation(s)
- Eva M Strucken
- Animal Science, School of Environmental and Rural Science, University of New England Armidale, NSW, Australia
| | - Yan C S M Laurenson
- Animal Science, School of Environmental and Rural Science, University of New England Armidale, NSW, Australia
| | - Gudrun A Brockmann
- Breeding Biology and Molecular Genetics, Faculty of Life Sciences, Humboldt-Universität zu Berlin Berlin, Germany
| |
Collapse
|
32
|
Nani JP, Raschia MA, Carignano H, Poli MA, Calvinho LF, Amadio AF. Single nucleotide polymorphisms in candidate genes and their relation with somatic cell scores in Argentinean dairy cattle. J Appl Genet 2015; 56:505-513. [PMID: 25783851 DOI: 10.1007/s13353-015-0278-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 01/19/2015] [Accepted: 02/10/2015] [Indexed: 01/31/2023]
Abstract
The prevention and control of bovine mastitis by enhancing natural defenses in animals is important to improve the quality of dairy products. Mastitis resistance is a complex trait which depends on genetic components, as well as environmental and physiological factors. The limitations of classical control measures have led to the search for alternative approaches to minimize the use of antibiotics by selecting naturally resistant animals. Polymorphisms in genes associated with the innate immune system are strong candidates to be evaluated as genetic markers. In this work, we evaluated a set of single nucleotide polymorphisms (SNPs) in candidate genes for health and production traits, and determined their association with the somatic cell score (SCS) as an indicator of mastitis in Argentinean dairy cattle. We evaluated 941 cows: Holstein (n = 677) and Holstein × Jersey (n = 264) crossbred, daughters from 22 bulls from 14 dairy farms located in the central dairy area of Argentina. Two of the 21 successfully genotyped markers were found to be significantly associated (p < 0.05) with the SCS: GHR_140 and OPN_8514C-T. The heterozygote genotype for GHR_140 showed a favorable effect in reducing the SCS. On the other hand, heterozygote genotypes for OPN8514C-T caused an increase in the SCS; moreover, combined genotypes for OPN SNPs showed an even larger effect. These findings can contribute to the design of effective marker-assisted selection programs.
Collapse
Affiliation(s)
- Juan P Nani
- E.E.A. Rafaela, Instituto Nacional de Tecnología Agropecuaria, Rafaela, Santa Fe, Argentina
| | - Maria A Raschia
- Instituto de Genética "Ewald A. Favret", CICVyA, Instituto Nacional de Tecnología Agropecuaria, Castelar, Buenos Aires, Argentina
| | - Hugo Carignano
- Instituto de Genética "Ewald A. Favret", CICVyA, Instituto Nacional de Tecnología Agropecuaria, Castelar, Buenos Aires, Argentina
| | - Mario A Poli
- Instituto de Genética "Ewald A. Favret", CICVyA, Instituto Nacional de Tecnología Agropecuaria, Castelar, Buenos Aires, Argentina
| | - Luis F Calvinho
- E.E.A. Rafaela, Instituto Nacional de Tecnología Agropecuaria, Rafaela, Santa Fe, Argentina
| | - Ariel F Amadio
- E.E.A. Rafaela, Instituto Nacional de Tecnología Agropecuaria, Rafaela, Santa Fe, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
33
|
Fonseca PDDS, de Souza FRP, de Camargo GMF, Gil FMM, Cardoso DF, Zetouni L, Braz CU, Boligon AA, Branco RH, de Albuquerque LG, Mercadante MEZ, Tonhati H. Association of ADIPOQ, OLR1 and PPARGC1A gene polymorphisms with growth and carcass traits in Nelore cattle. Meta Gene 2015; 4:1-7. [PMID: 25853056 PMCID: PMC4354916 DOI: 10.1016/j.mgene.2015.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/12/2015] [Accepted: 02/04/2015] [Indexed: 01/19/2023] Open
Abstract
In beef cattle farming, growth and carcass traits are important for genetic breeding programs. Molecular markers can be used to assist selection and increase genetic gain. The ADIPOQ, OLR1 and PPARGC1A genes are involved in lipid synthesis and fat accumulation in adipose tissue. The objective of this study was to identify polymorphisms in these genes and to assess the association with growth and carcass traits in Nelore cattle. A total of 639 animals were genotyped by PCR-RFLP for rs208549452, rs109019599 and rs109163366 in ADIPOQ, OLR1 and PPARGC1A gene, respectively. We analyzed the association of SNPs identified with birth weight, weaning weight, female yearling weight, female hip height, male yearling weight, male hip height, loin eye area, rump fat thickness, and backfat thickness. The OLR1 marker was associated with rump fat thickness and weaning weight (P < 0.05) and the PPARGC1 marker was associated with female yearling weight.
