1
|
Li Y, Yang J, Wang X, Luoreng Z. Transcriptome analysis reveals the regulation of miR-19b on inflammation in bovine mammary epithelial cells. Microb Pathog 2024; 197:107082. [PMID: 39461446 DOI: 10.1016/j.micpath.2024.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
MicroRNAs (miRNAs) are involved in various biological processes where they regulate the expression of mRNAs. Bovine mammary epithelial cells (bMECs) are functional cells that mediate mammary inflammatory immunity. Although numerous miRNAs regulate the function of bMECs, the role of miR-19b in bMECs has not been reported. In this study, the transcriptome of miR-19b overexpressed bMECs was analyzed by RNA-seq. Additionally, the differentially expressed genes (DEGs) were analyzed to establish the role of miR-19b in bMECs. The results revealed 269 DEGs between the miR-19b overexpression group and the negative control, including 199 up-regulated and 70 down-regulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the DEGs regulated immune and inflammatory responses through Staphylococcus aureus (S. aureus) infection and phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. In addition, the expression of miR-19b was significantly upregulated in lipophosphoric acid (LTA)-induced bMECs, and overexpression of miR-19b negatively regulated the expression of inflammatory cytokines IL-1β and IL-6, thereby alleviating the inflammatory response of LTA-induced bMECs. Based on the above results, we speculate that miR-19b may inhibit in dairy cow mammary inflammation caused by S. aureus, and this process may be mediated through the regulation of relevant gene expression and signaling pathways. The findings from this study provide a new reference for analyzing the molecular regulation of miR-19b in bMECs.
Collapse
Affiliation(s)
- Yuhang Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jian Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xingping Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China.
| | - Zhuoma Luoreng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China.
| |
Collapse
|
2
|
Noleto PG, Gilbert FB, Rossignol C, Cunha P, Germon P, Rainard P, Martins RP. Punch-excised explants of bovine mammary gland to model early immune response to infection. J Anim Sci Biotechnol 2023; 14:100. [PMID: 37420291 DOI: 10.1186/s40104-023-00899-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Mammary gland (MG) infections (mastitis) are frequent diseases of dairy cows that affect milk quality, animal welfare and farming profitability. These infections are commonly associated with the bacteria Escherichia coli and Staphylococcus aureus. Different in vitro models have been used to investigate the early response of the MG to bacteria, but the role of the teat in mastitis pathogenesis has received less attention. In this study, we used punch-excised teat tissue as an ex vivo model to study the immune mechanisms that arise early during infection when bacteria have entered the MG. RESULTS Cytotoxicity and microscopic analyses showed that bovine teat sinus explants have their morphology and viability preserved after 24 h of culture and respond to ex vivo stimulation with TLR-agonists and bacteria. LPS and E. coli trigger stronger inflammatory response in teat when compared to LTA and S. aureus, leading to a higher production of IL-6 and IL-8, as well as to an up-regulation of proinflammatory genes. We also demonstrated that our ex vivo model can be applied to frozen-stored explants. CONCLUSIONS In compliance with the 3Rs principle (replacement, reduction and refinement) in animal experimentation, ex vivo explant analyses proved to be a simple and affordable approach to study MG immune response to infection. This model, which better reproduces organ complexity than epithelial cell cultures or tissue slices, lends itself particularly well to studying the early phases of the MG immune response to infection.
Collapse
Affiliation(s)
| | | | | | - Patricia Cunha
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | - Pierre Germon
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | - Pascal Rainard
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | | |
Collapse
|
3
|
Li Y, Ren Q, Wang X, Luoreng Z, Wei D. Bta-miR-199a-3p Inhibits LPS-Induced Inflammation in Bovine Mammary Epithelial Cells via the PI3K/AKT/NF-κB Signaling Pathway. Cells 2022; 11:cells11213518. [PMID: 36359915 PMCID: PMC9656885 DOI: 10.3390/cells11213518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Mastitis is characterized by inflammatory damage to mammary gland tissue, which could decline milk production and quality and significantly affect the economic benefits of ranching. MicroRNAs (miRNAs), such as miR-199a-3p, are novel therapeutic targets in inflammation, and their regulation is an effective strategy for inflammation control. Despite its importance in humans and animals, the molecular mechanism of bovine miR-199a-3p (bta-miR-199a-3p) in dairy cow mastitis and bovine mammary epithelial cell (bMEC) inflammation is unclear. In our study, a bovine mammary epithelial cell line (MAC-T) induced by lipopolysaccharide (LPS) was used as an inflammatory cell model to investigate the molecular mechanism of bta-miR-199a-3p in the MAC-T inflammatory response. bta-miR-199a-3p was up-regulated in the LPS-induced MAC-T cells, while CD2-associated protein (CD2AP) was revealed as its target gene in a double luciferase reporter gene experiment. In addition, the overexpression of bta-miR-199a-3p negatively regulated the expression of CD2AP and the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT/nuclear factor kappa-B (NF-κB) signaling pathway. These subsequently inhibited the secretion of related inflammatory factors (TNF-α, IL-1β, and IL-6) and the expression of apoptotic genes (CASP3 and CASP9), thereby alleviating the LPS-challenged inflammatory response in the MAC-T cells. Silencing of bta-miR-199a-3p, however, reversed the above effects. Thus, bta-miR-199a-3p inhibits LPS-induced inflammation in bMECs by directly targeting CD2AP and regulating the PI3K/AKT/NF-κB signaling pathway. This study reveals the potential regulatory mechanism of bta-miR-199a-3p in bMEC inflammatory immune response and may serve as a useful target for the treatment of mastitis.
Collapse
Affiliation(s)
- Yuhang Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Qianqian Ren
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xingping Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (X.W.); (Z.L.)
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (X.W.); (Z.L.)
| | - Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| |
Collapse
|
4
|
Cunha P, Gilbert FB, Bodin J, Godry L, Germon P, Holbert S, Martins RP. Simplified Approaches for the Production of Monocyte-Derived Dendritic Cells and Study of Antigen Presentation in Bovine. Front Vet Sci 2022; 9:891893. [PMID: 35754538 PMCID: PMC9223769 DOI: 10.3389/fvets.2022.891893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells are sentinels of the immune system responsible for the initiation of adaptive immune mechanisms. In that respect, the study of these cells is essential for a full understanding of host response to infectious agents and vaccines. In ruminants, the large blood volume facilitates the isolation of abundant monocytes and their derivation to other antigen-presenting cells such as dendritic cells and macrophages. However, the available protocols for the production of bovine monocyte-derived dendritic cells (moDCs) rely mostly on time-consuming and costly techniques such as density gradient centrifugation and magnetic sorting of cells. In this study, we describe a simplified protocol for the production of bovine moDC using conventional and serum-free media. We also employ moDC produced by this approach to carry out a flow cytometry-based antigen presentation assay adapted to blood fresh or frozen cells. The experimental strategies described here might enable the setup of studies involving a large number of individuals, requiring a large number of dendritic cells, or relying on the utilization of cryopreserved blood cells. These simplified protocols might contribute to the elucidation of cell-mediated immune responses in bovine.
Collapse
Affiliation(s)
- Patricia Cunha
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | | | - Jennifer Bodin
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | - Lise Godry
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | - Pierre Germon
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | | | | |
Collapse
|
5
|
Differential mRNA Expression Profiling Reveals the Role of MiR-375 in Inflammation of Bovine Mammary Epithelial Cells. Animals (Basel) 2022; 12:ani12111431. [PMID: 35681895 PMCID: PMC9179474 DOI: 10.3390/ani12111431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Bovine mammary epithelial cells (bMECs) are often used as cell models for mammary gland research. They are the most important cells for mammary gland function and the first line of defense for pathogen identification. MicroRNAs (miRNAs) are important regulatory factors involved in many physiological and pathological processes. Here, we examined a transcriptome profile of bovine mammary epithelial cell lines transfected with miR-375 inhibitor or negative control (NC) inhibitor, and further reveal the potential role of miR-375 in bMECs by differentially expressed mRNA analysis. We found that miR-375 potentially promotes inflammation in the mammary gland through the MAPK signaling pathway. Abstract MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate post-transcriptional gene expression and several biological processes. Bovine mammary epithelial cells (bMECs) mediate critical immune responses in the mammary gland and the occurrence of mastitis. Current research focuses on miRNA regulation of bMECs, but the miR-375 regulatory mechanism in bMECs is unclear. This study explored the role of miR-375 by profiling the transcriptome of miR-375-silenced bMECs using RNA-seq and identifying differentially expressed mRNAs (DIE-mRNAs). There were 63 DIE-mRNAs, including 48 down-regulated and 15 up-regulated mRNAs between miR-375-silenced bMECs and the controls. The Kyoto encyclopedia of genes and genomes (KEGG) and Gene Ontology (GO) functional analysis showed that the DIE-mRNAs enriched nuclear receptor subfamily 4 group A member 1 (NR4A1) and protein tyrosine phosphatase non-receptor type 5 (PTPN5) anti-inflammatory genes of the mitogen-activated protein kinase (MAPK) signaling pathway. However, they showed an opposite trend to the expression of miR-375 silencing, suggesting that miR-375 promotes bMEC inflammation through the MAPK signaling pathway. The findings of this study provide a new reference for understanding the regulation of bMEC inflammation and cow mastitis.
Collapse
|
6
|
Yang J, Hu QC, Wang JP, Ren QQ, Wang XP, Luoreng ZM, Wei DW, Ma Y. RNA-Seq Reveals the Role of miR-29c in Regulating Inflammation and Oxidative Stress of Bovine Mammary Epithelial Cells. Front Vet Sci 2022; 9:865415. [PMID: 35433915 PMCID: PMC9011060 DOI: 10.3389/fvets.2022.865415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022] Open
Abstract
Healthy mammary gland is essential for milk performance in dairy cows. MicroRNAs (miRNAs) are the key molecules to regulate the steady state of mammary gland in dairy cows. This study investigated the potential role of miR-29c in bovine mammary epithelial cells (bMECs). RNA sequencing (RNA-seq) was used to measure the transcriptome profile of bovine mammary epithelial cells line (MAC-T) transfected with miR-29c inhibitor or negative control (NC) inhibitor, and then differentially expressed genes (DEGs) were screened. The results showed that a total of 42 up-regulated and 27 down-regulated genes were found in the miR-29c inhibitor group compared with the NC inhibitor group. The functional enrichment of the above DEGs indicates that miR-29c is a potential regulator of oxidative stress and inflammatory response in bMECs through multiple genes, such as forkhead box O1 (FOXO1), tumor necrosis factor-alpha (TNF-α), and major histocompatibility complex, class II, DQ alpha 5 (BoLA-DQA5) in the various biological process and signaling pathways of stress-activated mitogen-activated protein kinase (MAPK) cascade, Epstein-Barr virus infection, inflammatory bowel disease, etc. The results imply that miR-29c plays an important role in a steady state of bMECs or cow mammary gland and may be a potential therapeutic target for mastitis in dairy cows.
Collapse
Affiliation(s)
- Jian Yang
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qi-Chao Hu
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jin-Peng Wang
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qian-Qian Ren
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Xing-Ping Wang
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
- *Correspondence: Xing-Ping Wang
| | - Zhuo-Ma Luoreng
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
- Zhuo-Ma Luoreng
| | - Da-Wei Wei
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
7
|
Wang JP, Hu QC, Yang J, Luoreng ZM, Wang XP, Ma Y, Wei DW. Differential Expression Profiles of lncRNA Following LPS-Induced Inflammation in Bovine Mammary Epithelial Cells. Front Vet Sci 2021; 8:758488. [PMID: 34778437 PMCID: PMC8589037 DOI: 10.3389/fvets.2021.758488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022] Open
Abstract
Bovine mastitis is an inflammatory response of mammary glands caused by pathogenic microorganisms such as Escherichia coli (E. coli). As a key virulence factor of E. coli, lipopolysaccharide (LPS) triggers innate immune responses via activation of the toll-like-receptor 4 (TLR4) signaling pathway. However, the molecular regulatory network of LPS-induced bovine mastitis has yet to be fully mapped. In this study, bovine mammary epithelial cell lines MAC-T were exposed to LPS for 0, 6 and 12 h to assess the expression profiles of long non-coding RNAs (lncRNAs) using RNA-seq. Differentially expressed lncRNAs (DElncRNAs) were filtered out of the raw data for subsequent analyses. A total of 2,257 lncRNAs, including 210 annotated and 2047 novel lncRNAs were detected in all samples. A large proportion of lncRNAs were present in a high abundance, and 112 DElncRNAs were screened out at different time points. Compared with 0 h, there were 22 up- and 25 down-regulated lncRNAs in the 6 h of post-infection (hpi) group, and 27 up- and 22 down-regulated lncRNAs in the 12 hpi group. Compared with the 6 hpi group, 32 lncRNAs were up-regulated and 25 lncRNAs were down-regulated in the 12 hpi group. These DElncRNAs are involved in the regulation of a variety of immune-related processes including inflammatory responses bMECs exposed to LPS. Furthermore, lncRNA TCONS_00039271 and TCONS_00139850 were respectively significance down- and up-regulated, and their target genes involve in regulating inflammation-related signaling pathways (i.e.,Notch, NF-κB, MAPK, PI3K-Akt and mTOR signaling pathway), thereby regulating the occurrence and development of E. coli mastitis. This study provides a resource for lncRNA research on the molecular regulation of bovine mastitis.
