1
|
Xiong S, Huang Z, Ding J, Ni D, Mu W. Improvement of cellobiose 2-epimerase expression in Bacillus subtilis for efficient bioconversion of lactose to epilactose. Int J Biol Macromol 2024; 280:136063. [PMID: 39341311 DOI: 10.1016/j.ijbiomac.2024.136063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Epilactose, a lactose derivative known for its prebiotic properties and potential health benefits, has garnered significant interest. Cellulose 2-epimerase (CEase) is responsible for catalyzing the conversion of lactose to epilactose. In this study, the enhancement of food-grade CEase expression in Bacillus subtilis WB600 was systematically investigated. Among seven selected epilactose-producing CEases, Rhodothermus marinus CEase (RmCE) exhibited the highest epimerization activity when expressed in B. subtilis. Translational and transcriptional regulations were employed to enhance CEase expression by screening effective N-terminal coding sequences (NCSs) and promoters. The final strain demonstrated efficient production of CEase, with epimerization activity reaching 273.6 ± 6.5 U/mL and 1255 ± 26.4 U/mL in shake-flask and fed-batch cultivation, respectively. Utilizing only 0.25 % (V/V) of the fed-batch cultivation broth for lactose biotransformation, epilactose was efficiently produced from 300 g/L of lactose within 4 h, achieving a yield of 29.5 %. These findings provide significant support for the potential industrialization of enzymatic epilactose production.
Collapse
Affiliation(s)
- Suchun Xiong
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China.
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Wang B, Lei S, Li Q, Luo Y. Production of lactulose from lactose using a novel cellobiose 2-epimerase from Clostridium disporicum. Enzyme Microb Technol 2024; 179:110466. [PMID: 38889605 DOI: 10.1016/j.enzmictec.2024.110466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
Lactulose is a semisynthetic nondigestive sugar derived from lactose, with wide applications in the food and pharmaceutical industries. Its biological production routes which use cellobiose 2-epimerase (C2E) as the key enzyme have attracted widespread attention. In this study, a set of C2Es from different sources were overexpressed in Escherichia coli to produce lactulose. We obtained a novel and highly efficient C2E from Clostridium disporicum (CDC2E) to synthesize lactulose from lactose. The effects of different heat treatment conditions, reaction pH, reaction temperature, and substrate concentrations were investigated. Under the optimum biotransformation conditions, the final concentration of lactulose was up to 1.45 M (496.3 g/L), with a lactose conversion rate of 72.5 %. This study provides a novel C2E for the biosynthesis of lactulose from low-cost lactose.
Collapse
Affiliation(s)
- Bohua Wang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, PR China; Key Laboratory of Agricultural Products Processing and Food Safety in Hunan Province, Changde 415000, PR China; Hunan Provincial 3R Food Innovation and Entrepreneurship Education Center for General Universities, Changde 415000, PR China.
| | - Song Lei
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, PR China; Key Laboratory of Agricultural Products Processing and Food Safety in Hunan Province, Changde 415000, PR China; Hunan Provincial 3R Food Innovation and Entrepreneurship Education Center for General Universities, Changde 415000, PR China
| | - Qingqin Li
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, PR China
| | - Yushuang Luo
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, PR China
| |
Collapse
|
3
|
Cardoso BB, Amorim C, Franco-Duarte R, Alves JI, Barbosa SG, Silvério SC, Rodrigues LR. Epilactose as a Promising Butyrate-Promoter Prebiotic via Microbiota Modulation. Life (Basel) 2024; 14:643. [PMID: 38792663 PMCID: PMC11123345 DOI: 10.3390/life14050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Epilactose is a disaccharide composed of galactose and mannose, and it is currently considered an "under development" prebiotic. In this study, we described the prebiotic potential of epilactose by in vitro fermentation using human fecal inocula from individuals following a Mediterranean diet (DM) or a Vegan diet (DV). The prebiotic effect of epilactose was also compared with lactulose and raffinose, and interesting correlations were established between metabolites and microbiota modulation. The production of several metabolites (lactate, short-chain fatty acids, and gases) confirmed the prebiotic properties of epilactose. For both donors, the microbiota analysis showed that epilactose significantly stimulated the butyrate-producing bacteria, suggesting that its prebiotic effect could be independent of the donor diet. Butyrate is one of the current golden metabolites due to its benefits for the gut and systemic health. In the presence of epilactose, the production of butyrate was 70- and 63-fold higher for the DM donor, when compared to lactulose and raffinose, respectively. For the DV donor, an increase of 29- and 89-fold in the butyrate production was obtained when compared to lactulose and raffinose, respectively. In conclusion, this study suggests that epilactose holds potential functional properties for human health, especially towards the modulation of butyrate-producing strains.
Collapse
Affiliation(s)
- Beatriz B. Cardoso
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
| | - Cláudia Amorim
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| | - Ricardo Franco-Duarte
- CBMA—Centre of Molecular and Environmental Biology, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| | - Joana I. Alves
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| | - Sónia G. Barbosa
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| | - Sara C. Silvério
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| | - Lígia R. Rodrigues
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
O'Donoghue LT, Murphy EG. Nondairy food applications of whey and milk permeates: Direct and indirect uses. Compr Rev Food Sci Food Saf 2023; 22:2652-2677. [PMID: 37070222 DOI: 10.1111/1541-4337.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
Permeates are generated in the dairy industry as byproducts from the production of high-protein products (e.g., whey or milk protein isolates and concentrates). Traditionally, permeate was disposed of as waste or used in animal feed, but with the recent move toward a "zero waste" economy, these streams are being recognized for their potential use as ingredients, or as raw materials for the production of value-added products. Permeates can be added directly into foods such as baked goods, meats, and soups, for use as sucrose or sodium replacers, or can be used in the production of prebiotic drinks or sports beverages. In-direct applications generally utilize the lactose present in permeate for the production of higher value lactose derivatives, such as lactic acid, or prebiotic carbohydrates such as lactulose. However, the impurities present, short shelf life, and difficulty handling these streams can present challenges for manufacturers and hinder the efficiency of downstream processes, especially compared to pure lactose solutions. In addition, the majority of these applications are still in the research stage and the economic feasibility of each application still needs to be investigated. This review will discuss the wide variety of nondairy, food-based applications of milk and whey permeates, with particular focus on the advantages and disadvantages associated with each application and the suitability of different permeate types (i.e., milk, acid, or sweet whey).
