1
|
Wang H, Fu J, Wu X, Wang Y, Li W, Huang Y, Zhong J, Peng Z. Effects of Dietary Protein Level and Rumen-Protected Methionine and Lysine on Growth Performance, Rumen Fermentation and Serum Indexes for Yaks. Animals (Basel) 2024; 14:1751. [PMID: 38929369 PMCID: PMC11201000 DOI: 10.3390/ani14121751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigated the effects of the dietary protein level and rumen-protected methionine and lysine (RPML) on the growth performance, rumen fermentation, and serum indexes of yaks. Thirty-six male yaks were randomly assigned to a two by three factorial experiment with two protein levels, 15.05% and 16.51%, and three RPML levels: 0% RPML; 0.05% RPMet and 0.15% RPLys; and 0.1% RPMet and 0.3% RPLys. The trial lasted for sixty days. The results showed that the low-protein diet increased the DMI and feed conversion ratio of yaks. The diet supplemented with RPML increased the activities of IGF1 and INS and nutrient digestibility. The high-protein diet decreased the rumen butyrate concentration and increased the rumen isovalerate concentration. The low-protein diet supplemented with RPML increased the rumen pH and the concentrations of total volatile fatty acids, butyrate and NH3-N; the high-protein diet supplemented with a high level of RPML decreased the rumen pH and the concentrations of isobutyrate, isovalerate, propionate and NH3-N. The low-protein diet supplemented with RPML increased the total antioxidant capacity and glutathione peroxidase activity, along with the concentrations of malondialdehyde and amino acids such as aspartic acid, lysine, cysteine, etc. In conclusion, a low-protein diet supplemented with RPML is beneficial for rumen and body health, physiological response, and metabolic status in yaks.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (H.W.); (J.F.); (X.W.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Jianhui Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (H.W.); (J.F.); (X.W.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Xia Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (H.W.); (J.F.); (X.W.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Yadong Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.W.); (W.L.); (Y.H.)
| | - Wenjie Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.W.); (W.L.); (Y.H.)
| | - Yanling Huang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.W.); (W.L.); (Y.H.)
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (H.W.); (J.F.); (X.W.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Zhongli Peng
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.W.); (W.L.); (Y.H.)
| |
Collapse
|
2
|
Chowdhury MR, Wilkinson RG, Sinclair LA. Reducing dietary protein and supplementation with starch or rumen-protected methionine and its effect on performance and nitrogen efficiency in dairy cows fed a red clover and grass silage-based diet. J Dairy Sci 2024; 107:3543-3557. [PMID: 38211692 DOI: 10.3168/jds.2023-23987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
The increasing cost of milk production, in association with tighter manure N application regulations and challenges associated with ammonia emissions in many countries, has increased interest in feeding lower crude protein (CP) diets based on legume silages. Most studies have focused on alfalfa silage, and little information is available on low-CP diets based on red clover silage. Our objectives were to examine the effects of dietary CP content and supplementing a low-CP diet with dietary starch or rumen-protected Met (RPMet) on the performance, metabolism, and nitrogen use efficiency (NUE; milk N output/N intake) in dairy cows fed a red clover and grass silage-based diet. A total of 56 Holstein-Friesian dairy cows were blocked and randomly allocated to 1 of 4 diets over a 14-wk feeding period. Diets were based on red clover and grass silages at a ratio of 50:50 on a dry matter (DM) basis and were fed as a total mixed ration, with a 53:47 ratio of forage to concentrate (DM basis). The diets were formulated to supply a similar metabolizable protein (MP) content, and had a CP concentration of either 175 g/kg DM (control [CON]) or 150 g/kg DM (low-protein [LP]), or LP supplemented with either additional barley as a source of starch (LPSt; +64 g/kg DM) or RPMet (LPM; +0.3 g/100 g MP). At the end of the 14-wk feeding period, 20 cows (5 per treatment) continued to be fed the same diets for a further 6 d, and total urine output and fecal samples were collected. We observed that dietary treatment did not affect DM intake, with a mean of 21.5 kg/d; however, we also observed an interaction between diet and week with intake being highest in cows fed LPSt in wk 4 and CON in wk 9 and 14. Mean milk yield, 4% fat-corrected milk, and energy-corrected milk were not altered by treatment. Similarly, we found no effect of dietary treatment on milk fat, protein, or lactose content. In contrast, milk and plasma urea concentrations were highest in cows fed CON. The concentration of blood plasma β-hydroxybutyrate was highest in cows receiving LPM and lowest in LPSt. Apparent NUE was 28.6% in cows fed CON and was higher in cows fed any of the low-protein diets (LP, LPSt, or LPM), with a mean value of 34.2%. The sum of milk fatty acids with a chain length below C16:0 was also highest in cows fed CON. We observed that dietary treatment did not affect the apparent whole-tract nutrient digestibility of organic matter, N, neutral detergent fiber, and acid detergent fiber, with mean values of 0.785, 0.659, 0.660, and 0.651 kg/kg respectively, but urinary N excretion was approximately 60 g/d lower in cows fed the low-CP diets compared with CON. We conclude that reducing the CP content of red clover and grass silage-based diets from 175 to 150 g/kg DM while maintaining MP supply did not affect performance, but reduced the urinary N excretion and improved NUE, and that supplementing additional starch or RPMet had little further effect.
Collapse
Affiliation(s)
- M R Chowdhury
- Animal Science Research Centre, Harper Adams University, Newport, Shropshire TF10 8NB, United Kingdom; Department of Biochemistry and Chemistry, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - R G Wilkinson
- Animal Science Research Centre, Harper Adams University, Newport, Shropshire TF10 8NB, United Kingdom
| | - L A Sinclair
- Animal Science Research Centre, Harper Adams University, Newport, Shropshire TF10 8NB, United Kingdom.
| |
Collapse
|
3
|
Seleem MS, Wu ZH, Xing CQ, Zhang Y, Hanigan MD, Bu DP. Effects of rumen-encapsulated methionine and lysine supplementation and low dietary protein on nitrogen efficiency and lactation performance of dairy cows. J Dairy Sci 2024; 107:2087-2098. [PMID: 37923213 DOI: 10.3168/jds.2023-23404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
Low crude protein (CP) diets might be fed to dairy cows without affecting productivity if the balance of absorbed AA were improved, which would decrease the environmental effect of dairy farms. The aim of this study was to investigate the effects of supplementing ruminally protected Lys (RPL) and Met (RPM) at 2 levels of dietary CP on nutrient intake, milk production, milk composition, milk N efficiency (MNE), and plasma concentrations of AA in lactating Holstein cows and to evaluate these effects against the predictions of the new NASEM (2021) model. Fifteen multiparous cows were used in a replicated 3 × 3 Latin square design with 21-d periods. The 3 treatments were (1) a high-protein (HP) basal diet containing 16.4% CP (metabolizable protein [MP] balance of -130 g/d; 95% of target values), (2) a medium-protein diet containing 15% CP plus RPL (60 g/cow per day) and RPM (25 g/cow per day; MPLM; MP balance of -314 g/d; 87% of target values), and (3) a low-protein diet containing 13.6% CP plus RPL (60 g/cow per day) and RPM (25 g/cow per day; LPLM; MP balance of -479 g/d; 80% of target values). Dry matter intake was less for cows fed MPLM and LPLM diets compared with those fed the HP diet. Compared with the HP diet, the intake of CP, neutral detergent fiber, acid detergent fiber, and organic matter, but not starch, was lower for cows fed MPLM and LPLM diets. Milk production and composition were not affected by MPLM or LPLM diets relative to the HP diet. Milk urea N concentrations were reduced for the MPLM and LPLM diets compared with the HP diet, indicating that providing a low-protein diet supplemented with rumen-protected AA led to greater N efficiency. There was no significant effect of treatment on plasma AA concentrations except for proline, which significantly increased for the MPLM treatment compared with the other 2 treatments. Overall, the results supported the concept that milk performance might be maintained when feeding lactating dairy cows with low CP diets if the absorbed AA balance is maintained through RPL and RPM feeding. Further investigations are needed to evaluate responses over a longer time period with consideration of all AA rather than on the more aggregated MP and the ratio between Lys and Met.
Collapse
Affiliation(s)
- M S Seleem
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Z H Wu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - C Q Xing
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Y Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - M D Hanigan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060
| | - D P Bu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; Joint Laboratory on Integrated Crop-Tree-Livestock Systems, Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research, and World Agroforestry Center (ICRAF), Beijing 100193, China.
| |
Collapse
|
4
|
Wu ZH, Du C, Hou MJ, Zhao LS, Ma L, Sinclair LA, Bu DP. Hydroponic barley supplementation fed with high protein diets improves the production performance of lactating dairy cows. J Dairy Sci 2024:S0022-0302(24)00628-3. [PMID: 38554823 DOI: 10.3168/jds.2023-24178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
The study investigated the effects of dietary protein level and the inclusion of hydroponic barley sprouts (HB) on lactation performance, blood biochemistry and N use efficiency in mid-lactation dairy cows. Treatments were arranged in a 2 × 2 factorial design with 2 crude protein (CP) levels [16.8% and 15.5% of dry matter (DM)], with HB (4.8% of DM, replacing 4.3% of alfalfa hay and 0.5% of distillers dried grains with solubles (DDGS)) or without HB. Forty-eight multiparous Holstein dairy cows (146 ± 15 d in milk, 40 ± 5 kg/d of milk) were randomly allocated to 1 of 4 diets: high protein diet (16.8% CP, HP), HP with HB (HP+HB), low protein diet (15.5% CP, LP), or LP with HB (LP+HB). An interaction between CP × HB on dry matter intake (DMI) was detected, with DMI being unaffected by HB inclusion in cows fed the high CP diets, but was lower in cows fed HB when the low CP diet was fed. A CP × HB interaction was also observed on milk and milk protein yield, which was higher in cows fed HB with HP, but not LP. Inclusion of HB also tended to reduce milk fat content, and feeding HP resulted in a higher milk protein and milk urea N content, but lower milk lactose content. Feed efficiency was increased by feeding HP or HB diets, whereas N efficiency was higher for cows fed LP or HB diets. There was an interaction on the apparent total-tract digestibility of DM and CP, which was higher when HB was fed along with HP, but reduced when fed with LP, whereas the digestibility of ADF was increased by feeding low protein diets. In conclusion, feeding a low protein diet had no adverse effect on cow performance, while feeding HB improved milk and milk component yield, and N efficiency when fed with a high CP diet, but compromised cow performance with a low CP diet.
Collapse
Affiliation(s)
- Z H Wu
- Institute of Animal Science, State Key Laboratory of Animal Nutrition and Feeding, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - C Du
- Institute of Animal Science, State Key Laboratory of Animal Nutrition and Feeding, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - M J Hou
- Institute of Animal Science, State Key Laboratory of Animal Nutrition and Feeding, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - L S Zhao
- Institute of Animal Science, State Key Laboratory of Animal Nutrition and Feeding, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - L Ma
- Institute of Animal Science, State Key Laboratory of Animal Nutrition and Feeding, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - L A Sinclair
- Animal Science Research Centre, Harper Adams University, Newport, Shropshire, TF10 8NB, United Kingdom
| | - D P Bu
- Institute of Animal Science, State Key Laboratory of Animal Nutrition and Feeding, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China; CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing 100193, P.R. China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan 410128, P.R. China.
| |
Collapse
|
5
|
Irawan A, Sofyan A, Wahyono T, Harahap MA, Febrisiantosa A, Sakti AA, Herdian H, Jayanegara A. Relationships between dietary rumen-protected lysine and methionine with the lactational performance of dairy cows - A meta-analysis. Anim Biosci 2023; 36:1666-1684. [PMID: 37605536 PMCID: PMC10623038 DOI: 10.5713/ab.23.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 07/13/2023] [Indexed: 08/23/2023] Open
Abstract
OBJECTIVE Our objective was to examine the relationships of supplemental rumen-protected lysine (RPL) or lysine + methionine (RPLM) on lactational performance, plasma amino acids (AA) concentration, and nitrogen use efficiency of lactating dairy cows by using a meta-analysis approach. METHODS A total of 56 articles comprising 77 experiments with either RPL or RPLM supplementation were selected and analyzed using a mixed model methodology by considering the treatments and other potential covariates as fixed effects and different experiments as random effects. RESULTS In early lactating cows, milk yield was linearly increased by RPL (β1 = 0.013; p<0.001) and RPLM (β1 = 0.014; p<0.028) but 3.5% fat-corrected milk (FCM) and energy-corrected milk (ECM) (kg/d) was increased by only RPL. RPL and RPLM did not affect dry matter intake (DMI) but positively increased (p<0.05) dairy efficiency (Milk yield/DMI and ECM/DMI). As a percentage, milk fat, protein, and lactose were unchanged by RPL or RPLM but the yield of all components was increased (p<0.05) by feeding RPL while only milk protein was increased by feeding RPLM. Plasma Lys concentration was linearly increased (p<0.05) with increasing supplemental RPL while plasma Met increased (p<0.05) by RPLM supplementation. The increase in plasma Lys had a strong linear relationship (R2 = 0.693 in the RPL dataset and R2 = 0.769 in the RPLM dataset) on milk protein synthesis (g/d) during early lactation. Nitrogen metabolism parameters were not affected by feeding RPL or RPLM, either top-dress or when supplemented to deficient diets. Lactation performance did not differ between AA-deficient or AA-adequate diets in response to RPL or RPLM supplementation. CONCLUSION RPL or RPLM showed a positive linear relationship on the lactational performance of dairy cows whereas greater improvement effects were observed during early lactation. Supplementing RPL or RPLM is recommended on deficient-AA diet but not on adequate-AA diet.