Collapse
Affiliation(s)
- Jin-Peng Wang
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qi-Chao Hu
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jian Yang
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Zhuo-Ma Luoreng
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Xing-Ping Wang
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Da-Wei Wei
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
8
|
Contreras-Benicio D, Castro-Valenzuela BE, Grado-Ahuir JA, Burrola-Barraza M. Well-of-the-well (WOW) versus polyester mesh (PM): a comparison of single-embryo culture systems in bovines. REV COLOMB CIENC PEC 2021. [DOI: 10.17533/udea.rccp.v35n2a03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Luoreng ZM, Wei DW, Wang XP. MiR-125b regulates inflammation in bovine mammary epithelial cells by targeting the NKIRAS2 gene. Vet Res 2021; 52:122. [PMID: 34535180 PMCID: PMC8447609 DOI: 10.1186/s13567-021-00992-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 08/11/2021] [Indexed: 12/04/2022] Open
Abstract
Mastitis is a complex inflammatory disease caused by pathogenic infection of mammary tissue in dairy cows. The molecular mechanism behind its occurrence, development, and regulation consists of a multi-gene network including microRNA (miRNA). Until now, there is no report on the role of miR-125b in regulating mastitis in dairy cows. This study found that miR-125b expression is significantly decreased in lipopolysaccharide (LPS)-induced MAC-T bovine mammary epithelial cells. Also, its expression is negatively correlated with the expression of NF-κB inhibitor interacting Ras-like 2 (NKIRAS2) gene. MiR-125b target genes were identified using a double luciferase reporter gene assay, which showed that miR-125b can bind to the 3′ untranslated region (3′ UTR) of the NKIRAS2, but not the 3′UTR of the TNF-α induced protein 3 (TNFAIP3). In addition, miR-125b overexpression and silencing were used to investigate the role of miR-125b on inflammation in LPS-induced MAC-T. The results demonstrate that a reduction in miR-125b expression in LPS-induced MAC-T cells increases NKIRAS2 expression, which then reduces NF-κB activity, leading to low expression of the inflammatory factors IL-6 and TNF-α. Ultimately, this reduces the inflammatory response in MAC-T cells. These results indicate that miR-125b is a pro-inflammatory regulator and that its silencing can alleviate bovine mastitis. These findings lay a foundation for elucidating the molecular regulation mechanism of cow mastitis.
Collapse
Affiliation(s)
- Zhuo-Ma Luoreng
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Da-Wei Wei
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Xing-Ping Wang
- School of Agriculture, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
10
|
Determining the expression levels of circulating tumour cell markers in canine mammary tumours. ACTA VET BRNO 2021. [DOI: 10.2754/avb202190020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Detection of the circulating tumour cells (CTC) in dogs with a mammary tumour is a useful tool to reveal the micrometastases long before metastases are recognised clinically. The aim of this study was to evaluate the association of the epidermal growth factor receptor (EGFR), claudin 7 (CLND7) and epithelial cell adhesion molecule (EPCAM) with the clinical indices and to reveal the diagnostic importance of these biomarkers in canine mammary tumours (CMTs). Peripheral blood (PB) samples were collected from 45 bitches (group MT) which had single mass with malignant epithelial tumours and 9 healthy bitches (group H). Real time PCR (rt-PCR) was performed to determine the expression levels of EGFR, CLDN7, and EPCAM. Mean values of EGFR and CLDN7 expressions were significantly higher in group MT compared to group H (P < 0.01 and P < 0.001, respectively). The expression level of CLDN7 was positively correlated with EGFR and EPCAM (P < 0.001 and P < 0.05, respectively). The EPCAM expression was associated with increased tumour size (P < 0.05) and EPCAM tended to decrease in the presence of skin ulceration on tumour (P = 0.05). Furthermore, expression levels of EGFR in intact dogs were significantly higher compared to spayed dogs in group MT (P < 0.01). The EGFR expression was significantly higher in the presence of metastases (P < 0.05). Also, increased EGFR was determined in grade 2 compared to grade 1 (P < 0.05). In conclusion, these results show that EGFR, CLDN7, EPCAM markers are measureable in PB and they may provide valuable information about the clinical pathophysiology of CMT.
Collapse
|
11
|
Kalb D, Vo HD, Adikari S, Hong-Geller E, Munsky B, Werner J. Visualization and modeling of inhibition of IL-1β and TNF-α mRNA transcription at the single-cell level. Sci Rep 2021; 11:13692. [PMID: 34211022 PMCID: PMC8249620 DOI: 10.1038/s41598-021-92846-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/11/2021] [Indexed: 11/29/2022] Open
Abstract
IL-1β and TNF-α are canonical immune response mediators that play key regulatory roles in a wide range of inflammatory responses to both chronic and acute conditions. Here we employ an automated microscopy platform for the analysis of messenger RNA (mRNA) expression of IL-1β and TNF-α at the single-cell level. The amount of IL-1β and TNF-α mRNA expressed in a human monocytic leukemia cell line (THP-1) is visualized and counted using single-molecule fluorescent in-situ hybridization (smFISH) following exposure of the cells to lipopolysaccharide (LPS), an outer-membrane component of Gram-negative bacteria. We show that the small molecule inhibitors MG132 (a 26S proteasome inhibitor used to block NF-κB signaling) and U0126 (a MAPK Kinase inhibitor used to block CCAAT-enhancer-binding proteins C/EBP) successfully block IL-1β and TNF-α mRNA expression. Based upon this single-cell mRNA expression data, we screened 36 different mathematical models of gene expression, and found two similar models that capture the effects by which the drugs U0126 and MG132 affect the rates at which the genes transition into highly activated states. When their parameters were informed by the action of each drug independently, both models were able to predict the effects of the combined drug treatment. From our data and models, we postulate that IL-1β is activated by both NF-κB and C/EBP, while TNF-α is predominantly activated by NF-κB. Our combined single-cell experimental and modeling efforts show the interconnection between these two genes and demonstrates how the single-cell responses, including the distribution shapes, mean expression, and kinetics of gene expression, change with inhibition.
Collapse
Affiliation(s)
- Daniel Kalb
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Huy D Vo
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Samantha Adikari
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Brian Munsky
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA.
| | - James Werner
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
12
|
Hervet C, Boullier J, Guiadeur M, Michel L, Brun-Lafleur L, Aupiais A, Zhu J, Mounaix B, Meurens F, Renois F, Assié S. Appeasing Pheromones against Bovine Respiratory Complex and Modulation of Immune Transcript Expressions. Animals (Basel) 2021; 11:ani11061545. [PMID: 34070477 PMCID: PMC8229285 DOI: 10.3390/ani11061545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
Bovine respiratory disease is still a major concern and has major economic impact. Another consequence of respiratory infections is the use of antimicrobial molecules to control bacterial pathogens. This can participate in the emergence and shedding of antimicrobial resistance that can threaten animal as well as human health. Appeasing pheromones with their capacity to reduce stress and thus their ability to preserve the functions of the immune system have been proposed to reduce the use of antimicrobial substances. In this study, we assessed the effect of appeasing pheromone administration on bovine health and performance during the fattening period. Zootechnical and health parameters and whole blood immune transcript expressions were measured over four weeks in bulls to determine the effect of the pheromone. We observed increased clinical signs on Day 8 (D8) and decreased clinical signs on D30 in bulls who received the pheromone and a higher expression of interleukin 8 transcripts in this group than in the control group on D8. Our results are overall in line with previous reports in livestock species. Further studies are needed to shed more light on the effect of appeasing pheromones and decipher their exact mechanisms of action.
Collapse
Affiliation(s)
- Caroline Hervet
- BIOEPAR, INRAE, Oniris, 44307 Nantes, France; (C.H.); (J.B.); (F.R.); (S.A.)
| | - Justine Boullier
- BIOEPAR, INRAE, Oniris, 44307 Nantes, France; (C.H.); (J.B.); (F.R.); (S.A.)
- Institut de l’Élevage, 14310 Villers-Bocage, France;
| | | | - Léa Michel
- TERRENA Innovation, La Noëlle, 20199 Ancenis, France;
| | | | - Anne Aupiais
- Institut de l’Élevage, 35652 Le Rheu, France; (L.B.-L.); (A.A.); (B.M.)
| | - Jianzhong Zhu
- College of Veterinary Medicine, Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - Béatrice Mounaix
- Institut de l’Élevage, 35652 Le Rheu, France; (L.B.-L.); (A.A.); (B.M.)
| | - François Meurens
- BIOEPAR, INRAE, Oniris, 44307 Nantes, France; (C.H.); (J.B.); (F.R.); (S.A.)
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, Saskatoon, SK S7N5E3, Canada
- Correspondence: ; Tel.: +33-240-68-77-02
| | - Fanny Renois
- BIOEPAR, INRAE, Oniris, 44307 Nantes, France; (C.H.); (J.B.); (F.R.); (S.A.)
| | - Sébastien Assié
- BIOEPAR, INRAE, Oniris, 44307 Nantes, France; (C.H.); (J.B.); (F.R.); (S.A.)
| |
Collapse
|
13
|
Niu H, Zhang H, Wu F, Xiong B, Tong J, Jiang L. Proteomics study on the protective mechanism of soybean isoflavone against inflammation injury of bovine mammary epithelial cells induced by Streptococcus agalactiae. Cell Stress Chaperones 2021; 26:91-101. [PMID: 32865767 PMCID: PMC7736374 DOI: 10.1007/s12192-020-01158-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/14/2023] Open
Abstract
This study aimed to verify the anti-inflammatory effect of soybean isoflavones (SI) on the inflammatory response induced by Streptococcus agalactiae (S. agalactiae) of bovine mammary epithelial cells (bMECs) and to elucidate its possible mechanism. BMECs were pretreated with SI of different concentrations (20, 40, 60, 80, 100 μg/mL) for 0.5, 3, 6, 9, 12, 15, 18, 24 h. And then, S. agalactiae was used to infect bMECs for 6 h (MOI = 50:1) to establish the inflammation model. Cell viability, growth curves of S. agalactiae, cytotoxicity, and S. agalactiae invasion rate were determined. A proteomics technique was used to further detect differential proteins and enrichment pathways. SI (40 μg/mL) improved the viability of bMECs at 12 h (p < 0.05) and 60 and 80 μg/mL of SI greater (p < 0.01). Moreover, 60 μg/mL of SI protects cells from bacterial damage (p < 0.05). SI could inhibit S. agalactiae growth and internalization into bMECs in a time- and dose-dependent manner. In addition, proteomics results showed that 133 proteins were up-regulated and 89 proteins were down-regulated significantly. The differentially significantly expressed proteins (DSEPs) were mainly related to cell proliferation, differentiation, apoptosis, and migration. GO annotation showed that 222 DSEPs were divided into 23 biological processes (BP) terms, 14 cell components (CC) terms, and 12 molecular functions (MF) terms. DSEPs were significantly enriched in 10 pathways, of which the immune pathway was the main enrichment pathway.