Collapse
Affiliation(s)
| | - Eoin G Murphy
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
5
|
Cardoso BB, Fernandes JM, Pinheiro AC, Braga A, Silvério SC, Rodrigues LR. Two-step purification of epilactose produced by cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Bamigbade GB, Subhash AJ, Kamal-Eldin A, Nyström L, Ayyash M. An Updated Review on Prebiotics: Insights on Potentials of Food Seeds Waste as Source of Potential Prebiotics. Molecules 2022; 27:molecules27185947. [PMID: 36144679 PMCID: PMC9505924 DOI: 10.3390/molecules27185947] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023] Open
Abstract
Prebiotics are a group of biological nutrients that are capable of being degraded by microflora in the gastrointestinal tract (GIT), primarily Lactobacilli and Bifidobacteria. When prebiotics are ingested, either as a food additive or as a supplement, the colonic microflora degrade them, producing short-chain fatty acids (SCFA), which are simultaneously released in the colon and absorbed into the blood circulatory system. The two major groups of prebiotics that have been extensively studied in relation to human health are fructo-oligosaccharides (FOS) and galactooligosaccharides (GOS). The candidature of a compound to be regarded as a prebiotic is a function of how much of dietary fiber it contains. The seeds of fruits such as date palms have been reported to contain dietary fiber. An increasing awareness of the consumption of fruits and seeds as part of the daily diet, as well as poor storage systems for seeds, have generated an enormous amount of seed waste, which is traditionally discarded in landfills or incinerated. This cultural practice is hazardous to the environment because seed waste is rich in organic compounds that can produce hazardous gases. Therefore, this review discusses the potential use of seed wastes in prebiotic production, consequently reducing the environmental hazards posed by these wastes.
Collapse
Affiliation(s)
- Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Athira Jayasree Subhash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Laura Nyström
- Department of Health Science and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
7
|
Vera C, Guerrero C, Illanes A. Trends in lactose-derived bioactives: synthesis and purification. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2022; 2:393-412. [PMID: 38624767 PMCID: PMC8776390 DOI: 10.1007/s43393-021-00068-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Lactose obtained from cheese whey is a low value commodity despite its great potential as raw material for the production of bioactive compounds. Among them, prebiotics stand out as valuable ingredients to be added to food matrices to build up functional foods, which currently represent the most active sector within the food industry. Functional foods market has been growing steadily in the recent decades along with the increasing awareness of the World population about healthy nutrition, and this is having a strong impact on lactose-derived bioactives. Most of them are produced by enzyme biocatalysis because of molecular precision and environmental sustainability considerations. The current status and outlook of the production of lactose-derived bioactive compounds is presented with special emphasis on downstream operations which are critical because of the rather modest lactose conversion and product yields that are attainable. Even though some of these products have already an established market, there are still several challenges referring to the need of developing better catalysts and more cost-effective downstream operations for delivering high quality products at affordable prices. This technological push is expected to broaden the spectrum of lactose-derived bioactive compounds to be produced at industrial scale in the near future. Graphical abstract
Collapse
Affiliation(s)
- Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, (USACH), Santiago, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaiso, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaiso, Chile
| |
Collapse
|
8
|
Liangfei L, Yafeng Z, Kai X, Zheng X. Identification of a thermostable cellobiose 2-epimerase from Caldicellulosiruptor sp. Rt8.B8 and production of epilactose using Bacillus subtilis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:85-94. [PMID: 34031874 DOI: 10.1002/jsfa.11333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Epilactose, a potential prebiotics, was derived from lactose through enzymatic catalysis. However, production and purification of epilactose are currently difficult due to powerless enzymes and inefficient downstream processing steps. RESULTS The encoding gene of cellobiose 2-epimerase (CE) from Caldicellulosiruptor sp. Rt8.B8 was cloned and expressed in Escherichia coli BL21(DE3). The enzyme was purified and it was suitable for industrial production of epilactose from lactose without by-products, because of high kcat (197.6 s-1 ) and preferable thermostability. The Rt8-CE gene was further expressed in the Bacillus subtilis strain. We successfully produced epilactose from 700 g L-1 lactose in 30.4% yield by using the recombinant Bacillus subtilis whole cells. By screening of a β-galactosidase from Bacillus stearothermophilus (BsGal), a process for separating epilactose and lactose was established, which showed a purity of over 95% in a total yield of 69.2%. In addition, a mixed rare sugar syrup composed of epilactose and d-tagatose was successfully produced from lactose through the co-expression of l-arabinose isomerase and β-galactosidase. CONCLUSION Our study shed light on the efficient production of epilactose using a food-grade host expressing a novel CE enzyme. Moreover, an efficient and low-cost process was attempted to obtain high purity epilactose. In order to improve the utilization of raw materials, the production process of mixed syrup containing epilactose and d-tagatose with prebiotic properties produced from lactose was also established for the first time. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Liangfei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhu Yafeng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xu Kai
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Xu Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
9
|
