1
|
Ralla T, Kluenter AM, Litta G, Müller MA, Bonrath W, Schäfer C. Over 100 years of vitamin E: An overview from synthesis and formulation to application in animal nutrition. J Anim Physiol Anim Nutr (Berl) 2024; 108:646-663. [PMID: 38205908 DOI: 10.1111/jpn.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
The groundbreaking discovery of vitamin E by Evans and Bishop in 1922 was an important milestone in vitamin research, inspiring further investigation into its crucial role in both human and animal nutrition. Supplementing vitamin E has been proved to enhance multiple key physiological systems such as the reproductive, circulatory, nervous and muscular systems. As the main antioxidant in the blood and on a cellular level, vitamin E maintains the integrity of both cellular and vascular membranes and thus modulates the immune system. This overview showcases important and innovative routes for synthesizing vitamin E on a commercial scale, provides cutting-edge insights into formulation concepts for successful product form development and emphasizes the importance and future of vitamin E in healthy and sustainable animal nutrition.
Collapse
Affiliation(s)
- Theo Ralla
- dsm-firmenich AG, Kaiseraugst, Switzerland
| | | | | | | | | | | |
Collapse
|
2
|
Khan MZ, Huang B, Kou X, Chen Y, Liang H, Ullah Q, Khan IM, Khan A, Chai W, Wang C. Enhancing bovine immune, antioxidant and anti-inflammatory responses with vitamins, rumen-protected amino acids, and trace minerals to prevent periparturient mastitis. Front Immunol 2024; 14:1290044. [PMID: 38259482 PMCID: PMC10800369 DOI: 10.3389/fimmu.2023.1290044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Mastitis, the inflammatory condition of mammary glands, has been closely associated with immune suppression and imbalances between antioxidants and free radicals in cattle. During the periparturient period, dairy cows experience negative energy balance (NEB) due to metabolic stress, leading to elevated oxidative stress and compromised immunity. The resulting abnormal regulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with increased non-esterified fatty acids (NEFA) and β-hydroxybutyric acid (BHBA) are the key factors associated with suppressed immunity thereby increases susceptibility of dairy cattle to infections, including mastitis. Metabolic diseases such as ketosis and hypocalcemia indirectly contribute to mastitis vulnerability, exacerbated by compromised immune function and exposure to physical injuries. Oxidative stress, arising from disrupted balance between ROS generation and antioxidant availability during pregnancy and calving, further contributes to mastitis susceptibility. Metabolic stress, marked by excessive lipid mobilization, exacerbates immune depression and oxidative stress. These factors collectively compromise animal health, productive efficiency, and udder health during periparturient phases. Numerous studies have investigated nutrition-based strategies to counter these challenges. Specifically, amino acids, trace minerals, and vitamins have emerged as crucial contributors to udder health. This review comprehensively examines their roles in promoting udder health during the periparturient phase. Trace minerals like copper, selenium, and calcium, as well as vitamins; have demonstrated significant impacts on immune regulation and antioxidant defense. Vitamin B12 and vitamin E have shown promise in improving metabolic function and reducing oxidative stress followed by enhanced immunity. Additionally, amino acids play a pivotal role in maintaining cellular oxidative balance through their involvement in vital biosynthesis pathways. In conclusion, addressing periparturient mastitis requires a holistic understanding of the interplay between metabolic stress, immune regulation, and oxidative balance. The supplementation of essential amino acids, trace minerals, and vitamins emerges as a promising avenue to enhance udder health and overall productivity during this critical phase. This comprehensive review underscores the potential of nutritional interventions in mitigating periparturient bovine mastitis and lays the foundation for future research in this domain.