Collapse
Affiliation(s)
- Hui Niu
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Hua Zhang
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Fuxin Wu
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jinjin Tong
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Linshu Jiang
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
14
|
Vander Elst N, Breyne K, Steenbrugge J, Gibson AJ, Smith DGE, Germon P, Werling D, Meyer E. Enterobactin Deficiency in a Coliform Mastitis Isolate Decreases Its Fitness in a Murine Model: A Preliminary Host-Pathogen Interaction Study. Front Vet Sci 2020; 7:576583. [PMID: 33240956 PMCID: PMC7680728 DOI: 10.3389/fvets.2020.576583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Iron is an essential nutrient for bacterial growth. Therefore, bacteria have evolved chelation mechanisms to acquire iron for their survival. Enterobactin, a chelator with high affinity for ferric iron, is secreted by Escherichia coli and contributes to its improved bacterial fitness. In this preliminary study, we evaluated enterobactin deficiency both in vitro and in vivo in the context of E. coli mastitis. Firstly, we showed that expression of lipocalin 2, a protein produced by the host that is able to both bind and deplete enterobactin, is increased upon E. coli infection in the cow's mastitic mammary gland. Secondly, we demonstrated in vitro that enterobactin deficiency does not alter interleukin (IL)-8 expression in bovine mammary epithelial cells and its associated neutrophil recruitment. However, a significantly increased reactive oxygen species production of these neutrophils was observed. Thirdly, we showed there was no significant difference in bacterial in vitro growth between the enterobactin-deficient mutant and its wild-type counterpart. However, when further explored in a murine model for bovine mastitis, the enterobactin-deficient mutant vs. the wild-type strain revealed a significant reduction of the bacterial load and, consequently, a decrease in pro-inflammatory cytokines (IL-1α,-1β,-4,-6, and-8). A reduced neutrophilic influx was also observed immunohistochemically. These findings therefore identify interference of the enterobactin iron-scavenging mechanism as a potential measure to decrease the fitness of E. coli in the mastitic mammary gland.
Collapse
Affiliation(s)
- Niels Vander Elst
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Koen Breyne
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Amanda Jane Gibson
- Centre of Excellence for Bovine TB, Institute of Biology, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - David George Emslie Smith
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Pierre Germon
- INRAE, UMR ISP, Université François Rabelais de Tours, Nouzilly, France
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
15
|
Zhuang C, Liu G, Barkema HW, Zhou M, Xu S, Ur Rahman S, Liu Y, Kastelic JP, Gao J, Han B. Selenomethionine Suppressed TLR4/NF-κB Pathway by Activating Selenoprotein S to Alleviate ESBL Escherichia coli-Induced Inflammation in Bovine Mammary Epithelial Cells and Macrophages. Front Microbiol 2020; 11:1461. [PMID: 32733409 PMCID: PMC7360804 DOI: 10.3389/fmicb.2020.01461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/04/2020] [Indexed: 01/17/2023] Open
Abstract
Inflammation is the hallmark of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli-induced bovine mastitis. Organic selenium can activate pivotal proteins in immune responses and regulate the immune system. The present study aimed to investigate whether selenomethionine (SeMet) attenuates ESBL E. coli-induced inflammation in bovine mammary epithelial cells (bMECs) and macrophages. Cells were treated with 0, 5/10, 10/20, 20/40, or 40/60 μM SeMet for 12 h and/or inoculated with ESBL-E. coli [multiplicity of infection (MOI) = 5] for 4/6 h, respectively. We assessed inflammatory responses, including selenoprotein S (SeS), Toll-like receptor 4 (TLR4), Ikappa-B (IκB), phospho-NF-κB p65 (Ser536), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and lactate dehydrogenase (LDH) activities. Treatment with 40/60 μM SeMet promoted cell viability and inhibited LDH activities in both bMECs and macrophages. Inoculation with ESBL-E. coli reduced cell viability, which was attenuated by SeMet treatment in bMECs and macrophages. SeMet increased ESBL E. coli-induced downregulation of SeS and decreased LDH activities, TLR4, IκB, phospho-NF-κB p65 (Ser536), IL-1β, and TNF-α protein expressions in bMECs and macrophages. In addition, knockdown of SeS promoted protein expression of TLR4-mediated nuclear factor-kappa (NF-κB) pathway and BAY 11-708 inhibited TNF-α and IL-1β protein levels in bMECs and macrophages after ESBL-E. coli treatment. Moreover, ESBL-E. coli inoculation increased monocyte chemoattractant protein 1 (MCP-1), C-C motif ligand 3 (CCL-3), and CCL-5 mRNA expressions in bMECs. In conclusion, ESBL-E. coli induced expression of MCP-1, CCL-3, and CCL-5 in bMECs and then recruited and activated macrophages, whereas SeMet attenuated ESBL E. coli-induced inflammation through activated SeS-mediated TLR4/NF-κB signaling pathway in bMECs and macrophages.
Collapse
Affiliation(s)
- Cuicui Zhuang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Man Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Siyu Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sadeeq Ur Rahman
- Section of Microbiology, Department of Pathobiology, College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Miao Z, Ding Y, Zhao N, Chen X, Cheng H, Wang J, Liu Y, Wang F. Transcriptome sequencing reveals fibrotic associated-genes involved in bovine mammary fibroblasts with Staphylococcus aureus. Int J Biochem Cell Biol 2020; 121:105696. [PMID: 32001362 DOI: 10.1016/j.biocel.2020.105696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 12/13/2022]
Abstract
Bovine mammary fibrosis represents a considerable health problem of cows, primarily indicated by lactation failure. Staphylococcus aureus (S. aureus) can cause mammary damage, this multifactorial disease necessitates to identify how and to what extent molecular pathogen defense mechanisms prevent bacterial infections in bovine mammary gland. In this study, we have aimed to determine the transcriptional responses in bovine mammary fibroblasts (BMFBs) induced by S. aureus using bioinformatics analysis to determine whether mRNA expression profile changes between BMFBs activation and quiescence. Established primary BMFBs obtained from healthy Holstein bovine were induced 106 CFU/mL heat-inactivated S. aureus and total RNA was isolated 6 h after treatment. The 574 DEGs were involved in gene ontology (GO) that were immune response, apoptotic process, extracellular region, receptor binding, endopeptidase activity and protein kinase activity et al. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, distinct pathway contained signaling molecules common to various inflammatory and fibrotic pathways were Pathways in cancer, Cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, TNF signaling pathway, MAPK signaling pathway and Toll-like receptor signaling pathway. The BMFBs was treated with heat-inactivated S. aureus (106 CFU/mL) and also with pharmacological inhibitors of ERK1/2, P38 MAPK and JNK. The MMP-2 activity were examined gelatin zymography, MMP-2, TIMP-1, -2 and PLAU/PAI-1 protein expression were examined in vitro by western blot. The MMP-2 activity was significantly inhibited by simultaneous inhibition of ERK1/2, P38 MAPK and JNK, and MMP-2, TIMP-1,-2 and PLAU/PAI-1 protein expression were significantly decreased by inhibiting ERK1/2, P38 MAPK or JNK. This suggested a crosstalk between the ERK1/2, P38 MAPK or JNK signaling pathways in regulating extracellular matrix metabolism in the BMFBs with S. aureus. Our study complement our initial study on S. aureus-induced responses by fibrosis-associated genes in BMFBs. This may lead to development of novel therapeutic targets to control bovine mammary fibrosis induced by S. aureus.
Collapse
Affiliation(s)
- Zengqiang Miao
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Yulin Ding
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Nan Zhao
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Xunan Chen
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Huixin Cheng
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Jinling Wang
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Yonghong Liu
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Fenglong Wang
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
17
|
Cunha P, Vern YL, Gitton C, Germon P, Foucras G, Rainard P. Expansion, isolation and first characterization of bovine Th17 lymphocytes. Sci Rep 2019; 9:16115. [PMID: 31695097 PMCID: PMC6834651 DOI: 10.1038/s41598-019-52562-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Interleukin 17A-producing T helper cells (Th17) are CD4+ T cells that are crucial to immunity to extracellular bacteria. The roles of these cells in the bovine species are poorly defined, because the characterization of bovine Th17 cells lags behind for want of straightforward cultivation and isolation procedures. We have developed procedures to differentiate, expand, and isolate bovine Th17 cells from circulating CD4+ T cells of adult cows. Using polyclonal stimulation with antibodies to CD3 and CD28, we expanded IL-17A-positive CD4+ T cells in a serum-free cell culture medium supplemented with TGF-β1, IL-6 and IL-2. Populations of CD4+ T cells producing IL-17A or IFN-γ or both cytokines were obtained. Isolation of IL-17A-secreting CD4+ T cells was performed by labelling surface IL-17A, followed by flow cytometry cell sorting. The sorted Th17 cells were restimulated and could be expanded for several weeks. These cells were further characterized by cytokine profiling at transcriptomic and protein levels. They produced high amounts of IL-17A and IL-17F, and moderate amounts of IL-22 and IFN-γ. The techniques developed will be useful to characterize the phenotypic and functional properties of bovine Th17 cells.
Collapse
Affiliation(s)
- Patricia Cunha
- ISP, INRA, Université de Tours, UMR1282, Nouzilly, France
| | - Yves Le Vern
- ISP, INRA, Université de Tours, UMR1282, Nouzilly, France
| | | | - Pierre Germon
- ISP, INRA, Université de Tours, UMR1282, Nouzilly, France
| | - Gilles Foucras
- IHAP, INRA, ENVT, Université de Toulouse, Toulouse, France
| | - Pascal Rainard
- ISP, INRA, Université de Tours, UMR1282, Nouzilly, France.
| |
Collapse
|
18
|
Ren WB, Xia XJ, Huang J, Guo WF, Che YY, Huang TH, Lei LC. Interferon-γ regulates cell malignant growth via the c-Abl/HDAC2 signaling pathway in mammary epithelial cells. J Zhejiang Univ Sci B 2019; 20:39-48. [PMID: 30614229 DOI: 10.1631/jzus.b1800211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Interferon-γ (IFN-γ) has been used to control cancers in clinical treatment. However, an increasing number of reports have suggested that in some cases effectiveness declines after a long treatment period, the reason being unclear. We have reported previously that long-term IFN-γ treatment induces malignant transformation of healthy lactating bovine mammary epithelial cells (BMECs) in vitro. In this study, we investigated the mechanisms underlying the malignant proliferation of BMECs under IFN-γ treatment. The primary BMECs used in this study were stimulated by IFN-γ (10 ng/mL) for a long term to promote malignancy. We observed that IFN-γ could promote malignant cell proliferation, increase the expression of cyclin D1/cyclin-dependent kinase 4 (CDK4), decrease the expression of p21, and upregulate the expression of cellular-abelsongene (c-Abl) and histone deacetylase 2 (HDAC2). The HDAC2 inhibitor, valproate (VPA) and the c-Abl inhibitor, imatinib, lowered the expression level of cyclin D1/CDK4, and increased the expression level of p21, leading to an inhibitory effect on IFN-γ-induced malignant cell growth. When c-Abl was downregulated, the HDAC2 level was also decreased by promoted proteasome degradation. These data suggest that IFN-γ promotes the growth of malignant BMECs through the c-Abl/HDAC2 signaling pathway. Our findings suggest that long-term application of IFN-γ may be closely associated with the promotion of cell growth and even the carcinogenesis of breast cancer.
