1
|
Wu YF, Han BC, Lin WY, Wang SY, Linn TY, Hsu HW, Wen CC, Liu HY, Chen YH, Chang WJ. Efficacy of antimicrobial peptide P113 oral health care products on the reduction of oral bacteria number and dental plaque formation in a randomized clinical assessment. J Dent Sci 2024; 19:2367-2376. [PMID: 39347072 PMCID: PMC11437278 DOI: 10.1016/j.jds.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/10/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose Dental plaque is the main cause leading to the dental caries and periodontal diseases. The main purpose of this study was to test the efficacy of oral spray containing the antimicrobial peptide P-113 on the reduction of oral bacteria number and dental plaque formation in a randomized clinical assessment. Materials and methods This study was divided into two parts. In Part A, we investigated the user experiences with the P-113 containing oral spray. In part B, 14 subjects in the experimental group used the P-113-containing oral spray, while 14 subjects in the control group used a placebo without the P-113 in a 4-week clinical trial. Participants were asked to use the P-113-containing oral spray or placebo 3 times per day and 5 times per use. Moreover, 3 check-ups and 2 washouts were carried out to evaluate the DMFT score, dental plaque weight, dental plaque index, and gingival index. Results In part A, up to 91.8% of the subjects in the experimental group were satisfied with the use of the P-113-containing oral spray. In part B, based on our PacBio SMRT sequencing platform and DADA2 analysis, the numbers of Streptococcus and Porphyromonas in the experimental group were lower than those in the control group. In addition, decreased dental plaque weight, dental plaque index, and gingival index were all observed in the experimental group. Conclusion The P-113-containing oral spray has the potential to reduce the dental caries and periodontal disease-related bacteria and to control the dental plaque formation.
Collapse
Affiliation(s)
- Yi-Fan Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biomedical Engineering, Ming-Chuan University, Taoyuan, Taiwan
| | - Bor-Cheng Han
- School of Public Health, College of Public Health, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Yi Lin
- School of Public Health, College of Public Health, Taipei Medical University, New Taipei City, Taiwan
| | - Sin-Yu Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thu Ya Linn
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsueh- Wen Hsu
- School of Public Health, College of Public Health, Taipei Medical University, New Taipei City, Taiwan
| | - Chih-Chieh Wen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yi Liu
- Department of Biomedical Engineering, Ming-Chuan University, Taoyuan, Taiwan
| | - Yi-Hua Chen
- School of Public Health, College of Public Health, Taipei Medical University, New Taipei City, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Research Center of Health Equity, College of Public Health, Taipei Medical University, New Taipei City, Taiwan
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Dental Department, Taipei Medical University, Shuang-Ho Hospital, New Taipei City, Taiwan
| |
Collapse
|
2
|
Wang S, Yang Y, Jiang X, Zheng X, Wei Q, Dai W, Zhang X. Nurturing gut health: role of m6A RNA methylation in upholding the intestinal barrier. Cell Death Discov 2024; 10:271. [PMID: 38830900 PMCID: PMC11148167 DOI: 10.1038/s41420-024-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
The intestinal lumen acts as a critical interface connecting the external environment with the body's internal state. It's essential to prevent the passage of harmful antigens and bacteria while facilitating nutrient and water absorption. The intestinal barriers encompass microbial, mechanical, immunological, and chemical elements, working together to maintain intestinal balance. Numerous studies have associated m6A modification with intestinal homeostasis. This review comprehensively outlines potential mechanisms through which m6A modification could initiate, exacerbate, or sustain barrier damage from an intestinal perspective. The pivotal role of m6A modification in preserving intestinal equilibrium provides new insights, guiding the exploration of m6A modification as a target for optimizing preventive and therapeutic strategies for intestinal homeostasis.
Collapse
Affiliation(s)
| | - Yuzhong Yang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiaohan Jiang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qiufang Wei
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Wenbin Dai
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Xuemei Zhang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
| |
Collapse
|
3
|
Wang Y, Xu X, Chen H, Yang F, Xu B, Wang K, Liu Q, Liang G, Zhang R, Jiao X, Zhang Y. Assessment of beneficial effects and identification of host adaptation-associated genes of Ligilactobacillus salivarius isolated from badgers. BMC Genomics 2023; 24:530. [PMID: 37679681 PMCID: PMC10483869 DOI: 10.1186/s12864-023-09623-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Ligilactobacillus salivarius has been frequently isolated from the gut microbiota of humans and domesticated animals and has been studied as a candidate probiotic. Badger (Meles meles) is known as a "generalist" species that consumes complex foods and exhibits tolerance and resistance to certain pathogens, which can be partly attributed to the beneficial microbes such as L. salivarius in the gut microbiota. However, our understanding of the beneficial traits and genomic features of badger-originated L. salivarius remains elusive. RESULTS In this study, nine L. salivarius strains were isolated from wild badgers' feces, one of which exhibited good probiotic properties. Complete genomes of the nine L. salivarius strains were generated, and comparative genomic analysis was performed with the publicly available complete genomes of L. salivarius obtained from humans and domesticated animals. The strains originating from badgers harbored a larger genome, a higher number of protein-coding sequences, and functionally annotated genes than those originating from humans and chickens. The pan-genome phylogenetic tree demonstrated that the strains originating from badgers formed a separate clade, and totally 412 gene families (12.6% of the total gene families in the pan-genome) were identified as genes gained by the last common ancestor of the badger group. The badger group harbored significantly more gene families responsible for the degradation of complex carbohydrate substrates and production of polysaccharides than strains from other hosts; many of these were acquired by gene gain events. CONCLUSIONS A candidate probiotic and nine L. salivarius complete genomes were obtained from the badgers' gut microbiome, and several beneficial genes were identified to be specifically present in the badger-originated strains that were gained in the evolution. Our study provides novel insights into the adaptation of L. salivarius to the intestinal habitat of wild badgers and provides valuable strain and genome resources for the development of L. salivarius as a probiotic.
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Xiaomeng Xu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Huan Chen
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Fang Yang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Bo Xu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Kun Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Qianwen Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Guixin Liang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Ruiqi Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Xin'an Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China.