Detection of the Core Bacteria in Colostrum and Their Association with the Rectal Microbiota and with Milk Composition in Two Dairy Cow Farms. Animals (Basel) 2021; 11:ani11123363. [PMID: 34944139 PMCID: PMC8698032 DOI: 10.3390/ani11123363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/27/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary In order to provide information on developing probiotics for newborn calves, this research detected the bacterial composition in colostrum and rectal feces of healthy Holstein cows from two dairy farms. Our results found several core bacterial species and some core genus and families in colostrum. About half of the OTUs detected in colostrum were found in the rectal content including some strictly anaerobic bacteria. In addition, some well-known intestinal beneficial bacteria including Lactobacillus plantarum and Bacillus subtilis were present in cow colostrum. Our results confirm that colostrum provides intestinal probiotics for calves. Furthermore, we might be able to develop new probiotics for calves according to the core symbiotic genus or families in colostrum. Abstract As one of the pioneer bacterial sources of intestinal microbiota, the information of bacterial composition in colostrum might provide a reference for developing specific probiotics for newborn calves, especially calves fed with pasteurized milk. The present study aimed to detect the core bacteria at different taxonomic levels and the common beneficial ones in colostrum by analyzing the bacterial composition in 34 colostrum samples of healthy cows selected from two dairy farms. The results of the further analysis showed that the bacterial composition in the colostrum of the two dairy farms was different, but their four most dominant phyla were the same including Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. The microbiome of all colostrum samples shared ten core operational taxonomic units (OTUs), 21 core genera, and 34 core families, and most of them had no difference in relative abundance between the two farms. The ten core OTUs did not belong to the identified commensal bacteria and have not been detected by previous study. However, several core genera found in our study were also identified as core genus in a previous study. Some well-known beneficial and pathogenic bacteria including Lactobacillus plantarum, Bacillus subtilis, Acinetobacter lwoffii, and Streptococcus pneumoniae were present in the colostrum of healthy cows. However, none had a correlation with the number of somatic cell count (SCC), but the core genera Nubella and Brevundinimas and the core families Methylobacteriaceae and Caulobacteraceae positively correlated with the number of SCC. The genus Staphylococcus, Pseudomonas, and Chryseobacterium in colostrum had a positive correlation with each other, while the probiotics unidentified-Bacteroidales-S24-7-group had a negative correlation with Pseudomonas and Chryseobacterium. In addition, more than 50% bacterial OTUs in colostrum were detected in the rectal content including some strictly anaerobic bacteria that are generally present in the intestine and rumen. However, of the top 30 commonly shared bacterial genera in the colostrum and rectal feces, no genus in colostrum was positively correlated with that same genus in rectal feces. In conclusion, the bacterial composition of colostrum microbiota is greatly influenced by external factors and individuals. There were several core OTUs, and some core genus and families in the colostrum samples. Colostrum from healthy cows contained both beneficial and pathogenic bacteria and shared many common bacteria with rectal content including some gastrointestinal anaerobes.
Collapse
|
10
|
Chen Q, Wu Y, Huang Z, Zhang W, Mu W. Molecular Characterization of a Mesophilic Cellobiose 2-Epimerase That Maintains a High Catalytic Efficiency at Low Temperatures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8268-8275. [PMID: 34231359 DOI: 10.1021/acs.jafc.1c02025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cellobiose 2-epimerase (CE) can catalyze bioconversion of lactose to its prebiotic derivative epilactose. The catalytic property of a novel CE from Treponema brennaborense (Trbr-CE) was investigated. Trbr-CE showed the highest catalytic efficiency of epimerization toward lactose among all of the previously reported CEs. This enzyme's specific activity could reach as high as 208.5 ± 5.3 U/mg at its optimum temperature, which is 45 °C. More importantly, this enzyme demonstrated a considerably high activity at low temperatures, suggesting Trbr-CE as a promising enzyme for industrial low-temperature production of epilactose. This structurally flexible enzyme exhibited a comparatively high binding affinity toward substrates, which was confirmed by both experimental verification and computational analysis. Molecular dynamics (MD) simulations and binding free energy calculations were applied to provide insights into molecular recognition upon temperature changes. Compared with thermophilic CEs, Trbr-CE presents a more negative enthalpy change and a higher entropy change when the temperature drops.
Collapse
Affiliation(s)
- Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yanchang Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Novel and emerging prebiotics: Advances and opportunities. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 95:41-95. [PMID: 33745516 DOI: 10.1016/bs.afnr.2020.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Consumers are conscientiously changing their eating preferences toward healthier options, such as functional foods enriched with pre- and probiotics. Prebiotics are attractive bioactive compounds with multidimensional beneficial action on both human and animal health, namely on the gastrointestinal tract, cardiometabolism, bones or mental health. Conventionally, prebiotics are non-digestible carbohydrates which generally present favorable organoleptic properties, temperature and acidic stability, and are considered interesting food ingredients. However, according to the current definition of prebiotics, application categories other than food are accepted, as well as non-carbohydrate substrates and bioactivity at extra-intestinal sites. Regulatory issues are considered a major concern for prebiotics since a clear understanding and application of these compounds among the consumers, regulators, scientists, suppliers or manufacturers, health-care providers and standards or recommendation-setting organizations are of utmost importance. Prebiotics can be divided in several categories according to their development and regulatory status. Inulin, galactooligosaccharides, fructooligosaccharides and lactulose are generally classified as well established prebiotics. Xylooligosaccharides, isomaltooligosaccharides, chitooligosaccharides and lactosucrose are classified as "emerging" prebiotics, while raffinose, neoagaro-oligosaccharides and epilactose are "under development." Other substances, such as human milk oligosaccharides, polyphenols, polyunsaturated fatty acids, proteins, protein hydrolysates and peptides are considered "new candidates." This chapter will encompass actual information about the non-established prebiotics, mainly their physicochemical properties, market, legislation, biological activity and possible applications. Generally, there is a lack of clear demonstrations about the effective health benefits associated with all the non-established prebiotics. Overcoming this limitation will undoubtedly increase the demand for these compounds and their market size will follow the consumer's trend.