Collapse
Affiliation(s)
- Wen-Bo Ren
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.,The First Hospital, Jilin University, Changchun 130021, China
| | - Xiao-Jing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453099, China
| | - Jing Huang
- The First Hospital, Jilin University, Changchun 130021, China
| | - Wen-Fei Guo
- The First Hospital, Jilin University, Changchun 130021, China
| | - Yan-Yi Che
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ting-Hao Huang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lian-Cheng Lei
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
19
|
Che YY, Xia XJ, He BP, Gao YY, Ren WB, Liu HT, Liu JF, Huang TH, Han WY, Lei LC. A corn straw-based diet increases release of inflammatory cytokines in peripheral blood mononuclear cells of dairy cows. J Zhejiang Univ Sci B 2019; 19:796-806. [PMID: 30269447 DOI: 10.1631/jzus.b1700571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent studies have shown that diet can affect the body's immunity. Roughage of dairy cows consists of a variety of plant materials which make different contributions to health. This study investigated the effect of different roughages on the immunity of dairy cows. Serum, peripheral blood mononuclear cells (PBMCs), and milk samples were collected from 20 multiparous mid-lactation cows fed mixed forage (MF)- or corn straw (CS)-based diets. Expression profile analysis was used to detect the differentially expressed genes (DEGs) from PBMCs. The results showed that milk protein in the MF group increased to 3.22 g/100 ml, while that of the CS group milk was 2.96 g/100 ml; by RNA sequencing, it was found that 1615 genes were differentially expressed between the CS group and the MF group among the 24 027 analyzed probes. Gene ontology (GO) and pathway analysis of DEGs suggested that these genes (especially genes coding cytokines, chemokine and its receptors) are involved in the immune response. Results were confirmed at the protein level via detecting the levels of interleukin-2 (IL-2), IL-6, IL-10, IL-12, leptin (LEP), interferon-γ (IFN-γ), transforming growth factor-β1 (TGF-β1), and tumor necrosis factor-α (TNF-α) in peripheral blood by enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay analysis. Our data supported the conclusions that the protein content in milk of the MF group was higher than that of the CS group, the CS-based diets induced more release of cytokines than the MF-based diets in dairy cows' PBMCs, and milk protein content may be affected by cytokines.
Collapse
Affiliation(s)
- Yan-Yi Che
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiao-Jing Xia
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Bo-Ping He
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuan-Yuan Gao
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Wen-Bo Ren
- Department of Clinical Laboratory, the First Hospital, Jilin University, Changchun 130062, China
| | - Hong-Tao Liu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jian-Fang Liu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ting-Hao Huang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Wen-Yu Han
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lian-Cheng Lei
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
20
|
Védrine M, Berthault C, Leroux C, Répérant-Ferter M, Gitton C, Barbey S, Rainard P, Gilbert FB, Germon P. Sensing of Escherichia coli and LPS by mammary epithelial cells is modulated by O-antigen chain and CD14. PLoS One 2018; 13:e0202664. [PMID: 30142177 PMCID: PMC6108492 DOI: 10.1371/journal.pone.0202664] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
Escherichia coli is one of the major pathogens causing mastitis in dairy cattle. Yet, the factors which mediate the ability for E. coli to develop in the bovine mammary gland remain poorly elucidated. In a mouse model, infections induced by the reference mastitis E. coli P4 showed a strong colonisation of the mammary gland, while this strain had a low stimulating power on cells of the PS bovine mammary epithelial cell line. In order to understand if such a reduced response contributes to the severity of infection, a library of random mutants of P4 strain was screened to identify mutants inducing stronger response of PS cells. Among hyper-stimulating mutants, six were altered in genes involved in biosynthesis of lipopolysaccharide (LPS) and had lost their O-polysaccharide region, suggesting that the presence of O-antigen impairs the response of PS cells to LPS. Using purified smooth (S) and rough (R) fractions of LPS, we showed that the R-LPS fraction induced a stronger response from PS cells than the smooth LPS fraction. Biological activity of the S-LPS fraction could be restored by the addition of recombinant bovine CD14 (rbCD14), indicating a crucial role of CD14 in the recognition of S-LPS by Mammary Epithelial Cells (MEC). When S-LPS and R-LPS were injected in udder quarters of healthy lactating cows, an inflammation developed in all infused quarters, but the S-LPS induced a more intense pro-inflammatory response, possibly in relation to sizeable concentrations of CD14 in milk. Altogether, our results demonstrate that the O-antigen modulates the pro-inflammatory response of MEC to LPS, that S-LPS and R-LPS trigger different responses of MEC and that these responses depend on the presence of CD14.
Collapse
Affiliation(s)
- Mégane Védrine
- ISP UMR 1282, INRA, Université François Rabelais de Tours, Nouzilly, France
| | - Camille Berthault
- ISP UMR 1282, INRA, Université François Rabelais de Tours, Nouzilly, France
| | - Cindy Leroux
- ISP UMR 1282, INRA, Université François Rabelais de Tours, Nouzilly, France
| | | | - Christophe Gitton
- ISP UMR 1282, INRA, Université François Rabelais de Tours, Nouzilly, France
| | - Sarah Barbey
- UE 0326 Domaine Expérimental du Pin-Au-Haras, INRA, Le-Pin-Au-Haras, France
| | - Pascal Rainard
- ISP UMR 1282, INRA, Université François Rabelais de Tours, Nouzilly, France
| | | | - Pierre Germon
- ISP UMR 1282, INRA, Université François Rabelais de Tours, Nouzilly, France
- * E-mail:
| |
Collapse
|
21
|
Li Y, Gong Q, Guo W, Kan X, Xu D, Ma H, Fu S, Liu J. Farrerol Relieve Lipopolysaccharide (LPS)-Induced Mastitis by Inhibiting AKT/NF-κB p65, ERK1/2 and P38 Signaling Pathway. Int J Mol Sci 2018; 19:ijms19061770. [PMID: 29904013 PMCID: PMC6032361 DOI: 10.3390/ijms19061770] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 11/16/2022] Open
Abstract
Farrerol has been proved to have an anti-inflammatory effect. However, the effects of farrerol on mastitis have not been investigated. This study was aimed to investigate the effect and mechanism of farrerol in lipopolysaccharide (LPS)-induced mouse mastitis and LPS-induced inflammatory response of mouse mammary epithelial cells (mMECs). In vivo, LPS were injected to the tetrad pair of nipples for establishing mouse mastitis, and then tested the effect of farrerol on histopathological changes, inflammatory response and activation degree of protein kinase B (AKT), nuclear factor-kappa B p65 (NF-κB p65), p38, extracellular regulated protein kinase (ERK1/2). In vitro, the mMECs were incubated by farrerol for 1 h following by stimulating with LPS, and then the inflammatory response and the related signaling pathways were detected. The in vivo results found that farrerol could improve pathological injury of mammary gland, attenuate the activity of myeloperoxidase (MPO), inhibit the production of pro-inflammatory mediators and the phosphorylation of AKT, NF-κB p65, p38 and ERK1/2. The in vitro results also found farrerol inhibited inflammatory response and the related signaling pathways. Collectively, this study revealed that farrerol inhibits the further development of LPS-induced mastitis by inhibiting inflammatory response via down regulating phosphorylation of AKT, NF-κB p65, p38, and ERK1/2. These findings suggest that farrerol may be used as an anti-inflammatory drug for mastitis.
Collapse
Affiliation(s)
- Yanwei Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Qian Gong
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xingchi Kan
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Dianwen Xu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - He Ma
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
22
|
Ayari-Fakhfakh E, Ghram A, Albina E, Cêtre-Sossah C. Expression of cytokines following vaccination of goats with a recombinant capripoxvirus vaccine expressing Rift Valley fever virus proteins. Vet Immunol Immunopathol 2018; 197:15-20. [PMID: 29475501 DOI: 10.1016/j.vetimm.2018.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/20/2017] [Accepted: 01/03/2018] [Indexed: 11/29/2022]
Abstract
The mosquito-borne Rift Valley fever virus (RVFV) causes severe diseases in domesticated animals including cattle, sheep, camels and goats. Capripoxviruses (CPV) are suitable vectors for multivalent vaccine development. A recombinant rKS1-based CPV expressing the gene encoding the viral glycoprotein Gn of RVFV has been shown to induce protection in mice and sheep. The aim of this study was to evaluate the immunogenicity induced by this candidate vaccine in goats, and the level of cytokines produced by RVFV-specific Th1 and Th2 lymphocytes. The results of this study suggest that Th2 mediates immunity mainly through the significant production of IL4, which, coupled with a decrease in IFN-γ, may be involved in the replication of the capripoxvirus expressing the GN of RVFV. CD4+ cells may play the role of helper cells in B cell responses and neutralizing antibody production in the anti-CPV humoral response, leading to strong immunity against RVFV.
Collapse
Affiliation(s)
- Emna Ayari-Fakhfakh
- IRVT (Institut de la Recherche Vétérinaire de Tunisie), Tunis, Tunisie; Institut Pasteur de Tunis, Tunis, Tunisie; Université Tunis El Manar, Tunis, Tunisie; ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | | | - Emmanuel Albina
- ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France; CIRAD, UMR ASTRE, F-97170 Petit-Bourg, Guadeloupe, France
| | - Catherine Cêtre-Sossah
- ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France; CIRAD, UMR ASTRE, F-34398 Sainte-Clotilde, La Réunion, France.
| |
Collapse
|
23
|
Wang Y, Zhang X, Wei Z, Wang J, Zhang Y, Shi M, Yang Z, Fu Y. Platycodin D suppressed LPS-induced inflammatory response by activating LXRα in LPS-stimulated primary bovine mammary epithelial cells. Eur J Pharmacol 2017; 814:138-143. [DOI: 10.1016/j.ejphar.2017.07.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/25/2022]
|
24
|
Horcajo P, Jiménez-Pelayo L, García-Sánchez M, Regidor-Cerrillo J, Collantes-Fernández E, Rozas D, Hambruch N, Pfarrer C, Ortega-Mora LM. Transcriptome modulation of bovine trophoblast cells in vitro by Neospora caninum. Int J Parasitol 2017; 47:791-799. [PMID: 28899691 DOI: 10.1016/j.ijpara.2017.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/31/2017] [Accepted: 08/19/2017] [Indexed: 12/21/2022]
Abstract
Neospora caninum is one of the most efficient transplacentally transmitted pathogens in cattle and is a cause of abortion in this domestic species. The invasion and proliferation of Neospora caninum in the placenta and its dissemination to the foetus are crucial events in the outcome of an infection. In the bovine placenta, the placentomes are formed by maternal caruncles, which are delimited by a maternal epithelium and foetal cotyledons, which are delimited by an epithelial layer named the trophoblast. These epithelia form a physical barrier against foetal infection. Furthermore, trophoblast cells act as an innate immune defence at the foetal-maternal interface. Neospora caninum invades and proliferates in trophoblast cells in vitro, but it is unknown whether host cell modulation events, which affect the immune response and other processes in the trophoblast, occur. In this work, we investigated the transcriptomic modulation by Neospora caninum infection in the bovine trophoblast cell line F3. In addition, two Neospora caninum isolates with marked differences in virulence, Nc-Spain1H and the Nc-Spain7, were used in this study to investigate the influence of these isolates in F3 modulation. The results showed a clear influence on extracellular matrix reorganisation, cholesterol biosynthesis and the transcription factor AP-1 network. Interestingly, although differences in the transcriptome profiles induced by each isolate were observed, specific isolate-modulated processes were not identified, suggesting very similar regulation in both isolates. Differential expression of the N. caninum genes between both isolates was also investigated. Genes involved in host cell attachment and invasion (SAG-related and microneme proteins), glideosome, rhoptries, metabolic processes, cell cycle and stress response were differentially expressed between the isolates, which could explain their variability. This study provides a global view of Neospora caninum interactions with bovine trophoblast cells and of the intra-specific differences between two Neospora caninum isolates with biological differences.