Collapse
Affiliation(s)
- Patrícia D da S Fonseca
- Universidade Estadual Paulista (Unesp), Departamento de Zootecnia, Jaboticabal, SP 14884-900, Brazil
| | - Fábio R P de Souza
- Universidade Federal de Pelotas (UFPel), Departamento de Ecologia, Zoologia e Genética, Pelotas, RS 96010-900, Brazil
| | - Gregório M F de Camargo
- Universidade Estadual Paulista (Unesp), Departamento de Zootecnia, Jaboticabal, SP 14884-900, Brazil
| | - Fernanda M M Gil
- Universidade Estadual Paulista (Unesp), Departamento de Zootecnia, Jaboticabal, SP 14884-900, Brazil
| | - Diercles F Cardoso
- Universidade Estadual Paulista (Unesp), Departamento de Zootecnia, Jaboticabal, SP 14884-900, Brazil
| | - Larissa Zetouni
- Universidade Estadual Paulista (Unesp), Departamento de Zootecnia, Jaboticabal, SP 14884-900, Brazil
| | - Camila U Braz
- Universidade Estadual Paulista (Unesp), Departamento de Zootecnia, Jaboticabal, SP 14884-900, Brazil
| | - Arione A Boligon
- Universidade Federal de Pelotas (UFPel), Departamento de Zootecnia, Pelotas, RS 96010-900, Brazil
| | - Renata H Branco
- Instituto de Zootecnia, Centro APTA Bovinos de Corte, Sertãozinho, SP, Brazil
| | - Lucia G de Albuquerque
- Universidade Estadual Paulista (Unesp), Departamento de Zootecnia, Jaboticabal, SP 14884-900, Brazil
| | | | - Humberto Tonhati
- Universidade Estadual Paulista (Unesp), Departamento de Zootecnia, Jaboticabal, SP 14884-900, Brazil
| |
Collapse
|
34
|
Salehi A, Nasiri K, Aminafshar M, Sayaadnejad MB, Sobhani R. The Association of Bovine Osteopontin ( OPN) Gene with Milk Production Traits in Iranian Holstein Bulls. IRANIAN JOURNAL OF BIOTECHNOLOGY 2015; 13:43-48. [PMID: 28959280 DOI: 10.15171/ijb.1092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The Osteopontin (OPN) is a highly phosphorylated glycoprotein in numbers of bovine tissues and milk. OPN has been reported to be associated with milk production in cattle. OBJECTIVE The genotype and allelic frequencies for OPN and its association with milk production will be evaluated in Iranian Holstein Bulls. MATERIALS AND METHODS Bulls DNA (100) was isolated. Oligo was used for primer design. Polymerase Chain Reaction was implemented to amplify a 826 bp fragment and the amplicon was digested by BsrI. Restricted Maximum likelihood (REML) method based on average information algorithm using ASRMEL programs (version 3.1) was employed to estimate the genetic parameters and variance of components. The association of OPN genotypes with milk production traits were analysed by the least square method as applied in the general linear model (GLM) procedure of SAS. Allele substitution effects were performed by regression analyses. RESULTS Allele frequencies of T and C were 0.59±0.03 and 0.41±0.03, respectively. Genotype frequencies of TT, CT and CC were 34.69, 48.62, and 16.69, respectively. The chi-square test showed the deviation from Hardy-Weinberg equilibrium. Estimated heritability for milk yield, fat yield and its percent, protein yield and its percent were 0.28±0.0061, 0.21±0.0064, 0.22±0.0086, 0.32±0.0065 and 0.34±0.0096 respectively. Allelic substitution effects and differences between genotypes were not significant for milk production traits. CONCLUSIONS This study suggested that the C allele frequency of OPN was noticeable in Iranian proven bull Holstein population, but was not associated with milk production traits. However, before being practical for the breeding improvement of Iranian Holsteins a larger sample size is required.