Collapse
Affiliation(s)
- Agung Irawan
- Vocational School, Universitas Sebelas Maret, Surakarta 57126,
Indonesia
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97331, OR,
USA
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor 16680,
Indonesia
| | - Ahmad Sofyan
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor 16680,
Indonesia
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911,
Indonesia
| | - Teguh Wahyono
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor 16680,
Indonesia
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, Daerah Istimewa Yogyakarta 55861,
Indonesia
| | - Muhammad Ainsyar Harahap
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911,
Indonesia
| | - Andi Febrisiantosa
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, Daerah Istimewa Yogyakarta 55861,
Indonesia
| | - Awistaros Angger Sakti
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911,
Indonesia
| | - Hendra Herdian
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor 16680,
Indonesia
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911,
Indonesia
| | - Anuraga Jayanegara
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor 16680,
Indonesia
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680,
Indonesia
| |
Collapse
|
6
|
Huang B, Khan MZ, Kou X, Chen Y, Liang H, Ullah Q, Khan N, Khan A, Chai W, Wang C. Enhancing Metabolism and Milk Production Performance in Periparturient Dairy Cattle through Rumen-Protected Methionine and Choline Supplementation. Metabolites 2023; 13:1080. [PMID: 37887405 PMCID: PMC10608895 DOI: 10.3390/metabo13101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
For dairy cattle to perform well throughout and following lactations, precise dietary control during the periparturient phase is crucial. The primary issues experienced by periparturient dairy cows include issues like decreased dry matter intake (DMI), a negative energy balance, higher levels of non-esterified fatty acids (NEFA), and the ensuing inferior milk output. Dairy cattle have always been fed a diet high in crude protein (CP) to produce the most milk possible. Despite the vital function that dairy cows play in the conversion of dietary CP into milk, a sizeable percentage of nitrogen is inevitably expelled, which raises serious environmental concerns. To reduce nitrogen emissions and their production, lactating dairy cows must receive less CP supplementation. Supplementing dairy cattle with rumen-protected methionine (RPM) and choline (RPC) has proven to be a successful method for improving their ability to use nitrogen, regulate their metabolism, and produce milk. The detrimental effects of low dietary protein consumption on the milk yield, protein yield, and dry matter intake may be mitigated by these nutritional treatments. In metabolic activities like the synthesis of sulfur-containing amino acids and methylation reactions, RPM and RPC are crucial players. Methionine, a limiting amino acid, affects the production of milk protein and the success of lactation in general. According to the existing data in the literature, methionine supplementation has a favorable impact on the pathways that produce milk. Similarly, choline is essential for DNA methylation, cell membrane stability, and lipid metabolism. Furthermore, RPC supplementation during the transition phase improves dry matter intake, postpartum milk yield, and fat-corrected milk (FCM) production. This review provides comprehensive insights into the roles of RPM and RPC in optimizing nitrogen utilization, metabolism, and enhancing milk production performance in periparturient dairy cattle, offering valuable strategies for sustainable dairy farming practices.
Collapse
Affiliation(s)
- Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
- College of Life Sciences, Liaocheng University, Liaocheng 252059, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Nadar Khan
- Livestock and Dairy Development (Research) Department Khyber Pakhtunkhwa, Peshawar 25120, Pakistan
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
7
|
Räisänen SE, Lapierre H, Price WJ, Hristov AN. Lactational performance effects of supplemental histidine in dairy cows: A meta-analysis. J Dairy Sci 2023; 106:6216-6231. [PMID: 37500429 DOI: 10.3168/jds.2022-22966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/26/2023] [Indexed: 07/29/2023]
Abstract
The objective of this meta-analysis was to examine the effects of supplemental His on lactational performance, plasma His concentration and efficiency of utilization of digestible His (EffHis) in dairy cows. The meta-analysis was performed on data from 17 studies published in peer-reviewed journals between 1999 and 2022. Five publications reported data from 2 separate experiments, which were included in the analyses as separate studies, therefore resulting in a total of 22 studies. In 10 studies, His was supplemented as rumen-protected (RP) His; in 1 study, 2 basal diets with different dHis levels were fed; and in the remaining experiments, free His was infused into the abomasum (4 studies), the jugular vein (3 studies) or deleted from a mixture of postruminally infused AA (4 studies). The main forages in the diets were corn silage in 14 and grass silage in 8 studies. If not reported in the publications, the supplies of dietary CP, metabolizable protein (MP), net energy of lactation, and digestible His (dHis) were estimated using NRC (2001). An initial meta-analysis was performed to test the standard mean difference (SMD; raw mean difference of treatment and control means divided by the pooled standard deviation of the means), that is, effect size, and the corresponding 95% confidence interval (CI) in production parameters between His-supplemented groups versus control. Further, regression analyses were also conducted to examine and compare the relationships between several response variables and dHis supply. Across studies, His supplementation increased plasma His concentration (SMD = 1.39; 95% CI: 1.17-1.61), as well as DMI (SMD = 0.240; 95% CI: 0.051-0.429) and milk yield (MY; SMD = 0.667; 95% CI: 0.468-0.866), respectively. Further, milk true protein concentration (MTP; SMD = 0.236; 95% CI: 0.046-0.425) and milk true protein yield (MTPY; SMD = 0.581; 95% CI: 0.387-0.776) were increased by His supplementation. Notably, the increase in MTP concentration and MTPY were 3.9 and 1.3 times greater for studies with MP-deficient (according to NRC 2001) diets compared with studies with MP-adequate diets. The regression analyses revealed that production parameters (DMI, MY, and MTPY) responded in a nonlinear manner to increasing His supply. Further, we detected a difference in the magnitude of change in MTPY and plasma His concentration with the level of His supply and between His supplementation methods, being greater for infused His compared with RPHis. Lastly, a linear and negative relationship between EffHis and the ratio of total digestible His to net energy for lactation supply was observed, indicating an important interaction between dHis and energy supply and EffHis (i.e., utilization of dHis to support protein export). Overall, these analyses confirm His as an important AA in dairy cattle nutrition.
Collapse
Affiliation(s)
- S E Räisänen
- Department of Animal Science, The Pennsylvania State University, State College, PA 16802; ETH Zürich, Department of Environmental Science, Institute of Agricultural Sciences, Zürich 8092, Switzerland
| | - H Lapierre
- Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - W J Price
- Statistical Programs, University of Idaho, Moscow, ID 83844
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, State College, PA 16802.
| |
Collapse
|
8
|
Danes MAC, Paula EM, Parys C, Souza GM, Rezende JPA, Broderick GA, Wattiaux MA. Effects of Amount and Profile of Amino Acids Supply on Lactation Performance, Mammary Gland Metabolism, and Nitrogen Efficiency in Holstein Dairy Cows. Animals (Basel) 2023; 13:1866. [PMID: 37889775 PMCID: PMC10252093 DOI: 10.3390/ani13111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 10/29/2023] Open
Abstract
To evaluate the effects of amount and profile of amino acid (AA) on milk protein yield (MPY), mammary metabolism, and efficiency of nitrogen use (ENU), ten cows were used in 5 × 5 replicated Latin squares and fed a positive control (16.1% crude protein-CP) or two lower CP diets (14.6 and 13.2%) with or without essential AA (EAA) infusion. The EAA solutions provided predicted limiting EAA in each treatment and were continuously infused into the abomasum of the cows. Milk production and MPY were not affected by treatment (mean 35.4 kg/d and 1.03 kg/d, respectively). Efficiency of nitrogen utilization was increased as dietary CP decreased but was not affected by EAA infusion (p < 0.01). Energy-corrected milk production was increased by EAA infusion into 13.2% CP, but not into 14.6% CP diet (p = 0.09), reaching the positive control value. Infusions increased mammary affinity for non-infused EAA (Ile, Phe, Thr, and Trp), allowing the same MPY despite lower arterial concentrations of these AA. Higher arterial concentrations of infused EAA did not increase their mammary uptake and MPY (p = 0.40; p = 0.85). Mammary metabolism did not fully explain changes in N efficiency, suggesting that it might be driven by less extramammary catabolism as AA supply was reduced.
Collapse
Affiliation(s)
- Marina A. C. Danes
- Department of Animal Science, University of Lavras, Lavras 37200-900, MG, Brazil; (G.M.S.); (J.P.A.R.)
| | - Eduardo M. Paula
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho 14160-970, SP, Brazil;
| | - Claudia Parys
- Evonik Operations GmbH, 63457 Hanau-Wolfgang, Germany;
| | - Gleiciele M. Souza
- Department of Animal Science, University of Lavras, Lavras 37200-900, MG, Brazil; (G.M.S.); (J.P.A.R.)
| | - João Pedro A. Rezende
- Department of Animal Science, University of Lavras, Lavras 37200-900, MG, Brazil; (G.M.S.); (J.P.A.R.)
| | | | - Michel A. Wattiaux
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA;
| |
Collapse
|
9
|
Van den Bossche T, Goossens K, Ampe B, Haesaert G, De Sutter J, De Boever JL, Vandaele L. Effect of supplementing rumen-protected methionine, lysine, and histidine to low-protein diets on the performance and nitrogen balance of dairy cows. J Dairy Sci 2023; 106:1790-1802. [PMID: 36710179 DOI: 10.3168/jds.2022-22041] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/07/2022] [Indexed: 01/30/2023]
Abstract
Lowering the dietary protein content can reduce N excretions and NH3 emissions from manure and increase milk N efficiency of dairy cows. However, milk yield (MY) and composition can be compromised due to AA deficiency. Methionine and Lys are known as first limiting EAA for dairy cows, and recently His is also mentioned as limiting, especially in grass-based or low-protein diets. To examine this, a trial was conducted with a 3-wk pre-experimental adaptation period (diet 16.5% crude protein), followed by a depletion period of 4 wk, in which 39 cows (average ± standard deviation: 116 ± 29.3 d in milk, 1.8 ± 1.2 lactations, 638 ± 73.2 kg of body weight, and 32.7 ± 5.75 kg MY/d) received a low-protein diet (CTRL) (14.5% crude protein). Then, taking into account parity, His plasma concentration, and MY, cows were randomly assigned to 1 of 3 treatment groups during the rumen-protected (RP) AA period of 7 wk; (1) CTRL; (2) CTRL + RP-Met + RP-Lys (MetLys); (3) CTRL + RP-Met + RP-Lys + RP-His (MetLysHis). Products were dosed, assuming requirements for digestible (d) Met, dLys, and dHis being, respectively, 2.4%, 7.0%, and 2.4% of intestinal digestible protein. In the cross-back period of 5 wk, all cows received the CTRL diet. During the last week of each period, a N balance was conducted by collecting total urine and spot samples of feces. Total feces production was calculated using the inert marker TiO2. Statistical analysis was performed with a linear mixed model with cow as random effect and data of the last week of the pre-experimental period used as covariate for the animal performance variables. No effect of supplementing RP-Met and RP-Lys nor RP-Met, RP-Lys, and RP-His on feed intake, milk performance, or milk N efficiency was observed. However, the plasma AA profile indicated additional supply of dMet, dLys, and dHis. Nevertheless, evaluation of the AA uptake relative to the cow's requirements showed that most EAA (exclusive Arg and Thr) were limiting over the whole experiment. Only dHis was sufficiently supplemented during the RP-AA period due to an overestimation of the diet's dMet and dLys supply in the beginning of the trial. The numerically increased milk urea N and urinary N excretion when RP-Met, RP-Lys, and RP-His were added to the low-protein diet suggest an increased catabolism of the excess His.
Collapse
Affiliation(s)
| | - K Goossens
- ILVO, 9090 Melle, East-Flanders, Belgium
| | - B Ampe
- ILVO, 9090 Melle, East-Flanders, Belgium
| | - G Haesaert
- Bioscience Engineering, Ghent University, 9000 Gent, East-Flanders, Belgium
| | - J De Sutter
- Orffa Additives B.V., 4817 ZL Breda, Brabant, the Netherlands
| | | | - L Vandaele
- ILVO, 9090 Melle, East-Flanders, Belgium.
| |
Collapse
|
10
|
Effects of Supplementary Concentrate and/or Rumen-protected Lysine Plus Methionine on Productive Performance, Milk Composition, Rumen Fermentation, and Bacterial Population in Grazing, Lactating Yaks. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Abedal-Majed MA, Titi HH, Al-Qaisi M, Abdelqader A, Tabbaa MJ. The effects of rumen protected methionine supplementation on the performance of primiparous dairy cows using the Presynch-Ovsynch protocol. Anim Sci J 2023; 94:e13835. [PMID: 37144633 DOI: 10.1111/asj.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
The purpose of this study was to examine the effects of rumen-protected methionine (RPM) supplementation on the reproductive and productive performance of primiparous dairy cows fed two levels of protein. The Presynch-Ovsynch protocol was used to synchronize 36 lactating Holstein cows that were assigned randomly to one of six dietary treatments: (1) 14% CP and without RPM diet (14CP-0RPM; n = 6), (2) 14% CP and 15 g/head/day RPM (14CP-15RPM; n = 6), (3) 14% CP and 25 g/head/day RPM (14CP-25RPM; n = 6), (4) 16% CP and without RPM diet (16CP-0RPM; n = 6), (5) 16% CP and 15 g/head/day RPM (16CP-15RPM; n = 6), and (6) 16% CP and 25 g/head/day RPM (16CP-25RPM; n = 6). Independent of CP levels, feeding RPM had reduced the calving interval (P < 0.01). Feeding RPM increased (P < 0.01) overall plasma progesterone (P4). Feeding 16CP-15RPM increased (P < 0.01) overall plasma P4. Feeding 16% CP increased (P < 0.01) 4% fat corrected milk, energy corrected milk, milk fat and protein yield, and milk casein. Moreover, feeding the 25RPM has increased (P < 0.01) 4% fat corrected milk, energy corrected milk, milk fat, and protein yield. Compared with other treatments, feeding 16CP-25RPM or 16CP-15RPM enhanced (P < 0.01) milk yield and milk fat yield. In conclusion, feeding 16% CP with RPM boosted the productivity and reduced the calving interval in primiparous lactating dairy cows.
Collapse
Affiliation(s)
| | - Hosam Hani Titi
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Mohmmad Al-Qaisi
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Anas Abdelqader
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Mohammad Jihad Tabbaa
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, Jordan
| |
Collapse
|
12
|
Li Y, Wei J, Dou M, Liu S, Yan B, Li C, Khan MZ, Zhang Y, Xiao J. Effects of rumen-protected methionine supplementation on production performance, apparent digestibility, blood parameters, and ruminal fermentation of lactating Holstein dairy cows. Front Vet Sci 2022; 9:981757. [PMID: 36578439 PMCID: PMC9790980 DOI: 10.3389/fvets.2022.981757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
This study aimed to evaluate the effects of reducing dietary CP and supplementing rumen protected-methionine (RPM) on production performance, blood parameters, digestibility of nutrients or ruminal fermentation in lactating Holstein dairy cows. A total of 96 lactating cows were randomly assigned to 1 of 2 treatments: a diet containing 17.3% CP without RPM (control group; CON; n = 49) or a diet containing 16.4% CP and supplemented with 15.0 g/d of RPM (treatment group; RPM; n = 47). No effect was observed in the RPM group on milk yield, milk composition and digestibility of nutrients. The results of blood parameters showed that cows in the RPM group exhibited lower blood urea nitrogen concentration than in CON group. Rumen microbial crude protein (MCP) was higher in the RPM group compared to the CON group. Ruminal volatile fatty acid (VFA) concentrations were not different between treatments except for butyrate and isovalerate, which were higher in the RPM group than the CON group 2 h after feeding. In conclusion, reducing dietary CP with RPM supplementation did not limit milk yield, milk composition or digestibility of nutrients, but could improve nitrogen utilization, synthesis of MCP and partially increase VFA production 2 h after feeding cows.