Collapse
Affiliation(s)
- Pilar Horcajo
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Laura Jiménez-Pelayo
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Marta García-Sánchez
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Javier Regidor-Cerrillo
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Esther Collantes-Fernández
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Daniel Rozas
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Nina Hambruch
- Department of Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Christiane Pfarrer
- Department of Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| |
Collapse
|
25
|
Dugat T, Leblond A, Keck N, Lagrée AC, Desjardins I, Joulié A, Pradier S, Durand B, Boulouis HJ, Haddad N. One particular Anaplasma phagocytophilum ecotype infects cattle in the Camargue, France. Parasit Vectors 2017; 10:371. [PMID: 28764743 PMCID: PMC5540577 DOI: 10.1186/s13071-017-2305-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/24/2017] [Indexed: 11/20/2022] Open
Abstract
Background Anaplasma phagocytophilum is a zoonotic tick-borne pathogen responsible for granulocytic anaplasmosis, a mild to a severe febrile disease that affects man and several animal species, including cows and horses. In Europe, I. ricinus is the only proven vector for this pathogen, but studies suggest that other tick genera and species could be involved in its transmission. Our objective was to assess the presence and genetic diversity of A. phagocytophilum in domestic animals and different tick species from the Camargue region, located in the south of France. Methods A total of 140 ticks and blood samples from 998 cattle and 337 horses were collected in Camargue and tested for the presence of A. phagocytophilum DNA by msp2 quantitative real-time PCR. Molecular typing with four markers was performed on positive samples. Results Anaplasma phagocytophilum DNA was detected in 6/993 (0.6%) cows, 1/20 (5%) Haemaphysalis punctata, 1/57 (1.75%) Rhipicephalus pusillus, and was absent in horses (0%). All cattle A. phagocytophilum presented a profile identical to an A. phagocytophilum variant previously detected in Dermacentor marginatus, Hyalomma marginatum, and Rhipicephalus spp. in Camargue. Conclusions Our results demonstrate that one particular A. phagocytophilum variant infects cattle in Camargue, where I. ricinus is supposed to be rare or even absent. Dermacentor marginatus, Rhipicephalus spp. and Hyalomma spp., and possibly other tick species could be involved in the transmission of this variant in this region. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2305-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thibaud Dugat
- UMR BIPAR, Université Paris-Est, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Laboratoire de santé animale, Maisons-Alfort, France
| | - Agnès Leblond
- UR 0346 Épidémiologie Animale, INRA, Saint Genès Champanelle, France.,Equine Department, VetAgroSup, Marcy L'Etoile, France
| | - Nicolas Keck
- Laboratoire Départemental Vétérinaire de l'Hérault, Montpellier, France
| | - Anne-Claire Lagrée
- UMR BIPAR, Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Aurélien Joulié
- UR 0346 Épidémiologie Animale, INRA, Saint Genès Champanelle, France.,Equine Department, VetAgroSup, Marcy L'Etoile, France
| | - Sophie Pradier
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Benoit Durand
- Unité d'Épidémiologie, Université Paris-Est, Agence Nationale de Sécurité Sanitaire de l'alimentation, de l'environnement et du travail, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Henri-Jean Boulouis
- UMR BIPAR, Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Nadia Haddad
- UMR BIPAR, Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.
| |
Collapse
|
26
|
Roussel P, Porcherie A, Répérant-Ferter M, Cunha P, Gitton C, Rainard P, Germon P. Escherichia coli mastitis strains: In vitro phenotypes and severity of infection in vivo. PLoS One 2017; 12:e0178285. [PMID: 28727781 PMCID: PMC5519002 DOI: 10.1371/journal.pone.0178285] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/10/2017] [Indexed: 01/18/2023] Open
Abstract
Mastitis remains a major infection of dairy cows and an important issue for dairy farmers and the dairy industry, in particular infections due to Escherichia coli strains. So far, properties specific to E. coli causing mastitis remain ill defined. In an attempt to better understand the properties required for E. coli to trigger mastitis, we used a range of in vitro assays to phenotypically characterize four E. coli strains, including the prototypical E. coli mastitis strain P4, possessing different relative abilities to cause mastitis in a mouse model. Our results indicate that a certain level of serum resistance might be required for colonization of the mammary gland. Resistance to neutrophil killing is also likely to contribute to a slower clearance of bacteria and higher chances to colonize the udder. In addition, we show that the four different strains do induce a pro-inflammatory response by mammary epithelial cells but with different intensities. Interestingly, the prototypical mastitis strain P4 actually induces the less intense response while it is responsible for the most severe infections in vivo. Altogether, our results suggest that different strategies can be used by E. coli strains to colonize the mammary gland and cause mastitis.
Collapse
Affiliation(s)
- Perrine Roussel
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Adeline Porcherie
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | | | - Patricia Cunha
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Christophe Gitton
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Pascal Rainard
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Pierre Germon
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
- * E-mail:
| |
Collapse
|
27
|
Wang XP, Luoreng ZM, Zan LS, Li F, Li N. Bovine miR-146a regulates inflammatory cytokines of bovine mammary epithelial cells via targeting the TRAF6 gene. J Dairy Sci 2017; 100:7648-7658. [PMID: 28690061 DOI: 10.3168/jds.2017-12630] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/15/2017] [Indexed: 01/27/2023]
Abstract
It has been reported previously that bovine miR-146a (bta-miR-146a) is significantly differentially expressed in mammary glands infected with mastitis, compared with healthy udders. This suggests that bta-miR-146a plays an important role in the regulation of mammary inflammation. However, the specifics of this function have yet to be elucidated. Bovine mammary epithelial cells (bMEC) represent the first line of defense against pathogens and have important roles in initiating and regulating inflammatory responses and innate immunity during infection. In this study, a double luciferase reporter assay was used to confirm that bta-miR-146a directly targets the 3' UTR of the tumor-necrosis factor receptor-associated factor 6 (TRAF6) gene. To elucidate the role of bta-miR-146a in innate immune responses, either a mimic or inhibitor of bta-miR-146a was transfected into bMEC stimulated with lipopolysaccharide, which activates the innate immune response through the toll-like receptor (TLR) 4/nuclear factor (NF)-κB signaling pathway. Forty-eight hours posttransfection, quantitative real-time PCR and Western blots were used to detect the expressions of the related genes and proteins, respectively. An ELISA was used to measure the quantity of inflammatory factors in culture supernatants. The results showed that bta-miR-146a significantly inhibits both mRNA and protein expression levels of bovine TRAF6, and ultimately suppresses downstream expression of NF-κB mRNA and protein. As a result, production of NF-κB-dependent inflammatory mediators such as tumor necrosis factor α, IL-6, and IL-8 are suppressed following lipopolysaccharide stimulation of bMEC. Thus, we concluded that bta-miR-146a acts as a negative feedback regulator of bovine inflammation and innate immunity through downregulation of the TLR4/TRAF6/NF-κB pathway. This study presents a potential regulatory mechanism of bta-miR-146a on immune responses in bovine mammary infection and may provide a potential therapeutic target for mastitis.
Collapse
Affiliation(s)
- Xing-Ping Wang
- College of Animal Science and Technology, National Beef Cattle Improvement Center, Northwest A&F University, Yangling Shaanxi, 712100, China; Key Laboratory of Zoology in Hunan Higher Education, College of Life and Environmental Science, Hunan University of Arts and Science, Changde Hunan, 415000, China.
| | - Zhuo-Ma Luoreng
- College of Animal Science and Technology, National Beef Cattle Improvement Center, Northwest A&F University, Yangling Shaanxi, 712100, China; Key Laboratory of Zoology in Hunan Higher Education, College of Life and Environmental Science, Hunan University of Arts and Science, Changde Hunan, 415000, China
| | - Lin-Sen Zan
- College of Animal Science and Technology, National Beef Cattle Improvement Center, Northwest A&F University, Yangling Shaanxi, 712100, China.
| | - Feng Li
- Key Laboratory of Zoology in Hunan Higher Education, College of Life and Environmental Science, Hunan University of Arts and Science, Changde Hunan, 415000, China
| | - Na Li
- Key Laboratory of Zoology in Hunan Higher Education, College of Life and Environmental Science, Hunan University of Arts and Science, Changde Hunan, 415000, China
| |
Collapse
|
28
|
Khan MIUR, Dias FCF, Dufort I, Misra V, Sirard MA, Singh J. Stable reference genes in granulosa cells of bovine dominant follicles during follicular growth, FSH stimulation and maternal aging. Reprod Fertil Dev 2017; 28:795-805. [PMID: 25426842 DOI: 10.1071/rd14089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/25/2014] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to determine a set of reference genes in granulosa cells of dominant follicles that are suitable for relative gene expression analyses during maternal and follicular aging. Granulosa cells of growing and preovulatory dominant follicles were collected from aged and young cows (maternal aging study) and from FSH-stimulated follicles developing under different durations of FSH treatment (follicular aging study). The mRNA levels of the two commonly used reference genes (GAPDH, ACTB) and four novel genes (UBE2D2, EIF2B2, SF3A1, RNF20) were analysed using cycle threshold values. Results revealed that mRNA levels of GAPDH, ACTB, EIF2B2, RNF20, SF3A1 and UBE2D2 were similar (P>0.05) between dominant follicle type, age and among follicles obtained after FSH-stimulation, but differed (P=0.005) due to mRNA processing (i.e. with versus without amplification). The stability of reference genes was analysed using GeNorm, DeltaCT and NormFinder programs and comprehensive ranking order was determined using RefFinder. The mRNA levels of GAPDH and ACTB were less stable than those of UBE2D2 and EIF2B2. The geometric mean of multiple genes (UBE2D2, EIF2B2, GAPDH and SF3A1) is a more appropriate reference control than the use of a single reference gene to compare relative gene expression among dominant and FSH-stimulated follicles during maternal and/or follicular aging studies.
Collapse
Affiliation(s)
- Muhammad Irfan-Ur-Rehman Khan
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Fernanda Caminha Faustino Dias
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Isabelle Dufort
- Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Vikram Misra
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Marc-Andre Sirard
- Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
29
|
Tang KQ, Wang YN, Zan LS, Yang WC. miR-27a controls triacylglycerol synthesis in bovine mammary epithelial cells by targeting peroxisome proliferator-activated receptor gamma. J Dairy Sci 2017; 100:4102-4112. [PMID: 28284697 DOI: 10.3168/jds.2016-12264] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/20/2017] [Indexed: 12/12/2022]
Abstract
Growing evidence has revealed that microRNA are central elements in milk fat synthesis in mammary epithelial cells. A negative regulator of adipocyte fat synthesis, miR-27a has been reported to be involved in the regulation of milk fat synthesis in goat mammary epithelial cells; however, the regulatory role of miR-27a in bovine milk fat synthesis remains unclear. In the present study, primary bovine mammary epithelial cells (BMEC) were harvested from mid-lactation cows and cultured in Dulbecco's modified Eagle's medium/F-12 medium with 10% fetal bovine serum, 5 μg/mL of insulin, 1 μg/mL of hydrocortisone, 2 μg/mL of prolactin, 1 μg/mL of progesterone, 100 U/mL of penicillin, and 100 μg/mL of streptomycin. We found that the overexpression of miR-27a significantly suppressed lipid droplet formation and decreased the cellular triacylglycerol (TAG) levels, whereas inhibition of miR-27a resulted in a greater lipid droplet formation and TAG accumulation in BMEC. Meanwhile, overexpression of miR-27a inhibited mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG), CCAAT/enhancer-binding protein beta (C/EBPβ), perilipin 2 (PLIN2), and fatty acid binding protein 3 (FABP3), whereas miR-27a downregulation increased PPARG, C/EBPβ, FABP3, and CCAAT enhancer binding protein alpha (C/EBPα) mRNA expression. Furthermore, Western blot analysis revealed the protein level of PPARG in miR-27a mimic and inhibitor transfection groups to be consistent with the mRNA expression response. Moreover, luciferase reporter assays verified that PPARG was the direct target of miR-27a. In summary, these results indicate that miR-27a has the ability to control TAG synthesis in BMEC via targeting PPARG, suggesting that miR-27a could potentially be used to improve beneficial milk components in dairy cows.
Collapse
Affiliation(s)
- K Q Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Y N Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - L S Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - W C Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
30
|
Fiore E, Arfuso F, Colitti M, Gianesella M, Giudice E, Piccione G, Morgante M. Expression of selected genes related to energy mobilisation and insulin resistance in dairy cows. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The physiological and metabolic adaptation characterising the transition period in the dairy cows is developed by a complex modulation of different metabolic pathways as well as the expression of selected tissue-specific gene. The aim of this study was to evaluate the age effect on expression of selected genes in adipose, hepatic and muscle tissues in dairy cows during their transition period using the quantitative real-time PCR. Twenty-two pluriparous dairy cows were divided into three groups in relation to age: Group A (38 ± 2 months); Group B (52 ± 2 months) and Group C (80 ± 8 months). Lower levels of peroxisome proliferator-activated receptor gamma and higher levels of adiponectin were found in adipose tissue in Group C than Groups A and B (P < 0.05). Higher levels of solute carrier family 2/facilitated glucose transporter member 4 were found in muscle in Group C than Group A (P < 0.001) and Group B (P < 0.05). The present study showed in dairy cows that the expression of selected genes associated with mobilisation of energy and with insulin resistance are influenced by age demonstrating and highlighting the importance of a genomics approach to assess the metabolic status of dairy cows during the transition period.