Collapse
Affiliation(s)
- Abdolreza Salehi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Khadijeh Nasiri
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Mahdi Aminafshar
- Department of Animal Science, Faculty of Agriculture and Natural Resourse, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Rohoallah Sobhani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| |
Collapse
|
35
|
Komolka K, Albrecht E, Wimmers K, Michal JJ, Maak S. Molecular heterogeneities of adipose depots - potential effects on adipose-muscle cross-talk in humans, mice and farm animals. J Genomics 2014; 2:31-44. [PMID: 25057322 PMCID: PMC4105427 DOI: 10.7150/jgen.5260] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adipose tissue is considered as a major endocrine organ that secretes numerous proteins called adipokines. The heterogeneous nature of adipose tissue in different parts of the body suggests respective heterogeneity of proteomes and secretomes. This review consolidates knowledge from recent studies targeting the diversity of different adipose depots affecting the pattern of secreted adipokines and discusses potential consequences for the cross-talk between adipose and skeletal muscle in humans, rodent models and farm animals. Special attention is paid to muscle-associated fat depots like inter- and intramuscular fat that become focus of attention in the context of the rather new notion of skeletal muscle as a major endocrine organ. Understanding the complexity of communication between adipocytes and skeletal muscle cells will allow developing strategies for improvement of human health and for sustainable production of high quality meat.
Collapse
Affiliation(s)
- Katrin Komolka
- 1. Research Unit Muscle Biology and Growth, Leibniz-Institute for Farm Animal Biology (FBN), W.-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Elke Albrecht
- 1. Research Unit Muscle Biology and Growth, Leibniz-Institute for Farm Animal Biology (FBN), W.-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Klaus Wimmers
- 2. Research Unit Molecular Biology, Leibniz-Institute for Farm Animal Biology (FBN), W.-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Jennifer J Michal
- 3. Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Steffen Maak
- 1. Research Unit Muscle Biology and Growth, Leibniz-Institute for Farm Animal Biology (FBN), W.-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| |
Collapse
|
36
|
The novel coding region SNPs of PPARGC1A gene and their associations with growth traits in Chinese native cattle. Mol Biol Rep 2013; 41:39-44. [PMID: 24197695 DOI: 10.1007/s11033-013-2835-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 10/26/2013] [Indexed: 01/08/2023]
Abstract
The peroxisome proliferator-activated receptor gamma coactivator-1 alpha protein, encoded by the PPARGC1A gene, is a metabolic switch, which transcriptionally activates a complex pathway of mitochondrial biogenesis, lipid and glucose metabolism. Three SNPs (exon 3 c.396G>A, intron 9 c.1892 + 19C>T and exon 10 c.1971C>T) were found and identified in three Chinese native cattle breeds by PCR-SSCP, PCR-RFLP and DNA sequencing methods. All three populations had a low genetic diversity at SNP396 locus (PIC <0.25) while possessed a moderate genetic diversity at SNP1892 locus (0.25 < PIC < 0.5). Association study indicated that the synonymous mutation c.396G>A significantly associated with body weight and average daily gain in Nanyang cattle at the adult age (P < 0.05). Our investigation will not only extend the spectrum of genetic variation of bovine PPARGC1A gene, but also provide useful information for the marker assisted selection in beef cattle breeding program.