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Tierno D, Grassi G, Scomersi S, Bortul M, Generali D, Zanconati F, Scaggiante B. Next-Generation Sequencing and Triple-Negative Breast Cancer: Insights and Applications. Int J Mol Sci 2023; 24:ijms24119688. [PMID: 37298642 DOI: 10.3390/ijms24119688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The poor survival of triple-negative breast cancer (TNBC) is due to its aggressive behavior, large heterogeneity, and high risk of recurrence. A comprehensive molecular investigation of this type of breast cancer using high-throughput next-generation sequencing (NGS) methods may help to elucidate its potential progression and discover biomarkers related to patient survival. In this review, the NGS applications in TNBC research are described. Many NGS studies point to TP53 mutations, immunocheckpoint response genes, and aberrations in the PIK3CA and DNA repair pathways as recurrent pathogenic alterations in TNBC. Beyond their diagnostic and predictive/prognostic value, these findings suggest potential personalized treatments in PD -L1-positive TNBC or in TNBC with a homologous recombination deficit. Moreover, the comprehensive sequencing of large genomes with NGS has enabled the identification of novel markers with clinical value in TNBC, such as AURKA, MYC, and JARID2 mutations. In addition, NGS investigations to explore ethnicity-specific alterations have pointed to EZH2 overexpression, BRCA1 alterations, and a BRCA2-delaAAGA mutation as possible molecular signatures of African and African American TNBC. Finally, the development of long-read sequencing methods and their combination with optimized short-read techniques promise to improve the efficiency of NGS approaches for future massive clinical use.
Collapse
Affiliation(s)
- Domenico Tierno
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Serena Scomersi
- Breast Unit-Azienda Sanitaria Universitaria Integrata Giuliano Isontina ASUGI, University of Trieste, 34149 Trieste, Italy
| | - Marina Bortul
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Azienda Socio-Sanitaria Territoriale di Cremona-ASST, Breast Cancer Unit and Translational Research Unit, 26100 Cremona, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
5
|
Zhao J, Zhang M, Hui W, Zhang Y, Wang J, Wang S, Kwok LY, Kong J, Zhang H, Zhang W. Roles of adenine methylation in the physiology of Lacticaseibacillus paracasei. Nat Commun 2023; 14:2635. [PMID: 37149616 PMCID: PMC10164179 DOI: 10.1038/s41467-023-38291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/21/2023] [Indexed: 05/08/2023] Open
Abstract
Lacticaseibacillus paracasei is an economically important bacterial species, used in the food industry and as a probiotic. Here, we investigate the roles of N6-methyladenine (6mA) modification in L. paracasei using multi-omics and high-throughput chromosome conformation capture (Hi-C) analyses. The distribution of 6mA-modified sites varies across the genomes of 28 strains, and appears to be enriched near genes involved in carbohydrate metabolism. A pglX mutant, defective in 6mA modification, shows transcriptomic alterations but only modest changes in growth and genomic spatial organization.
Collapse
Affiliation(s)
- Jie Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wenyan Hui
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yue Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jing Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Shaojing Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
6
|
Apostolakos I, Paramithiotis S, Mataragas M. Comparative Genomic Analysis Reveals the Functional Traits and Safety Status of Lactic Acid Bacteria Retrieved from Artisanal Cheeses and Raw Sheep Milk. Foods 2023; 12:foods12030599. [PMID: 36766127 PMCID: PMC9914385 DOI: 10.3390/foods12030599] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Lactic acid bacteria (LAB) are valuable for the production of fermented dairy products. We investigated the functional traits of LAB isolated from artisanal cheeses and raw sheep milk, assessed their safety status, and explored the genetic processes underlying the fermentation of carbohydrates. Lactiplantibacillus plantarum had the largest and more functional genome compared to all other LAB, while most of its protein-encoding genes had unknown functions. A key finding of our analysis was the overall absence of acquired resistance genes (RGs), virulence genes (VGs), and prophages, denoting that all LAB isolates fulfill safety criteria and can be used as starter or adjunct cultures. In this regard, the identified mobile genetic elements found in LAB, rather than enabling the integration of RGs or VGs, they likely facilitate the uptake of genes involved in beneficial functions and in the adaptation of LAB in dairy matrices. Another important finding of our study was that bacteriocins and CAZymes were abundant in LAB though each species was associated with specific genes, which in turn had different activity spectrums and identified applications. Additionally, all isolates were able to metabolize glucose, lactose, maltose, and sucrose, but Lactiplantibacillus plantarum was strongly associated with the fermentation of rhamnose, mannose, cellobiose, and trehalose whereas Levilactobacillus brevis with the utilization of arabinose and xylose. Altogether these results suggest that to fully exploit the beneficial properties of LAB, a combination of strains as food additives may be necessary. Interestingly, biological processes involved in the metabolism of carbohydrates that are not of direct interest for the dairy industry may yield valuable metabolites or activate pathways associated with beneficial health effects. Our results provide useful information for the development of new probiotic artisanal cheeses and probiotic starter cultures.
Collapse
Affiliation(s)
- Ilias Apostolakos
- Department of Dairy Research, Institution of Technology of Agricultural Products, Hellenic Agricultural Organization “DIMITRA”, 3 Ethnikis Antistaseos St., 45221 Ioannina, Greece
| | - Spiros Paramithiotis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Marios Mataragas
- Department of Dairy Research, Institution of Technology of Agricultural Products, Hellenic Agricultural Organization “DIMITRA”, 3 Ethnikis Antistaseos St., 45221 Ioannina, Greece
- Correspondence:
| |
Collapse
|
7
|
Wu YF, Salamanca E, Chen IW, Su JN, Chen YC, Wang SY, Sun YS, Teng NC, Chang WJ. Xylitol-Containing Chewing Gum Reduces Cariogenic and Periodontopathic Bacteria in Dental Plaque—Microbiome Investigation. Front Nutr 2022; 9:882636. [PMID: 35634392 PMCID: PMC9131035 DOI: 10.3389/fnut.2022.882636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 12/17/2022] Open
Abstract
BackgroundDental caries and periodontal disease remain the most prevalent oral health problems in the world. Chewing xylitol gum may help reduce the risk of caries and periodontitis for dental health benefits. However, little evidence has shown healthy food estimation by sequencing 16S rDNA in oral microbial communities. This study investigated the clinical effect of xylitol chewing gum on dental plaque accumulation and microbiota composition using the PacBio full-length sequencing platform in 24 young adults (N = 24). The participants were randomly assigned to xylitol chewing gum and control (no chewing gum) groups. Participants in the chewing gum group chewed ten pieces of gum (a total of 6.2 g xylitol/day). Dental plaque from all teeth was collected for weighing, measuring the pH value, and analysis of microbial communities at the beginning (baseline, M0) and end of the 2-week (effect, M1) study period.ResultsThe results suggested a 20% reduction in dental plaque accumulation (p < 0.05) among participants chewing xylitol gum for 2 weeks, and the relative abundance of Firmicutes (a type of pathogenic bacteria associated with caries) decreased by 10.26% (p < 0.05) and that of Bacteroidetes and Actinobacteria (two types of pathogenic bacteria associated with periodontitis) decreased by 6.32% (p < 0.001) and 1.66% (p < 0.05), respectively. Moreover, the relative abundance of Fusobacteria was increased by 9.24% (p < 0.001), which has been proven to have a higher proportion in dental plaque of healthy adults. However, the dental plaque pH value stayed in a healthy range for the two groups.ConclusionIn conclusion, chewing xylitol gum would benefit cariogenic and periodontal bacterial reduction in the oral cavity, which could help to prevent the diseases related to these bacteria.