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | | | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Khan MZ, Ma Y, Xiao J, Chen T, Ma J, Liu S, Wang Y, Khan A, Alugongo GM, Cao Z. Role of Selenium and Vitamins E and B9 in the Alleviation of Bovine Mastitis during the Periparturient Period. Antioxidants (Basel) 2022; 11:antiox11040657. [PMID: 35453342 PMCID: PMC9032172 DOI: 10.3390/antiox11040657] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Mastitis (inflammation of the mammary gland) commonly occurs in dairy cattle during the periparturient period (transition period), in which dairy cattle experience physiological and hormonal changes and severe negative energy balance, followed by oxidative stress. To maintain successful lactation and combat negative energy balance (NEB), excessive fat mobilization occurs, leading to overproduction of reactive oxygen species (ROS). Excessive fat mobilization also increases the concentrations of nonesterified fatty acids (NEFA) and β-hydroxybutyric acid (BHB) during the periparturient period. In addition, the excessive utilization of oxygen by cellular respiration in the mammary causes abnormal production of oxidative stress (OS). OS impairs the immunity and anti-inflammatory efficiency of periparturient dairy cattle, increasing their susceptibility to mastitis. To alleviate oxidative stress and subsequent mastitis, antioxidants are supplemented to dairy cattle from an external source. Extensive studies have been conducted on the supplementation of selenium (Se) and vitamins E and B9 to mitigate mastitis during the transition period in dairy cattle. Altogether, in the current review, we discuss the research development on bovine mastitis and its major causes, with special emphasis on oxidative stress during the transition period. Moreover, we discuss the antioxidant, immunoregulatory, and anti-inflammatory properties of Se and vitamins E and B9 and their role in the control of bovine mastitis in periparturient dairy cattle.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (Y.M.); (J.X.); (T.C.); (J.M.); (S.L.); (Y.W.); (G.M.A.)
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Yulin Ma
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (Y.M.); (J.X.); (T.C.); (J.M.); (S.L.); (Y.W.); (G.M.A.)
| | - Jianxin Xiao
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (Y.M.); (J.X.); (T.C.); (J.M.); (S.L.); (Y.W.); (G.M.A.)
| | - Tianyu Chen
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (Y.M.); (J.X.); (T.C.); (J.M.); (S.L.); (Y.W.); (G.M.A.)
| | - Jiaying Ma
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (Y.M.); (J.X.); (T.C.); (J.M.); (S.L.); (Y.W.); (G.M.A.)
| | - Shuai Liu
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (Y.M.); (J.X.); (T.C.); (J.M.); (S.L.); (Y.W.); (G.M.A.)
| | - Yajing Wang
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (Y.M.); (J.X.); (T.C.); (J.M.); (S.L.); (Y.W.); (G.M.A.)
| | - Adnan Khan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Gibson Maswayi Alugongo
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (Y.M.); (J.X.); (T.C.); (J.M.); (S.L.); (Y.W.); (G.M.A.)
| | - Zhijun Cao
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (Y.M.); (J.X.); (T.C.); (J.M.); (S.L.); (Y.W.); (G.M.A.)
- Correspondence: ; Tel.: +86-010-6273-3746
| |
Collapse
|
4
|
Valls-Bellés V, Abad C, Hernández-Aguilar MT, Nacher A, Guerrero C, Baliño P, Romero FJ, Muriach M. Human Milk Antioxidative Modifications in Mastitis: Further Beneficial Effects of Cranberry Supplementation. Antioxidants (Basel) 2021; 11:antiox11010051. [PMID: 35052555 PMCID: PMC8772773 DOI: 10.3390/antiox11010051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022] Open
Abstract
Mastitis is the inflammation of one or several mammal lobes which can be accompanied by a mammary gland infection, and is the leading cause of undesired early weaning in humans. However, little information exists regarding the changes that this disease may induce in the biochemical composition of human milk, especially in terms of oxidative status. Given that newborns are subject to a significant increase in total ROS burden in their transition to neonatal life and that their antioxidant defense system is not completely developed, the aim of this study was to evaluate antioxidant defense (glutathione peroxidase (GPx), reduced glutathione (GSH), total polyphenol content (TPP), and total antioxidant capacity (TAC)) in milk samples from mothers suffering from mastitis and controls. We also measured the oxidative damage to lipids (malondyaldehyde (MDA)) and proteins (carbonyl group content (CGC)) in these samples. Finally, we tested whether dietary supplementation with cranberries (a product rich in antioxidants) in these breastfeeding mothers during 21 days could improve the oxidative status of milk. GPx activity, TPP, and TAC were increased in milk samples from mastitis-affected women, providing a protective mechanism to the newborn drinking mastitis milk. MDA concentrations were diminished in the mastitis group, confirming this proposal. Some oxidative damage might occur in the mammary gland since the CGC was increased in mastitis milk. Cranberries supplementation seems to strengthen the antioxidant system, further improving the antioxidative state of milk.