Collapse
Affiliation(s)
- Yuanxiao Li
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
| | - Jialin Wei
- College of Animal Science, Henan University of Science and Technology, Luoyang, China,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mengying Dou
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bichuan Yan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cuiyu Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- Department of Animal Science, Faculty of Veterinary and Animal Sciences, University of Agriculture Dera Ismail Khan, Dera Ismail Khan, Pakistan
| | | | - Jianxin Xiao
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,*Correspondence: Jianxin Xiao
| |
Collapse
|
13
|
Zhang J, Deng L, Zhang X, Cao Y, Li M, Yao J. Multiple Essential Amino Acids Regulate Mammary Metabolism and Milk Protein Synthesis in Lactating Dairy Cows. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Chesini RG, Takiya CS, Dias MS, Silva TB, Nunes AT, Grigoletto NT, da Silva GG, Vittorazzi PC, Rennó LN, Rennó FP. Dietary replacement of soybean meal with heat-treated soybean meal or high-protein corn distillers grains on nutrient digestibility and milk composition in mid-lactation cows. J Dairy Sci 2022; 106:233-244. [DOI: 10.3168/jds.2022-21904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022]
|
15
|
Effects of rumen-protected lysine and methionine supplementation in low-crude protein diets on lactation performance, nitrogen metabolism, rumen fermentation, and blood metabolites in Holstein cows. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Ny V, Needham T, Ceacero F. Potential benefits of amino acid supplementation for cervid performance and nutritional ecology, with special focus on lysine and methionine: A review. ANIMAL NUTRITION 2022; 11:391-401. [PMID: 36382203 PMCID: PMC9633987 DOI: 10.1016/j.aninu.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022]
Abstract
Deer farming is a thriving industry for venison, velvet antlers, trophy hunting, and other by-products. Feeding and nutrition are important factors for improving production performance, especially dietary protein and amino acids (AAs), as they are the main components of all tissues. Only a few studies on AA supplementation (Lys, Met, Arg) have been performed on cervids, which show positive effects on weight gain, ADG, feed-:gain ratio, plasma AAs, carcass weight, dressing percentage, yield of high-quality muscles, storage of internal fat during winter, DM and CP digestibility, plasma protein- and fat-related metabolite concentrations, antler burr perimeter, weight, length and mineralisation, velvet antler yield, rumen volatile fatty acids, and microbiome composition. All these effects are relevant for supporting the production of cervids products, from venison to velvet or trophy antlers, as well as their general performance and well-being of captive-bred cervids. The current available information suggests that AA supplementation can be especially interesting for animals fed low protein rations, and growing animals, but should be avoided in high rations and during winter, since it may promote the accumulation of internal fat. Potential effects on milk production and the concentrations of different hormones involved in the regulation of the antler cycle should be further explored.
Collapse
Affiliation(s)
- Veit Ny
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Czech Republic
- Department of Cattle Breeding, Institute of Animal Science, Prague, Czech Republic
- Food Research Institute Prague, Czech Republic
| | - Tersia Needham
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Czech Republic
| | - Francisco Ceacero
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Czech Republic
- Corresponding author.
| |
Collapse
|
17
|
Li Y, Lin X, Liu C, Hu Z, Hou Q, Wang Z. Assessing Amino Acid Metabolism in Splanchnic Tissues and Mammary Glands to Short-Term Graded Removal of Lys From an Abomasal-Infused Amino Acid Mixture in Lactating Goats. Front Vet Sci 2022; 9:929587. [PMID: 35782571 PMCID: PMC9247508 DOI: 10.3389/fvets.2022.929587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
To investigate the responses of amino acid metabolism in portal-drained viscera (PDV), liver, and mammary glands (MGs) to a graded gradual decrease of post-ruminal Lys supply, four multi-catheterized lactating goats were used in a 4 × 4 Latin square experiment. Goats were fasted for 12 h and then received a 33-h abomasal infusion of an amino acid mixture and glucose. Treatments consisted of a graded decrease of Lys content in the infusate to 100 (complete), 60, 30, or 0% as in casein. Lys-removed infusions decreased the production of milk, milk protein, fat, and lactose linearly and also decreased arterial Lys concentrations linearly (p < 0.05). Net PDV uptake decreased linearly (p < 0.05) with decreasing PDV loss ratio (p < 0.05). Although liver removal of Lys decreased linearly (p < 0.05), the removal ratio relative to portal absorption changed small, which was about 10% in all four treatments. Reduced Lys supply resulted in a linear decrease in the utilization of Lys in the peripheral tissues (except mammary, p < 0.05) and the release of more Lys in MGs. Although net mammary uptake of Lys declined linearly (p < 0.05), lactating goats can partially offset the negative effect of decreased circulating Lys concentrations by increasing mammary affinity (p < 0.05) and increasing mammary blood flow (p < 0.05). Graded removal of Lys from the infusate linearly decreased mammary uptake-to-output ratios of Lys (p < 0.05) suggesting that mammary catabolism of Lys decreased. Meanwhile, the treatments linearly increased circulating concentrations of glucagon and linearly decreased prolactin (p < 0.05). In conclusion, the results of the present study indicated that there were several mechanisms used to mitigate a Lys deficiency, including reduced catabolism of Lys in PDV and peripheral tissues (including MGs) and linearly increased mammary blood flow and mammary affinity together with increased mammary uptake and U:O of branched-chain amino acids (BCAA). Given these changes, the decline in milk protein production could be attributed to the combined effect of mass action with Lys and hormonal status.
Collapse
|
18
|
Nutritional Composition and Bioactive Components in Quinoa ( Chenopodium quinoa Willd.) Greens: A Review. Nutrients 2022; 14:nu14030558. [PMID: 35276913 PMCID: PMC8840215 DOI: 10.3390/nu14030558] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/19/2022] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a nutrient-rich grain native to South America and eaten worldwide as a healthy food, sometimes even referred to as a ”superfood”. Like quinoa grains, quinoa greens (green leaves, sprouts, and microgreens) are also rich in nutrients and have health promoting properties such as being antimicrobial, anticancer, antidiabetic, antioxidant, antiobesity, and cardio-beneficial. Quinoa greens are gluten-free and provide an excellent source of protein, amino acids, essential minerals, and omega-3 fatty acids. Quinoa greens represent a promising value-added vegetable that could resolve malnutrition problems and contribute to food and nutritional security. The greens can be grown year-round (in the field, high tunnel, and greenhouse) and have short growth durations. In addition, quinoa is salt-, drought-, and cold-tolerant and requires little fertilizer and water to grow. Nevertheless, consumption of quinoa greens as leafy vegetables is uncommon. To date, only a few researchers have investigated the nutritional properties, phytochemical composition, and human health benefits of quinoa greens. We undertook a comprehensive review of the literature on quinoa greens to explore their nutritional and functional significance to human health and to bring awareness to their use in human diets.
Collapse
|
19
|
Fagundes MA, Hall JO, Eun JS. Plasma methionine appearance and residual potential of supplemented N-acetyl-L-methionine through ruminal or abomasal infusion in dairy cows. Anim Sci J 2022; 93:e13797. [PMID: 36504475 DOI: 10.1111/asj.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 12/14/2022]
Abstract
The present study investigated the plasma methionine (Met) and residual potential of N-acetyl-L-Met (NALM) in lactating dairy cows. Six cows (75 ± 20.1 days-in-milk) were used in a replicated 3 × 3 Latin square design. Within each square, cows were randomly assigned to a sequence of three dietary treatments during each of the three 13-day periods (10 days of treatment adaptation and 3 days of data collection and sampling). The three dietary treatments are as follows: basal diet without NALM (control); control diet with 30 g/day of NALM by rumen placement (30NALM), and control diet with 60 g/day of NALM by rumen placement (60NALM). Rumen NALM dosing led to a linear increase in plasma Met concentration. Abomasal infusion with NALM resulted in both linear and quadratic increases in plasma Met concentration. No NALM was detected in milk, liver, plasma, and muscle samples after rumen placement or abomasal infusion. Supplementation of NALM did not affect dry matter intake and milk yield. The absence of plasma NALM and increases in plasma Met concentration for both ruminal and abomasal NALM dosing suggest that NALM supplemented by either rumen placement or abomasal infusion to lactating dairy cows is deacetylated before entering the central circulation.
Collapse
Affiliation(s)
- Mark A Fagundes
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Jeffery O Hall
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Jong-Su Eun
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| |
Collapse
|
20
|
Piccioli-Cappelli F, Seal CJ, Parker DS, Loor JJ, Minuti A, Lopreiato V, Trevisi E. Effect of stage of lactation and dietary starch content on endocrine-metabolic status, blood amino acid concentrations, milk yield, and composition in Holstein dairy cows. J Dairy Sci 2021; 105:1131-1149. [PMID: 34955268 DOI: 10.3168/jds.2021-20539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/17/2021] [Indexed: 12/18/2022]
Abstract
Milk yield and composition are modified by level and chemical characteristics of dietary energy and protein. Those factors determine nutrient availability from a given diet, and once absorbed, they interact with the endocrine system and together determine availability of metabolites to the mammary gland. Four multiparous dairy cows in early lactation and subsequently in late lactation were fed 2 diets for 28 d in a changeover design that provided, within the same stage of lactation, similar amounts of rumen fermentable feed with either high (HS) or low starch (LS). All diets had similar dietary crude protein (15.5% dry matter) and rumen-undegradable protein (∼40% of crude protein) content. Profiles of AA were calculated to be similar to that of casein. On d 28, [1-13C] Leu was infused into one jugular vein with blood samples taken at 0, 2, 4, 6, and 8 h, and cows milked at 0, 2, 4, 5, 6, 7, and 8 h from start of infusion. Isotopic enrichments of plasma Leu, keto-isocaproic acid, and milk casein were determined for calculation of Leu kinetics. Data were subjected to ANOVA using the MIXED procedure of SAS (SAS Institute Inc.), with time as repeated factor and cow as the random effect. Dry matter intake within each stage of lactation was similar between groups. Feeding LS resulted in lower blood glucose and greater ratio of bovine somatotropin to insulin. This response was associated with greater blood concentrations of nonesterified fatty acids and β-hydroxybutyrate, which might have contributed to greater milk fat content in LS-fed cows. Except for His, average concentrations of all AA in blood were higher in late than early lactation. Diet did not alter average plasma concentrations of AA. However, for most of the essential AA (particularly branched-chain), the HS diet led to a marked decrease in concentrations after the forage meal, resulting in significant differences between dietary groups in early lactation. In early-lactating cows fed HS, a greater reduction in plasma concentrations at 8 h relative to pre-feeding values (time zero) was observed for Met, Lys, and His, resulting in decreases of 27.9%, 33.6%, and 38.5%, respectively. A higher bovine somatotropin/insulin ratio in early lactation and in cows fed LS could possibly have led to greater breakdown and, consequently, higher AA flux from peripheral tissues. In LS-fed cows, higher mobilization of body fat and protein was confirmed by the greater body weight loss in both stages of lactation. Higher irreversible loss of [1-13C] Leu in early lactation suggested lower protein retention in peripheral tissues during early compared with late lactation. Milk yield, protein output, and composition were similar between groups at both stages of lactation, whereas milk coagulation was faster (lower curd firming rate) and with higher curd firmness in response to feeding HS in late lactation. Overall, data indicated that rate of carbohydrate fermentability in the rumen can modify the availability of metabolites to the mammary gland and consequently modify milk protein coagulation.
Collapse
Affiliation(s)
- F Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DiANA), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| | - C J Seal
- Human Nutrition Research Centre, Public Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - D S Parker
- Pii Nutrition, 37, Thunder Lane, Norwich, NR7 0PX, United Kingdom
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - A Minuti
- Department of Animal Sciences, Food and Nutrition (DiANA), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - V Lopreiato
- Department of Animal Sciences, Food and Nutrition (DiANA), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition (DiANA), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
21
|
Räisänen SE, Zhu X, Zhou C, Lage CFA, Fetter M, Silvestre T, Stefenoni H, Wasson DE, Cueva SF, Eun JS, Moon JO, Park JS, Hristov AN. Production effects and bioavailability of N-acetyl-l-methionine in lactating dairy cows. J Dairy Sci 2021; 105:313-328. [PMID: 34756433 DOI: 10.3168/jds.2021-20540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022]
Abstract
Two experiments were conducted to investigate the production effects of N-acetyl-l-methionine (NALM; experiment 1) and to estimate its bioavailability (BA) and rumen escape (RE; experiment 2), respectively, in lactating dairy cows. In experiment 1, 18 multiparous Holstein cows were used in a replicated, 3 × 3 Latin square design experiment with three 28-d periods. Treatments were (1) basal diet estimated to supply 45 g/d digestible Met (dMet) or 1.47% of metabolizable protein (MP; control), (2) basal diet top-dressed with 32 g/d of NALM to achieve dMet supply of 2.2% of MP, and (3) basal diet top-dressed with 56 g/d of NALM to achieve dMet supply of 2.6% of MP. The NALM treatments supplied estimated 17 and 29 g/d dMet from NALM, respectively, based on manufacturer's specifications. In experiment 2, 4 rumen-cannulated lactating Holstein cows were used in a 4 × 4 Latin square design experiment with four 12-d periods. A 12-d period for baseline data collection and 4 d for determination of RE of NALM preceded the Latin square experiment. For determination of RE, 30 g of NALM were dosed into the rumen simultaneously with Cr-EDTA (used as a rumen fluid kinetics marker) and samples of ruminal contents were collected at 0 (before dosing), 1, 2, 4, 6, 8, 10, 14, 18, and 24 h after dosing. Rumen escape of NALM was calculated using the estimated passage rate based on the measured Cr rate of disappearance. Bioavailability of abomasally dosed NALM was determined using the area under the curve of plasma Met concentration technique. Two doses of l-Met (providing 7.5 and 15 g of dMet) and 2 doses of NALM (11.2 and 14.4 g dMet) were separately pulse-dosed into the abomasum of the cows and blood was collected from the jugular vein for Met concentration analysis at 0 (before dosing), 1, 2, 4, 6, 8, 10, 12, 14, 18, and 24 h after dosing. Supplementation of NALM did not affect DMI, milk yield, feed efficiency, or milk protein and lactose concentrations and yields in experiment 1. Milk fat concentration and energy-corrected milk yield decreased linearly with NALM dose. Plasma Met concentration was not affected by NALM dose. The estimated relative BA of abomasally dosed NALM (experiment 2) was 50% when dosed at 14.4 g/cow (11.2 g/d dMet from NALM) and 24% when dosed at 28.8 g/cow (14.4 g/d dMet from NALM). The estimated RE of NALM was 19% based on the measured kp of Cr at 11%/h. The total availability of ingested NALM was estimated at 9.5% for the lower NALM dose when taking into account RE (19%) and bioavailability in the small intestine (50%). Overall, NALM supplementation to mid-lactation dairy cows fed a MP-adequate basal diet below NRC (2001) recommendations (45 g/d or 1.47% Met of MP) decreased milk fat and energy-corrected milk yields but did not affect milk or milk true protein yields. Further evaluation of BA of NALM at different doses is warranted. In addition, intestinal conversion of NALM to Met needs additional investigation to establish a possible saturation of the enzyme aminoacylase I at higher NALM doses.