Collapse
Affiliation(s)
- Yi-Fan Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Eisner Salamanca
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Wen Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jo-Ning Su
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Che Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sin Yu Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Sui Sun
- School of Dental Technology, Taipei Medical University, Taipei, Taiwan
| | - Nai-Chia Teng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Oral Rehabilitation and Center of Pediatric Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
- *Correspondence: Nai-Chia Teng,
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Dental Department, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Wei-Jen Chang,
| |
Collapse
|
8
|
Hui W, Zhang W, Li J, Kwok LY, Zhang H, Kong J, Sun T. Functional analysis of the second methyltransferase in the bacteriophage exclusion system of Lactobacillus casei Zhang. J Dairy Sci 2022; 105:2049-2057. [PMID: 34998557 DOI: 10.3168/jds.2021-21000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/13/2021] [Indexed: 01/21/2023]
Abstract
The antiphage ability is an important feature of fermentation strains in the dairy industry. Our previous work described the bacteriophage exclusion (BREX) system in the probiotic strain, Lactobacillus casei Zhang. The function of L. casei Zhang pglX gene in mediating 5'-ACRCm6AG-3' methylation was also confirmed. This study aimed to further dissect the function of the BREX system of L. casei Zhang by inactivating its second methyltransferase gene (LCAZH_2054). The methylome of the mutant, L. casei Zhang Δ2054, was profiled by single-molecule real-time sequencing. Then, the cell morphology, growth, plasmid transformation efficiency, and stability of the wildtype and mutant were compared. The mutant did not have an observable effect in microscopic and colony morphology, but it reached a higher cell density after entering the exponential phase without obvious increase in the cell viability. The mutant had fewer 5'-ACRCm6AG-3' methylation compared with the wildtype (1835 versus 1906). Interestingly, no significant difference was observed in the transformation efficiency between the 2 strains when plasmids without cognate recognition sequence (pSec:Leiss:Nuc and pG+host9) were transformed, contrasting to transforming cells with cognate recognition sequence-containing plasmids (pMSP3535 and pTRKH2). The efficiency of transforming pMSP3535 into the LCAZH_2054 mutant was significantly lower than the wildtype, whereas an opposite trend was seen in pTRKH2 transformation. Moreover, compared with the wildtype, the mutant strain had higher capacity in retaining pMSP3535 and lower capacity in retaining pTRKH2, suggesting an unequal tolerance level to different foreign DNA. In conclusion, LCAZH_2054 was not directly responsible for 5'-ACRCm6AG-3' methylation in L. casei Zhang, but it might help regulate the function and specificity of the BREX system.
Collapse
Affiliation(s)
- Wenyan Hui
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Jing Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China.
| | - Tiansong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China.
| |
Collapse
|
9
|
Sun Y, Yang J, Sun T, Liu W. Evaluation of lactic acid bacterial communities in spontaneously-fermented dairy products from Tajikistan, Kyrgyzstan and Uzbekistan using culture-dependent and culture-independent methods. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Changes in physico-chemical characteristics and viable bacterial communities during fermentation of alfalfa silages inoculated with Lactobacillus plantarum. World J Microbiol Biotechnol 2021; 37:127. [PMID: 34181131 DOI: 10.1007/s11274-021-03095-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
This study investigated the effect of inoculating Lactobacillus (L.) plantarum PS-8 in fermentation of alfalfa silages. We monitored the fermentation characteristics and bacterial population dynamics during the ensiling process. PacBio single molecule real time sequencing was combined with propidium monoazide (PMA) treatment to monitor the viable microbiota dynamics. We found that inoculating L. plantarum PS-8 may improve the silage quality by accelerating acidification, reducing the amounts of clostridia, coliform bacteria, molds and yeasts, elevating the protein and organic acid contents (except butyrate), and enhancing lactic acid bacteria (LAB) while suppressing harmful microorganisms. Some significant differential abundant taxa were found between the PMA-treated and non-treated microbiota. For example, the relative abundances of L. brevis, L. plantarum, and Pediococcus pentosaceus were significantly higher in the PMA-treated group than the non-PMA-treated group, suggesting obvious differences between the viable and non-viable microbiota. It would thus be necessary to distinguish between the viable and non-viable microbial communities to further understand their physiological contribution in silage fermentation. By tracking the dynamics of viable microbiota in relation with changes in the physico-chemical parameters, our study provided novel insights into the beneficial effects of inoculating L. plantarum PS-8 in silage fermentation and the physiological function of the viable bacterial communities.