Collapse
|
37
|
Yang L, Yang Q, Yi M, Pang ZH, Xiong BH. Effects of seasonal change and parity on raw milk composition and related indices in Chinese Holstein cows in northern China. J Dairy Sci 2013; 96:6863-6869. [PMID: 24054296 DOI: 10.3168/jds.2013-6846] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 08/07/2013] [Indexed: 11/19/2022]
Abstract
This study was to investigate the effects of seasonal change and parity on milk composition and related indices, and to analyze the relationships among milk indices in Chinese Holstein cows from an intensive dairy farm in northern China. The 6,520 sets of complete Dairy Herd Improvement data were obtained and grouped by natural month and parity. The data included daily milk yield (DMY), milk solids percentage (MSP), milk fat percentage (MFP), milk protein percentage (MPP), milk lactose percentage (MLP), somatic cell count (SCC), somatic cell score (SCS), milk production loss (MPL), and fat-to-protein ratio (FPR). Data analysis showed that the above 9 indices were affected by both seasonal change and parity. However, the interaction between parity and seasonal change showed effects on MLP, SCS, MPL, and DMY, but no effects on MFP, MPP, MSP, and FPR. Duncan's multiple comparison on seasonal change showed that DMY (23.58 kg/d), MSP (12.35%), MPP (3.02%), and MFP (3.81%) were the lowest in June, but SCC (288.7 × 10(3)/mL) and MPL (0.69 kg/d) were the lowest in January; FPR (1.32) was the highest in February. Meanwhile, Duncan's multiple comparison on parities showed that MSP, MPP, and MLP were reduced rapidly in the fourth lactation, but SCC and MPL increased with increasing parities. The canonical correlation analysis for indices showed that SCS had high positive correlation with MPL (0.8360). Therefore, a few models were developed to quantify the effects of seasonal change and parity on raw milk composition using the Wood model. The changing patterns of milk composition and related indices in different months and parities could provide scientific evidence for improving feeding management and nutritional supplementation of Chinese Holstein cows.
Collapse
Affiliation(s)
- L Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Q Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - M Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Z H Pang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - B H Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China.
| |
Collapse
|
38
|
Effect of hairless gene polymorphism on the breeding values of milk production traits in Valle del Belice dairy sheep. Livest Sci 2013. [DOI: 10.1016/j.livsci.2013.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Szyndler-Nędza M, Tyra M, Ropka-Molik K, Piórkowska K, Mucha A, Różycki M, Koska M, Szulc K. Association between LEPR and MC4R genes polymorphisms and composition of milk from sows of dam line. Mol Biol Rep 2013; 40:4339-47. [PMID: 23666103 DOI: 10.1007/s11033-013-2524-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/27/2013] [Indexed: 02/04/2023]
Abstract
The polymorphisms of LEPR and MC4R genes are involved in appetite control mechanisms and indirectly associated with level of fat content in pig carcasses. Therefore, the aim of our study was to determine if both polymorphisms have an effect on components of colostrum and milk of sows. In our study we used gilts of two Polish breeds: Polish Landrace and Polish Large White, which belong to dam-line in Polish breeding. Colostrum and milk of sows were collected in 7, 14 and 21 day of lactation to assay solids, total protein, fat and lactose. The obtained results showed, that the observed mutation (G/A 1426 MC4R) had a significant effect mainly on the fat and solids content of colostrum. Animals with the MC4R (AA) genotype had 2.13 and 1.91 % (P ≤ 0.01) lower fat content of colostrum compared to sows with the MC4R (GG) genotype and heterozygous MC4R (AG). The presence of the MC4R (A) allele in the animals' genotype contributed to a decrease in fat and solids content of colostrum. The LEPR/HpaII mutation was found to have a considerable effect on the level of most colostrum components (fat, protein and solids) in both pig breeds. Significant decrease in the value of the colostrum components (except lactose) was observed only for animals with the allele LEPR (B). The results obtained suggest that these genes might be used in selection of dam-line pigs as genetic markers of milk quality.