Collapse
|
31
|
Morammazi S, Masoudi AA, Vaez Torshizi R, Pakdel A. Differential Expression of the Alpha S1 Casein and Beta-Lactoglobulin Genes in Different Physiological Stages of the Adani Goats Mammary Glands. IRANIAN JOURNAL OF BIOTECHNOLOGY 2016; 14:278-285. [PMID: 28959346 PMCID: PMC5434998 DOI: 10.15171/ijb.1171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background
Milk proteins genes have been the focus of the researches as the candidate target genes that play a decisive role when animal breeding is desired.
Objectives
In the present study, the transcriptional levels of Beta-lactoglobulin (BLG) and Alpha S1 casein (CSN1S1) genes were investigated during prenatal, milking and drying times in mammary glands of the Adani goats which showed high and low breeding values.
Materials and Methods
The breeding values of the animals were estimated first by applying multi-trait random regression model. Using the biopsy gun, the mammary gland samples were taken and real-time PCR was applied to search the expression of the genes. Fixed factors of the model were the breeding value groups, sampling times and their interactions.
Results
The interactions were significant for both genes. At milking time, the high breeding value group exhibited more transcriptional levels for BLG and less transcriptional levels for CSN1S1 gene compared with the low breeding value group. The expression patterns of these genes were also different between the two breeding value groups. The maximum level of BLG and CSN1S1 transcriptions were found to occur at drying time.
Conclusions
A difference in the gene expression was observed between the two groups which indicate the change in the nucleotide sequence for transcription factor binding sites, or miRNA binding sites, otherwise in the coding regions. Therefore, the variations in the coding and promoter regions of this gene should be investigated in the further studies.
Collapse
Affiliation(s)
- Salim Morammazi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.,Department of Animal Science, Faculty of Agricultural and Natural Resources, University of Persian Gulf, Bushehr, Iran
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Rasoul Vaez Torshizi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Abbas Pakdel
- Department of Animal Science, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
32
|
Morammazi S, Masoudi AA, Vaez Torshizi R, Pakdel A. Changes in the Expression of the Prolactin Receptor (PRLR) Gene in Different Physiological Stages in the Mammary Gland of the Iranian Adani Goat. Reprod Domest Anim 2016; 51:585-90. [PMID: 27333814 DOI: 10.1111/rda.12723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/29/2016] [Indexed: 01/28/2023]
Abstract
The actions of prolactin hormone are mediated by prolactin receptor (PRLR), and proliferation and differentiation of secretory mammary epithelium are dependent on the presence of its receptors. To understand the PRLR expression pattern in mammary gland of dairy goat during different lactation stages, in this study, we first estimated the milk yield breeding value by multitrait random regression model and then compared the expression of the gene in different physiological stage of mammary gland between high- and low-breeding value groups. We assayed the transcription level of the gene by quantitative real-time PCR method, and its outcomes were analysed by a statistical model containing breeding value groups, sampling times and their interactions as fixed effects. The results indicated that the expression levels of PRLR gene were significantly upregulated in the drying stage (p < 0.01). The transcription pattern of the gene was significantly different between the two breeding value groups (p < 0.01), so that the amount of PRLR mRNA was significantly higher in the low-breeding value groups of animals in the lactation stage (p < 0.01). Based on the results of this study, it could be suggested that the abundance of PRLR transcripts in mammary gland of goat might be changed by some physiological, environmental and genetic factors. Nucleotide variations in the promoter region might be resulted in various transcription activities of the gene which should be studied in a complementary research.
Collapse
Affiliation(s)
- S Morammazi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - A A Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - R Vaez Torshizi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - A Pakdel
- Department of Animal Science, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
33
|
Xia X, Che Y, Gao Y, Zhao S, Ao C, Yang H, Liu J, Liu G, Han W, Wang Y, Lei L. Arginine Supplementation Recovered the IFN-γ-Mediated Decrease in Milk Protein and Fat Synthesis by Inhibiting the GCN2/eIF2α Pathway, Which Induces Autophagy in Primary Bovine Mammary Epithelial Cells. Mol Cells 2016; 39:410-7. [PMID: 27025389 PMCID: PMC4870189 DOI: 10.14348/molcells.2016.2358] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/29/2022] Open
Abstract
During the lactation cycle of the bovine mammary gland, autophagy is induced in bovine mammary epithelial cells (BMECs) as a cellular homeostasis and survival mechanism. Interferon gamma (IFN-γ) is an important antiproliferative and apoptogenic factor that has been shown to induce autophagy in multiple cell lines in vitro. However, it remains unclear whether IFN-γ can induce autophagy and whether autophagy affects milk synthesis in BMECs. To understand whether IFN-γ affects milk synthesis, we isolated and purified primary BMECs and investigated the effect of IFN-γ on milk synthesis in primary BMECs in vitro. The results showed that IFN-γ significantly inhibits milk synthesis and that autophagy was clearly induced in primary BMECs in vitro within 24 h. Interestingly, autophagy was observed following IFN-γ treatment, and the inhibition of autophagy can improve milk protein and milk fat synthesis. Conversely, upregulation of autophagy decreased milk synthesis. Furthermore, mechanistic analysis confirmed that IFN-γ mediated autophagy by depleting arginine and inhibiting the general control nonderepressible-2 kinase (GCN2)/eukaryotic initiation factor 2α (eIF2α) signaling pathway in BMECs. Then, it was found that arginine supplementation could attenuate IFN-γ-induced autophagy and recover milk synthesis to some extent. These findings may not only provide a novel measure for preventing the IFN-γ-induced decrease in milk quality but also a useful therapeutic approach for IFN-γ-associated breast diseases in other animals and humans.
Collapse
Affiliation(s)
- Xiaojing Xia
- College of Veterinary Medicine, Jilin University, Changchun,
China
| | - Yanyi Che
- College of Veterinary Medicine, Jilin University, Changchun,
China
| | - Yuanyuan Gao
- College of Animal Science, Jilin University, Changchun,
China
| | - Shuang Zhao
- College of Animal Science, Jilin University, Changchun,
China
| | - Changjin Ao
- College of Animal Science, Inner Mongolian Agricultural University, Hohhot,
China
| | - Hongjian Yang
- College of Animal Science and Technology, China Agricultural University, Beijing,
China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun,
China
| | - Guowen Liu
- College of Veterinary Medicine, Jilin University, Changchun,
China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, Changchun,
China
| | - Yuping Wang
- College of Animal Science, Jilin University, Changchun,
China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun,
China
| |
Collapse
|
34
|
Wang J, Guo C, Wei Z, He X, Kou J, Zhou E, Yang Z, Fu Y. Morin suppresses inflammatory cytokine expression by downregulation of nuclear factor-κB and mitogen-activated protein kinase (MAPK) signaling pathways in lipopolysaccharide-stimulated primary bovine mammary epithelial cells. J Dairy Sci 2016; 99:3016-3022. [DOI: 10.3168/jds.2015-10330] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/21/2015] [Indexed: 01/30/2023]
|
35
|
Benjamin AL, Green BB, Crooker BA, McKay SD, Kerr DE. Differential responsiveness of Holstein and Angus dermal fibroblasts to LPS challenge occurs without major differences in the methylome. BMC Genomics 2016; 17:258. [PMID: 27009155 PMCID: PMC4806443 DOI: 10.1186/s12864-016-2565-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/03/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND We have previously found substantial animal-to-animal and age-dependent variation in the response of Holstein fibroblast cultures challenged with LPS. To expand on this finding, fibroblast cultures were established from dairy (Holstein) and beef (Angus) cattle and challenged with LPS to examine breed-dependent differences in the innate immune response. Global gene expression was measured by RNA-Seq, while an epigenetic basis for expression differences was examined by methylated CpG island recovery assay sequencing (MIRA-Seq) analysis. RESULTS The Holstein breed displayed a more robust response to LPS than the Angus breed based on RNA-Seq analysis of cultures challenged with LPS for 0, 2, and 8 h. Several immune-associated genes were expressed at greater levels (FDR < 0.05) in Holstein cultures including TLR4 at all time points and a number of pro-inflammatory genes such as IL8, CCL20, CCL5, and TNF following LPS exposure. Despite extensive breed differences in the transcriptome, MIRA-Seq unveiled relatively similar patterns of genome-wide DNA methylation between breeds, with an overall hypomethylation of gene promoters. However, by examining the genome in 3Kb windows, 49 regions of differential methylation were discovered between Holstein and Angus fibroblasts, and two of these regions fell within the promoter region (-2500 to +500 bp of the transcription start site) of the genes NTRK2 and ADAMTS5. CONCLUSIONS Fibroblasts isolated from Holstein cattle display a more robust response to LPS in comparison to cultures from Angus cattle. Different selection strategies and management practices exist between these two breeds that likely give rise to genetic and epigenetic factors contributing to the different immune response phenotypes.
Collapse
Affiliation(s)
- Aimee L Benjamin
- Department of Animal and Veterinary Sciences, University of Vermont, Terrill Hall, 570 Main Street, Burlington, VT, 05405, USA
| | - Benjamin B Green
- Geisel School of Medicine at Dartmouth, Department of Epidemiology and Department of Pharmacology and Toxicology, 7650 Remsen, Rope Ferry Rd, Hanover, NH, 03755, USA
| | - Brian A Crooker
- Department of Animal Science, University of Minnesota, Haecker Hall, 1364 Eckles Ave, St. Paul, MN, 55108, USA
| | - Stephanie D McKay
- Department of Animal and Veterinary Sciences, University of Vermont, Terrill Hall, 570 Main Street, Burlington, VT, 05405, USA
| | - David E Kerr
- Department of Animal and Veterinary Sciences, University of Vermont, Terrill Hall, 570 Main Street, Burlington, VT, 05405, USA.
| |
Collapse
|
36
|
Malvisi M, Stuknytė M, Magro G, Minozzi G, Giardini A, De Noni I, Piccinini R. Antibacterial activity and immunomodulatory effects on a bovine mammary epithelial cell line exerted by nisin A-producing Lactococcus lactis strains. J Dairy Sci 2016; 99:2288-2296. [DOI: 10.3168/jds.2015-10161] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/28/2015] [Indexed: 02/02/2023]
|
37
|
Roussel P, Cunha P, Porcherie A, Petzl W, Gilbert FB, Riollet C, Zerbe H, Rainard P, Germon P. Investigating the contribution of IL-17A and IL-17F to the host response during Escherichia coli mastitis. Vet Res 2015; 46:56. [PMID: 26062913 PMCID: PMC4462179 DOI: 10.1186/s13567-015-0201-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/05/2015] [Indexed: 12/17/2022] Open
Abstract
Mastitis remains a major disease of cattle with a strong impact on the dairy industry. There is a growing interest in understanding how cell mediated immunity contributes to the defence of the mammary gland against invading mastitis causing bacteria. Cytokines belonging to the IL-17 family, and the cells that produce them, have been described as important modulators of the innate immunity, in particular that of epithelial cells. We report here that expression of IL-17A and IL-17F genes, encoding two members of the IL-17 family, are induced in udder tissues of cows experimentally infected with Escherichia coli. The impact of IL-17A on the innate response of bovine mammary epithelial cells was investigated using a newly isolated cell line, the PS cell line. We first showed that PS cells, similar to primary bovine mammary epithelial cells, were able to respond to agonists of TLR2 and to LPS, provided CD14 was added to the culture medium. We then showed that secretion of CXCL8 and transcription of innate immunity related-genes by PS cells were increased by IL-17A, in particular when these cells were stimulated with live E. coli bacteria. Together with data from the literature, these results support the hypothesis that IL-17A and IL-17 F could play an important role in mediating of host-pathogen interactions during mastitis.