Collapse
Affiliation(s)
- S E Räisänen
- The Pennsylvania State University, University Park 16802
| | - X Zhu
- The Pennsylvania State University, University Park 16802; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 0731, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - C Zhou
- The Pennsylvania State University, University Park 16802; University of Chinese Academy of Sciences, Beijing 100049, China
| | - C F A Lage
- The Pennsylvania State University, University Park 16802; School of Veterinary Medicine, University of California, Tulare 93274
| | - M Fetter
- The Pennsylvania State University, University Park 16802
| | - T Silvestre
- The Pennsylvania State University, University Park 16802
| | - H Stefenoni
- The Pennsylvania State University, University Park 16802
| | - D E Wasson
- The Pennsylvania State University, University Park 16802
| | - S F Cueva
- The Pennsylvania State University, University Park 16802
| | - J-S Eun
- Institute of Biotechnology, CJ Blossom Park, Suwon 16495, Korea
| | - J O Moon
- Institute of Biotechnology, CJ Blossom Park, Suwon 16495, Korea
| | - J S Park
- Institute of Biotechnology, CJ Blossom Park, Suwon 16495, Korea
| | - A N Hristov
- The Pennsylvania State University, University Park 16802.
| |
Collapse
|
22
|
Regulation of Milk Protein Synthesis by Free and Peptide-Bound Amino Acids in Dairy Cows. BIOLOGY 2021; 10:biology10101044. [PMID: 34681143 PMCID: PMC8533557 DOI: 10.3390/biology10101044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
Milk protein (MP) synthesis in the mammary gland of dairy cows is a complex biological process. As the substrates for protein synthesis, amino acids (AAs) are the most important nutrients for milk synthesis. Free AAs (FAAs) are the main precursors of MP synthesis, and their supplies are supplemented by peptide-bound AAs (PBAAs) in the blood. Utilization of AAs in the mammary gland of dairy cows has attracted the great interest of researchers because of the goal of increasing MP yield. Supplying sufficient and balanced AAs is critical to improve MP concentration and yield in dairy cows. Great progress has been made in understanding limiting AAs and their requirements for MP synthesis in dairy cows. This review focuses on the effects of FAA and PBAA supply on MP synthesis and their underlying mechanisms. Advances in our knowledge in the field can help us to develop more accurate models to predict dietary protein requirements for dairy cows MP synthesis, which will ultimately improve the nitrogen utilization efficiency and lactation performance of dairy cows.
Collapse
|
23
|
Räisänen SE, Lage CFA, Zhou C, Melgar A, Silvestre T, Wasson DE, Cueva SF, Werner J, Takagi T, Miura M, Hristov AN. Lactational performance and plasma and muscle amino acid concentrations in dairy cows fed diets supplying 2 levels of digestible histidine and metabolizable protein. J Dairy Sci 2021; 105:170-187. [PMID: 34656346 DOI: 10.3168/jds.2021-20800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
The objective of this experiment was to investigate the effect of dietary levels of digestible histidine (dHis) and MP on lactational performance and plasma and muscle concentrations of free AA in dairy cows. A randomized block design experiment was conducted with 48 Holstein cows, including 20 primiparous, averaging (±SD) 103 ± 22 d in milk and 45 ± 9 kg/d milk yield at the beginning of the experiment. A 2-wk covariate period preceded 12 experimental wk, of which 10 wk were for data and sample collection. Experimental treatments were (1) MP-adequate (MPA) diet with 2.1% dHis of MP (MPA2.1), (2) MPA with 3.0% dHis (MPA3.0), (3) MP-deficient (MPD) diet with 2.1% dHis (MPD2.1), and (4) MPD with 3.0% dHis (MPD3.0). Actual dHis supply was estimated at 64, 97, 57, and 88 g/d, respectively. Diets supplied MP at 110% (MPA) and 96% (MPD) of NRC 2001 dairy model requirements calculated based on DMI and production data during the experiment. Dry matter intake and milk yield data were collected daily, milk samples for composition and blood samples for AA analysis were collected every other week, and muscle biopsies at the end of covariate period, and during wk 12 of the experiment. The overall DMI was not affected by dHis or MP level. Milk yield tended to be increased by 3.0% dHis compared with 2.1% dHis. Milk true protein concentration and yield were not affected by treatments, whereas milk urea nitrogen concentration was lower for MPD versus the MPA diet. Milk fat concentration was lower for MPD versus MPA. There was a MP × dHis interaction for milk fat yield and energy-corrected milk; milk fat was lower for MPD3.0 versus MPD2.1, but similar for cows fed the MPA diet regardless of dHis level whereas energy-corrected milk was greater for MPA3.0 versus MPA2.1 but tended to be lower for MPD3.0 versus MPD2.1. Plasma His concentration was greater for cows fed dHis3.0, and concentration of sum of essential AA was greater, whereas carnosine, 1-Methyl-His and 3-Methyl-His concentrations were lower for cows fed MPA versus MPD diet. Muscle concentration of His was greater for cows fed dHis3.0 treatment. The apparent efficiency of His utilization was increased at lower MP and His levels. Overall, cows fed a corn silage-based diet supplying MP at 110% of NRC (2001) requirements tended to have increased ECM yield and similar milk protein yield to cows fed a diet supplying MP at 96% of requirements. Supplying dHis at 3.0% of MP (or 86 and 96 g/d, for MPD3.0 and MPA3.0, respectively) tended to increase milk yield and increased plasma and muscle concentrations of His but had minor or no effects on other production variables in dairy cows.
Collapse
Affiliation(s)
- S E Räisänen
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - C F A Lage
- Department of Animal Science, The Pennsylvania State University, University Park 16802; School of Veterinary Medicine, University of California, Tulare 93274
| | - C Zhou
- Department of Animal Science, The Pennsylvania State University, University Park 16802; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Agricultural Innovation Institute of Panama (IDIAP), City of Knowledge 07144, Panama
| | - T Silvestre
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - D E Wasson
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - S F Cueva
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - J Werner
- Animal Resource Program, The Pennsylvania State University, University Park 16802
| | - T Takagi
- Ajinomoto Co. Inc., Kawasaki, Japan 210-8681
| | - M Miura
- Ajinomoto Co. Inc., Kawasaki, Japan 210-8681
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
24
|
Inhuber V, Windisch W, Bächler B, Schuster M, Spiekers H, Ettle T. Effects of supplementing a CP-reduced diet with rumen-protected methionine on Fleckvieh bull fattening. Animal 2021; 15:100366. [PMID: 34601210 DOI: 10.1016/j.animal.2021.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022] Open
Abstract
The objective of this study was to evaluate the effect of supplementing a CP-reduced diet with rumen-protected methionine on growth performance of Fleckvieh bulls. A total of 69 bulls (367 ± 25 kg BW) were assigned to three feeding groups (n = 23 per group). The control (CON) diet contained 13.7% CP and 2.11 g methionine/kg diet (both DM basis) and was set as positive control. The diet reduced in CP (nitrogen) (RED) diet as negative control and the experimental RED + rumen-protected methionine (MET) diet were characterised by deficient CP concentrations (both 9.04% CP). The RED + MET diet differed from the RED diet in methionine concentration (2.54 g/kg DM vs. 1.56 g/kg DM, respectively) due to supplementation of rumen-protected methionine. Rumen-protected lysine was added to both RED and RED + MET at 2.7 g/kg DM to ensure a sufficient lysine supply relative to total and metabolisable protein intake. Metabolisable energy (ME) and nutrient composition were similar for CON, RED, and RED + MET. Bulls were fed for 105 days (d) on average. Individual feed intake was recorded daily; individual BW was recorded at the beginning of the experiment, once per month, and directly before slaughter. At slaughter, blood samples were collected and carcass traits were assessed. Reduction in dietary CP concentration reduced feed intake, and in combination with lower dietary CP concentration, daily intake of CP for RED and RED + MET was lower compared with CON (P < 0.01). Daily ME intake was reduced in RED and RED + MET compared with CON (P < 0.01). Consequently growth performance and carcass weights were reduced (both P < 0.01) in both RED and RED + MET compared with CON. Supplemental rumen-protected methionine was reflected in increased serum methionine concentration in RED + MET (P < 0.05) as compared to RED but it did not affect growth performance, carcass traits and serum amino acid (AA) concentrations, except for lysine which was reduced (P < 0.01) compared to CON and RED. In conclusion, bulls fed RED or RED + MET diets were exposed to a ruminal CP deficit and subsequently a deficit of prececal digestible protein, but methionine did not appear to be the first-limiting essential AA for growth under the respective experimental conditions.
Collapse
Affiliation(s)
- V Inhuber
- Technical University of Munich, Chair of Animal Nutrition, Liesel-Beckmann-Straße 2, 85354 Freising, Germany; Bavarian State Research Center for Agriculture, Institute for Animal Nutrition and Feed Management, Prof.-Duerrwaechter-Platz 3, 85586 Poing/Grub, Germany
| | - W Windisch
- Technical University of Munich, Chair of Animal Nutrition, Liesel-Beckmann-Straße 2, 85354 Freising, Germany
| | - B Bächler
- Technical University of Munich, Bavarian Center for Biomolecular Mass Spectrometry, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - M Schuster
- Bavarian State Research Center for Agriculture, Dept. of Quality Assurance and Analysis, Prof.-Duerrwaechter-Platz 3, 85586 Poing/Grub, Germany
| | - H Spiekers
- Bavarian State Research Center for Agriculture, Institute for Animal Nutrition and Feed Management, Prof.-Duerrwaechter-Platz 3, 85586 Poing/Grub, Germany
| | - T Ettle
- Bavarian State Research Center for Agriculture, Institute for Animal Nutrition and Feed Management, Prof.-Duerrwaechter-Platz 3, 85586 Poing/Grub, Germany.
| |
Collapse
|
25
|
Replacing Soybean Meal with Distillers Dried Grains with Solubles plus Rumen-Protected Lysine and Methionine: Effects on Growth Performance, Nutrients Digestion, Rumen Fermentation, and Serum Parameters in Hu Sheep. Animals (Basel) 2021; 11:ani11082428. [PMID: 34438885 PMCID: PMC8388632 DOI: 10.3390/ani11082428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Improving the economic benefits and precise nutrient supply are hotspots of the sheep breeding industry. Evaluation of the production performance, the rumen fermentation, and blood metabolism indexes found that replacement of soybean meal with distillers dried grains with solubles in a diet with adequate metabolizable protein and amino acids (lysine and methionine) could maintain the normal growth performance of Hu sheep. The comprehensive evaluation results provide a reference for reducing production costs, improving production efficiency, and decreasing the nitrogen excretion of the sheep breeding industry. Besides, the study will help in the development of low-protein diets with amino acid balance for sheep. Abstract (1) Background: we investigated the influence of dietary soybean meal (SBM) replaced with distillers dried grains with solubles (DDGS) plus rumen-protected (RP) lysine and methionine on the growth performance, nutrients digestion, rumen fermentation, and serum parameters of Hu sheep. (2) Methods: ninety Hu sheep were allocated to five groups: the control group (CON) which received the SBM diet, the DDGS group (NSM), the DDGS diet with RP lysine group (DRPL), the DDGS diet with RP methionine group (DRPM), and the DDGS diet with a mixture of RP lysine and methionine group (DRPLM). (3) Results: Final BW and carcass weight of the DRPLM and CON groups were greater (p ≤ 0.05) compared to NSM, DRPL, and DRPM groups. The DRPLM group tended to increase the dry matter intake (DMI, p = 0.06), average daily gain (ADG, p = 0.06), dressing percentage (p = 0.07), and tail fat weight (p = 0.09). The DRPLM group had increased (p ≤ 0.05) apparent digestibility and had altered ruminal fermentation characteristics. (4) Conclusions: replacement of SBM with DDGS in a diet with adequate metabolizable protein and by-pass amino acids (lysine and methionine) could maintain the growth performance of Hu sheep.
Collapse
|
26
|
Morris DL, Kononoff PJ. Dietary fatty acid and starch content and supplemental lysine supply affect energy and nitrogen utilization in lactating Jersey cows. J Dairy Sci 2021; 104:10753-10779. [PMID: 34364648 DOI: 10.3168/jds.2020-20055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/14/2021] [Indexed: 11/19/2022]
Abstract
The effects of dietary fatty acid (FA) and starch content as well as supplemental digestible Lys (sdLys) on production, energy utilization, and N utilization were evaluated. Each factor was fed at 5 different amounts, and factor limits were as follows: 3.0 to 6.2% of dry matter (DM) for FA; 20.2 to 31.3% of DM for starch, and 0 to 17.8 g/d of sdLys. Dietary FA and starch were increased by replacing soyhulls with supplemental fat and corn grain, respectively, and sdLys increased with rumen-protected Lys. Fifteen unique treatments were fed to 25 Jersey cows (mean ± SD; 80 ± 14 d in milk) across 3 blocks in a partially balanced incomplete block design. Each block consisted of 4 periods of 28 d, where the final 4 d were used to determine milk production and composition, feed intake, energy utilization (via total collection and headbox-style indirect calorimetry), and N utilization (via total collection). Response surface models were used to evaluate treatment responses. Increasing dietary FA decreased DM intake and milk protein yield. When dietary starch was less than 24%, milk protein concentration increased with increasing sdLys, but when dietary starch was greater than 26% milk protein concentration decreased with increasing sdLys. Digestibility of FA increased when dietary FA increased from 3.0 to 4.2% and decreased as FA increased beyond 4.2%. Although neutral detergent fiber digestibility decreased as dietary starch increased, energy digestibility increased. As dietary FA increased, metabolizable energy (ME) content quadratically increased. Supply of ME increased as dietary FA increased from 3.0 to 4.2% and decreased as FA increased beyond 4.2%. Increasing dietary FA and starch decreased CH4 production and urinary energy. Increasing dietary starch increased the efficiency of utilizing dietary N for milk N. Increasing sdLys quadratically decreased N balance as sdLys increased from 0 to 8 g/d and increased N balance as sdLys increased from 8 to 18 g/d. Increasing dietary FA can increase ME content, however, at high dietary FA, decreased DM intake and FA digestibility resulted in a plateau in ME content and a decrease in ME supply. Our results demonstrate that sdLys supply is important for milk protein when dietary starch is low, and some Lys may be preferentially used for muscle protein synthesis at the expense of milk protein when sdLys is high.