Collapse
|
11
|
Zhang M, Dang N, Ren D, Zhao F, Lv R, Ma T, Bao Q, Menghe B, Liu W. Comparison of Bacterial Microbiota in Raw Mare's Milk and Koumiss Using PacBio Single Molecule Real-Time Sequencing Technology. Front Microbiol 2020; 11:581610. [PMID: 33193214 PMCID: PMC7652796 DOI: 10.3389/fmicb.2020.581610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
Koumiss is a traditional fermented raw mare’s milk product. It contains high nutritional value and is well-known for its health-promoting effect as an alimentary supplement. This study aimed to investigate the bacterial diversity, especially lactic acid bacteria (LAB), in koumiss and raw mare’s milk. Forty-two samples, including koumiss and raw mare’s milk, were collected from the pastoral area in Yili, Kazakh Autonomous Prefecture, Xinjiang Uygur Autonomous Region in China. This work applied PacBio single-molecule real-time (SMRT) sequencing to profile full-length 16S rRNA genes, which was a powerful technology enabling bacterial taxonomic assignment to the species precision. The SMRT sequencing identified 12 phyla, 124 genera, and 227 species across 29 koumiss samples. Eighteen phyla, 286 genera, and 491 species were found across 13 raw mare’s milk samples. The bacterial microbiota diversity of the raw mare’s milk was more complex and diverse than the koumiss. Raw mare’s milk was rich in LAB, such as Lactobacillus (L.) helveticus, L. plantarum, Lactococcus (Lc.) lactis, and L. kefiranofaciens. In addition, raw mare’s milk also contained sequences representing pathogenic bacteria, such as Staphylococcus succinus, Acinetobacter lwoffii, Klebsiella (K.) oxytoca, and K. pneumoniae. The koumiss microbiota mainly comprised LAB, and sequences representing pathogenic bacteria were not detected. Meanwhile, the koumiss was enriched with secondary metabolic pathways that were potentially beneficial for health. Using a Random Forest model, the two kinds of samples could be distinguished with a high accuracy 95.2% [area under the curve (AUC) = 0.98] based on 42 species and functions. Comprehensive depiction of the microbiota in raw mare’s milk and koumiss might help elucidate evolutionary and functional relationships among the bacterial communities in these dairy products. The current work suffered from the limitation of a low sample size, so further work would be required to verify our findings.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Na Dang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Dongyan Ren
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruirui Lv
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Teng Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Qiuhua Bao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
12
|
Zhang W, Wang Y, Li K, Kwok LY, Liu W, Zhang H. Short communication: Modulation of fatty acid metabolism improves oxygen tolerance of Bifidobacterium animalis ssp. lactis Probio-M8. J Dairy Sci 2020; 103:8791-8795. [PMID: 32861486 DOI: 10.3168/jds.2019-18049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/12/2020] [Indexed: 12/29/2022]
Abstract
Bifidobacterium animalis ssp. lactis Probio-M8 is a potential probiotic strain that was isolated from human milk. Previously, we obtained an oxygen-resistant variant (Probio-M8o) of Probio-M8 by an adaptive evolution strategy. In the present study, a comparative transcriptomic analysis of Probio-M8o and Probio-M8 was carried out to reveal the cellular mechanism of the oxygen-resistant phenotype. Using RNA-seq, 210 and 217 differentially expressed genes were identified in Probio-M8o compared with Probio-M8 after oxygen exposure for 30 and 60 min, respectively. The oxygen treatment upregulated a set of genes that encoded proteins responsible for fatty acid biosynthesis. This observation was in good agreement with the composition change in fatty acids at the biochemical level. Our study showed that the oxygen-resistant phenotype could be related to adaptation of fatty acid metabolism.
Collapse
Affiliation(s)
- Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Yuanchi Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Kangning Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot 010018, China.
| |
Collapse
|
13
|
Morovic W, Budinoff CR. Epigenetics: A New Frontier in Probiotic Research. Trends Microbiol 2020; 29:117-126. [PMID: 32409146 DOI: 10.1016/j.tim.2020.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/01/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
Research into the benefits of probiotics has progressed beyond interventional studies to identifying the underlying molecular mechanisms. Health-promoting effector molecules produced by probiotics are well documented and have been linked to specific genes and even individual nucleotides. However, the factors controlling the expression of these molecules are poorly understood and we argue that epigenetic influences likely play an important role in mediating the health-promoting attributes of probiotics. Here, we review established epigenetic regulation of important microbial genetic systems involved in health promotion, safety, and industrialization to provide evidence that the same regulation occurs in probiotic organisms. We advocate for studies combining genomic and meta-epigenomic data to better understand the mode of action of probiotics, their associated microbiomes, and their effects on consumers.
Collapse
|
14
|
Adaptation of Lactobacillus plantarum to Ampicillin Involves Mechanisms That Maintain Protein Homeostasis. mSystems 2020; 5:5/1/e00853-19. [PMID: 31992633 PMCID: PMC6989132 DOI: 10.1128/msystems.00853-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The widespread use of antibiotics has caused great concern in the biosafety of probiotics. In this study, we conducted a 12-month adaptive laboratory evolution (ALE) experiment to select for antibiotics-adapted Lactobacillus plantarum P-8, a dairy-originated probiotic bacterium. During the ALE process, the ampicillin MIC for the parental L. plantarum P-8 strain increased gradually and reached the maximum level of bacterial fitness. To elucidate the molecular mechanisms underlying the ampicillin-resistant phenotype, we comparatively analyzed the genomes and proteomes of the parental strain (L. plantarum P-8) and two adapted lines (L. plantarum 400g and L. plantarum 1600g). The adapted lines showed alterations in their carbon, amino acid, and cell surface-associated metabolic pathways. Then, gene disruption mutants were created to determine the role of six highly expressed genes in contributing to the enhanced ampicillin resistance. Inactivation of an ATP-dependent Clp protease/the ATP-binding subunit ClpL, a small heat shock protein, or a hypothetical protein resulted in partial but significant phenotypic reversion, confirming their necessary roles in the bacterial adaptation to ampicillin. Genomic analysis confirmed that none of the ampicillin-specific differential expressed genes were flanked by any mobile genetic elements; thus, even though long-term exposure to ampicillin upregulated their expression, there is low risk of spread of these genes and adapted drug resistance to other bacteria via horizontal gene transfer. Our study has provided evidence of the biosafety of probiotics even when used in the presence of antibiotics.IMPORTANCE Antibiotic resistance acquired by adaptation to certain antibiotics has led to growing public concerns. Here, a long-term evolution experiment was used together with proteomic analysis to identify genes/proteins responsible for the adaptive phenotype. This work has provided novel insights into the biosafety of new probiotics with high tolerance to antibiotics.