Collapse
Affiliation(s)
- Perrine Roussel
- INRA, UMR1282, Infectiologie et Santé Publique, F-37380, Nouzilly, France. .,Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, F-37000, Tours, France.
| | - Patricia Cunha
- INRA, UMR1282, Infectiologie et Santé Publique, F-37380, Nouzilly, France. .,Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, F-37000, Tours, France.
| | - Adeline Porcherie
- INRA, UMR1282, Infectiologie et Santé Publique, F-37380, Nouzilly, France. .,Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, F-37000, Tours, France.
| | - Wolfram Petzl
- Clinic for Ruminants with Ambulatory and Herd Health Services at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians University Munich, Oberschleissheim, Germany.
| | - Florence B Gilbert
- INRA, UMR1282, Infectiologie et Santé Publique, F-37380, Nouzilly, France. .,Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, F-37000, Tours, France.
| | - Céline Riollet
- INRA, UMR1282, Infectiologie et Santé Publique, F-37380, Nouzilly, France. .,Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, F-37000, Tours, France.
| | - Holm Zerbe
- Clinic for Ruminants with Ambulatory and Herd Health Services at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians University Munich, Oberschleissheim, Germany.
| | - Pascal Rainard
- INRA, UMR1282, Infectiologie et Santé Publique, F-37380, Nouzilly, France. .,Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, F-37000, Tours, France.
| | - Pierre Germon
- INRA, UMR1282, Infectiologie et Santé Publique, F-37380, Nouzilly, France. .,Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, F-37000, Tours, France.
| |
Collapse
|
38
|
Emam M, Thompson-Crispi K, Mallard B. The effect of immunological status, in-vitro treatment and culture time on expression of eleven candidate reference genes in bovine blood mononuclear cells. BMC Immunol 2015; 16:33. [PMID: 26025301 PMCID: PMC4449592 DOI: 10.1186/s12865-015-0099-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/20/2015] [Indexed: 01/05/2023] Open
Abstract
Background Technical feasibility of RNA quantification by real time RT-PCR has led to enormous utilization of this method. However, real time PCR results need to be normalized due to the high sensitivity of the method and also to eliminate technical variation. Normalization against a reference gene that is constitutively transcribed and has minimum variation among samples is the ideal method. Nevertheless, many studies have shown that there is no general reference gene(s) with ideal characteristics and candidate reference genes should be tested before being used as a “normalizer” in each study. Methods The current study investigated the effects of previous exposure of the host to experimental test antigens and culturing time on the expression of 11 candidate genes when blood mononuclear cells (BMCs) were cultured and treated in-vitro by hen egg white lysozyme, Candida albicans extract and a mitogen. Mononuclear cells were isolated and cultured from 12 bovine blood samples representing 3 different immunological statuses. The expression of candidate housekeeping genes were measured by real-time RT-PCR at 4 and 24 hours post culture. The expression of candidate genes were first compared between the two time points in untreated samples. Constitutively expressed genes were further tested in linear mixed effects models to examine the effect of previous host exposure and in-vitro treatments. Results Our findings showed that the expression of the most common reference genes, β-actin, and Glyceraldehydes-3-phosphate dehydrogenase (GAPDH), are significantly decreased at 24 hours after culturing BMCs, even without any treatment. The effect of culturing time was also significantly influenced the expression of 18s ribosomal RNA, β2-microglobulin, Tyrosine 3-monooxygenase/tryptophan 5-monoxygenase activation protein, zeta polypeptide (YWHAZ) in BMCs. Only the expression of C-terminal binding protein 1 (CTBP1) and RAD50 among all tested genes were consistent after treatment of cultured BMCs with C. albicans whole yeast extract and Hen Egg White Lysozyme (HEWL), respectively. In addition, expressions of CTBP1, and RAD50 were independent from previous exposure of the host to the antigen. Conclusions The results of this study demonstrated inconsistent expression of commonly used reference genes in untreated cultured BMCs over time. As this condition applies to negative controls in real time RT-PCR study designs, normalization against these genes can largely deceive the outcome, especially in kinetic studies. Moreover, the potential effects of immunological memory on the expression of reference genes should be considered if BMCs are collected from different individuals under different environmental conditions and if these cells are treated in-vitro by an antigen.
Collapse
Affiliation(s)
- Mehdi Emam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| | - Kathleen Thompson-Crispi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada. .,Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada.
| | - Bonnie Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada. .,Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
39
|
Dugat T, Loux V, Marthey S, Moroldo M, Lagrée AC, Boulouis HJ, Haddad N, Maillard R. Comparative genomics of first available bovine Anaplasma phagocytophilum genome obtained with targeted sequence capture. BMC Genomics 2014; 15:973. [PMID: 25400116 PMCID: PMC4239370 DOI: 10.1186/1471-2164-15-973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/30/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Anaplasma phagocytophilum is a zoonotic and obligate intracellular bacterium transmitted by ticks. In domestic ruminants, it is the causative agent of tick-borne fever, which causes significant economic losses in Europe. As A. phagocytophilum is difficult to isolate and cultivate, only nine genome sequences have been published to date, none of which originate from a bovine strain.Our goals were to; 1/ develop a sequencing methodology which efficiently circumvents the difficulties associated with A. phagocytophilum isolation and culture; 2/ describe the first genome of a bovine strain; and 3/ compare it with available genomes, in order to both explore key genomic features at the species level, and to identify candidate genes that could be specific to bovine strains. RESULTS DNA was extracted from a bovine blood sample infected by A. phagocytophilum. Following a whole genome capture approach, A. phagocytophilum DNA was enriched 197-fold in the sample and then sequenced using Illumina technology. In total, 58.9% of obtained reads corresponded to the A. phagocytophilum genome, covering 85.3% of the HZ genome. Then by performing comparisons with nine previously-sequenced A. phagocytophilum genomes, we determined the core genome of these ten strains. Following analysis, 1281 coding DNA sequences, including 1001 complete sequences, were detected in the A. phagocytophilum bovine genome, of which four appeared to be unique to the bovine isolate. These four coding DNA sequences coded for "hypothetical proteins of unknown function" and require further analysis. We also identified nine proteins common to both European domestic ruminants tested. CONCLUSION Using a whole genome capture approach, we have sequenced the first A. phagocytophilum genome isolated from a cow. To the best of our knowledge, this is the first time that this method has been used to selectively enrich pathogenic bacterial DNA from samples also containing host DNA. The four proteins unique to the A. phagocytophilum bovine genome could be involved in host tropism, therefore their functions need to be explored.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nadia Haddad
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR ENVA Anses UPEC USC INRA, Maisons-Alfort, France.
| | | |
Collapse
|
40
|
Fitzsimons C, Kenny DA, Waters SM, Earley B, McGee M. Effects of phenotypic residual feed intake on response to a glucose tolerance test and gene expression in the insulin signaling pathway in longissimus dorsi in beef cattle. J Anim Sci 2014; 92:4616-31. [PMID: 25085393 DOI: 10.2527/jas.2014-7699] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The objectives of this study were to determine the insulinogenic response to an intravenous glucose tolerance test (GTT) and examine gene expression profiles in the insulin signaling pathway (ISP) in beef animals of differing phenotypic residual feed intake (RFI). Two experiments were conducted. In Exp. 1, a total of 39 Simmental heifers, over 2 yr (yr 1, n = 22, and yr 2, n = 17; mean initial BW = 472 kg [SD = 52.4 kg]), were offered grass silage ad libitum for 104 d. Heifers were subjected to a GTT on d 8 and 65 of the RFI measurement period in yr 1 and 2, respectively. Concentrations of plasma glucose and insulin were measured at -45, -30, -15, 0, 5, 10, 15, 20, 30, 45, 60, 90, 120, 150, and 180 min relative to glucose infusion (0 min). In Exp. 2, a total of 67 Simmental bulls, over 3 yr (yr 1, n = 20; yr 2, n = 33; and yr 3, n = 14; mean initial BW = 431 kg [SD = 63.7 kg]), were offered concentrates ad libitum for 105 d. Biopsies of LM were harvested during the RFI measurement period (yr 1, d 49 and 91; yr 2, d 52 and 92; and yr 3, d 50 and 92). The residuals of the regression of DMI on ADG, midtest metabolic BW (BW(0.75)), and the fixed effect of year, using all animals, were used to compute individual RFI coefficients. Animals were ranked on RFI and assigned to high (inefficient), medium, or low groupings by dividing them into terciles, resulting in 13 heifers and 22, 23, and 22 bulls in their respective RFI groups. In Exp. 1, data from 13 heifers from each of the high- and low-RFI groups, and in Exp. 2, data from the 15 highest and 15 lowest ranking bulls on RFI are reported. In Exp. 1, glucose and insulin response and area under the response curve for glucose and insulin were similar (P > 0.05) between high- and low-RFI heifers. In Exp. 2, no differences (P > 0.05) were found for mRNA expression of 22 genes of the ISP in muscle tissue; however, expression of the transcription factor SREBP1c tended to be positively correlated (r = 0.25, P = 0.07) with RFI. Expression of GLUT4, INPPL1, and SHC increased (P < 0.05) over time, while there was no effect of sample time for any other genes measured. Collectively, these results suggest that insulin response, sensitivity, and associated expression of genes in the ISP within muscle tissue are not contributory factors to variation in RFI. However, further examination of target genes of SREBP1c, which is involved in lipogenesis, may explain some of the biochemical processes underlying variation in phenotypic RFI.
Collapse
Affiliation(s)
- C Fitzsimons
- Livestock Systems Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland UCD School of Agriculture and Food Science, Belfield, Dublin 4, Ireland
| | - D A Kenny
- Animal and Bioscience Research Department; and Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - S M Waters
- Animal and Bioscience Research Department; and Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - B Earley
- Animal and Bioscience Research Department; and Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - M McGee
- Livestock Systems Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| |
Collapse
|
41
|
Rainard P, Cunha P, Bougarn S, Fromageau A, Rossignol C, Gilbert FB, Berthon P. T helper 17-associated cytokines are produced during antigen-specific inflammation in the mammary gland. PLoS One 2013; 8:e63471. [PMID: 23696826 PMCID: PMC3656053 DOI: 10.1371/journal.pone.0063471] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/03/2013] [Indexed: 01/31/2023] Open
Abstract
Infectious mastitis cuts down milk production profitability and is a major animal welfare problem. Bacteria-induced inflammation in the mammary gland (MG) is driven by innate immunity, but adaptive immunity can modulate the innate response. Several studies have shown that it is possible to elicit inflammation in the MG by sensitization to an antigen subsequently infused into the lumen of the gland. The objective of our study was to characterize the inflammation triggered in the MG of cows sensitized to ovalbumin, by identifying the cytokines and chemokines likely to play a part in the reaction. Among immunized cows, responders mobilized locally high numbers of leukocytes. An overexpression of the genes encoding IL-17a, IL-17F, IL-21, IL-22 and INF-γ was found in milk cell RNA extracts in the early phase of the inflammatory response. At the protein level, IL-17A was detected in milk as soon as the first sampling time (8 h post-challenge), and both IL-17A and IFN-γ concentrations peaked at 12 to 24 h post-challenge. In mammary tissue from challenged quarters, overexpression of the genes encoding IL-17A, IL-17F, IL-21, IL-22, IL-26 and IFN-γ was observed. Neutrophil-attracting chemokines (CXCL3 and CXCL8) were found in milk, and overexpressed transcripts of chemokines attracting lymphocytes and other mononuclear leukocytes (CXCL10, CCL2, CCL5, CCL20) were detected in mammary tissue. Expression of IL-17A, as revealed by immunohistochemistry, was located in epithelial cells, in leukocytes in the connective tissue and in association with the epithelium, and in migrated alveolar leukocytes of challenged quarters. Altogether, these results show that antigen-specific inflammation in the MG was characterized by the production of IL-17 and IFN-γ. The orientation of the inflammatory response induced by the antigen-specific response has the potential to strongly impact the outcome of bacterial infections of the MG.