Collapse
Affiliation(s)
- D L Morris
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln 68583
| | - P J Kononoff
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln 68583.
| |
Collapse
|
27
|
Zang Y, Silva LHP, Geng YC, Ghelichkhan M, Whitehouse NL, Miura M, Brito AF. Dietary starch level and rumen-protected methionine, lysine, and histidine: Effects on milk yield, nitrogen, and energy utilization in dairy cows fed diets low in metabolizable protein. J Dairy Sci 2021; 104:9784-9800. [PMID: 34147220 DOI: 10.3168/jds.2020-20094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
Our objective was to investigate the interactions between starch level and rumen-protected Met, Lys, His (RP-MLH) on milk yield, plasma AA concentration, and nutrient utilization in dairy cows fed low metabolizable protein diets (mean = -119 g/d of metabolizable protein balance). Sixteen multiparous Holstein cows (138 ± 46 d in milk, 46 ± 6 kg/d in milk) were used in a replicated 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments. Each period lasted 21 d with 14 d for diet adaptation and 7 d for data and sample collection. Dietary starch level varied by replacing (dry matter basis) pelleted beet pulp and soyhulls with ground corn resulting in the following treatments: (1) 20% pelleted beet pulp and 10% soyhulls (reduced starch = RS), (2) RS plus RP-MLH (RS+AA), (3) 30% ground corn (high starch = HS), and (4) HS plus RP-MLH (HS+AA). Dietary starch concentrations averaged 12.3 and 34.4% for RS and HS basal diets, respectively. Diets were supplemented with RP-MLH products to supply digestible Met, Lys, and His. Compared with RS and RS+AA diets, HS and HS+AA diets increased yields of milk (37.9 vs. 40.1 kg/d) and milk protein (1.07 vs. 1.16 kg/d) and decreased dry matter intake (25.9 vs. 25.2 kg/d), milk urea N (12.6 vs. 11.0 mg/dL), and plasma urea N (13.3 vs. 11.6 mg/dL). Milk N efficiency was greater in cows fed the HS and HS+AA than RS and RS+AA diets (28.9 vs. 25%), and RP-MLH supplementation improved milk true protein concentration. Starch level × RP-MLH interactions were observed for plasma concentrations of Arg and Lys, with RP-MLH being more effective to increase plasma Arg (+16%) and Lys (+23%) when supplemented to the RS than the HS basal diet. Replacing pelleted beet pulp and soyhulls with ground corn lowered the plasma concentrations of all essential AA except Met and Thr. In addition, the plasma concentrations of His and Met increased with RP-MLH. The apparent total-tract digestibilities of neutral and acid detergent fiber were lower, and those of starch and ether extract greater in cows offered the HS and HS+AA diets than RS and RS+AA diets. Urinary excretion of urea N decreased by replacing pelleted beet pulp and soyhulls with ground corn. Enteric CH4 production, CH4 yield, and CH4 intensity all decreased in the HS and HS+AA versus RS and RS+AA diets. Diets did not affect the intakes of gross energy, metabolizable energy, and net energy of lactation. In contrast, digestible energy intake increased with feeding the RS and RS+AA diets, whereas CH4 energy decreased in cows fed the HS and HS+AA diets. Supplementation with RP-MLH had no effect on energy utilization variables. Overall, the lack of interactions between dietary starch level and RP-MLH supplementation on most variables measured herein showed that the effects of starch intake and RP-MLH were independent or additive.
Collapse
Affiliation(s)
- Y Zang
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824
| | - L H P Silva
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824
| | - Y C Geng
- Key Laboratory of Nonpoint Source Pollution Control, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China 100081
| | - M Ghelichkhan
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824
| | - N L Whitehouse
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824
| | - M Miura
- Ajinomoto Co. Inc., Kawasaki-shi, Japan 210-8681
| | - A F Brito
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824.
| |
Collapse
|
28
|
Binggeli S, Lapierre H, Charbonneau E, Ouellet DR, Pellerin D. Economic and environmental effects of revised metabolizable protein and amino acid recommendations on Canadian dairy farms. J Dairy Sci 2021; 104:9981-9998. [PMID: 34099284 DOI: 10.3168/jds.2020-19893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/16/2021] [Indexed: 12/18/2022]
Abstract
The objective of this research was to evaluate the potential economic and environmental effects of the formulation model used to balance dairy rations for metabolizable protein (MP) or 3 essential AA (EAA: His, Lys, and Met) in 3 regions of Canada with different farming systems. The Maritimes, Central Canada, and the Prairies reference dairy farms averaged 63, 71, 144 mature cows per herd and 135, 95, 255 ha of land, respectively. Using N-CyCLES, a whole-farm linear program model, dairy rations were balanced for (1) MP, based on National Research Council (NRC) requirements (MP_2001); (2) MP plus Lys and Met, based on NRC (AA_2001); (3) MP (MP_Rev); or (4) for His, Lys, and Met (AA_Rev), both based on a revised factorial approach revisiting both supply and requirements of MP and EAA. Energy was balanced to meet requirements based on NRC (2001). Assuming the requirements were met within each approach, it was considered that milk yield and composition were not affected by the type of formulation. Given the assumptions of the study, when compared with MP_2001 formulation, balancing dairy rations using the AA_Rev approach reduced calculated farm N balance by 3.8%, on average from 12.71 to 12.24 g/kg of fat- and protein-corrected milk; it also enhanced farm net income by 4.5%, from 19.00 to 19.70 $CAN/100 kg of fat- and protein-corrected milk, by reducing inclusion of protein concentrate in dairy rations. Calculated animal N efficiency was on average 4.3% higher with AA_Rev than with MP_2001 for mid-lactation cows. This gain in N efficiency would result in a reduction in N2O emission by manure, contributing to a partial decrease of total greenhouse gas emission by 1.7%, through a reduction of N excreted in manure. With the AA_2001 formulation, farm N balance was 1% higher than with MP_2001 formulation while reducing farm net income by 6.4%, due to the need to purchase rumen-protected AA, with no effect on total greenhouse gas emission. Both MP formulations lead to fairly similar outputs. The AA_Rev formulation also indicated that His might be a co-limiting AA with Met in dairy rations balanced with ingredients usually included in Canadian dairy rations. Given the assumptions of the study, balancing dairy rations for 3 EAA (His, Lys, and Met) rather than MP, has some potential positive effects on Canadian dairy farms by increasing net incomes through a reduction of crude protein supply, leading to a decreased environmental effect.
Collapse
Affiliation(s)
- S Binggeli
- Department of Animal Science, Université Laval, Québec, QC, Canada G1V 0A6.
| | - H Lapierre
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - E Charbonneau
- Department of Animal Science, Université Laval, Québec, QC, Canada G1V 0A6
| | - D R Ouellet
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - D Pellerin
- Department of Animal Science, Université Laval, Québec, QC, Canada G1V 0A6
| |
Collapse
|
29
|
Räisänen SE, Lage CFA, Oh J, Melgar A, Nedelkov K, Chen X, Miura M, Hristov AN. Histidine dose-response effects on lactational performance and plasma amino acid concentrations in lactating dairy cows: 1. Metabolizable protein-adequate diet. J Dairy Sci 2021; 104:9902-9916. [PMID: 34099283 DOI: 10.3168/jds.2021-20188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/15/2021] [Indexed: 01/29/2023]
Abstract
The objective of this experiment was to determine the effect of increasing digestible His (dHis) doses on milk production, milk composition, and plasma AA concentrations in lactating dairy cows fed diets that meet or exceed their energy and metabolizable protein (MP) requirements. In a companion paper (Räisänen et al., 2021) results are presented on the effect of increasing dHis dose with an MP-deficient basal diet. In this experiment, 16 Holstein cows (72 ± 15 d in milk) were used in a replicated 4 × 4 Latin square design experiment with four 28-d periods. Treatments were as follows: (1) control, total mixed ration (TMR) with 1.8% dHis of MP (TMR1; dHis1.8); (2) a different TMR with 2.2% dHis (TMR2; dHis2.2); (3) TMR2 supplemented with rumen-protected His (RP-His) to supply 2.6% dHis (dHis2.6); and (4) TMR2 supplemented with RP-His to supply 3.0% dHis of MP (dHis3.0). Estimated dHis intakes calculated at the end of the experiment were 46, 58, 69, and 79 g/d for dHis1.8, dHis2.2, dHis2.6, and dHis3.0, respectively. Contrasts were used to compare TMR1 with TMR2 and to test the linear and quadratic effects of RP-His inclusion rate on TMR2. We detected no effects of TMR or dHis dose on dry matter intake or milk yield, whereas energy-corrected milk (ECM) yield was quadratically increased, being greatest for cows on treatment dHis2.6. Milk true protein and lactose concentrations and milk true protein yield were not affected by TMR or dHis dose. Milk fat concentration and yield increased quadratically, and lactose yield tended to increase quadratically with increasing dHis dose. Calculated apparent efficiency of His utilization decreased quadratically with increasing dHis supply. Further, plasma concentration of His was greater for cows on TMR2 compared with TMR1. When an MP-adequate diet was fed to dairy cows, milk true protein concentration and yield were not affected by dHis supply, but milk fat and ECM yields of dairy cows were optimized at dHis supply of 69 g/d or 2.65% of MP.
Collapse
Affiliation(s)
- S E Räisänen
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - C F A Lage
- Department of Animal Science, The Pennsylvania State University, University Park 16802; School of Veterinary Medicine, University of California, Davis, Tulare 93274
| | - J Oh
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Cargill Animal Nutrition, Seongnam, South Korea 13630
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Agricultural Innovation Institute of Panama (IDIAP), City of Knowledge 07144, Panama
| | - K Nedelkov
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria 6000
| | - X Chen
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Livestock Production Science Branch, Agri-food Biosciences Institute, Hillsborough, Co. Down BT26 6DR, UK
| | - M Miura
- Ajinomoto Co. Inc., Kawasaki, Japan 210-8681
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
30
|
Räisänen SE, Lage CFA, Fetter ME, Melgar A, Pelaez AM, Stefenoni HA, Wasson DE, Cueva SF, Zhu X, Miura M, Hristov AN. Histidine dose-response effects on lactational performance and plasma amino acid concentrations in lactating dairy cows: 2. Metabolizable protein-deficient diet. J Dairy Sci 2021; 104:9917-9930. [PMID: 34099295 DOI: 10.3168/jds.2021-20189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
The objective of this experiment was to determine the effect of increasing digestible His (dHis) levels with a rumen-protected (RP) His product on milk production, milk composition, and plasma AA concentrations in lactating dairy cows fed a metabolizable protein (MP)-deficient diet, according to the National Research Council dairy model from 2001. The companion paper presents results on the effect of increasing dHis dose with a MP-adequate basal diet. Twenty Holstein cows, of which 8 were rumen-cannulated, were used in a replicated 4 × 4 Latin square design experiment with four 28-d periods. Treatments were a control diet supplying 1.8% dHis of MP or 37 g/d (dHis1.8) and the control diet supplemented RP-His to provide 2.2, 2.6, or 3.0%, dHis of MP, or 53, 63, and 74 g/d (dHis2.2, dHis2.6, and dHis3.0, respectively). Histidine dose did not affect dry matter intake, but milk yield increased quadratically and energy-corrected milk yield increased linearly with increasing dHis dose. Histidine dose had a quadratic effect on milk fat concentration but did not affect milk fat yield. Lactose concentration decreased linearly, whereas lactose yield increased linearly with increasing dHis dose. There was a tendency for a linear increase in milk true protein concentration, and milk true protein yield increased linearly with dHis dose. Further, plasma His concentration increased linearly with increasing dHis dose and calculated apparent efficiency of His utilization decreased quadratically with increasing dHis supply. Histidine had minor or no effects on rumen fermentation. In the conditions of this experiment, RP-His supplementation of an MP-deficient corn silage-based diet increased milk yield linearly up to a dHis supply of 63 g/d (or 2.6% dHis of MP) and increased feed efficiency, energy-corrected milk yield and milk true protein yield linearly up to a dHis supply of 74 g/d (or 3.0% dHis of MP) in lactating dairy cows.
Collapse
Affiliation(s)
- S E Räisänen
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - C F A Lage
- Department of Animal Science, The Pennsylvania State University, University Park 16802; School of Veterinary Medicine, University of California, Davis, Tulare 93274
| | - M E Fetter
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Agricultural Innovation Institute of Panama (IDIAP), City of Knowledge 07144, Panama
| | - A M Pelaez
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - H A Stefenoni
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - D E Wasson
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - S F Cueva
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - X Zhu
- Department of Animal Science, The Pennsylvania State University, University Park 16802; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - M Miura
- Ajinomoto Co. Inc., Kawasaki, Japan 210-8681
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
31
|
Magan JB, O Callaghan TF, Kelly AL, McCarthy NA. Compositional and functional properties of milk and dairy products derived from cows fed pasture or concentrate-based diets. Compr Rev Food Sci Food Saf 2021; 20:2769-2800. [PMID: 33949109 DOI: 10.1111/1541-4337.12751] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/24/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
Worldwide milk production is predominantly founded on indoor, high-concentrate feeding systems, whereas pasture-based feeding systems are most common in New Zealand and Ireland but have received greater attention recently in countries utilizing conventional systems. Consumer interest in 'pasture-fed' dairy products has also increased, arising from environmental, ethical, and nutritional concerns. A substantial body of research exists describing the effect of different feeding strategies on the composition of milk, with several recent studies focusing on the comparison of pasture- and concentrate-based feeding regimes. Significant variation is typically observed in the gross composition of milk produced from different supplemental feeds, but various changes in the discrete composition of macromolecular components in milk have also been associated with dietary influence, particularly in relation to the fatty acid profile. Changes in milk composition have also been shown to have implications for milk and dairy product processability, functionality and sensory properties. Methods to determine the traceability of dairy products or verify marketing claims such as 'pasture-fed' have also been established, based on compositional variation due to diet. This review explores the effects of feed types on milk composition and quality, along with the ultimate effect of diet-induced changes on milk and dairy product functionality, with particular emphasis placed on pasture- and concentrate-based feeding systems.