Collapse
|
12
|
Chen Q, Xiao Y, Zhang W, Stressler T, Fischer L, Jiang B, Mu W. Computer-aided search for a cold-active cellobiose 2-epimerase. J Dairy Sci 2020; 103:7730-7741. [PMID: 32684457 DOI: 10.3168/jds.2020-18153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/04/2020] [Indexed: 01/06/2023]
Abstract
Cellobiose 2-epimerase (CE) is a promising industrial enzyme that can catalyze bioconversion of lactose to its high-value derivatives, namely epilactose and lactulose. A need exists in the dairy industry to catalyze lactose bioconversions at low temperatures to avoid microbial growth. We focused on the discovery of cold-active CE in this study. A genome mining method based on computational prediction was used to screen the potential genes encoding cold-active enzymes. The CE-encoding gene from Roseburia intestinalis, with a predicted high structural flexibility, was expressed heterologously in Escherichia coli. The catalytic property of the recombinant enzyme was extensively studied. The optimum temperature and pH of the enzyme were 45°C and 7.0, respectively. The specific activity of this enzyme to catalyze conversion of lactose to epilactose was measured to be 77.3 ± 1.6 U/mg. The kinetic parameters, including turnover number (kcat), Michaelis constant (Km), and catalytic efficiency (kcat/Km) using lactose as a substrate were 117.0 ± 7.7 s-1, 429.9 ± 57.3 mM, and 0.27 mM-1s-1, respectively. In situ production of epilactose was carried out at 8°C: 20.9% of 68.4 g/L lactose was converted into epilactose in 4 h using 0.02 mg/mL (1.5 U/mL, measured at 45°C) of recombinant enzyme. The enzyme discovered by this in silico method is suitable for low-temperature applications.
Collapse
Affiliation(s)
- Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yaqin Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Timo Stressler
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, 70599 Stuttgart, Germany
| | - Lutz Fischer
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, 70599 Stuttgart, Germany
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Chen Q, Xiao Y, Shakhnovich EI, Zhang W, Mu W. Semi-rational design and molecular dynamics simulations study of the thermostability enhancement of cellobiose 2-epimerases. Int J Biol Macromol 2020; 154:1356-1365. [DOI: 10.1016/j.ijbiomac.2019.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/19/2023]
|
14
|
Rawi MH, Zaman SA, Pa'ee KF, Leong SS, Sarbini SR. Prebiotics metabolism by gut-isolated probiotics. Journal of Food Science and Technology 2020; 57:2786-2799. [PMID: 32624588 DOI: 10.1007/s13197-020-04244-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
There are numerous species of bacteria resides in the lumen of human colon. The word 'colon', resembles colony or the colonization of microbiota of which plays an important role in the fermentation of prebiotics. The standpoint of prebiotic nowadays is well reported for attenuating gut dysbiosis in many clinical studies tested on animals and human. However, because of the huge amount of gut microbiome, the attempt to connect the dots between bacterial population and the host are not plainly discernible. Thus, a need to analyse recent research on the pathways of prebiotic metabolism adopted by commonly studied probiotics i.e. Bifidobacteria and Lactobacillus. Several different substrate-dependent gene expressions are induced to break down oligosaccharide molecules shown by those probiotics. The hydrolysis can occur either by membrane bound (extracellular) or cytoplasmic (intracellular) enzyme of the enteric bacteria. Therefore, this review narrates several prebiotic metabolisms occur during gut fermentation, and metabolite production i.e. organic acids conversion.