Collapse
Affiliation(s)
- M Szyndler-Nędza
- Department of Animal Genetics and Breeding, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Novel SNPs in the bovine ADIPOQ and PPARGC1A genes are associated with carcass traits in Hanwoo (Korean cattle). Mol Biol Rep 2013; 40:4651-60. [DOI: 10.1007/s11033-013-2560-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 04/29/2013] [Indexed: 12/16/2022]
|
41
|
Li MJ, Liu M, Liu D, Lan XY, Lei CZ, Yang DY, Chen H. Polymorphisms in the Promoter Region of the Chinese Bovine PPARGC1A Gene. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2013; 26:483-7. [PMID: 25049813 PMCID: PMC4093395 DOI: 10.5713/ajas.2012.12554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/08/2013] [Accepted: 11/19/2012] [Indexed: 11/27/2022]
Abstract
The peroxisome proliferator-activated receptor gamma coactivator-1 alpha protein, encoded by the PPARGC1A gene, plays an important role in energy homeostasis. The genetic variations within the PPARGC1A gene promoter region were scanned in 808 Chinese native bovines belonging to three cattle breeds and yaks. A total of 6 SNPs and one 4 bp insertion variation in the promoter region of the bovine PPARGC1A gene were identified: SNP -259 T>A, -301_-298insCTTT, -915 A>G, -1175 T>G, -1590 C>T, -1665 C>T and -1690 G>A, which are in the binding sites of some important transcription factors: sex-determining region Y (SRY), myeloid-specific zinc finger-1 (MZF-1) and octamer factor 1(Oct-1). It is expected that these polymorphisms may regulate PPARGC1A gene transcription and might have consequences at a regulatory level.
Collapse
Affiliation(s)
- M. J. Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100,
China
| | - M. Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100,
China
| | - D. Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100,
China
| | - X. Y. Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100,
China
| | - C. Z. Lei
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100,
China
| | | | - H. Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100,
China
| |
Collapse
|
42
|
Kowalewska-Łuczak I, Kulig H. Polymorphism of the FAM13A, ABCG2, OPN, LAP3, HCAP-G, PPARGC1A genes and somatic cell count of Jersey cows--preliminary study. Res Vet Sci 2012; 94:252-5. [PMID: 23021125 DOI: 10.1016/j.rvsc.2012.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 07/12/2012] [Accepted: 08/12/2012] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate association between genotypes/combined genotypes of selected genes located on BTA6 (FAM13A, ABCG2, OPN, LAP3, HCAP-G, PPARGC1A) and somatic cell count (SCC) in milk. The study included 181 Jersey, all of which were genotyped. Allele frequencies were also determined. Genotypes were identified by the PCR-RFLP method and the results showed statistically significant (P≤0.05, P≤0.01, P≤0.001) differences between mean values of SCC in analysed cows with different genotypes of FAM13A1 G85A and combined genotypes OPN and FAM13A1. Data resulting from the present studies may be useful in further analysis in order to define the role of analysed genes (FAM13A, ABCG2, OPN, LAP3, HCAP-G, PPARGC1A) in relation to mastitis.
Collapse
Affiliation(s)
- Inga Kowalewska-Łuczak
- Department of Genetics and Animal Breeding, West Pomeranian University of Technology, Szczecin, Poland.
| | | |
Collapse
|
43
|
Russo V, Fontanesi L, Dolezal M, Lipkin E, Scotti E, Zambonelli P, Dall'Olio S, Bigi D, Davoli R, Canavesi F, Medugorac I, Föster M, Sölkner J, Schiavini F, Bagnato A, Soller M. A whole genome scan for QTL affecting milk protein percentage in Italian Holstein cattle, applying selective milk DNA pooling and multiple marker mapping in a daughter design. Anim Genet 2012; 43 Suppl 1:72-86. [DOI: 10.1111/j.1365-2052.2012.02353.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- V. Russo