Collapse
Affiliation(s)
- Jonathan B Magan
- Food Chemistry and Technology, Teagasc Food Research Centre, Cork, Ireland.,School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Tom F O Callaghan
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Alan L Kelly
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Noel A McCarthy
- Food Chemistry and Technology, Teagasc Food Research Centre, Cork, Ireland
| |
Collapse
|
32
|
Effects of rumen-protected methionine supplementation on the performance of high production dairy cows in the tropics. PLoS One 2021; 16:e0243953. [PMID: 33930018 PMCID: PMC8087032 DOI: 10.1371/journal.pone.0243953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/16/2021] [Indexed: 11/19/2022] Open
Abstract
Increasing methionine availability in dairy cow diets during the first third of lactation may enhance their performance and health. The aim of this study was to determine the effect of supplementing rumen-protected methionine (Smartamine® M, SM) in a lactation diet with protein and energy levels calculated according to the literature. Seventy-six multiparous Holstein cows (39.1 ± 6.8 kg of milk/d and 65 ± 28 DIM) were assigned to 1 of 2 dietary treatments (38/treatment) according to a randomized complete block design with a 2-wk (covariate) and 10-wk experimental period. Treatments were a basal diet (CON; 3.77 Lys:1Met); and CON + 23 g SM (2.97 Lys:1 Met). Individual milk samples were taken every 2 weeks to determine milk composition. Blood was collected from 24 cows on d+30 d to measure plasma AA levels. Body weight and body condition score (BCS) were measured at the beginning and the end of the experiment. The SM diet promoted higher milk yield (41.7 vs. 40.1 kg/d; P = 0.03). Energy-corrected milk yield (41.0 vs. 38.0 kg/d), milk protein yield (1.30 vs. 1.18 kg/d), milk protein (3.14% vs. 2.97%) and casein (2.39% vs. 2.28%) were also different (P < 0.01) as well as milk fat yield (1.42 vs. 1.29 kg/d; P = 0.02). A trend (P = 0.06) for higher milk fat % (3.41% vs. 3.21%) was observed. Both diets resulted in similar body weight, but CON-fed cows tended (P = 0.08) to have higher BCS. Higher plasma methionine levels were determined with SM compared with CON (29.6 vs. 18.4 μM; P < 0.01), but lysine and histidine were not different. Dietary supplementation of RPM improved productive performance by increasing milk yield and milk components yields, suggesting better dietary AA utilization when Met levels are adjusted in Lys-adequate lactation diets.
Collapse
|
33
|
Toledo MZ, Stangaferro ML, Gennari RS, Barletta RV, Perez MM, Wijma R, Sitko EM, Granados G, Masello M, Van Amburgh ME, Luchini D, Giordano JO, Shaver RD, Wiltbank MC. Effects of feeding rumen-protected methionine pre- and postpartum in multiparous Holstein cows: Lactation performance and plasma amino acid concentrations. J Dairy Sci 2021; 104:7583-7603. [PMID: 33865588 DOI: 10.3168/jds.2020-19021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 02/18/2021] [Indexed: 12/16/2022]
Abstract
Objectives were to evaluate the effect of feeding rumen-protected methionine (RPM) in pre- and postpartum total mix ration (TMR) on lactation performance and plasma AA concentrations in dairy cows. A total of 470 multiparous Holstein cows [235 cows at University of Wisconsin (UW) and 235 cows at Cornell University (CU)] were enrolled approximately 4 wk before parturition, housed in close-up dry cow and replicated lactation pens. Pens were randomly assigned to treatment diets (pre- and postpartum, respectively): UW control (CON) diet = 2.30 and 2.09% of Met as percentage of metabolizable protein (MP) and RPM diet = 2.83 and 2.58% of Met as MP; CU CON = 2.22 and 2.19% of Met as percentage of MP, and CU RPM = 2.85 and 2.65% of Met as percentage of MP. Treatments were evaluated until 112 ± 3 d in milk (DIM). Milk yield was recorded daily. Milk samples were collected at wk 1 and 2 of lactation, and then every other week, and analyzed for milk composition. For lactation pens, dry matter intake (DMI) was recorded daily. Body weight and body condition score were determined from 4 ± 3 DIM and parturition until 39 ± 3 and 49 DIM, respectively. Plasma AA concentrations were evaluated within 3 h after feeding during the periparturient period [d -7 (±4), 0, 7 (±1), 14 (±1), and 21 (±1); n = 225]. In addition, plasma AA concentrations were evaluated (every 3 h for 24 h) after feeding in cows at 76 ± 8 DIM (n = 16) and within 3 h after feeding in cows at 80 ± 3 DIM (n = 72). The RPM treatment had no effect on DMI (27.9 vs. 28.0 kg/d) or milk yield (48.7 vs. 49.2 kg/d) for RPM and CON, respectively. Cows fed the RPM treatment had increased milk protein concentration (3.07 vs. 2.95%) and yield (1.48 vs. 1.43 kg/d), and milk fat concentration (3.87 vs. 3.77%), although milk fat yield did not differ. Plasma Met concentrations tended to be greater for cows fed RPM at 7 d before parturition (25.9 vs. 22.9 µM), did not differ at parturition (22.0 vs. 20.4 µM), and were increased on d 7 (31.0 vs. 21.2 µM) and remained greater with consistent concentrations until d 21 postpartum (d 14: 30.5 vs. 19.0 µM; d 21: 31.0 vs. 17.8 µM). However, feeding RPM decreased Leu, Val, Asn, and Ser (d 7, 14, and 21) and Tyr (d 14). At a later stage in lactation, plasma Met was increased for RPM cows (34.4 vs. 16.7 µM) consistently throughout the day, with no changes in other AA. Substantial variation was detected for plasma Met concentration (range: RPM = 8.9-63.3 µM; CON = 7.8-28.8 µM) among cows [coefficient of variation (CV) > 28%] and within cow during the day (CV: 10.5-27.1%). In conclusion, feeding RPM increased plasma Met concentration and improved lactation performance via increased milk protein production.
Collapse
Affiliation(s)
- Mateus Z Toledo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison 53706
| | | | - Rodrigo S Gennari
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison 53706
| | - Rafael V Barletta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison 53706
| | - Martin M Perez
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Robert Wijma
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Emily M Sitko
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - German Granados
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | | | | | | | - Julio O Giordano
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Randy D Shaver
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison 53706
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison 53706.
| |
Collapse
|
34
|
Lobos NE, Wattiaux MA, Broderick GA. Effect of rumen-protected lysine supplementation of diets based on corn protein fed to lactating dairy cows. J Dairy Sci 2021; 104:6620-6632. [PMID: 33714588 DOI: 10.3168/jds.2020-19835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/26/2021] [Indexed: 11/19/2022]
Abstract
This trial tested whether rumen-protected Lys (RPL) supplementation would improve the nutritive value of rumen-undegradable protein (RUP) from corn protein. Thirty-two lactating Holstein cows were blocked by days in milk and parity into 8 squares of 4 cows each in replicated 4 × 4 Latin squares. Treatments provided all supplemental crude protein from: (1) soy protein (67% expeller soybean meal plus 33% solvent soybean meal); (2) a blend of soy and corn protein (33% expeller soybean meal, 17% solvent soybean meal, 25% corn gluten meal plus 25% distillers dried grains with solubles); (3) corn protein (50% corn gluten meal plus 50% distillers dried grains with solubles); or (4) corn protein plus RPL [diet 3 top-dressed with RPL (125 g/d of AjiPro-L Generation 1, supplying an estimated 20 g of absorbable Lys/d)]. Diets contained (dry matter basis) 22% alfalfa silage, 43% corn silage, 18% ground high-moisture and dry corn, 2.4% mineral-vitamin premix, 1.5 to 3.9% soy hulls, 15% crude protein, 30 to 32% neutral detergent fiber and predicted to contain equal rumen-degradable protein, RUP, and metabolizable protein. Cows within squares were randomly assigned to treatment sequences and fed diets for 4-wk periods before switching; production data and blood samples were collected during last 2 wk of each period. Data were analyzed using the mixed procedures of SAS. Intake was highest on diet 1, intermediate on diets 2 and 3, and lowest on diet 4; body weight gain was highest on diet 3, intermediate on diets 1 and 2 and lowest on diet 4. Intakes and body weight changes were reflected by differences in milk/dry matter intake, which was highest on diets 2 and 4 and lowest on diet 3. Milk yield was lower on diet 3 (44.3 kg/d) than on diets 1, 2, and 4 (average 45.8 kg/d) and protein yield was highest on diets 1 and 2 (average 1.35 kg/d), intermediate on diet 4 (1.30 kg/d), and lowest on diet 3 (1.25 kg/d). No effects of diet were detected on ruminal metabolites. Free nonessential amino acids and total protein AA were elevated in blood plasma on diet 3, reflecting reduced utilization for milk protein synthesis. These results indicated that 50% dilution of soybean meal RUP with that from corn protein did not reduce yield and that supplementing RPL to the corn protein-based diet increased yield 1.1 kg of milk/d and 50 g of true protein/d.
Collapse
Affiliation(s)
- Nelson E Lobos
- Department of Animal and Dairy Sciences, 1675 Observatory Drive, University of Wisconsin, Madison 53706
| | - Michel A Wattiaux
- Department of Animal and Dairy Sciences, 1675 Observatory Drive, University of Wisconsin, Madison 53706
| | - Glen A Broderick
- Department of Animal and Dairy Sciences, 1675 Observatory Drive, University of Wisconsin, Madison 53706; Agricultural Research Service, USDA, US Dairy Forage Research Center, 1925 Linden Drive, Madison, WI 53706.
| |
Collapse
|
35
|
Morris DL, Kononoff PJ. Effects of rumen-protected lysine and histidine on milk production and energy and nitrogen utilization in diets containing hydrolyzed feather meal fed to lactating Jersey cows. J Dairy Sci 2020; 103:7110-7123. [PMID: 32505393 DOI: 10.3168/jds.2020-18368] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Hydrolyzed feather meal (HFM) is high in crude protein, most of which bypasses rumen degradation when fed to lactating dairy cows, allowing direct supply of AA to the small intestine. Compared with other feeds that are high in bypass protein, such as blood meal or heat-treated soybean meal, HFM is low in His and Lys. The objectives of this study were to determine the effects of supplementing rumen-protected (RP) Lys and His individually or in combination in a diet containing 5% HFM on milk production and composition as well as energy and N partitioning. Twelve multiparous Jersey cows (mean ± SD: 91 ± 18 d in milk) were used in a triplicated 4 × 4 Latin square with 4 periods of 28 d (24-d adaptation and 4-d collection). Throughout the experiment, all cows were fed the same TMR, with HFM included at 5% of diet DM. Cows were grouped by dry matter intake and milk yield, and cows within a group were randomly assigned to 1 of 4 treatments: no RP Lys or RP His; RP Lys only [70 g/d of Ajipro-L (24 g/d of digestible Lys), Ajinomoto Co. Inc., Tokyo, Japan]; RP His only [32 g/d of experimental product (7 g/d of digestible His), Balchem Corp., New Hampton, NY]; or both RP Lys and His. Plasma Lys concentration increased when RP Lys was supplemented without RP His (77.7 vs. 66.0 ± 4.69 µM) but decreased when RP Lys was supplemented with RP His (71.4 vs. 75.0 ± 4.69 µM). Plasma concentration of 3-methylhistidine decreased with RP Lys (3.19 vs. 3.40 ± 0.31 µM). With RP His, plasma concentration of His increased (21.8 vs. 18.7 ± 2.95 µM). For milk production and milk composition, no effects of Lys were observed. Supplementing RP His increased milk yield (22.5 vs. 21.6 ± 2.04 kg/d) and tended to increase milk protein yield (0.801 vs. 0.772 ± 0.051 kg/d). Across treatments, dry matter intake (18.5 ± 0.83 kg/d) and energy supply (32.2 ± 2.24 Mcal of net energy for lactation) were not different. Supplementing RP His did not affect N utilization; however, supplementing RP Lys increased N balance (25 vs. 16 ± 9 g/d). The lack of production responses to RP Lys suggests that Lys was not limiting or that the increase in Lys supply was not large enough to cause an increase in milk protein yield. However, increased N balance and decreased 3-methylhistidine with RP Lys suggest that increased Lys supply increased protein accretion and decreased protein mobilization. Furthermore, His may be a limiting AA in diets containing HFM.
Collapse
Affiliation(s)
- D L Morris
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln 68583
| | - P J Kononoff
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln 68583.
| |
Collapse
|
36
|
Boorboor M, Alamouti AA, Karimi N, Sahraei Belverdy M. Effects of reducing crude protein concentration in starter feed containing constant rumen undegradable protein on dairy calves performance. J Anim Physiol Anim Nutr (Berl) 2020; 104:1287-1293. [PMID: 32383285 DOI: 10.1111/jpn.13380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 11/29/2022]
Abstract
This study aimed at investigating the effects of decreasing crude protein (CP) in diets with constant rumen undegradable protein (RUP) content on dry matter (DM) intake, growth, feed efficiency (FE) and blood parameters in calves in a randomized complete block design. Dietary treatments included: (a) a calf starter containing 200 g/kg CP (62 g/kg RUP, based on DM), (b) a starter containing 180 g/kg CP (65 g/kg RUP, based on DM) and (c) a starter containing 160 g/kg CP (65 g/kg RUP, based on DM). A total 42 newborn male and female Holstein calves were fed 8 L milk/day until day 45, after which they were weaned and continued the experiment until day 75. Solid feed intake and total DM intake were measured daily, and body weight and skeletal growth parameters including withers height and heart girth were recorded weekly. Blood samples were collected on days 45 and 75. Solid feed intake, total DM intake, weaning weight, average daily gain from birth to weaning and from birth to 75 days, final weight and FE were not affected by the experimental treatments. In addition, skeletal growth parameters were similar among groups. Glucose concentration was similar among treatments; however, calves fed the starter containing 160 g/kg CP had significantly lower plasma concentrations of albumin and urea nitrogen compared with those fed starters containing 180 and 200 g/kg CP. These results indicate that CP level in the calf starter could be decreased to 160 g/kg DM if RUP levels stay at 65 g/kg DM, without negatively affecting feed intake and calf performance.