Collapse
Affiliation(s)
- Muhamad Hanif Rawi
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| | - Siti Aisyah Zaman
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| | - Khairul Faizal Pa'ee
- Food Technology Section, Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bio-Engineering Technology (UniKL-MICET), Bandar Vendor, Taboh Naning, 78000 Alor Gajah, Melaka Malaysia
| | - Sui Sien Leong
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| | - Shahrul Razid Sarbini
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| |
Collapse
|
15
|
Julio-Gonzalez LC, Hernández-Hernández O, Javier Moreno F, Olano A, Corzo N. High-yield purification of commercial lactulose syrup. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Saburi W, Sato S, Hashiguchi S, Muto H, Iizuka T, Mori H. Enzymatic characteristics of d-mannose 2-epimerase, a new member of the acylglucosamine 2-epimerase superfamily. Appl Microbiol Biotechnol 2019; 103:6559-6570. [DOI: 10.1007/s00253-019-09944-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/20/2019] [Accepted: 05/25/2019] [Indexed: 11/30/2022]
|
17
|
Xiao Y, Chen Q, Guang C, Zhang W, Mu W. An overview on biological production of functional lactose derivatives. Appl Microbiol Biotechnol 2019; 103:3683-3691. [DOI: 10.1007/s00253-019-09755-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/30/2022]
|
18
|
Chen Q, Xiao Y, Zhang W, Zhang T, Jiang B, Stressler T, Fischer L, Mu W. Current research on cellobiose 2-epimerase: Enzymatic properties, mechanistic insights, and potential applications in the dairy industry. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Chen Q, He W, Yan X, Zhang T, Jiang B, Stressler T, Fischer L, Mu W. Construction of an enzymatic route using a food-grade recombinant Bacillus subtilis for the production and purification of epilactose from lactose. J Dairy Sci 2018; 101:1872-1882. [DOI: 10.3168/jds.2017-12936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022]
|
20
|
Song W, Cai J, Zou X, Wang X, Hu J, Yin J. Applications of controlled inversion strategies in carbohydrate synthesis. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Park AR, Kim JS, Jang SW, Park YG, Koo BS, Lee HC. Rational modification of substrate binding site by structure-based engineering of a cellobiose 2-epimerase in Caldicellulosiruptor saccharolyticus. Microb Cell Fact 2017; 16:224. [PMID: 29233137 PMCID: PMC5726027 DOI: 10.1186/s12934-017-0841-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/06/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Lactulose, a synthetic disaccharide, has received increasing interest due to its role as a prebiotic, specifically proliferating Bifidobacilli and Lactobacilli and enhancing absorption of calcium and magnesium. The use of cellobiose 2-epimerase (CE) is considered an interesting alternative for industrial production of lactulose. CE reversibly converts D-glucose residues into D-mannose residues at the reducing end of unmodified β-1,4-linked oligosaccharides, including β-1,4-mannobiose, cellobiose, and lactose. Recently, a few CE 3D structure were reported, revealing mechanistic details. Using this information, we redesigned the substrate binding site of CE to extend its activity from epimerization to isomerization. RESULTS Using superimposition with 3 known CE structure models, we identified 2 residues (Tyr114, Asn184) that appeared to play an important role in binding epilactose. We modified these residues, which interact with C2 of the mannose moiety, to prevent epimerization to epilactose. We found a Y114E mutation led to increased release of a by-product, lactulose, at 65 °C, while its activity was low at 37 °C. Notably, this phenomenon was observed only at high temperature and more reliably when the substrate was increased. Using Y114E, isomerization of lactose to lactulose was investigated under optimized conditions, resulting in 86.9 g/l of lactulose and 4.6 g/l of epilactose for 2 h when 200 g/l of lactose was used. CONCLUSION These results showed that the Y114E mutation increased isomerization of lactose, while decreasing the epimerization of lactose. Thus, a subtle modification of the active site pocket could extend its native activity from epimerization to isomerization without significantly impairing substrate binding. While additional studies are required to scale this to an industrial process, we demonstrated the potential of engineering this enzyme based on structural analysis.
Collapse
Affiliation(s)
- Ah-Reum Park
- ForBioKorea Co., Ltd., Gasan digital 2-ro, Geumcheon-gu, Seoul, Republic of Korea
| | - Jin-Sook Kim
- ForBioKorea Co., Ltd., Gasan digital 2-ro, Geumcheon-gu, Seoul, Republic of Korea
| | - Seung-Won Jang
- ForBioKorea Co., Ltd., Gasan digital 2-ro, Geumcheon-gu, Seoul, Republic of Korea
| | - Young-Gyun Park
- ForBioKorea Co., Ltd., Gasan digital 2-ro, Geumcheon-gu, Seoul, Republic of Korea
| | - Bong-Seong Koo
- ForBioKorea Co., Ltd., Gasan digital 2-ro, Geumcheon-gu, Seoul, Republic of Korea
| | - Hyeon-Cheol Lee
- ForBioKorea Co., Ltd., Gasan digital 2-ro, Geumcheon-gu, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Wang H, Geier MS, Howarth GS. Prebiotics: A Potential Treatment Strategy for the Chemotherapy-damaged Gut? Crit Rev Food Sci Nutr 2017; 56:946-56. [PMID: 25162145 DOI: 10.1080/10408398.2012.741082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mucositis, characterized by ulcerative lesions along the alimentary tract, is a common consequence of many chemotherapy regimens. Chemotherapy negatively disrupts the intestinal microbiota, resulting in increased numbers of potentially pathogenic bacteria, such as Clostridia and Enterobacteriaceae, and decreased numbers of "beneficial" bacteria, such as Lactobacilli and Bifidobacteria. Agents capable of restoring homeostasis in the bowel microbiota could, therefore, be applicable to mucositis. Prebiotics are indigestible compounds, commonly oligosaccharides, that seek to reverse chemotherapy-induced intestinal dysbiosis through selective colonization of the intestinal microbiota by probiotic bacteria. In addition, evidence is emerging that certain prebiotics contribute to nutrient digestibility and absorption, modulate intestinal barrier function through effects on mucin expression, and also modify mucosal immune responses, possibly via inflammasome-mediated processes. This review examines the known mechanisms of prebiotic action, and explores their potential for reducing the severity of chemotherapy-induced mucositis in the intestine.