Collapse
|
15
|
A Novel Bacteriophage Exclusion (BREX) System Encoded by the pglX Gene in Lactobacillus casei Zhang. Appl Environ Microbiol 2019; 85:AEM.01001-19. [PMID: 31399407 DOI: 10.1128/aem.01001-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/05/2019] [Indexed: 01/21/2023] Open
Abstract
The bacteriophage exclusion (BREX) system is a novel prokaryotic defense system against bacteriophages. To our knowledge, no study has systematically characterized the function of the BREX system in lactic acid bacteria. Lactobacillus casei Zhang is a probiotic bacterium originating from koumiss. By using single-molecule real-time sequencing, we previously identified N6-methyladenine (m6A) signatures in the genome of L. casei Zhang and a putative methyltransferase (MTase), namely, pglX This work further analyzed the genomic locus near the pglX gene and identified it as a component of the BREX system. To decipher the biological role of pglX, an L. casei Zhang pglX mutant (ΔpglX) was constructed. Interestingly, m6A methylation of the 5'-ACRCAG-3' motif was eliminated in the ΔpglX mutant. The wild-type and mutant strains exhibited no significant difference in morphology or growth performance in de Man-Rogosa-Sharpe (MRS) medium. A significantly higher plasmid acquisition capacity was observed for the ΔpglX mutant than for the wild type if the transformed plasmids contained pglX recognition sites (i.e., 5'-ACRCAG-3'). In contrast, no significant difference was observed in plasmid transformation efficiency between the two strains when plasmids lacking pglX recognition sites were tested. Moreover, the ΔpglX mutant had a lower capacity to retain the plasmids than the wild type, suggesting a decrease in genetic stability. Since the Rebase database predicted that the L. casei PglX protein was bifunctional, as both an MTase and a restriction endonuclease, the PglX protein was heterologously expressed and purified but failed to show restriction endonuclease activity. Taken together, the results show that the L. casei Zhang pglX gene is a functional adenine MTase that belongs to the BREX system.IMPORTANCE Lactobacillus casei Zhang is a probiotic that confers beneficial effects on the host, and it is thus increasingly used in the dairy industry. The possession of an effective bacterial immune system that can defend against invasion of phages and exogenous DNA is a desirable feature for industrial bacterial strains. The bacteriophage exclusion (BREX) system is a recently described phage resistance system in prokaryotes. This work confirmed the function of the BREX system in L. casei and that the methyltransferase (pglX) is an indispensable part of the system. Overall, our study characterizes a BREX system component gene in lactic acid bacteria.
Collapse
|
16
|
Slatko BE, Gardner AF, Ausubel FM. Overview of Next-Generation Sequencing Technologies. ACTA ACUST UNITED AC 2019; 122:e59. [PMID: 29851291 DOI: 10.1002/cpmb.59] [Citation(s) in RCA: 398] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High throughput DNA sequencing methodology (next generation sequencing; NGS) has rapidly evolved over the past 15 years and new methods are continually being commercialized. As the technology develops, so do increases in the number of corresponding applications for basic and applied science. The purpose of this review is to provide a compendium of NGS methodologies and associated applications. Each brief discussion is followed by web links to the manufacturer and/or web-based visualizations. Keyword searches, such as with Google, may also provide helpful internet links and information. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | | | - Frederick M Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
17
|
Asenso J, Wang L, Du Y, Liu QH, Xu BJ, Guo MZ, Tang DQ. Advances in detection and quantification of methylcytosine and its derivatives. J Sep Sci 2018; 42:1105-1116. [PMID: 30575277 DOI: 10.1002/jssc.201801100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/21/2018] [Accepted: 12/16/2018] [Indexed: 11/08/2022]
Abstract
Methylation of the fifth carbon atom in cytosine is an epigenetic modification of deoxyribonucleic acid that plays important roles in numerous cellular processes and disease pathogenesis. Three additional states of cytosine, that is, 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine, have been identified and associated with the diagnosis and/or prognosis of diseases. However, accurate measurement of those intermediates is a challenge since their global levels are relatively low. A number of innovative methods have been developed to detect and quantify these compounds in biological samples, such as blood, tissue and urine, etc. This review focuses on recent advancement in detection and quantification of four cytosine modifications, based on which, the development, diagnosis, and prognosis of diseases could be monitored through non-invasive procedures.
Collapse
Affiliation(s)
- James Asenso
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, P. R. China
| | - Yan Du
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Qing-Hua Liu
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Bing-Ju Xu
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Meng-Zhe Guo
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Dao-Quan Tang
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| |
Collapse
|
18
|
Xiao CL, Xie SQ, Xie QB, Liu ZY, Xing JF, Ji KK, Tao J, Dai LY, Luo F. N6-Methyladenine DNA modification in Xanthomonas oryzae pv. oryzicola genome. Sci Rep 2018; 8:16272. [PMID: 30389999 PMCID: PMC6215013 DOI: 10.1038/s41598-018-34559-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
DNA N6-methyladenine (6mA) modifications expand the information capacity of DNA and have long been known to exist in bacterial genomes. Xanthomonas oryzae pv. Oryzicola (Xoc) is the causative agent of bacterial leaf streak, an emerging and destructive disease in rice worldwide. However, the genome-wide distribution patterns and potential functions of 6mA in Xoc are largely unknown. In this study, we analyzed the levels and global distribution patterns of 6mA modification in genomic DNA of seven Xoc strains (BLS256, BLS279, CFBP2286, CFBP7331, CFBP7341, L8 and RS105). The 6mA modification was found to be widely distributed across the seven Xoc genomes, accounting for percent of 3.80, 3.10, 3.70, 4.20, 3.40, 2.10, and 3.10 of the total adenines in BLS256, BLS279, CFBP2286, CFBP7331, CFBP7341, L8, and RS105, respectively. Notably, more than 82% of 6mA sites were located within gene bodies in all seven strains. Two specific motifs for 6 mA modification, ARGT and AVCG, were prevalent in all seven strains. Comparison of putative DNA methylation motifs from the seven strains reveals that Xoc have a specific DNA methylation system. Furthermore, the 6 mA modification of rpfC dramatically decreased during Xoc infection indicates the important role for Xoc adaption to environment.