Collapse
Affiliation(s)
- Victoria Valls-Bellés
- Unitat Predepartamental de Medicina, Facultat de Ciencies de la Salud, Universitat Jaume I, 12071 Castellon de la Plana, Spain; (V.V.-B.); (C.A.); (M.T.H.-A.); (A.N.); (C.G.); (P.B.)
| | - Cristina Abad
- Unitat Predepartamental de Medicina, Facultat de Ciencies de la Salud, Universitat Jaume I, 12071 Castellon de la Plana, Spain; (V.V.-B.); (C.A.); (M.T.H.-A.); (A.N.); (C.G.); (P.B.)
| | - María Teresa Hernández-Aguilar
- Unitat Predepartamental de Medicina, Facultat de Ciencies de la Salud, Universitat Jaume I, 12071 Castellon de la Plana, Spain; (V.V.-B.); (C.A.); (M.T.H.-A.); (A.N.); (C.G.); (P.B.)
| | - Amalia Nacher
- Unitat Predepartamental de Medicina, Facultat de Ciencies de la Salud, Universitat Jaume I, 12071 Castellon de la Plana, Spain; (V.V.-B.); (C.A.); (M.T.H.-A.); (A.N.); (C.G.); (P.B.)
| | - Carlos Guerrero
- Unitat Predepartamental de Medicina, Facultat de Ciencies de la Salud, Universitat Jaume I, 12071 Castellon de la Plana, Spain; (V.V.-B.); (C.A.); (M.T.H.-A.); (A.N.); (C.G.); (P.B.)
| | - Pablo Baliño
- Unitat Predepartamental de Medicina, Facultat de Ciencies de la Salud, Universitat Jaume I, 12071 Castellon de la Plana, Spain; (V.V.-B.); (C.A.); (M.T.H.-A.); (A.N.); (C.G.); (P.B.)
| | - Francisco J. Romero
- Hospital General de Requena, Conselleria de Sanitat, Generalitat Valenciana, 46340 Requena, Spain
- Correspondence: (F.J.R.); (M.M.)
| | - María Muriach
- Unitat Predepartamental de Medicina, Facultat de Ciencies de la Salud, Universitat Jaume I, 12071 Castellon de la Plana, Spain; (V.V.-B.); (C.A.); (M.T.H.-A.); (A.N.); (C.G.); (P.B.)
- Correspondence: (F.J.R.); (M.M.)
