1
|
Westhoff TA, Overton TR, Tikofsky JN, Van Amburgh ME, Ryan CM, Mann S. Pre- and postpartum metabolizable protein supply: I. Effects on feed intake, lactation performance, and metabolic markers in transition dairy cows. J Dairy Sci 2024:S0022-0302(24)01150-0. [PMID: 39343231 DOI: 10.3168/jds.2024-25026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/18/2024] [Indexed: 10/01/2024]
Abstract
The objective of this study was to investigate the effect of increasing MP supply in the prepartum, postpartum, or both diets on intake, performance, and metabolic indicators. Multiparous Holstein cows (n = 96) were assigned to 1 of 4 treatment groups at 28 d before expected calving following a randomized block design. Prepartum diets were formulated to contain either a control (C; 85 g of MP/kg DM) or high (H; 113 g of MP/kg DM) level of estimated MP. From calving to 21 DIM, diets were formulated to contain either a control (C; 104 g of MP/kg DM) or high (H; 131 g of MP/kg DM) level of estimated MP. To control the potential confounding effect of Met and Lys supply, diets were formulated to supply an equal amount at 1.24 and 3.84 g/Mcal of ME in both prepartum diets and 1.15 and 3.16 g/Mcal of ME in both postpartum diets, respectively. The combination of a pre- and postpartum diet resulted in 4 treatment groups: 1) CC (n = 23), 2) CH (n = 24), 3) HC (n = 22), and 4) HH (n = 23). A common lactation diet (113 g of MP/kg DM) was fed from 22 DIM to the end of the observation period at 42 DIM. Milk yield and DMI were collected daily, and plasma metabolic indicators (BHB, fatty acids [NEFA], urea nitrogen [PUN], and glucose) were determined twice weekly from -28 to 28 d relative to calving and once weekly from 29 to 42 DIM. Samples with BHB ≥1.2 mmol/L between 3 and 10 DIM were considered hyperketonemia events. Milk composition was determined weekly. Milk yield during 1 to 21 DIM was greater in HH (44.7 ± 1.0 kg/d) compared with CC (39.2 ± 1.0 kg/d) and HC (38.0 ± 1.0 kg/d) and milk yield in CH (42.4 ± 0.9 kg/d) was greater than HC, respectively. From 22 to 42 DIM, milk yield was greater in CH (53.3 ± 1.0 kg/d) and HH (54.1 ± 1.0 kg/d) compared with CC (49.6 ± 1.0 kg/d) and HC (49.3 ± 1.0 kg/d). Dry matter intake (% of BW) and concentrations of milk protein, fat, and total solids were not affected by treatment. Prepartum concentrations of PUN were greater in H compared with C. From 1 to 21 DIM, PUN concentrations were greater in CH and HH compared with CC and HC. From 1 to 21 DIM, glucose concentrations were lower in HH compared with HC and BHB were greater in CH and HH compared with HC. Concentrations of NEFA, as well as the number of hyperketonemia events did not differ by treatment during this time. From 22 to 42 DIM, concentrations of NEFA were greater in HH compared with HC and concentrations of BHB were greater in CH and HH compared with HC. Overall, feeding CH or HH increased lactation performance without altering intake or hyperketonemia events. Results from this study support formulating a fresh diet to reduce the negative MP balance during early lactation.