- Department of Agro-Food Science and Technology; Sezione di Allevamenti Zootecnici; University of Bologna; Viale Fanin 46; 40127; Bologna; Italy
| | - L. Fontanesi
- Department of Agro-Food Science and Technology; Sezione di Allevamenti Zootecnici; University of Bologna; Viale Fanin 46; 40127; Bologna; Italy
| | | | | | - E. Scotti
- Department of Agro-Food Science and Technology; Sezione di Allevamenti Zootecnici; University of Bologna; Viale Fanin 46; 40127; Bologna; Italy
| | - P. Zambonelli
- Department of Agro-Food Science and Technology; Sezione di Allevamenti Zootecnici; University of Bologna; Viale Fanin 46; 40127; Bologna; Italy
| | - S. Dall'Olio
- Department of Agro-Food Science and Technology; Sezione di Allevamenti Zootecnici; University of Bologna; Viale Fanin 46; 40127; Bologna; Italy
| | - D. Bigi
- Department of Agro-Food Science and Technology; Sezione di Allevamenti Zootecnici; University of Bologna; Viale Fanin 46; 40127; Bologna; Italy
| | - R. Davoli
- Department of Agro-Food Science and Technology; Sezione di Allevamenti Zootecnici; University of Bologna; Viale Fanin 46; 40127; Bologna; Italy
| | | | - I. Medugorac
- Faculty of Veterinary Medicine; Institute for Animal Breeding; The Ludwig-Maximilians-University Munich; Veterinaerstr. 13; 80539; Munich; Germany
| | - M. Föster
- Faculty of Veterinary Medicine; Institute for Animal Breeding; The Ludwig-Maximilians-University Munich; Veterinaerstr. 13; 80539; Munich; Germany
| | - J. Sölkner
- Division of Livestock Sciences; Department of Sustainable Agricultural Systems; University of Natural Resources and Applied Sciences (BOKU); Vienna; Austria
| | - F. Schiavini
- Department of VSA; Faculty of Veterinary Medicine; University of Milano; Milano; Italy
| | - A. Bagnato
- Department of VSA; Faculty of Veterinary Medicine; University of Milano; Milano; Italy
| | | |
Collapse
|
44
|
Alim MA, Fan YP, Wu XP, Xie Y, Zhang Y, Zhang SL, Sun DX, Zhang Y, Zhang Q, Liu L, Guo G. Genetic effects of stearoyl-coenzyme A desaturase (SCD) polymorphism on milk production traits in the Chinese dairy population. Mol Biol Rep 2012; 39:8733-40. [PMID: 22722989 DOI: 10.1007/s11033-012-1733-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/06/2012] [Indexed: 11/28/2022]
Abstract
Stearoyl-CoA desaturase (SCD) is a multifunctional complex enzyme important in the cellular biosynthesis of fatty acids. The present study was to investigate the association of the SCD gene with milk production traits in dairy cattle. Two single nucleotide polymorphisms (SNPs) (g.6926A>G and g.8646A>G) in introns 3 and 4, and three SNPs (g.10153A>G, g.10213T>C and g.10329C>T) in exon 5 were identified with pooled DNA sequencing and genotyped using matrix-assisted laser desorption/ionization time of flight mass spectrometry assay in 752 Chinese Holstein cows. Polymorphism g.10329C>T was predicted to result in an amino acid replacement from alanine to valine in the SCD protein. With a mixed animal model, the significant associations of the five SNPs with 305-day milk, fat and protein yields and protein percentage were determined. We further demonstrated cows with heterozygous genotypes (A/G or C/T) had highest 305 day milk yield, fat yield, protein yield and lowest protein percentage. Heterozygous cows with genotype AG at the g.6926A>G locus showed the greatest milk yield (P < 0.0001), fat yield (P < 0.0001) and protein yield (P < 0.0001) among other heterozygous genotypes at any of the loci. Dominance effects of all identified SNPs on milk, fat and protein yields and protein percentage were significant. Moreover, significant allele substitution effects at g.6926A>G locus on milk yield and at g.10213T>C on protein yield were observed. Five-locus haplotypes and strong linkage disequilibrium (D' > 0.9) between the five SNPs were also observed. The results suggest that identified polymorphisms could be potential genetic markers to improve the production performance of Chinese Holstein.