Collapse
Affiliation(s)
- Pascal Rainard
- Infectiology and Public Health Research Unit, Institut National de la Recherche Agronomique, Nouzilly, France.
| | | | | | | | | | | | | |
Collapse
|
42
|
Paczkowski M, Silva E, Schoolcraft WB, Krisher RL. Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. Biol Reprod 2013; 88:111. [PMID: 23536372 DOI: 10.1095/biolreprod.113.108548] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The objective of these experiments was to evaluate the importance of fatty acid beta-oxidation (FAO) in the cumulus oocyte complex (COC) during in vitro maturation (IVM) to oocyte nuclear maturation and gene expression in both the oocyte and cumulus cells in three species with differing amounts of oocyte intracellular lipids (mouse, low; bovine, moderate; porcine, high). We inhibited FAO using etomoxir at 0, 10, 25, 100, or 250 μM. Completion of oocyte nuclear maturation was inhibited after COC exposure to 250 μM etomoxir in mouse oocytes, 100 μM etomoxir in bovine oocytes, and as little as 10 μM etomoxir in porcine oocytes (P < 0.05). When FAO was inhibited in mouse and porcine COCs resulting in inhibition of meiosis, the abundance of FAO, glycolytic, and oxidative stress gene transcripts were decreased in oocytes and cumulus cells (P < 0.05), although to a much greater extent in the pig. In bovine oocytes and cumulus cells, FAO gene transcripts were increased and glycolytic gene expression altered following meiotic inhibition due to etomoxir. Etomoxir, at doses that did not inhibit nuclear maturation in bovine and murine COCs, increased glucose consumption (P < 0.05), suggesting glucose metabolism is increased to meet the metabolic demands of the COCs when fatty acid metabolism is compromised. Our data demonstrates that FAO is essential to oocyte nuclear maturation in all three species. Sensitivity of nuclear maturation to FAO inhibition reflects the amount of lipid present in the ooplasm and may suggest a relative reliance on this metabolic pathway.
Collapse
|
43
|
Selection of reference genes for quantitative real-time PCR normalisation in adipose tissue, muscle, liver and mammary gland from ruminants. Animal 2013; 7:1344-53. [PMID: 23552195 DOI: 10.1017/s1751731113000475] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The reliability of reverse transcription quantitative real-time PCR (RT-qPCR) depends on normalising the mRNA abundance using carefully selected, stable reference genes. Our aim was to propose sets of reference genes for normalisation in bovine or caprine adipose tissue (AT), mammary gland, liver and muscle. All of these tissues contribute to nutrient partitioning and metabolism and, thus, to the profitability of ruminant productions (i.e. carcasses, meat and milk). In this study, eight commonly used reference genes that belong to different functional classes (CLN3, EIF3K, MRPL39, PPIA, RPLP0, TBP, TOP2B and UXT) were analysed using the geNorm procedure to determine the most stable reference genes in bovine and/or caprine tissues. Abundances and rankings of reference genes varied between tissues, species and the combination of tissues and/or species. Therefore, we proposed 29 sets of reference genes that differed depending on the tissue and/or species. As examples of the 29 sets, EIF3K, TOP2B and UXT were proposed as the most stable reference genes in bovine AT; UXT, EIF3K and RPLP0 were the most stable reference genes in bovine and caprine AT. The optimal number of reference genes for data normalisation was 3 for 27 of the proposed 29 sets. In two of the 29 sets, four to five reference genes were necessary for data normalisation when the number of studied tissues was increased. For example, UXT, EIF3K, TBP, TOP2B and CLN3 were required for data normalisation in bovine mammary gland, AT, muscle and liver. We have evaluated some of our proposed sets of reference genes for the normalisation of CD36 gene expression. Normalisation using the three most stable reference genes has revealed downregulation of CD36 gene expression in bovine mammary gland by a concentrate-based diet that is supplemented with sunflower oil and upregulation of CD36 gene expression in caprine liver by including a rapidly degradable starch in the diet. The dietary regulation of the gene expression of CD36 has been erased by normalisation with the least stable reference genes, which may result in misinterpretation of CD36 gene regulation. To conclude, our results provide valuable reference gene sets for other studies that aim to measure tissue and/or species-specific mRNA abundance in ruminants.
Collapse
|
44
|
Effects of EPA and DHA on lipid droplet accumulation and mRNA abundance of PAT proteins in caprine monocytes. Res Vet Sci 2013; 94:246-51. [DOI: 10.1016/j.rvsc.2012.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 09/22/2012] [Accepted: 09/26/2012] [Indexed: 11/19/2022]
|
45
|
Vorachek WR, Bobe G, Hall JA. Reference gene selection for quantitative PCR studies in bovine neutrophils. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.410a3002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Effects of sodium octanoate on innate immune response of mammary epithelial cells during Staphylococcus aureus internalization. BIOMED RESEARCH INTERNATIONAL 2012; 2013:927643. [PMID: 23509807 PMCID: PMC3591121 DOI: 10.1155/2013/927643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/18/2012] [Accepted: 10/26/2012] [Indexed: 11/24/2022]
Abstract
Bovine mammary epithelial cells (bMECs) are capable of initiating an innate immune response to invading bacteria. Short chain fatty acids can reduce Staphylococcus aureus internalization into bMEC, but it has not been evaluated if octanoic acid (sodium octanoate, NaO), a medium chain fatty acid (MCFA), has similar effects. In this study we determined the effect of NaO on S. aureus internalization into bMEC and on the modulation of innate immune elements. NaO (0.25–2 mM) did not affect S. aureus growth and bMEC viability, but it differentially modulated bacterial internalization into bMEC, which was induced at 0.25–0.5 mM (~60%) but inhibited at 1-2 mM (~40%). Also, bMEC showed a basal expression of all the innate immune genes evaluated, which were induced by S. aureus. NaO induced BNBD4, LAP, and BNBD10 mRNA expression, but BNBD5 and TNF-α were inhibited. Additionally, the pretreatment of bMEC with NaO inhibited the mRNA expression induction generated by bacteria which coincides with the increase in internalization; only TAP and BNDB10 showed an increase in their expression; it coincides with the greatest effect on the reduction of bacterial internalization. In conclusion, NaO exerts a dual effect on S. aureus internalization in bMEC and modulates elements of innate immune response.
Collapse
|
47
|
Rekawiecki R, Rutkowska J, Kotwica J. Identification of optimal housekeeping genes for examination of gene expression in bovine corpus luteum. Reprod Biol 2012; 12:362-7. [DOI: 10.1016/j.repbio.2012.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 05/15/2012] [Indexed: 01/03/2023]
|
48
|
Téllez-Pérez AD, Alva-Murillo N, Ochoa-Zarzosa A, López-Meza JE. Cholecalciferol (vitamin D) differentially regulates antimicrobial peptide expression in bovine mammary epithelial cells: implications during Staphylococcus aureus internalization. Vet Microbiol 2012; 160:91-8. [PMID: 22655972 DOI: 10.1016/j.vetmic.2012.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/03/2012] [Accepted: 05/06/2012] [Indexed: 12/15/2022]
Abstract
Vitamin D has immunomodulatory functions regulating the expression of host defense genes. The aim of this study was to determine the effect of cholecalciferol (vitamin D3) on S. aureus internalization into bovine mammary epithelial cells (bMEC) and antimicrobial peptide (AP) mRNA expression. Cholecalciferol (1-200 nM) did not affect S. aureus growth and bMEC viability; but it reduced bacterial internalization into bMEC (15-74%). Also, bMEC showed a basal expression of all AP genes evaluated, which were induced by S. aureus. Cholecalciferol alone or together with bacteria diminished tracheal antimicrobial peptide (TAP) and bovine neutrophil β-defensin (BNBD) 5 mRNA expression; while alone induced the expression of lingual antimicrobial peptide (LAP), bovine β-defensin 1 (DEFB1) and bovine psoriasin (S100A7), which was inhibited in the presence of S. aureus. This compound (50 nM) increased BNBD10 mRNA expression coinciding with the greatest reduction in S. aureus internalization. Genes of vitamin D pathway (25-hydroxylase and 1 α-hydroxylase) show basal expression, which was induced by cholecalciferol or bacteria. S. aureus induced vitamin D receptor (VDR) mRNA expression, but not in the presence of cholecalciferol. In conclusion, cholecalciferol can reduce S. aureus internalization and differentially regulates AP expression in bMEC. Thus, vitamin D could be an effective innate immunity modulator in mammary gland, which leads to a better defense against bacterial infection.
Collapse
Affiliation(s)
- Ana Dolores Téllez-Pérez
- Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro. Posta Veterinaria. CP 58893, Morelia, Michoacán, Mexico
| | | | | | | |
Collapse
|
49
|
Bonnefont CMD, Rainard P, Cunha P, Gilbert FB, Toufeer M, Aurel MR, Rupp R, Foucras G. Genetic susceptibility to S. aureus mastitis in sheep: differential expression of mammary epithelial cells in response to live bacteria or supernatant. Physiol Genomics 2012; 44:403-16. [PMID: 22337903 DOI: 10.1152/physiolgenomics.00155.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus is a prevalent pathogen for mastitis in dairy ruminants and is responsible for both clinical and subclinical mastitis. Mammary epithelial cells (MEC) represent not only a physical barrier against bacterial invasion but are also active players of the innate immune response permitting infection clearance. To decipher their functions in general and in animals showing different levels of genetic predisposition to Staphylococcus in particular, MEC from ewes undergoing a divergent selection on milk somatic cell count were stimulated by S. aureus. MEC response was also studied according to the stimulation condition with live bacteria or culture supernatant. The early MEC response was studied during a 5 h time course by microarray to identify differentially expressed genes with regard to the host genetic background and as a function of the conditions of stimulation. In both conditions of stimulation, metabolic processes were altered, the apoptosis-associated pathways were considerably modified, and inflammatory and immune responses were enhanced with the upregulation of il1a, il1b, and tnfa and several chemokines known to enhance neutrophil (cxcl8) or mononuclear leukocyte (ccl20) recruitment. Genes associated with oxidative stress were increased after live bacteria stimulation, whereas immune response-related genes were higher after supernatant stimulation in the early phase. Only 20 genes were differentially expressed between Staphylococcus spp-mastitis resistant and susceptible animals without any clearly defined role on the control of infection. To conclude, this suggests that MEC may not represent the cell type at the origin of the difference of mastitis susceptibility, at least as demonstrated in our genetic model. Supernatant or heat-killed S. aureus produce biological effects that are essentially different from those induced by live bacteria.
Collapse
Affiliation(s)
- Cécile M D Bonnefont
- Université de Toulouse, Institut National Polytechnique (INP), École Nationale Vétérinaire de Toulouse (ENVT), Unité Mixte de Recherche (UMR)1225, Interactions Hôtes - Agents Pathogènes (IHAP), Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Porcherie A, Cunha P, Trotereau A, Roussel P, Gilbert FB, Rainard P, Germon P. Repertoire of Escherichia coli agonists sensed by innate immunity receptors of the bovine udder and mammary epithelial cells. Vet Res 2012; 43:14. [PMID: 22330199 PMCID: PMC3305352 DOI: 10.1186/1297-9716-43-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 02/13/2012] [Indexed: 01/01/2023] Open
Abstract
Escherichia coli is a frequent cause of clinical mastitis in dairy cows. It has been shown that a prompt response of the mammary gland after E. coli entry into the lumen of the gland is required to control the infection, which means that the early detection of bacteria is of prime importance. Yet, apart from lipopolysaccharide (LPS), little is known of the bacterial components which are detected by the mammary innate immune system. We investigated the repertoire of potential bacterial agonists sensed by the udder and bovine mammary epithelial cells (bMEC) during E. coli mastitis by using purified or synthetic molecular surrogates of bacterial agonists of identified pattern-recognition receptors (PRRs). The production of CXCL8 and the influx of leucocytes in milk were the readouts of reactivity of stimulated cultured bMEC and challenged udders, respectively. Quantitative PCR revealed that bMEC in culture expressed the nucleotide oligomerization domain receptors NOD1 and NOD2, along with the Toll-like receptors TLR1, TLR2, TLR4, and TLR6, but hardly TLR5. In line with expression data, bMEC proved to react to the cognate agonists C12-iE-DAP (NOD1), Pam3CSK4 (TLR1/2), Pam2CSK4 (TLR2/6), pure LPS (TLR4), but not to flagellin (TLR5). As the udder reactivity to NOD1 and TLR5 agonists has never been reported, we tested whether the mammary gland reacted to intramammary infusion of C12-iE-DAP or flagellin. The udder reacted to C12-iE-DAP, but not to flagellin, in line with the reactivity of bMEC. These results extend our knowledge of the reactivity of the bovine mammary gland to bacterial agonists of the innate immune system, and suggest that E. coli can be recognized by several PRRs including NOD1, but unexpectedly not by TLR5. The way the mammary gland senses E. coli is likely to shape the innate immune response and finally the outcome of E. coli mastitis.
Collapse
Affiliation(s)
- Adeline Porcherie
- INRA, UMR 1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France.
| | | | | | | | | | | | | |
Collapse
|