Collapse
Affiliation(s)
- T A Westhoff
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - T R Overton
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
| | | | - M E Van Amburgh
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
| | - C M Ryan
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
| | - S Mann
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
2
|
Nichols K, Wever N, Rolland M, Dijkstra J. Effect of source and frequency of rumen-protected protein supplementation on mammary gland amino acid metabolism and nitrogen balance of dairy cattle. J Dairy Sci 2024; 107:6797-6816. [PMID: 38762111 DOI: 10.3168/jds.2023-24370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/27/2024] [Indexed: 05/20/2024]
Abstract
The AA profile of MP affects mammary gland metabolism and milk N efficiency of dairy cattle. Further, the frequency of dietary protein supplementation may influence N partitioning leading to reduced N excretion. This study investigated the effect of source and frequency of rumen-protected (RP) protein supplementation on apparent total-tract digestibility, milk production, mammary gland AA metabolism, and N balance of dairy cattle. Twenty-eight Holstein-Friesian cows (2.3 ± 0.9 lactations; 93 ± 27 DIM; mean ± SD) were used in a randomized complete block design and fed a basal TMR consisting of 41% corn silage, 32% grass silage, and 27% concentrate (DM basis) and formulated to meet 100% and 95% of net energy and MP requirements, respectively. Cows were adapted to the basal TMR in a freestall barn for 7 d, moved to individual tiestalls for 13 d of adaptation to dietary treatments, and then moved into climate respiration chambers for a 4-d measurement period. Treatments consisted of the basal TMR (CON; 159 g CP/kg DM) or the basal TMR including 1 of 3 iso-MP supplements: (1) 315-g mixture of RP soybean meal and RP rapeseed meal fed daily (ST-RPSR), (2) 384-g mixture of RP His, RP Lys, and RP Met fed daily (ST-RPAA), and (3) 768-g mixture of RP His, RP Lys, and RP Met fed every other day (OS-RPAA). The basal TMR with the addition of treatment supplements was designed to deliver 100% of required MP over a 48-h period. The mixture of His, Lys, and Met was formulated to deliver digestible AA in amounts relative to their concentration in casein. Compared with ST-RPSR, ST-RPAA increased milk protein and fat concentration, increased the arterial concentration of total His, Lys, and Met (HLM), decreased mammary clearance of HLM, and increased clearance of Phe, Leu, and Tyr (tendency for Leu and Tyr). Rumen-protected protein source did not affect N balance, but the marginal use efficiency (efficiency of transfer of RP protein supplement into milk protein) of ST-RPAA (67%) was higher than that of ST-RPSR (17%). Milk protein concentration decreased with OS-RPAA compared with ST-RPAA. Arterial concentration of HLM increased on the nonsupplemented day compared with the supplemented day with OS-RPAA, and there was no difference in arterial HLM concentration across days with ST-RPAA. Mammary uptake of HLM tended to increase on the nonsupplemented day compared with the supplemented day with OS-RPAA. Supplementation frequency of RP AA did not affect N balance or overall milk N efficiency, but the marginal use efficiency of OS-RPAA (49%) was lower compared with ST-RPAA. Overall, mammary glands responded to an increased supply of His, Lys, and Met by reducing efflux of other EAA when RP His, RP Lys, and RP Met were supplemented compared with RP plant proteins. Mammary glands increased sequestration of EAA (primarily HLM) on the nonsupplemented day with OS-RPAA, but supplementing RP AA according to a 24-h oscillating pattern did not increase N efficiency over static supplementation.
Collapse
Affiliation(s)
- K Nichols
- Animal Nutrition Group, Wageningen University and Research, 6700 AH Wageningen, the Netherlands.
| | - N Wever
- Animal Nutrition Group, Wageningen University and Research, 6700 AH Wageningen, the Netherlands
| | - M Rolland
- Ajinomoto Animal Nutrition Europe, 75017 Paris, France
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University and Research, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
3
|
Hanigan MD, Souza VC, Martineau R, Lapierre H, Feng X, Daley VL. A meta-analysis of the relationship between milk protein production and absorbed amino acids and digested energy in dairy cattle. J Dairy Sci 2024; 107:5587-5615. [PMID: 38490550 DOI: 10.3168/jds.2024-24230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
Milk protein production is the largest draw on AA supplies for lactating dairy cattle. Prior NRC predictions of milk protein production have been absorbed protein (MP)-based and used a first-limiting nutrient concept to integrate the effects of energy and protein, which yielded poor accuracy and precision (root mean squared error [RMSE] >21%). Using a meta-data set gathered, various alternative equation forms considering MP, absorbed total EAA, absorbed individual EAA, and digested energy (DE) supplies as additive drivers of production were evaluated, and all were found to be superior in statistical performance to the first limitation approach (RMSE = 14%-15%). Inclusion of DE intake and a quadratic term for MP or absorbed EAA supplies were found to be necessary to achieve intercept estimates (nonproductive protein use) that were similar to the factorial estimates of the