Collapse
Affiliation(s)
- M A Alim
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Association of PPARGC1A and CAPNS1 gene polymorphisms and expression with meat quality traits in pigs. Meat Sci 2011; 89:478-85. [DOI: 10.1016/j.meatsci.2011.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 01/21/2023]
|
46
|
Duan Q, Tait RG, Mayes MS, Garrick DJ, Liu Q, Van Eenennaam AL, Mateescu RG, Van Overbeke DL, Garmyn AJ, Beitz DC, Reecy JM. Genetic polymorphisms in bovine transferrin receptor 2 (TFR2) and solute carrier family 40 (iron-regulated transporter), member 1 (SLC40A1) genes and their association with beef iron content. Anim Genet 2011; 43:115-22. [PMID: 22404347 DOI: 10.1111/j.1365-2052.2011.02224.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Beef is considered to be an excellent source of dietary iron. However, little is known about the genetic control of beef iron content. We hypothesized that genetic polymorphisms in transferrin receptor 2 (TFR2) and solute carrier family 40 (iron-regulated transporter), member 1 (SLC40A1) could influence skeletal muscle iron content. The objective of this study was to use Angus cattle to identify single-nucleotide polymorphisms (SNPs) in the exons and flanking regions of the bovine TFR2 and SLC40A1 genes and to evaluate the extent to which genetic variation in them was associated with bovine longissimus dorsi muscle iron content. Ten novel SNPs were identified in TFR2, of which one SNP tended to be associated (P < 0.013) with skeletal muscle iron content. Nine novel SNPs in SLC40A1, NC007300: rs133108154, rs137140497, rs135205621, rs136600836, rs134388440, rs136347850, rs134186279, rs134621419 and rs137555693, were identified, of which SNPs rs134388440, rs136347850 and rs137555693 were significantly associated (P < 0.007) with skeletal muscle iron content. High linkage disequilibrium was observed among SLC40A1 SNPs rs134388440, rs136347850 and rs137555693 (R(2) > 0.99), from which two haplotypes, TGC and CAT, were defined. Beef from individuals that were homozygous for the TGC haplotype had significantly (P < 0.001) higher iron content than did beef from CAT homozygous or heterozygous individuals. The estimated size of effect of the identified haplotypes was 0.3% of the phenotypic variance. In conclusion, our study provides evidence for genetic control of beef iron concentration. Moreover, SNPs identified in SLC40A1, rs134388440, rs136347850 and rs137555693 might be useful markers for the selection of Angus cattle for altered iron content.
Collapse
Affiliation(s)
- Q Duan
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bai WL, Yang RJ, Yin RH, Jiang WQ, Luo GB, Yin RL, Zhao SJ, Li C, Zhao ZH. Molecular characterization and expression analysis of osteopontin cDNA from lactating mammary gland in yak (Bos grunniens). Mol Biol Rep 2011; 39:3627-35. [PMID: 21720759 DOI: 10.1007/s11033-011-1137-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
Abstract
Osteopontin (OPN) is a secreted phosphorylated glycoprotein. It has an important role in mammary gland development and lactation, as well as, is thought to be a potential candidate gene for lactation traits. In the present work, we isolated and characterized a full-length open reading frame (ORF) of yak OPN cDNA from lactating mammary tissue, and examined its expression pattern in mammary gland during different stages of lactation, as well as, the recombinant OPN protein of yak was expressed successfully in E. coli. The sequencing results indicated that the isolated cDNA was 1132-bp in length containing a complete ORF of 837-bp. It encoded a precursor protein of yak OPN consisting of 278 amino acid with a signal peptide of 16 amino acids. Yak OPN has a predicted molecular mass of 29285.975 Da and an isoelectric point of 4.245. It had an identity of 65.50-99.16% in cDNA, identity of 52.06-98.56% and similarity of 65.40-98.56% in deduced amino acids with the corresponding sequences of cattle, buffalo, sheep, goat, pig, human, and rabbit. The phylogenetic analysis indicated that yak OPN had the closest evolutionary relationship with that of cattle, and next buffalo. In mammary gland, yak OPN was generally transcribed in a declining pattern from colostrum period to dry period with an apparent increase of OPN expression being present in the late period of lactation compared with peak period of lactation. Western blot analysis indicated that His-tagged yak OPN protein expressed in E. coli could be recognized not only by an anti-His-tag antibody but also by an anti-human OPN antibody. These results from the present work provided a foundation for further insight into the role of OPN gene in yak lactation.