| |
Collapse
|
5
|
The Physiological Roles of Vitamin E and Hypovitaminosis E in the Transition Period of High-Yielding Dairy Cows. Animals (Basel) 2021; 11:ani11041088. [PMID: 33920342 PMCID: PMC8070221 DOI: 10.3390/ani11041088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary In high-yield cows, most production diseases occur during transition periods. Alpha-tocopherol, the most biologically active form of vitamin E, declines in blood and reaches the lowest levels (hypovitaminosis E) around calving. Hypovitaminosis E is associated with the incidence of peripartum diseases. Therefore, many studies which have been published for more than 30 years have investigated the effects of α-tocopherol supplementation. This α-tocopherol deficiency was thought to be caused by complex factors. However, until recently, the physiological factors or pathways underlying hypovitaminosis E in the transition period have been poorly understood. In the last 10 years, the α-tocopherol-related genes expression, which regulate the metabolism, transportation, and tissue distribution of α-tocopherol in humans and rodents, has been reported in ruminant tissues. In this paper, we discuss at least six physiological phenomena that occur during the transition period and may be candidate factors predisposing to a decreased blood α-tocopherol level and hypovitaminosis E with changes in α-tocopherol-related genes expression. Abstract Levels of alpha-tocopherol (α-Toc) decline gradually in blood throughout prepartum, reaching lowest levels (hypovitaminosis E) around calving. Despite numerous reports about the disease risk in hypovitaminosis E and the effect of α-Toc supplementation on the health of transition dairy cows, its risk and supplemental effects are controversial. Here, we present some novel data about the disease risk of hypovitaminosis E and the effects of α-Toc supplementation in transition dairy cows. These data strongly demonstrate that hypovitaminosis E is a risk factor for the occurrence of peripartum disease. Furthermore, a study on the effectiveness of using serum vitamin levels as biomarkers to predict disease in dairy cows was reported, and a rapid field test for measuring vitamin levels was developed. By contrast, evidence for how hypovitaminosis E occurred during the transition period was scarce until the 2010s. Pioneering studies conducted with humans and rodents have identified and characterised some α-Toc-related proteins, molecular players involved in α-Toc regulation followed by a study in ruminants from the 2010s. Based on recent literature, the six physiological factors: (1) the decline in α-Toc intake from the close-up period; (2) changes in the digestive and absorptive functions of α-Toc; (3) the decline in plasma high-density lipoprotein as an α-Toc carrier; (4) increasing oxidative stress and consumption of α-Toc; (5) decreasing hepatic α-Toc transfer to circulation; and (6) increasing mammary α-Toc transfer from blood to colostrum, may be involved in α-Toc deficiency during the transition period. However, the mechanisms and pathways are poorly understood, and further studies are needed to understand the physiological role of α-Toc-related molecules in cattle. Understanding the molecular mechanisms underlying hypovitaminosis E will contribute to the prevention of peripartum disease and high performance in dairy cows.
Collapse
|
6
|
Association of Oxidative Stress Biomarkers and Clinical Mastitis Incidence in Dairy Cows During the Periparturient Period. J Vet Res 2020; 64:421-425. [PMID: 32984633 PMCID: PMC7497760 DOI: 10.2478/jvetres-2020-0053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/30/2020] [Indexed: 11/27/2022] Open
Abstract
Introduction The aim of this study was to determine changes of reactive oxygen species (ROS), serum antioxidant capacity (SAC), oxidative stress index (OSi), and α-tocopherol (α-T) during the periparturient period in healthy and mastitic cows and to further investigate whether these parameters can be used as a tool for identifying cows at higher risk of developing mastitis. Material and Methods Blood samples from 110 dairy cows from two commercial farms were obtained at dry-off, calving, and 30 days post-partum. Healthy cows formed group A (n = 90) and mastitic cows B (n = 20). Blood serum was obtained by centrifugation, and the aforementioned parameters were determined. A general linear model was used for analysing the associations among the determined blood parameters, the health of the animals’ udder, and the sampling time. Results ROS and OSi values were higher (P < 0.001) by a respective 14% and 26%, and SAC values lower (P < 0.001) by 10% in group B than in group A at calving. ROC curve analysis revealed that all determined parameters at calving and α-T at dry-off and 30 days post-partum had excellent or acceptable predicting ability for mastitis incidence. Conclusion This information provides a tool for early identification of cows at high risk of developing mastitis, allowing the implementation of intervention strategies.