National Academies of Sciences, Engineering, and Medicine (2021). The partial linear slope for MP was found to be 0.409, which is consistent with the observed slope bias of -0.34 g/g when a slope of 0.67 was used for MP efficiency in a first-limiting nutrient system. Replacement of MP with the supplies of individual absorbed EAA expressed in grams per day and a common quadratic across the EAA resulted in unbiased predictions with improved statistical performance as compared with MP-based models. Based on Akaike's information criterion and biological consistency, the best equations included absorbed His, Ile, Lys, Met, Thr, the NEAA, and individual DE intakes from fatty acids, NDF, residual OM, and starch. Several also contained a term for absorbed Leu. These equations generally had RMSE of 14.3% and a concordance correlation of 0.76. Based on the common quadratic and individual linear terms, milk protein response plateaus were predicted at approximately 320 g/d of absorbed His, Ile, and Lys; 395 g/d of absorbed Thr; 550 g/d of absorbed Met; and 70 g/d of absorbed Leu. Therefore, responses to each except Leu are almost linear throughout the normal in vivo range. De-aggregation of the quadratic term and parsing to individual absorbed EAA resulted in nonbiological estimates for several EAA indicating over-parameterization. Expression of the EAA as g/100 g total absorbed EAA or as ratios of DE intake and using linear and quadratic terms for each EAA resulted in similar statistical performance, but the solutions had identifiability problems and several nonbiological parameter estimates. The use of ratios also introduced nonlinearity in the independent variables which violates linear regression assumptions. Further screening of the global model using absorbed EAA expressed as grams per day with a common quadratic using an all-models approach, and exhaustive cross-evaluation indicated the parameter estimates for BW, all 4 DE terms, His, Ile, Lys, Met, and the common quadratic term were stable, whereas estimates for Leu and Thr were known with less certainty. Use of independent and additive terms and a quadratic expression in the equation results in variable efficiencies of conversion. The additivity also provides partial substitution among the nutrients. Both of these prevent establishment of fixed nutrient requirements in support of milk protein production.
Collapse
Affiliation(s)
- M D Hanigan
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061.
| | - V C Souza
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061
| | - R Martineau
- Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - H Lapierre
- Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - X Feng
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061
| | - V L Daley
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
4
|
Erickson MG, Barros T, Aguerre MJ, Olmos Colmenero JJ, Bertics SJ, Wattiaux MA. Reducing dietary crude protein: Effects on digestibility, nitrogen balance, and blood metabolites in late-lactation Holstein cows. J Dairy Sci 2024; 107:4394-4408. [PMID: 38278300 DOI: 10.3168/jds.2023-24079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024]
Abstract
Our objectives were to determine the effects of reducing dietary CP concentration on nutrient digestibility, rumen function, N balance, and serum AA concentration for dairy cows in late lactation. At the initiation of the experimental period, we stratified Holstein cows (n = 128; mean ± SD 224 ± 54 DIM) by parity and days pregnant (86 ± 25 d) and assigned them to 1 of 16 pens. For 3 wk, all cows received a covariate diet containing 16.9% CP (DM basis). For the subsequent 12 wk, we assigned pens to 1 of 4 treatments containing 16.2%, 14.4%, 13.4%, or 11.9% CP (DM basis) in a randomized complete block design. Diets were fed as a TMR once daily. To reduce dietary CP, we replaced soybean meal with soybean hulls in the concentrate mix (DM basis). Diet evaluations suggested that several EAA, especially His, limited productivity as dietary CP declined. Digestibility of DM and CP decreased linearly with dietary CP reduction. Digestibility of NDF and potentially digestible NDF tended to respond in a quadratic pattern with the greatest digestibility at intermediate treatments. The reduction in dietary CP did not affect ruminal pH, but ruminal ammonia-N and branched-chain VFA concentrations declined linearly. The concentration of milk urea-N and plasma urea-N, secretion of milk N, and excretions of fecal N, urinary N, urinary urea-N, and unaccounted N decreased linearly with the reduction in dietary CP concentration. Urinary N expressed as a percentage of N intake was unaffected by dietary CP. Serum concentrations of total essential AA and NEAA were unaffected by dietary CP concentration. However, the ratio of essential to NEAA decreased with decreasing dietary CP. Serum 3-methylhistidine concentration increased linearly with decreasing dietary CP concentration, indicating greater skeletal muscle breakdown. Although our trial confirmed that reducing dietary CP decreased absolute excretion of urinary N, diet evaluations suggested that milk protein production decreased as certain essential AA became increasingly limited. Thus, reduced-CP diets have the potential to lessen reactive-N outputs of late-lactation cows, but more research is needed to design diets that minimize deleterious effects on productivity.