Collapse
Affiliation(s)
- W L Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bouwman AC, Bovenhuis H, Visker MHPW, van Arendonk JAM. Genome-wide association of milk fatty acids in Dutch dairy cattle. BMC Genet 2011; 12:43. [PMID: 21569316 PMCID: PMC3120725 DOI: 10.1186/1471-2156-12-43] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/11/2011] [Indexed: 11/10/2022] Open
Abstract
Background Identifying genomic regions, and preferably individual genes, responsible for genetic variation in milk fat composition of bovine milk will enhance the understanding of biological pathways involved in fatty acid synthesis and may point to opportunities for changing milk fat composition via selective breeding. An association study of 50,000 single nucleotide polymorphisms (SNPs) was performed for even-chain saturated fatty acids (C4:0-C18:0), even-chain monounsaturated fatty acids (C10:1-C18:1), and the polyunsaturated C18:2cis9,trans11 (CLA) to identify genomic regions associated with individual fatty acids in bovine milk. Results The two-step single SNP association analysis found a total of 54 regions on 29 chromosomes that were significantly associated with one or more fatty acids. Bos taurus autosomes (BTA) 14, 19, and 26 showed highly significant associations with seven to ten traits, explaining a relatively large percentage of the total additive genetic variation. Many additional regions were significantly associated with the fatty acids. Some of the regions harbor genes that are known to be involved in fat synthesis or were previously identified as underlying quantitative trait loci for fat yield or content, such as ABCG2 and PPARGC1A on BTA 6; ACSS2 on BTA 13; DGAT1 on BTA 14; ACLY, SREBF1, STAT5A, GH, and FASN on BTA 19; SCD1 on BTA26; and AGPAT6 on BTA 27. Conclusions Medium chain and unsaturated fatty acids are strongly influenced by polymorphisms in DGAT1 and SCD1. Other regions also showed significant associations with the fatty acids studied. These additional regions explain a relatively small percentage of the total additive genetic variance, but they are relevant to the total genetic merit of an individual and in unraveling the genetic background of milk fat composition. Regions identified in this study can be fine mapped to find causal mutations. The results also create opportunities for changing milk fat composition through breeding by selecting individuals based on their genetic merit for milk fat composition.
Collapse
Affiliation(s)
- Aniek C Bouwman
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen, the Netherlands.
| | | | | | | |
Collapse
|
49
|
Ujan J, Zan L, Ujan S, Adoligbe C, Wang H. Back fat thickness and meat tenderness are associated with a 526 T→A mutation in the exon 1 promoter region of the MyF-5 gene in Chinese Bos taurus. GENETICS AND MOLECULAR RESEARCH 2011; 10:3070-9. [DOI: 10.4238/2011.december.12.6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Hadsell DL, Olea W, Wei J, Fiorotto ML, Matsunami RK, Engler DA, Collier RJ. Developmental regulation of mitochondrial biogenesis and function in the mouse mammary gland during a prolonged lactation cycle. Physiol Genomics 2010; 43:271-85. [PMID: 21189371 DOI: 10.1152/physiolgenomics.00133.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The regulation of mitochondrial biogenesis and function in the lactating mammary cell is poorly understood. The goal of this study was to use proteomics to relate temporal changes in mammary cell mitochondrial function during lactation to changes in the proteins that make up this organelle. The hypothesis tested was that changes in mammary cell mitochondrial biogenesis and function during lactation would be accounted for by coordinated changes in the proteins of the electron transport chain and that some of these proteins might be linked by their expression patterns to PPARGC1α and AMP kinase. The mitochondrial proteome was studied along with markers of mitochondrial biogenesis and function in mammary tissue collected from mice over the course of a single prolonged lactation cycle. Mammary tissue concentrations of AMP and ADP were increased (P < 0.05) during early lactation and then declined with prolonged lactation. Similar changes were also observed for mitochondrial ATP synthesis activity, mitochondrial mass and DNA copy number. Analysis of the mammary cell mitochondrial proteome identified 244 unique proteins. Of these, only two proteins of the electron transport chain were found to increase during early lactation. In contrast, coordinated changes in numerous electron transport chain proteins were observed both during mid- and late lactation. There were six proteins that could be directly linked to PPARGC1α through network analysis. Abundance of PPARGC-1α and phosphorylation of AMP kinase was highest on day 2 postpartum. The results suggest that the increases in mammary mitochondria ATP synthesis activity during early lactation results from changes in only a limited number proteins. In addition, decreases in a handful of proteins linked to lipid oxidation could be temporally linked to decreases in PPARGC1α and phospho-AMP kinase suggesting potential roles for these proteins in coordinating mammary gland metabolism during early lactation.
Collapse
Affiliation(s)
- Darryl L Hadsell
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|