Collapse
Affiliation(s)
- Chuan-Le Xiao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shang-Qian Xie
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Qing-Biao Xie
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhao-Yu Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Jian-Feng Xing
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Kai-Kai Ji
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Jun Tao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| | - Liang-Ying Dai
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Plant Protection, Hunan Agricultural University, Changsha, China.
| | - Feng Luo
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Plant Protection, Hunan Agricultural University, Changsha, China. .,School of Computing, Clemson University, Clemson, 29634-0974, USA.
| |
Collapse
|
19
|
Wang J, Zheng Y, Xi X, Hou Q, Xu H, Zhao J, Li J, Bian Y, Ma H, Wang Y, Kwok LY, Zhang H, Sun Z. Application of PacBio Single Molecule Real-Time (SMRT) sequencing in bacterial source tracking analysis during milk powder production. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.05.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Song Y, He Q, Zhang J, Qiao J, Xu H, Zhong Z, Zhang W, Sun Z, Yang R, Cui Y, Zhang H. Genomic Variations in Probiotic Lactobacillus plantarum P-8 in the Human and Rat Gut. Front Microbiol 2018; 9:893. [PMID: 29867805 PMCID: PMC5951974 DOI: 10.3389/fmicb.2018.00893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/18/2018] [Indexed: 01/02/2023] Open
Abstract
The effects of probiotics on host gastrointestinal health have become an area of particular interest in the field of probiotic research. However, the impact of the host intestinal environment on genomic changes in probiotic organisms remains largely unknown. To investigate, Lactobacillus plantarum P-8, a well-studied probiotic bacterium, was consumed by healthy human volunteers and rats. Then, the persistence and genomic stability of P-8 in the host gut were surveyed. qPCR results revealed that after the consumption of one dose, P-8 could be detected in the host gastrointestinal tract for 4–5 weeks. By contrast, after 4 successive weeks of consumption, P-8 could be detected for up to 17 weeks after consumption ceased. In total, 92 P-8 derived strains were isolated from fecal samples and their genomes were sequenced and analyzed. Comparative genomic analysis detected 19 SNPs, which showed the characteristics of neutral evolution in the core genome. In nearly half of samples (n = 39, 42%), the loss of one to three plasmids was observed. The frequent loss of plasmids indicated reductive evolution in the accessory genome under selection pressure within the gastrointestinal tract. We also observed a 609-bp 23S rRNA homologous fragment that may have been acquired from other species after intake. Our findings offer insight into the complex reactions of probiotics to the gut environment during survival in the host. The in vivo genomic dynamics of L. plantarum P-8 observed in this study will aid the commercial development of probiotics with more stable characteristics.
Collapse
Affiliation(s)
- Yuqin Song
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Qiuwen He
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiachao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Jianmin Qiao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Haiyan Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
21
|
Zhang W, Cao C, Zhang J, Kwok LY, Zhang H, Chen Y. Lactobacillus casei asp23 gene contributes to gentamycin resistance via regulating specific membrane-associated proteins. J Dairy Sci 2018; 101:1915-1920. [DOI: 10.3168/jds.2017-13961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022]
|
22
|
Yu J, Hui W, Cao C, Pan L, Zhang H, Zhang W. Integrative Genomic and Proteomic Analysis of the Response of Lactobacillus casei Zhang to Glucose Restriction. J Proteome Res 2018; 17:1290-1299. [DOI: 10.1021/acs.jproteome.7b00886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of
Education and §Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia, Huhhot 010018, China
| | - Wenyan Hui
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of
Education and §Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia, Huhhot 010018, China
| | - Chenxia Cao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of
Education and §Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia, Huhhot 010018, China
| | - Lin Pan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of
Education and §Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia, Huhhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of
Education and §Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia, Huhhot 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of
Education and §Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia, Huhhot 010018, China
| |
Collapse
|
23
|
Zhang W, Guo H, Cao C, Li L, Kwok LY, Zhang H, Sun Z. Adaptation of Lactobacillus casei Zhang to Gentamycin Involves an Alkaline Shock Protein. Front Microbiol 2017; 8:2316. [PMID: 29218040 PMCID: PMC5703869 DOI: 10.3389/fmicb.2017.02316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/09/2017] [Indexed: 12/26/2022] Open
Abstract
Lactobacillus (L. casei) Zhang is a koumiss-originated probiotic strain, which was used as a model in a long-term antibiotics-driven evolution experiment to reveal bacterial evolutionary dynamics; and we isolated gentamycin-resistant L. casei Zhang descendents. To decipher the gentamycin resistance mechanism, here we cultivated the parental L. casei Zhang and its descendent cells in an antibiotics-containing environment to compare their global protein expression profiles using the iTRAQ-based proteomic approach. A total of 72 proteins were significantly up-regulated (>2.0-fold, P < 0.05), whilst 32 proteins were significantly down-regulated <−2.0-fold, P < 0.05) in the descendent line. The gentamycin-resistant descendent line showed elevated expression in some carbohydrates, amino acids, and purine metabolic pathways. Several stress-related proteins were also differentially expressed. Among them, one alkaline shock protein, asp23, was up-regulated most in the gentamycin-resistant strain (21.9-fold increase compared with the parental strain). The asp23 gene disruption mutant was significantly more sensitive to gentamycin compared with the wild type, suggesting an important role of this gene in developing the gentamycin-resistant phenotype in L. casei. Our report has described the adaptation of a probiotic strain that has acquired antibiotics resistance through long-term antibiotics exposure at the proteome level, and we revealed a novel mechanism of gentamycin resistance.