Collapse
Affiliation(s)
- Mohammad Boorboor
- Department of Animal Science, Varamin Branch, Islamic Azad University, Tehran, Iran
| | - Ali A Alamouti
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Nasser Karimi
- Department of Animal Science, Varamin Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Sahraei Belverdy
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| |
Collapse
|
37
|
Sheehy MR, Mulligan FJ, Taylor ST, Fahey AG. Effects of a novel heat-treated protein and carbohydrate supplement on feed consumption, milk production, and cheese yield in early-lactation dairy cows. J Dairy Sci 2020; 103:4315-4326. [PMID: 32113775 DOI: 10.3168/jds.2019-17468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/20/2019] [Indexed: 01/20/2023]
Abstract
Protein is an expensive component of the dairy cow diet, and overfeeding protein can have adverse economic and environmental impacts. Our objective was to maintain milk production and components while decreasing dietary crude protein (CP) through use of a heat-treated, rumen-resistant sugar amino acid complex (SAAC) as the Schiff base, as an addition to low-protein diets. Dietary treatments included a negative control [NC, 146 g of CP/kg of dry matter (DM)], a positive control (PC, 163 g of CP/kg of DM), and the NC supplemented with SAAC in lieu of some barley grain (SAAD, 151 g of CP/kg of DM). Diets were fed to 30 multiparous Holstein-Friesian dairy cows for the first 50 d postpartum. Dry matter intake (DMI) was determined daily. Milk yield and content of fat, protein, lactose, and casein were recorded weekly from wk 2 to 7 of lactation. The fixed effects of treatment, week, treatment × week, month of calving, and BCS at calving, and a random effect of cow, were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). The SAAD treatment had greater energy-corrected milk yield than did NC. The PC treatment had greater DMI than did NC, and SAAD tended to have greater DMI than did NC. We found significant treatment effects for fat percentage and yield. The NC and SAAD treatments had higher fat percentages than did PC, and SAAD had a higher fat yield than did the NC and PC treatments. Treatment effects were found for casein yield and percentage. We discovered a treatment effect for protein percentage and yield. The PC treatment had higher protein percentage than did NC and SAAD. The PC treatment had a higher protein yield than did NC, and analysis revealed no difference in protein yield between PC and SAAD. The SAAD treatment had higher total milk solids than did the NC treatment. Lactose yield tended to be higher in PC than in NC, and no differences were found between PC and NC and SAAD treatments. The PC treatment had a higher casein percentage than did NC and SAAD; however, the SAAD and PC treatments had higher casein yields than did NC. The PC treatment had a higher casein:fat ratio than did the NC and SAAD treatments. The NC and SAAD treatments had higher Cheddar cheese yields than did PC. We found no treatment × week interactions for any parameter. Supplementing low-protein dairy cow diets with a heat-treated, rumen-resistant SAAC caused beneficial effects by improving milk components and increasing cheese yield to levels similar to those found when feeding expensive and environmentally damaging high-protein diets.
Collapse
Affiliation(s)
- M R Sheehy
- School of Veterinary Medicine, University College Dublin, D04 V1W8, Ireland; Devenish Nutrition Ltd., Belfast, BT1 3 BG, Northern Ireland
| | - F J Mulligan
- School of Veterinary Medicine, University College Dublin, D04 V1W8, Ireland.
| | - S T Taylor
- Devenish Nutrition Ltd., Belfast, BT1 3 BG, Northern Ireland
| | - A G Fahey
- School of Agriculture and Food Science, University College Dublin, D04 V1W8, Ireland
| |
Collapse
|
38
|
Omphalius C, Lemosquet S, Ouellet DR, Bahloul L, Lapierre H. Postruminal infusions of amino acids or glucose affect metabolisms of splanchnic, mammary, and other peripheral tissues and drive amino acid use in dairy cows. J Dairy Sci 2020; 103:2233-2254. [PMID: 31954566 DOI: 10.3168/jds.2019-17249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/06/2019] [Indexed: 01/17/2023]
Abstract
Effects of AA and glucose infusions on efficiency of use of essential AA (EAA) were studied according to a 2 × 2 factorial using 5 multicatheterized cows in a 4 × 4 Latin square plus one cow, with 2-wk periods. The diet provided 87% of energy and 70% of metabolizable protein requirements, and the 4 treatments were abomasal infusions of (1) water, (2) an AA mixture with a casein profile (695 g/d), (3) glucose (1,454 g/d), or (4) a combination of AA and glucose infusions. Milk samples were collected on the last 6 milkings. On d 14, 6 blood samples were collected from arterial, and portal, hepatic, and mammary venous vessels. Splanchnic plasma flow was calculated by dilution of p-aminohippurate and mammary flow by the Fick principle using Phe + Tyr. The net flux of AA across tissues [splanchnic, i.e., portal-drained viscera (PDV) + liver, and mammary gland] was calculated as the efflux minus the influx across that tissue. The efficiency of EAA was calculated as the sum of exported true proteins [milk protein yield (MPY), scurf, and metabolic fecal protein] multiplied by their respective AA profile and divided by the predicted AA supply minus AA endogenous urinary loss. In addition, catabolism was estimated for each tissue: AA supply - (portal net flux + metabolic fecal protein) for the PDV; -hepatic net flux for the liver; splanchnic net flux - (-mammary net flux + scurf) for the other peripheral tissues; and -mammary net flux - milk for the mammary gland. The MIXED procedure (SAS Institute Inc., Cary, NC) was used with cow as a random effect. No AA × glucose interaction existed for most of the measured parameters. With infusions of AA and glucose, MPY increased by 17 and 14%, respectively. The decreased efficiency of EAA-N with AA infusion resulted from increased EAA-N in MPY smaller than the increased EAA-N supply and was accompanied by increased liver catabolism of His + Met + Phe (representing group 1 AA) and increased mammary and PDV catabolisms of group 2 AA-N (Ile, Leu, Lys, and Val). In contrast, the increased efficiency of EAA-N with glucose infusion, resulting from increased EAA-N in MPY with no change in EAA-N supply, was accompanied by decreased mammary catabolism of group 2 AA-N and hepatic catabolism of His + Met + Phe. No mammary catabolism of His, Met, and Phe existed in all treatments, as indicated by the mammary uptake to milk output ratio close to one for these EAA. Therefore, the mammary gland contributes significantly to variations of efficiency of group 2 AA-N through variations of AA catabolism, in response to both AA and glucose supplies, whereas additional PDV catabolism was observed with increased AA supply. Partition of AA use between tissues allows to delineate their anabolic or catabolic fate across tissues and better understand changes of efficiency of EAA in response to protein and energy supplies.
Collapse
Affiliation(s)
- C Omphalius
- PEGASE, INRA, Agrocampus Ouest, 35590 Saint Gilles, France; Adisseo France S.A.S., 10, Place du General de Gaulle, 92160 Antony, France
| | - S Lemosquet
- PEGASE, INRA, Agrocampus Ouest, 35590 Saint Gilles, France
| | - D R Ouellet
- Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - L Bahloul
- Adisseo France S.A.S., 10, Place du General de Gaulle, 92160 Antony, France
| | - H Lapierre
- Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8.
| |
Collapse
|
39
|
Magan JB, O’Callaghan TF, Zheng J, Zhang L, Mandal R, Hennessy D, Fenelon MA, Wishart DS, Kelly AL, McCarthy NA. Impact of Bovine Diet on Metabolomic Profile of Skim Milk and Whey Protein Ingredients. Metabolites 2019; 9:metabo9120305. [PMID: 31861081 PMCID: PMC6950411 DOI: 10.3390/metabo9120305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023] Open
Abstract
The influence of bovine diet on the metabolome of reconstituted skim milk powder (SMP) and protein ingredients produced from the milk of cows fed on pasture or concentrate-based diets was investigated. Cows were randomly assigned to diets consisting of perennial ryegrass only (GRS), perennial ryegrass/white clover sward (CLV), or indoor total mixed ration (TMR) for an entire lactation. Raw milk obtained from each group was processed at pilot scale, to produce SMP and sweet whey, and SMP was further processed at laboratory scale, to yield ideal whey and acid whey. The total amino acid composition and metabolome of each sample were analyzed, using high-performance cation exchange and a targeted combination of direct-injection mass spectrometry and reverse-phase liquid chromatography–tandem mass spectrometry (LC–MS/MS), respectively. The nitrogen composition of the products from each of the diets was similar, with one exception being the significantly higher nonprotein nitrogen content in TMR-derived skim milk powder than that from the GRS system. Total amino acid analysis showed significantly higher concentrations of glycine in GRS- and CLV-derived sweet whey and acid whey than in those from TMR. The cysteine contents of CLV-derived ideal whey and acid whey were significantly higher than for TMR, while the valine content of GRS-derived acid whey was significantly higher than TMR. The phenylalanine content of GRS-derived ideal whey was significantly higher than that from CLV. Metabolomic analysis showed significantly higher concentrations of the metabolites glutamine, valine, and phosphocreatine in each ingredient type derived from TMR than those from GRS or CLV, while the serine content of each GRS-derived ingredient type was significantly higher than that in TMR-derived ingredients. These results demonstrate that the type of bovine feeding system used can have a significant effect on the amino acid composition and metabolome of skim milk and whey powders and may aid in the selection of raw materials for product manufacture, while the clear separation between the samples gives further evidence for distinguishing milk products produced from different feeding systems based on LC–MS/MS.
Collapse
Affiliation(s)
- Jonathan B. Magan
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (J.B.M.); (T.F.O.); (M.A.F.)
- School of Food and Nutritional Sciences, University College Cork, T12 YT20 Cork, Ireland;
| | - Tom F. O’Callaghan
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (J.B.M.); (T.F.O.); (M.A.F.)
| | - Jiamin Zheng
- The Metabolomics Innovation Centre, School of Biological Sciences, University of Alberta, Edmonton, AB T6G1C9, Canada; (J.Z.); (L.Z.); (R.M.); (D.S.W.)
| | - Lun Zhang
- The Metabolomics Innovation Centre, School of Biological Sciences, University of Alberta, Edmonton, AB T6G1C9, Canada; (J.Z.); (L.Z.); (R.M.); (D.S.W.)
| | - Rupasri Mandal
- The Metabolomics Innovation Centre, School of Biological Sciences, University of Alberta, Edmonton, AB T6G1C9, Canada; (J.Z.); (L.Z.); (R.M.); (D.S.W.)
| | - Deirdre Hennessy
- Teagasc Animal and Grassland Research & Innovation Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland;
| | - Mark A. Fenelon
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (J.B.M.); (T.F.O.); (M.A.F.)
| | - David S. Wishart
- The Metabolomics Innovation Centre, School of Biological Sciences, University of Alberta, Edmonton, AB T6G1C9, Canada; (J.Z.); (L.Z.); (R.M.); (D.S.W.)
| | - Alan L. Kelly
- School of Food and Nutritional Sciences, University College Cork, T12 YT20 Cork, Ireland;
| | - Noel A. McCarthy
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (J.B.M.); (T.F.O.); (M.A.F.)
- Correspondence: ; Tel.: +353-(0)25-42202
| |
Collapse
|
40
|
Oh J, Harper M, Hristov AN. Effects of lowering crude protein supply alone or in a combination with essential oils on productivity, rumen function and nutrient utilization in dairy cows. Animal 2019; 13:2510-2518. [PMID: 31097050 DOI: 10.1017/s1751731119001083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lowering dietary protein concentration is known to decrease urinary nitrogen (N) losses and increase milk N efficiency in dairy cows, but it may negatively affect animal productivity. Plant-derived essential oils (EO) may alleviate these negative effects by improving the efficiency of rumen fermentation in cows fed reduced feed protein diets. The experiment was conducted to investigate the effects of lowering crude protein (CP) supply alone or in a combination with an EO product on feed intake, milk production and composition, rumen fermentation, total tract digestibility and N utilization in dairy cows. Twenty-one Holstein cows were used in a replicated 3 × 3 Latin square design experiment. Each period consisted of 14 days for adaptation and 14 days for data collection and sampling. Cows were randomly assigned to one of three experimental diets: a 165 g/kg CP diet (control), a 155 g/kg CP diet (LCP) and LCP supplemented with 35 g/day per cow EO (LCPEO). The dry matter (DM) intake was decreased by LCP and LCPEO compared with the control; there was no effect of EO on DM intake. Milk yield and composition and feed efficiency were similar among treatments. Ruminal pH, lactate, ammonia and volatile fatty acids concentrations were not affected by treatment, except increased valerate concentration by LCPEO compared with LCP. The supplementation of EO tended to decrease protozoal counts. The LCP and LCPEO increased total tract digestibility of DM and organic matter and decreased CP digestibility compared with the control. Supplementation with EO did not affect total tract digestibility of dietary nutrients compared with the control or LCP. The LCP and LCPEO decreased urinary and fecal N excretions and increased milk N efficiency; nitrogen losses were not affected by EO. In this study, lowering dietary CP by 10 g/kg decreased urinary and fecal N excretion without affecting productivity. The supplementation of EO to LCP had only minor effects on rumen fermentation and did not affect productivity, digestibility and N excretion in lactating dairy cows.
Collapse
Affiliation(s)
- J Oh
- Department of Animal Science, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802, USA
| | - M Harper
- Department of Animal Science, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802, USA
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802, USA
| |
Collapse
|
41
|
Rumen-protected lysine supplementation increased milk production in dairy cows fed a lysine-deficient diet. APPLIED ANIMAL SCIENCE 2019. [DOI: 10.15232/aas.2019-01885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Omphalius C, Lapierre H, Guinard-Flament J, Lamberton P, Bahloul L, Lemosquet S. Amino acid efficiencies of utilization vary by different mechanisms in response to energy and protein supplies in dairy cows: Study at mammary-gland and whole-body levels. J Dairy Sci 2019; 102:9883-9901. [PMID: 31477306 DOI: 10.3168/jds.2019-16433] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/10/2019] [Indexed: 12/27/2022]
Abstract
Variations of mammary gland (MG) metabolism were studied in dairy cows in response to diets containing 2 levels of net energy of lactation [NEL; 25.0 and 32.5 Mcal/d for low (LE) and high energy (HE), respectively], combined with 2 levels of metabolizable protein [MP, 1,266 and 2,254 g/d of protein digestible in the intestine for low (LP) and high protein (HP), respectively] in a 2 × 2 factorial arrangement. Four cows received 4 diets (LELP, HELP, LEHP, and HEHP) in a 4 × 4 Latin square design with 2-wk experimental periods. Milk production and feed intake were measured on the last 5 d of each period, whereas MG net uptake of AA was determined on d 13. Efficiencies were estimated as the sum of measured milk true protein yield (MPY) and of estimations of metabolic fecal and scurf proteins multiplied by their respective AA profile and divided by the estimated AA supply minus the AA endogenous urinary loss. The increased MPY in the HE compared with the LE diets (higher by 123 g/d) was accompanied by increased mammary plasma flow and MG uptake of the nonessential AA (NEAA) and the essential AA (EAA), except for branched-chain AA. In contrast, the increase in MPY (higher by 104 g/d) observed in the HP compared with the LP diets was linked to increased MG uptake of EAA without a change in mammary plasma flow and a decreased NEAA uptake. Because MG uptake of total AA-N was almost equal to cows' milk output on a nitrogen basis, these different mechanisms involve a large MG flexibility, with variable synthesis of NEAA. In addition, MP efficiency did not increase only through increased MPY in the HE compared with the LE diets but also through metabolic fecal protein, estimated to increase (by 65 g/d) with dry matter intake. The MPY increased in the HP compared with the LP diets, but the increase was smaller than the calculated increase (greater by 993 g/d) in MP supply. The highest MG clearance rates of individual EAA could suggest that Met, His, and Lys were limiting in LP, and Met was the most limiting AA in HP. Interestingly, a similar hypothesis could be stated by analyzing estimated AA efficiencies. The highest efficiencies among EAA, observed for His in HELP and for Met with the other diets, could indicate that they were the most limiting AA in these respective diets, whereas other EAA (including Lys) efficiencies varied with MP efficiency. The MG metabolic flexibility with regard to individual AA utilization partially contributes to the anabolic fate of AA through MPY; however, other export proteins also contribute to variations in MP and AA efficiencies.