Collapse
Affiliation(s)
- Hanru Wang
- a School of Animal and Veterinary Sciences, University of Adelaide , Roseworthy Campus , South Australia
| | - Mark S Geier
- a School of Animal and Veterinary Sciences, University of Adelaide , Roseworthy Campus , South Australia.,b South Australian Research and Development Institute, Pig and Poultry Production Institute, Nutrition Research Laboratory , Roseworthy , South Australia
| | - Gordon S Howarth
- a School of Animal and Veterinary Sciences, University of Adelaide , Roseworthy Campus , South Australia.,c Centre for Paediatric and Adolescent Gastroenterology, Children, Youth and Women's Health Service , North Adelaide , South Australia
| |
Collapse
|
23
|
Reaction investigation of lactulose-producing cellobiose 2-epimerases under operational relevant conditions. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Shen Q, Zhang Y, Yang R, Pan S, Dong J, Fan Y, Han L. Enhancement of isomerization activity and lactulose production of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Food Chem 2016; 207:60-7. [DOI: 10.1016/j.foodchem.2016.02.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 01/16/2016] [Accepted: 02/09/2016] [Indexed: 11/15/2022]
|
25
|
Recent advances on prebiotic lactulose production. World J Microbiol Biotechnol 2016; 32:154. [DOI: 10.1007/s11274-016-2103-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022]
|
26
|
Kuschel B, Riemer F, Pfost D, Conrad J, Losch C, Claaßen W, Beifuß U, Weiss J, Mu W, Jiang B, Stressler T, Fischer L. Large-scale purification of epilactose using a semi-preparative HPLC system. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2752-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Saburi W. Functions, structures, and applications of cellobiose 2-epimerase and glycoside hydrolase family 130 mannoside phosphorylases. Biosci Biotechnol Biochem 2016; 80:1294-305. [PMID: 27031293 DOI: 10.1080/09168451.2016.1166934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Carbohydrate isomerases/epimerases are essential in carbohydrate metabolism, and have great potential in industrial carbohydrate conversion. Cellobiose 2-epimerase (CE) reversibly epimerizes the reducing end d-glucose residue of β-(1→4)-linked disaccharides to d-mannose residue. CE shares catalytic machinery with monosaccharide isomerases and epimerases having an (α/α)6-barrel catalytic domain. Two histidine residues act as general acid and base catalysts in the proton abstraction and addition mechanism. β-Mannoside hydrolase and 4-O-β-d-mannosyl-d-glucose phosphorylase (MGP) were found as neighboring genes of CE, meaning that CE is involved in β-mannan metabolism, where it epimerizes β-d-mannopyranosyl-(1→4)-d-mannose to β-d-mannopyranosyl-(1→4)-d-glucose for further phosphorolysis. MGPs form glycoside hydrolase family 130 (GH130) together with other β-mannoside phosphorylases and hydrolases. Structural analysis of GH130 enzymes revealed an unusual catalytic mechanism involving a proton relay and the molecular basis for substrate and reaction specificities. Epilactose, efficiently produced from lactose using CE, has superior physiological functions as a prebiotic oligosaccharide.
Collapse
Affiliation(s)
- Wataru Saburi
- a Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan
| |
Collapse
|
28
|
Quantification of Lactulose and Epilactose in the Presence of Lactose in Milk using a dual HPLC analysis. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0405-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Van Overtveldt S, Verhaeghe T, Joosten HJ, van den Bergh T, Beerens K, Desmet T. A structural classification of carbohydrate epimerases: From mechanistic insights to practical applications. Biotechnol Adv 2015; 33:1814-28. [DOI: 10.1016/j.biotechadv.2015.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 12/26/2022]
|
30
|
Murakami Y, Tanabe S, Suzuki T. High-fat Diet-induced Intestinal Hyperpermeability is Associated with Increased Bile Acids in the Large Intestine of Mice. J Food Sci 2015; 81:H216-22. [DOI: 10.1111/1750-3841.13166] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/25/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Yuki Murakami
- Dept. of Biofunctional Science and Technology, Graduate School of Biosphere Science; Hiroshima Univ; Higashi-Hiroshima Japan
| | - Soichi Tanabe
- Dept. of Biofunctional Science and Technology, Graduate School of Biosphere Science; Hiroshima Univ; Higashi-Hiroshima Japan
| | - Takuya Suzuki
- Dept. of Biofunctional Science and Technology, Graduate School of Biosphere Science; Hiroshima Univ; Higashi-Hiroshima Japan
| |
Collapse
|
31
|
Samal L, Behura N. Prebiotics: An Emerging Nutritional Approach for Improving Gut Health of Livestock and Poultry. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajava.2015.724.739] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Rentschler E, Schuh K, Krewinkel M, Baur C, Claaßen W, Meyer S, Kuschel B, Stressler T, Fischer L. Enzymatic production of lactulose and epilactose in milk. J Dairy Sci 2015; 98:6767-75. [DOI: 10.3168/jds.2015-9900] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/21/2015] [Indexed: 01/05/2023]
|
33
|
Krewinkel M, Kaiser J, Merz M, Rentschler E, Kuschel B, Hinrichs J, Fischer L. Novel cellobiose 2-epimerases for the production of epilactose from milk ultrafiltrate containing lactose. J Dairy Sci 2015; 98:3665-78. [DOI: 10.3168/jds.2015-9411] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/10/2015] [Indexed: 01/22/2023]
|
34
|
Chen Q, Zhang W, Zhang T, Jiang B, Mu W. Characterization of an epilactose-producing cellobiose 2-epimerase from Thermoanaerobacterium saccharolyticum. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Zhang Y, Zheng Q, Zhang J, Zhang H. Insights into the epimerization activities of RaCE and pAGE: the quantum mechanics/molecular mechanics simulations. RSC Adv 2015. [DOI: 10.1039/c5ra14091a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ruminococcus albus cellobiose 2-epimerase (RaCE) and N-acetyl-d-glucosamine 2-epimerase from porcine kidney (pAGE) belong to the AGE superfamily and have a detectable AGE activity.