Collapse
Affiliation(s)
- Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Huiling Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Chenxia Cao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Lina Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
24
|
Wang Y, Zhang J, Chen X, Jiang W, Wang S, Xu L, Tu Y, Zheng P, Wang Y, Lin X, Chen H. Profiling of Oral Microbiota in Early Childhood Caries Using Single-Molecule Real-Time Sequencing. Front Microbiol 2017; 8:2244. [PMID: 29187843 PMCID: PMC5694851 DOI: 10.3389/fmicb.2017.02244] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/31/2017] [Indexed: 01/03/2023] Open
Abstract
Background: Alterations of oral microbiota are the main cause of the progression of caries. The goal of this study was to characterize the oral microbiota in childhood caries based on single-molecule real-time sequencing. Methods: A total of 21 preschoolers, aged 3-5 years old with severe early childhood caries, and 20 age-matched, caries-free children as controls were recruited. Saliva samples were collected, followed by DNA extraction, Pacbio sequencing, and phylogenetic analyses of the oral microbial communities. Results: Eight hundred and seventy six species derived from 13 known bacterial phyla and 110 genera were detected from 41 children using Pacbio sequencing. At the species level, 38 species, including Veillonella spp., Streptococcus spp., Prevotella spp., and Lactobacillus spp., showed higher abundance in the caries group compared to the caries-free group (p < 0.05). The core microbiota at the genus and species levels was more stable in the caries-free micro-ecological niche. At follow-up, oral examinations 6 months after sample collection, development of new dental caries was observed in 5 children (the transitional group) among the 21 caries free children. Compared with the caries-free children, in the transitional and caries groups, 6 species, which were more abundant in the caries-free group, exhibited a relatively low abundance in both the caries group and the transitional group (p < 0.05). We conclude that Abiotrophia spp., Neisseria spp., and Veillonella spp., might be associated with healthy oral microbial ecosystem. Prevotella spp., Lactobacillus spp., Dialister spp., and Filifactor spp. may be related to the pathogenesis and progression of dental caries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hui Chen
- Department of Conservative Dentistry and Periodontics, Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Assessment of bacterial profiles in aged, home-made Sichuan paocai brine with varying titratable acidity by PacBio SMRT sequencing technology. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Wang J, Dong X, Shao Y, Guo H, Pan L, Hui W, Kwok LY, Zhang H, Zhang W. Genome adaptive evolution of Lactobacillus casei under long-term antibiotic selection pressures. BMC Genomics 2017; 18:320. [PMID: 28438179 PMCID: PMC5402323 DOI: 10.1186/s12864-017-3710-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/20/2017] [Indexed: 01/01/2023] Open
Abstract
Background The extensive use of antibiotics in medicine has raised serious concerns about biosafety. However, the effect of antibiotic application on the adaptive evolution of microorganisms, especially to probiotic bacteria, has not been well characterized. Thus, the objective of the current work was to investigate how antibiotic selection forces might drive genome adaptation using Lactobacillus (L.) casei Zhang as a model. Methods Two antibiotics, amoxicillin and gentamicin, were consistently applied to the laboratory culture of L. casei Zhang. We then monitored the mutations in the bacterial genome and changes in the minimum inhibitory concentrations (MICs) of these two antibiotics along a 2000-generation-cultivation lasted over 10 months. Results We found an approximately 4-fold increase in the genome mutation frequency of L. casei Zhang, i.e. 3.5 × 10-9 per base pair per generation under either amoxicillin or gentamicin stress, when compared with the parallel controls grown without application of any antibiotics. The increase in mutation frequency is significantly lower than that previously reported in Escherichia (E.) coli. The rate of de novo mutations, i.e. 20 per genome, remained low and stable throughout the long-term cultivation. Moreover, the accumulation of new mutations stopped shortly after the maximum bacterial fitness (i.e. the antibiotic MICs) was reached. Conclusions Our study has shown that the probiotic species, L. casei Zhang, has high genome stability even in the presence of long-term antibiotic stresses. However, whether this is a species-specific or universal characteristic for all probiotic bacteria remains to be explored. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3710-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jicheng Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Xiao Dong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Yuyu Shao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Huiling Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Lin Pan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Wenyan Hui
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China. .,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
27
|
Ogunade I, Jiang Y, Kim D, Cervantes AP, Arriola K, Vyas D, Weinberg Z, Jeong K, Adesogan A. Fate of Escherichia coli O157:H7 and bacterial diversity in corn silage contaminated with the pathogen and treated with chemical or microbial additives. J Dairy Sci 2017; 100:1780-1794. [DOI: 10.3168/jds.2016-11745] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/01/2016] [Indexed: 01/15/2023]
|
28
|
Seong HJ, Park HJ, Hong E, Lee SC, Sul WJ, Han SW. Methylome Analysis of Two Xanthomonas spp. Using Single-Molecule Real-Time Sequencing. THE PLANT PATHOLOGY JOURNAL 2016; 32:500-507. [PMID: 27904456 PMCID: PMC5117858 DOI: 10.5423/ppj.ft.10.2016.0216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 05/24/2023]
Abstract
Single-molecule real-time (SMRT) sequencing allows identification of methylated DNA bases and methylation patterns/motifs at the genome level. Using SMRT sequencing, diverse bacterial methylomes including those of Helicobacter pylori, Lactobacillus spp., and Escherichia coli have been determined, and previously unreported DNA methylation motifs have been identified. However, the methylomes of Xanthomonas species, which belong to the most important plant pathogenic bacterial genus, have not been documented. Here, we report the methylomes of Xanthomonas axonopodis pv. glycines (Xag) strain 8ra and X. campestris pv. vesicatoria (Xcv) strain 85-10. We identified N6-methyladenine (6mA) and N4-methylcytosine (4mC) modification in both genomes. In addition, we assigned putative DNA methylation motifs including previously unreported methylation motifs via REBASE and MotifMaker, and compared methylation patterns in both species. Although Xag and Xcv belong to the same genus, their methylation patterns were dramatically different. The number of 4mC DNA bases in Xag (66,682) was significantly higher (29 fold) than in Xcv (2,321). In contrast, the number of 6mA DNA bases (4,147) in Xag was comparable to the number in Xcv (5,491). Strikingly, there were no common or shared motifs in the 10 most frequently methylated motifs of both strains, indicating they possess unique species- or strain-specific methylation motifs. Among the 20 most frequent motifs from both strains, for 9 motifs at least 1% of the methylated bases were located in putative promoter regions. Methylome analysis by SMRT sequencing technology is the first step toward understanding the biology and functions of DNA methylation in this genus.
Collapse
Affiliation(s)
- Hoon Je Seong
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546,
Korea
| | - Hye-Jee Park
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546,
Korea
| | - Eunji Hong
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul 06974,
Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul 06974,
Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546,
Korea
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546,
Korea
| |
Collapse
|
29
|
Gesudu Q, Zheng Y, Xi X, Hou QC, Xu H, Huang W, Zhang H, Menghe B, Liu W. Investigating bacterial population structure and dynamics in traditional koumiss from Inner Mongolia using single molecule real-time sequencing. J Dairy Sci 2016; 99:7852-7863. [DOI: 10.3168/jds.2016-11167] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/03/2016] [Indexed: 01/06/2023]
|
30
|
Zheng Y, Xi X, Xu H, Hou Q, Bian Y, Yu Z, Kwok LY, Zhang W, Sun Z, Zhang H. Using PacBio Long-Read High-Throughput Microbial Gene Amplicon Sequencing To Evaluate Infant Formula Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6993-7001. [PMID: 27500310 DOI: 10.1021/acs.jafc.6b01817] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Infant formula (IF) requires a strict microbiological standard because of the high vulnerability of infants to foodborne diseases. The current study used the PacBio single-molecule real-time (SMRT) sequencing platform to generate full-length 16S rRNA-based bacterial microbiota profiles of 30 Chinese domestic and imported IF samples. A total of 600 species were identified, dominated by Streptococcus thermophilus, Lactococcus lactis, and Lactococcus piscium. Distinctive bacterial profiles were observed between the two sample groups, as confirmed with both principal coordinate analysis and multivariate analysis of variance. Moreover, the product whey protein nitrogen index (WPNI), representing the degree of preheating, negatively correlated with the relative abundances of the Bacillus genus. This study has demonstrated the application of the PacBio SMRT sequencing platform in assessing the bacterial contamination of IF products, which is of interest to the dairy industry for effective monitoring of microbial quality and safety during production.