Collapse
|
7
|
Invernizzi G, Koutsouli P, Savoini G, Mariani E, Rebucci R, Baldi A, Politis I. Oxidative indices as metabolic stress predictors in periparturient dairy cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1661803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Guido Invernizzi
- Dipartimento di Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, University of Milan, Milano, Italy
| | - Panagiota Koutsouli
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Athens, Greece
| | - Giovanni Savoini
- Dipartimento di Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, University of Milan, Milano, Italy
| | - Elena Mariani
- Dipartimento di Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, University of Milan, Milano, Italy
| | - Raffaella Rebucci
- Dipartimento di Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, University of Milan, Milano, Italy
| | - Antonella Baldi
- Dipartimento di Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, University of Milan, Milano, Italy
| | - Ioannis Politis
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
8
|
Qu Y, Elsasser T, Kahl S, Garcia M, Scholte C, Connor E, Schroeder G, Moyes K. The effects of feeding mixed tocopherol oil on whole-blood respiratory burst and neutrophil immunometabolic-related gene expression in lactating dairy cows. J Dairy Sci 2018; 101:4332-4342. [DOI: 10.3168/jds.2017-13902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/11/2018] [Indexed: 12/12/2022]
|
9
|
Haga S, Miyaji M, Nakano M, Ishizaki H, Matsuyama H, Katoh K, Roh SG. Changes in the expression of α-tocopherol-related genes in liver and mammary gland biopsy specimens of peripartum dairy cows. J Dairy Sci 2018; 101:5277-5293. [PMID: 29605316 DOI: 10.3168/jds.2017-13630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/17/2018] [Indexed: 11/19/2022]
Abstract
Blood α-tocopherol (α-Toc) concentrations decline gradually throughout the prepartum period, reaching the nadir after calving in dairy cows. The 6 α-Toc-related molecules [α-Toc transfer protein (TTPA); afamin; scavenger receptor class B, Type I; ATP-binding cassette transporter A1; tocopherol-associated protein (SEC14L2); and cytochrome P450 family 4, subfamily F, polypeptide 2 (CYP4F2)] are expressed in liver and other peripheral tissues. These molecules could regulate α-Toc transport, blood concentrations, and metabolism of α-Toc. Therefore, the aim of this study was to evaluate the changes in the expression of α-Toc-related genes in liver and mammary gland tissues of dairy cows around calving, which have remained elusive until now. In experiment (Exp.) 1, 28 multiparous Holstein cows were used (from -5 to 6 wk relative to parturition) to monitor the changes in dietary α-Toc intake, blood concentrations of α-Toc, and lipoproteins; in Exp. 2, 7 peripartum Holstein cows were used (from -4 to 4 wk relative to parturition) for liver tissue biopsy; and in Exp. 3, 10 peripartum Holstein cows were used (from -8 to 6 wk relative to parturition) to carry out the mammary gland tissue biopsy and milk sampling. In Exp. 1, the serum α-Toc concentrations declined gradually with decreasing amount of α-Toc intake and plasma high-density lipoprotein concentrations toward calving time. However, in the early lactation period after calving, serum α-Toc concentrations remained at a lower concentration despite the recovery of α-Toc intake and plasma high-density lipoprotein concentrations. In Exp. 2, just after calving, the TTPA, SEC14L2, afamin, and albumin mRNA expression levels in the liver were temporarily downregulated, and the hepatic mRNA levels of endoplasmic reticulum stress-induced unfolded protein response markers and acute-phase response marker increased at calving. In Exp. 3, the concentrations of α-Toc in colostrum were greater than those in precolostrum (samples were collected at wk -1 relative to parturition) and mature milk. The expression of TTPA, SEC14L2, and CYP4F2 mRNA in bovine mammary gland tissue was detected. However, TTPA and SEC14L2 mRNA expressions showed the opposite trends: the expression levels of TTPA mRNA peaked whereas SEC14L2 mRNA reached a nadir at calving. These results indicate that the expression of α-Toc-related genes involved in specific α-Toc transfer and metabolism in the liver and mammary gland are altered during calving. Moreover, these changes might be associated with the maintenance of lower serum α-Toc concentrations after calving.