Collapse
Affiliation(s)
- Yulai Zhang
- State Key Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- People's Republic of China
| | - Qingchuan Zheng
- State Key Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- People's Republic of China
| | - Jilong Zhang
- State Key Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- People's Republic of China
| | - Hongxing Zhang
- State Key Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- People's Republic of China
| |
Collapse
|
36
|
Wasaki J, Taguchi H, Senoura T, Akasaka H, Watanabe J, Kawaguchi K, Komata Y, Hanashiro K, Ito S. Identification and distribution of cellobiose 2-epimerase genes by a PCR-based metagenomic approach. Appl Microbiol Biotechnol 2014; 99:4287-95. [DOI: 10.1007/s00253-014-6265-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/15/2014] [Accepted: 11/19/2014] [Indexed: 11/28/2022]
|
37
|
Synbiotics: the impact of potential prebiotics inulin, lactulose and lactobionic acid on the survival and growth of lactobacilli probiotics. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.05.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
38
|
Practical Preparation of Epilactose Produced with Cellobiose 2-Epimerase fromRuminococcus albusNE1. Biosci Biotechnol Biochem 2014; 74:1736-7. [DOI: 10.1271/bbb.100353] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Jaito N, Saburi W, Odaka R, Kido Y, Hamura K, Nishimoto M, Kitaoka M, Matsui H, Mori H. Characterization of a thermophilic 4-O-β-D-mannosyl-D-glucose phosphorylase from Rhodothermus marinus. Biosci Biotechnol Biochem 2014; 78:263-70. [PMID: 25036679 DOI: 10.1080/09168451.2014.882760] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
4-O-β-D-Mannosyl-D-glucose phosphorylase (MGP), found in anaerobes, converts 4-O-β-D-mannosyl-D-glucose (Man-Glc) to α-D-mannosyl phosphate and D-glucose. It participates in mannan metabolism with cellobiose 2-epimerase (CE), which converts β-1,4-mannobiose to Man-Glc. A putative MGP gene is present in the genome of the thermophilic aerobe Rhodothermus marinus (Rm) upstream of the gene encoding CE. Konjac glucomannan enhanced production by R. marinus of MGP, CE, and extracellular mannan endo-1,4-β-mannosidase. Recombinant RmMGP catalyzed the phosphorolysis of Man-Glc through a sequential bi-bi mechanism involving ternary complex formation. Its molecular masses were 45 and 222 kDa under denaturing and nondenaturing conditions, respectively. Its pH and temperature optima were 6.5 and 75 °C, and it was stable between pH 5.5-8.3 and below 80 °C. In the reverse reaction, RmMGP had higher acceptor preferences for 6-deoxy-D-glucose and D-xylose than R. albus NE1 MGP. In contrast to R. albus NE1 MGP, RmMGP utilized methyl β-D-glucoside and 1,5-anhydro-D-glucitol as acceptor substrates.
Collapse
Affiliation(s)
- Nongluck Jaito
- a Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Krewinkel M, Gosch M, Rentschler E, Fischer L. Epilactose production by 2 cellobiose 2-epimerases in natural milk. J Dairy Sci 2014; 97:155-61. [DOI: 10.3168/jds.2013-7389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/14/2013] [Indexed: 11/19/2022]
|
41
|
Fujiwara T, Saburi W, Matsui H, Mori H, Yao M. Structural insights into the epimerization of β-1,4-linked oligosaccharides catalyzed by cellobiose 2-epimerase, the sole enzyme epimerizing non-anomeric hydroxyl groups of unmodified sugars. J Biol Chem 2013; 289:3405-15. [PMID: 24362032 DOI: 10.1074/jbc.m113.531251] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellobiose 2-epimerase (CE) reversibly converts d-glucose residues into d-mannose residues at the reducing end of unmodified β1,4-linked oligosaccharides, including β-1,4-mannobiose, cellobiose, and lactose. CE is responsible for conversion of β1,4-mannobiose to 4-O-β-d-mannosyl-d-glucose in mannan metabolism. However, the detailed catalytic mechanism of CE is unclear due to the lack of structural data in complex with ligands. We determined the crystal structures of halothermophile Rhodothermus marinus CE (RmCE) in complex with substrates/products or intermediate analogs, and its apo form. The structures in complex with the substrates/products indicated that the residues in the β5-β6 loop as well as those in the inner six helices form the catalytic site. Trp-322 and Trp-385 interact with reducing and non-reducing end parts of these ligands, respectively, by stacking interactions. The architecture of the catalytic site also provided insights into the mechanism of reversible epimerization. His-259 abstracts the H2 proton of the d-mannose residue at the reducing end, and consistently forms the cis-enediol intermediate by facilitated depolarization of the 2-OH group mediated by hydrogen bonding interaction with His-200. His-390 subsequently donates the proton to the C2 atom of the intermediate to form a d-glucose residue. The reverse reaction is mediated by these three histidines with the inverse roles of acid/base catalysts. The conformation of cellobiitol demonstrated that the deprotonation/reprotonation step is coupled with rotation of the C2-C3 bond of the open form of the ligand. Moreover, it is postulated that His-390 is closely related to ring opening/closure by transferring a proton between the O5 and O1 atoms of the ligand.
Collapse
Affiliation(s)
- Takaaki Fujiwara
- From the Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo 060-0810 and
| | | | | | | | | |
Collapse
|
42
|
Fujiwara T, Saburi W, Inoue S, Mori H, Matsui H, Tanaka I, Yao M. Crystal structure of Ruminococcus albus cellobiose 2-epimerase: structural insights into epimerization of unmodified sugar. FEBS Lett 2013; 587:840-6. [PMID: 23462136 DOI: 10.1016/j.febslet.2013.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 10/27/2022]
Abstract
Enzymatic epimerization is an important modification for carbohydrates to acquire diverse functions attributable to their stereoisomers. Cellobiose 2-epimerase (CE) catalyzes interconversion between d-glucose and d-mannose residues at the reducing end of β-1,4-linked oligosaccharides. Here, we solved the structure of Ruminococcus albus CE (RaCE). The structure of RaCE showed strong similarity to those of N-acetyl-D-glucosamine 2-epimerase and aldose-ketose isomerase YihS with a high degree of conservation of residues around the catalytic center, although sequence identity between them is low. Based on structural comparison, we found that His184 is required for RaCE activity as the third histidine added to two essential histidines in other sugar epimerases/isomerases. This finding was confirmed by mutagenesis, suggesting a new catalytic mechanism for CE involving three histidines.