Collapse
Affiliation(s)
- C Omphalius
- PEGASE, INRA, Agrocampus Ouest, 35590 Saint Gilles, France; Adisseo France S.A.S., 92160 Antony, France
| | - H Lapierre
- Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | | | - P Lamberton
- PEGASE, INRA, Agrocampus Ouest, 35590 Saint Gilles, France
| | - L Bahloul
- Adisseo France S.A.S., 92160 Antony, France
| | - S Lemosquet
- PEGASE, INRA, Agrocampus Ouest, 35590 Saint Gilles, France.
| |
Collapse
|
43
|
Bioactive peptides from milk: animal determinants and their implications in human health. J DAIRY RES 2019; 86:136-144. [DOI: 10.1017/s0022029919000384] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractMilk is an important protein source in human diets, providing around 32 g protein/l (for bovine milk, which constitutes some 85% of global consumption). The most abundant milk proteins are α-lactalbumin, β-lactoglobulin, αs-casein, β-casein, and κ-casein. Besides their nutritional value, milk proteins play a crucial role in the processing properties of milk, such as solubility, water bonding, heat stability, renneting and foaming, among others. In addition, and most importantly for this review, these proteins are the main source of bioactive components in milk. Due to the wide range of proposed beneficial effects on human health, milk proteins are considered as potential ingredients for the production of health-promoting functional foods. However, most of the evidence for bioactive effects comes from in vitro studies, and there is a need for further research to fully evaluate the true potential of milk-derived bioactive factors. Animal genetics and animal nutrition play an important role in the relative proportions of milk proteins and could be used to manipulate the concentration of specific bioactive peptides in milk from ruminants. Unfortunately, only a few studies in the literature have focused on changes in milk bioactive peptides associated to animal genetics and animal nutrition. The knowledge described in the present review may set the basis for further research and for the development of new dairy products with healthy and beneficial properties for humans.
Collapse
|
44
|
Zanton GI. Effect of experimental design on responses to 2 concentrations of metabolizable protein in multiparous dairy cows. J Dairy Sci 2019; 102:5094-5108. [PMID: 30928268 DOI: 10.3168/jds.2018-15730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/02/2019] [Indexed: 01/21/2023]
Abstract
The objective of this research was to characterize the implications of changing between diets formulated to be adequate (ADMP) or low (LOMP) in metabolizable protein in a Latin square (LSq) design or of feeding the same diets continuously in a randomized complete block experimental design (RCBD). Fifty-four multiparous early-lactation cows (initial average ± SD; parity 2.8 ± 0.9, 85.8 ± 31 d in milk, 715 ± 63 kg of body weight, 29.1 ± 2.7 kg of dry matter intake/d, and 57.7 ± 5.7 kg of milk yield/d) were blocked by parity and days in milk and were then randomly assigned to experimental design, with 16 cows assigned to LSq and 38 cows assigned to RCBD. Cows within blocks in LSq were randomly assigned to sequence in a 4-sequence, 4-period, 2-treatment LSq balanced for the effects of previous treatment carryover. Cows within blocks in RCBD were randomly assigned to dietary treatment, which was fed over the same four 28-d periods as the cows in LSq. Treatment diets were formulated to be similar in composition with the exception of exchanging an equal quantity of expeller soybean meal from ADMP (16.5% crude protein; 28.4% ash-free, amylase-treated neutral detergent fiber organic matter) for soybean hulls in LOMP (14.6% crude protein; 31.1% ash-free, amylase-treated neutral detergent fiber organic matter). Cows were individually fed treatment diets in a tiestall barn once daily for ad libitum consumption, milked 3 times daily, and administered recombinant bovine somatotropin every 14 d. Milk yield and feed offered and refused were measured daily; BW was recorded on 2 consecutive days each week; milk composition was measured at 6 consecutive milkings each week; and spot samples of feces, urine, and blood were collected during the last week of each period and a covariate period. Experimental designs were analyzed separately using results from wk 4 of each period with mixed effects modeling. Dry matter intake and milk fat yield were not affected by diet in either design, whereas milk and protein yields were greater for cows fed ADMP in both designs. Milk fat and protein percentage responses and milk energy output inferences were different between designs. Milk fat yield and percentage responses were affected by previous treatment carryover in LSq. Metabolic and digestibility inferences were very similar between designs. Under the conditions of this experiment, inferences on N metabolism and the majority of production measurements were not affected by experimental design, with the principal exceptions of milk fat and protein percentage and milk energy output.
Collapse
Affiliation(s)
- G I Zanton
- USDA Agricultural Research Service, US Dairy Forage Research Center, Madison, WI 53706.
| |
Collapse
|
45
|
Hristov AN, Bannink A, Crompton LA, Huhtanen P, Kreuzer M, McGee M, Nozière P, Reynolds CK, Bayat AR, Yáñez-Ruiz DR, Dijkstra J, Kebreab E, Schwarm A, Shingfield KJ, Yu Z. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. J Dairy Sci 2019; 102:5811-5852. [PMID: 31030912 DOI: 10.3168/jds.2018-15829] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/27/2019] [Indexed: 01/17/2023]
Abstract
Nitrogen is a component of essential nutrients critical for the productivity of ruminants. If excreted in excess, N is also an important environmental pollutant contributing to acid deposition, eutrophication, human respiratory problems, and climate change. The complex microbial metabolic activity in the rumen and the effect on subsequent processes in the intestines and body tissues make the study of N metabolism in ruminants challenging compared with nonruminants. Therefore, using accurate and precise measurement techniques is imperative for obtaining reliable experimental results on N utilization by ruminants and evaluating the environmental impacts of N emission mitigation techniques. Changeover design experiments are as suitable as continuous ones for studying protein metabolism in ruminant animals, except when changes in body weight or carryover effects due to treatment are expected. Adaptation following a dietary change should be allowed for at least 2 (preferably 3) wk, and extended adaptation periods may be required if body pools can temporarily supply the nutrients studied. Dietary protein degradability in the rumen and intestines are feed characteristics determining the primary AA available to the host animal. They can be estimated using in situ, in vitro, or in vivo techniques with each having inherent advantages and disadvantages. Accurate, precise, and inexpensive laboratory assays for feed protein availability are still needed. Techniques used for direct determination of rumen microbial protein synthesis are laborious and expensive, and data variability can be unacceptably large; indirect approaches have not shown the level of accuracy required for widespread adoption. Techniques for studying postruminal digestion and absorption of nitrogenous compounds, urea recycling, and mammary AA metabolism are also laborious, expensive (especially the methods that use isotopes), and results can be variable, especially the methods based on measurements of digesta or blood flow. Volatile loss of N from feces and particularly urine can be substantial during collection, processing, and analysis of excreta, compromising the accuracy of measurements of total-tract N digestion and body N balance. In studying ruminant N metabolism, nutritionists should consider the longer term fate of manure N as well. Various techniques used to determine the effects of animal nutrition on total N, ammonia- or nitrous oxide-emitting potentials, as well as plant fertilizer value, of manure are available. Overall, methods to study ruminant N metabolism have been developed over 150 yr of animal nutrition research, but many of them are laborious and impractical for application on a large number of animals. The increasing environmental concerns associated with livestock production systems necessitate more accurate and reliable methods to determine manure N emissions in the context of feed composition and ruminant N metabolism.
Collapse
Affiliation(s)
- A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| | - A Bannink
- Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - L A Crompton
- School of Agriculture, Policy and Development, Centre for Dairy Research, University of Reading, PO Box 237 Earley Gate, Reading RG6 6AR, United Kingdom
| | - P Huhtanen
- Department of Agricultural Science, Swedish University of Agricultural Sciences, S-90, Umeå, Sweden
| | - M Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - M McGee
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland C15 PW93
| | - P Nozière
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - C K Reynolds
- School of Agriculture, Policy and Development, Centre for Dairy Research, University of Reading, PO Box 237 Earley Gate, Reading RG6 6AR, United Kingdom
| | - A R Bayat
- Milk Production Solutions, Production Systems, Natural Resources Institute Finland (Luke), FI 31600 Jokioinen, Finland
| | - D R Yáñez-Ruiz
- Estación Experimental del Zaidín (CSIC), Profesor Albareda, 1, 18008, Granada, Spain
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - E Kebreab
- Department of Animal Science, University of California, Davis 95616
| | - A Schwarm
- ETH Zurich, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - K J Shingfield
- Milk Production Solutions, Production Systems, Natural Resources Institute Finland (Luke), FI 31600 Jokioinen, Finland; Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3EB, United Kingdom
| | - Z Yu
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| |
Collapse
|
46
|
Luo ZZ, Shen LH, Jiang J, Huang YX, Bai LP, Yu SM, Yao XP, Ren ZH, Yang YX, Cao SZ. Plasma metabolite changes in dairy cows during parturition identified using untargeted metabolomics. J Dairy Sci 2019; 102:4639-4650. [PMID: 30827559 DOI: 10.3168/jds.2018-15601] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022]
Abstract
The metabolic responses of cows undergo substantial changes during the transition from late pregnancy to early lactation. However, the molecular mechanisms associated with these changes in physiological metabolism have not been clearly elucidated. The objective of this study was to investigate metabolic changes in transition cows from the perspective of plasma metabolites. Plasma samples collected from 24 multiparous dairy cows on approximately d 21 prepartum and immediately postpartum were analyzed using ultra-high-performance liquid chromatography/time-of-flight mass spectrometry in positive and negative ion modes. In conjunction with multidimensional statistical methods (principal component analysis and orthogonal partial least squares discriminant analysis), differences in plasma metabolites were identified using the t-test and fold change analysis. Sixty-seven differential metabolites were identified consisting of AA, lipids, saccharides, and nucleotides. The levels of 32 plasma metabolites were significantly higher and those of 35 metabolites significantly lower after parturition than on d 21 prepartum. Pathway analysis indicated that the metabolites that increased from late pregnancy to early lactation were primarily involved in lipid metabolism and energy metabolism, whereas decreased metabolites were related to AA metabolism.
Collapse
Affiliation(s)
- Z Z Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - L H Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - J Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Y X Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - L P Bai
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - S M Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - X P Yao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Z H Ren
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Y X Yang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - S Z Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
47
|
Martineau R, Ouellet D, Patton R, White R, Lapierre H. Plasma essential amino acid concentrations in response to casein infusion or ration change in dairy cows: A multilevel, mixed-effects meta-analysis. J Dairy Sci 2019; 102:1312-1329. [DOI: 10.3168/jds.2018-15218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
|
48
|
Amirabadi Farahani T, Amanlou H, Farsuni N, Kazemi-Bonchenari M. Interactions of protein levels fed to Holstein cows pre- and postpartum on productive and metabolic responses. J Dairy Sci 2019; 102:246-259. [DOI: 10.3168/jds.2018-14575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022]
|
49
|
Huber LA, Rudar M, Trottier NL, Cant JP, de Lange CFM. Whole-body nitrogen utilization and tissue protein and casein synthesis in lactating primiparous sows fed low- and high-protein diets. J Anim Sci 2018; 96:2380-2391. [PMID: 29471322 DOI: 10.1093/jas/sky047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/21/2018] [Indexed: 11/13/2022] Open
Abstract
Twenty-eight lactating Yorkshire and Yorkshire × Landrace primiparous sows were used to test the hypothesis that feeding a diet with reduced CP concentration and supplemented with crystalline AA (CAA) does not decrease milk protein yield and litter growth but improves apparent N utilization for milk protein production. Sows were assigned to 1 of 2 dietary treatments: 1) control (CON; 16.2% CP; analyzed content) or 2) low CP with CAA to meet estimated requirements of limiting AA (LCP; 12.7% CP) over a 17-d lactation period. A N balance was conducted for each sow between days 13 and 17 of lactation. On day 17, a 12-h primed continuous infusion of l-[ring-2H5]-Phe was conducted on 12 sows (n = 6) with serial blood and milk sampling to determine plasma AA concentrations and Phe enrichment, and milk casein synthesis, respectively. Thereafter, sows were sacrificed and tissues were collected to determine tissue protein fractional synthesis rates (FSR). Litter growth rate and milk composition did not differ. Sows fed the LCP diet had reduced N intake (122.7 vs. 153.2 g/d; P < 0.001) and maternal N retention (13.5 vs. 24.6 g/d; P < 0.05) and greater apparent efficiency of using dietary N intake for milk production (85.1% vs. 67.5%; P < 0.001). On day 17 of lactation, all plasma essential AA concentrations exhibited a quartic relationship over time relative to consumption of a meal, where peaks occurred at approximately 1- and 4-h postprandial (P < 0.05). Protein FSR in liver, LM, gastrocnemius muscle, mammary gland, and in milk caseins did not differ between treatments. Feeding primiparous sows with a diet containing 12.7% CP and supplemented with CAA to meet the limiting AA requirements did not reduce milk protein yield or piglet growth rate and increased the apparent utilization of dietary N, Arg, Leu, Phe+Tyr, and Trp for milk protein production. The improved apparent utilization of N and AA appears to be related exclusively to a reduction in N and AA intake.
Collapse
Affiliation(s)
- Lee-Anne Huber
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Marko Rudar
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | | | - John P Cant
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
50
|
Zhu X, Jiao J, Zhou C, Tang S, Wang M, Kang J, Han X, Tan Z. Effects of dietary methionine and lysine supplementation on nutrients digestion, serum parameters and mRNA expression of related amino acid sensing and transporting genes in growing goats. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|