Collapse
Affiliation(s)
- S Haga
- Grassland Management Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 768, Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan.
| | - M Miyaji
- Animal Feeding and Management Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 768, Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan
| | - M Nakano
- Grassland Management Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 768, Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan
| | - H Ishizaki
- Grassland Management Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 768, Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan
| | - H Matsuyama
- Animal Feeding and Management Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 768, Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan
| | - K Katoh
- Lab of Animal Physiology, Graduate School of Agriculture Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - S G Roh
- Lab of Animal Physiology, Graduate School of Agriculture Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| |
Collapse
|
10
|
Overton T, McArt J, Nydam D. A 100-Year Review: Metabolic health indicators and management of dairy cattle. J Dairy Sci 2017; 100:10398-10417. [DOI: 10.3168/jds.2017-13054] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/28/2017] [Indexed: 11/19/2022]
|
11
|
Hanschke N, Kankofer M, Ruda L, Höltershinken M, Meyer U, Frank J, Dänicke S, Rehage J. The effect of conjugated linoleic acid supplements on oxidative and antioxidative status of dairy cows. J Dairy Sci 2016; 99:8090-8102. [PMID: 27497903 DOI: 10.3168/jds.2015-10685] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/24/2016] [Indexed: 01/07/2023]
Abstract
Dairy cows develop frequently negative energy balance around parturition and in early lactation, resulting in excessive mobilization of body fat and subsequently in increased risk of ketosis and other diseases. Dietary conjugated linoleic acid (CLA) supplements are used in dairy cows mainly for their depressing effect on milk fat content, but are also proposed to have antioxidative properties. As negative energy balance is associated with oxidative stress, which is also assumed to contribute to disease development, the present study was conducted to examine effects of CLA on oxidative and antioxidative status of lactating dairy cows. German Holstein cows (primiparous n=13, multiparous n=32) were divided into 3 dietary treatment groups receiving 100g/d of control fat supplement, containing 87% stearic acid (CON; n=14), 50g/d of control fat supplement and 50g/d of CLA supplement (CLA 50; n=15), or 100g/d of CLA supplement (CLA 100; n=16). The CLA supplement was lipid-encapsulated and contained 12% of trans-10,cis-12 CLA and cis-9,trans-11 CLA each. Supplementation took place between d1 and 182 postpartum; d 182 until 252 postpartum served as a depletion period. Blood was sampled at d -21, 1, 21, 70, 105, 140, 182, 224, and 252 relative to calving. The antioxidative status was determined using the ferric-reducing ability of plasma, α-tocopherol, α-tocopherol-to-cholesterol mass ratio, and retinol. For determination of oxidative status concentrations of hydroperoxides, thiobarbituric acid-reactive substances (TBARS), N'-formylkynurenine, and bityrosine were measured. Mixed models of fixed and random effects with repeated measures were used to evaluate period 1 (d -21 to 140) and 2 (d182-252) separately. Cows showed increased oxidative stress and lipid peroxidation during the periparturient period in terms of increased serum concentrations of hydroperoxides and TBARS, which decreased throughout lactation. During period 1, the supplemented cows had lower TBARS concentrations, which was not detectable in period 2. The other determined parameters were not affected by CLA supplementation. The obtained results show that dietary CLA supplementation in the chosen dosage, formulation, and application period had a marginal antioxidative effect in terms of lipid peroxidation in lactating dairy cows.
Collapse
Affiliation(s)
- N Hanschke
- Clinic for Cattle, University of Veterinary Medicine, Foundation, 30173, Hannover, Germany.
| | - M Kankofer
- University of Life Sciences, 20-033, Lublin, Poland
| | - L Ruda
- Clinic for Cattle, University of Veterinary Medicine, Foundation, 30173, Hannover, Germany
| | - M Höltershinken
- Clinic for Cattle, University of Veterinary Medicine, Foundation, 30173, Hannover, Germany
| | - U Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 38116, Braunschweig, Germany
| | - J Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, 70599 Stuttgart, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 38116, Braunschweig, Germany
| | - J Rehage
- Clinic for Cattle, University of Veterinary Medicine, Foundation, 30173, Hannover, Germany
| |
Collapse
|
12
|
|
13
|
Qu Y, Lytle K, Traber M, Bobe G. Depleted serum vitamin E concentrations precede left displaced abomasum in early-lactation dairy cows. J Dairy Sci 2013; 96:3012-22. [DOI: 10.3168/jds.2012-6357] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/02/2013] [Indexed: 01/09/2023]
|