Collapse
Affiliation(s)
- Takaaki Fujiwara
- Graduate School of Life Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Mu W, Li Q, Fan C, Zhou C, Jiang B. Recent advances on physiological functions and biotechnological production of epilactose. Appl Microbiol Biotechnol 2013; 97:1821-7. [DOI: 10.1007/s00253-013-4687-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/23/2012] [Accepted: 12/27/2012] [Indexed: 01/09/2023]
|
44
|
Identification and characterization of cellobiose 2-epimerases from various aerobes. Biosci Biotechnol Biochem 2013; 77:189-93. [PMID: 23291764 DOI: 10.1271/bbb.120742] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cellobiose 2-epimerase (CE), found mainly in anaerobes, reversibly converts D-glucose residues at the reducing end of β-1,4-linked oligosaccharides to D-mannose residues. In this study, we characterized CE-like proteins from various aerobes (Flavobacterium johnsoniae NBRC 14942, Pedobacter heparinus NBRC 12017, Dyadobacter fermentans ATCC 700827, Herpetosiphon aurantiacus ATCC 23779, Saccharophagus degradans ATCC 43961, Spirosoma linguale ATCC 33905, and Teredinibacter turnerae ATCC 39867), because aerobes, more easily cultured on a large scale than anaerobes, are applicable in industrial processes. The recombinant CE-like proteins produced in Escherichia coli catalyzed epimerization at the C2 position of cellobiose, lactose, epilactose, and β-1,4-mannobiose, whereas N-acetyl-D-glucosamine, N-acetyl-D-mannosamine, D-glucose, and D-mannose were inert as substrates. All the CEs, except for P. heparinus CE, the optimum pH of which was 6.3, showed highest activity at weakly alkaline pH. CEs from D. fermentans, H. aurantiacus, and S. linguale showed higher optimum temperatures and thermostability than the other enzymes analyzed. The enzymes from D. fermentans, S. linguale, and T. turnerae showed significantly high k(cat) and K(m) values towards cellobiose and lactose. Especially, T. turnerae CE showed a very high k(cat) value towards lactose, an attractive property for the industrial production of epilactose, which is carried out at high substrate concentrations.
Collapse
|
45
|
Immobilization of a thermostable cellobiose 2-epimerase from Rhodothermus marinus JCM9785 and continuous production of epilactose. Biosci Biotechnol Biochem 2012; 76:1584-7. [PMID: 22878201 DOI: 10.1271/bbb.120284] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cellobiose 2-epimerase (CE) efficiently forms epilactose which has several beneficial biological functions. A thermostable CE from Rhodothermus marinus was immobilized on Duolite A568 and packed into a column. Lactose (100 g/L) was supplied to the reactor, kept at 50 °C at a space velocity of 8 h(-1). The epilactose concentration of the resulting eluate was 30 g/L, and this was maintained for 13 d.
Collapse
|
46
|
|
47
|
Patel S, Goyal A. The current trends and future perspectives of prebiotics research: a review. 3 Biotech 2012. [DOI: 10.1007/s13205-012-0044-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
48
|
Engineering of cellobiose phosphorylase for glycoside synthesis. J Biotechnol 2011; 156:253-60. [DOI: 10.1016/j.jbiotec.2011.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 07/06/2011] [Accepted: 07/11/2011] [Indexed: 01/23/2023]
|
49
|
Mohammadi R, Mortazavian A. Review Article: Technological Aspects of Prebiotics in Probiotic Fermented Milks. FOOD REVIEWS INTERNATIONAL 2011. [DOI: 10.1080/87559129.2010.535235] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Suzuki T, Nishimukai M, Takechi M, Taguchi H, Hamada S, Yokota A, Ito S, Hara H, Matsui H. The nondigestible disaccharide epilactose increases paracellular Ca absorption via rho-associated kinase- and myosin light chain kinase-dependent mechanisms in rat small intestines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:1927-1932. [PMID: 20070099 DOI: 10.1021/jf9035063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We previously showed that epilactose, a nondigestible disaccharide, increased calcium (Ca) absorption in the small intestines of rats. Here, we explored the mechanism(s) underlying the epilactose-mediated promotion of Ca absorption in a ligated intestinal segment of anesthetized rats. The addition of epilactose to the luminal solution increased Ca absorption and chromium (Cr)-EDTA permeability, a paracellular indicator, with a strong correlation (R = 0.93) between these changes. Epilactose induced the phosphorylation of myosin regulatory light chains (MLCs), which is known to activate the paracellular route, without any change in the association of tight junction proteins with the actin cytoskeleton. The epilactose-mediated promotion of the Ca absorption was suppressed by specific inhibitors of myosin light chain kinase (MLCK) and Rho-associated kinase (ROCK). These results indicate that epilactose increases paracellular Ca absorption in the small intestine of rats through the induction of MLC phosphorylation via MLCK- and ROCK-dependent mechanisms.
Collapse
Affiliation(s)
- Takuya Suzuki
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|