Collapse
Affiliation(s)
- Yi Zheng
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University , Hohhot 010018, People's Republic of China
| | - Xiaoxia Xi
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University , Hohhot 010018, People's Republic of China
| | - Haiyan Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University , Hohhot 010018, People's Republic of China
| | - Qiangchuan Hou
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University , Hohhot 010018, People's Republic of China
| | - Yanfei Bian
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University , Hohhot 010018, People's Republic of China
| | - Zhongjie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University , Hohhot 010018, People's Republic of China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University , Hohhot 010018, People's Republic of China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University , Hohhot 010018, People's Republic of China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University , Hohhot 010018, People's Republic of China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University , Hohhot 010018, People's Republic of China
| |
Collapse
|
31
|
Proteomic analysis of an engineered isolate of Lactobacillus plantarum with enhanced raffinose metabolic capacity. Sci Rep 2016; 6:31403. [PMID: 27510766 PMCID: PMC4980766 DOI: 10.1038/srep31403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/20/2016] [Indexed: 01/08/2023] Open
Abstract
Lactic acid bacteria that can produce alpha-galactosidase are a promising solution for improving the nutritional value of soy-derived products. For their commercial use in the manufacturing process, it is essential to understand the catabolic mechanisms that facilitate their growth and performance. In this study, we used comparative proteomic analysis to compare catabolism in an engineered isolate of Lactobacillus plantarum P-8 with enhanced raffinose metabolic capacity, with the parent (or wild-type) isolate from which it was derived. When growing on semi-defined medium with raffinose, a total of one hundred and twenty-five proteins were significantly up-regulated (>1.5 fold, P < 0.05) in the engineered isolate, whilst and one hundred and six proteins were significantly down-regulated (<−1.5 fold, P < 0.05). During the late stages of growth, the engineered isolate was able to utilise alternative carbohydrates such as sorbitol instead of raffinose to sustain cell division. To avoid acid damage the cell layer of the engineered isolate altered through a combination of de novo fatty acid biosynthesis and modification of existing lipid membrane phospholipid acyl chains. Interestingly, aspartate and glutamate metabolism was associated with this acid response. Higher intracellular aspartate and glutamate levels in the engineered isolate compared with the parent isolate were confirmed by further chemical analysis. Our study will underpin the future use of this engineered isolate in the manufacture of soymilk products.
Collapse
|
32
|
Assessing quality of Medicago sativa silage by monitoring bacterial composition with single molecule, real-time sequencing technology and various physiological parameters. Sci Rep 2016; 6:28358. [PMID: 27340760 PMCID: PMC4920031 DOI: 10.1038/srep28358] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 01/03/2023] Open
Abstract
The present study applied the PacBio single molecule, real-time sequencing technology (SMRT) in evaluating the quality of silage production. Specifically, we produced four types of Medicago sativa silages by using four different lactic acid bacteria-based additives (AD-I, AD-II, AD-III and AD-IV). We monitored the changes in pH, organic acids (including butyric acid, the ratio of acetic acid/lactic acid, γ-aminobutyric acid, 4-hyroxy benzoic acid and phenyl lactic acid), mycotoxins, and bacterial microbiota during silage fermentation. Our results showed that the use of the additives was beneficial to the silage fermentation by enhancing a general pH and mycotoxin reduction, while increasing the organic acids content. By SMRT analysis of the microbial composition in eight silage samples, we found that the bacterial species number and relative abundances shifted apparently after fermentation. Such changes were specific to the LAB species in the additives. Particularly, Bacillus megaterium was the initial dominant species in the raw materials; and after the fermentation process, Pediococcus acidilactici and Lactobacillus plantarum became the most prevalent species, both of which were intrinsically present in the LAB additives. Our data have demonstrated that the SMRT sequencing platform is applicable in assessing the quality of silage.
Collapse
|
33
|
Yao G, Gao P, Zhang W. Complete genome sequence of probiotic Bacillus coagulans HM-08: A potential lactic acid producer. J Biotechnol 2016; 228:71-72. [DOI: 10.1016/j.jbiotec.2016.04.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 04/25/2016] [Indexed: 12/22/2022]
|
34
|
Hou Q, Xu H, Zheng Y, Xi X, Kwok LY, Sun Z, Zhang H, Zhang W. Evaluation of bacterial contamination in raw milk, ultra-high temperature milk and infant formula using single molecule, real-time sequencing technology. J Dairy Sci 2015; 98:8464-72. [PMID: 26476945 DOI: 10.3168/jds.2015-9886] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/28/2015] [Indexed: 01/07/2023]
Abstract
The Pacific Biosciences (Menlo Park, CA) single molecule, real-time sequencing technology (SMRT) was reported to have some advantages in analyzing the bacterial profile of environmental samples. In this study, the presence of bacterial contaminants in raw milk, UHT milk, and infant formula was determined by SMRT sequencing of the full length 16S rRNA gene. The bacterial profiles obtained at different taxonomic levels revealed clear differences in bacterial community structure across the 16 analyzed dairy samples. No indicative pathogenic bacteria were found in any of these tested samples. However, some of the detected bacterial species (e.g., Bacillus cereus, Enterococcus casseliflavus, and Enterococcus gallinarum) might potentially relate with product quality defects and bacterial antibiotic gene transfer. Although only a limited number of dairy samples were analyzed here, our data have demonstrated for the first time the feasibility of using the SMRT sequencing platform in detecting bacterial contamination. Our paper also provides interesting reference information for future development of new precautionary strategies for controlling the dairy safety in large-scale industrialized production lines.
Collapse
Affiliation(s)
- Qiangchuan Hou
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Haiyan Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Yi Zheng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Xiaoxia Xi
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
35
|
Gao P, Yao G, Bao W, Li J, Zhang H, Zhang W. Complete genome sequence of Bacillus licheniformis BL-09, a probiotic strain isolated from naturally fermented congee. J Biotechnol 2015; 206:58-9. [DOI: 10.1016/j.jbiotec.2015.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/16/2015] [Indexed: 12/22/2022]
|