Collapse
Affiliation(s)
- M G Erickson
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - T Barros
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - M J Aguerre
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634
| | - J J Olmos Colmenero
- Departamento de Ciencias Pecuarias y Agricolas, Centro Universitario de Los Altos de la Universidad de Guadalajara, Tepatitlán, Jalisco, México 47600
| | - S J Bertics
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - M A Wattiaux
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
5
|
Arshad U, Peñagaricano F, White HM. Effects of feeding rumen-protected lysine during the postpartum period on performance and amino acid profile in dairy cows: A meta-analysis. J Dairy Sci 2024; 107:4537-4557. [PMID: 38395403 DOI: 10.3168/jds.2023-24131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Lysine is one of the limiting AA in the diets of dairy cows and is typically fed as rumen-protected Lys (RPL). We hypothesized that supplementation of RPL during the postpartum period would improve the productive performance in dairy cows. Objectives were to use meta-analytic methods to explore the effects of feeding RPL on performance and blood AA profile in lactating dairy cows. An additional objective was to identify an optimal concentration (%) of Lys in MP (LYSMP) and determine if responses to LYSMP were associated with the concentration (%) of Met in MP (METMP). The literature was systematically reviewed, and 13 experiments, comprising 40 treatment means and 594 lactating cows, were included in the meta-analysis. All experiments had a nonsupplemental control (CON; n = 17 treatment means), or a group supplemented with RPL (n = 23 treatment means). Cows supplemented with RPL were supplied additionally with a mean (±standard deviation) 19.3 ± 10.3 g/d metabolizable Lys (5.1-40.6 g/d). Meta-analytical statistics were used to estimate the weighted mean difference in STATA. Mixed models were fitted to the data to investigate the linear and quadratic effects of LYSMP, METMP, and interactions between LYSMP and METMP. All models included the random effect of experiment and weighting by the inverse of the SE of the means squared. Cows that began receiving RPL in early lactation (≤90 DIM) or for an extended duration (≥70 DIM) produced 1.51 kg/d more milk compared with CON cows. Increasing digestible LYSMP from 6.5% to 8.5% linearly increased yields of milk, FCM, ECM, and milk fat by 1.8, 2.5, 2.4, and 0.10 kg/d, respectively, and tended to increase milk protein yield and body weight gain by 0.07 and 0.09 kg/d, respectively, without a concurrent increase in DMI. Interactions between the linear effects of LYSMP and METMP were observed for FCM/DMI or ECM/DMI. In a diet with low METMP (e.g., 1.82% of MP), a digestible supply of 7.40% LYSMP would result in 1.46 and 1.47 kg/kg FCM/DMI or ECM/DMI, respectively; however, with high digestible METMP (e.g., 2.91% of MP), supplying 7.40% of digestible LYSMP would result in 1.68 and 1.62 kg/kg FCM/DMI or ECM/DMI, respectively. Increasing digestible LYSMP from 6.5% to 8.5% linearly increased blood concentrations of Lys by 16.6 µM, whereas blood concentrations of Met and Ala decreased by 4.6 and 6.0 µM, respectively. Nevertheless, an interaction was also observed between LYSMP and METMP for blood concentrations of total EAA because as METMP increased, the positive response to LYSMP on total EAA was also increased, suggesting a competitive mobilization of AA and their utilization in various body tissues. Only 4 out of the 13 experiments in this meta-analysis involved primiparous cows; thus, insufficient data were available to understand the role of supplemental RPL in primiparous cows. Collectively, feeding RPL improved productive performance, and the increments were maximized up to 9.25% of LYSMP in multiparous dairy cows.
Collapse
Affiliation(s)
- U Arshad
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| | - F Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - H M White
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
6
|
Chowdhury MR, Wilkinson RG, Sinclair LA. Reducing dietary protein and supplementation with starch or rumen-protected methionine and its effect on performance and nitrogen efficiency in dairy cows fed a red clover and grass silage-based diet. J Dairy Sci 2024; 107:3543-3557. [PMID: 38211692 DOI: 10.3168/jds.2023-23987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
The increasing cost of milk production, in association with tighter manure N application regulations and challenges associated with ammonia emissions in many countries, has increased interest in feeding lower crude protein (CP) diets based on legume silages. Most studies have focused on alfalfa silage, and little information is available on low-CP diets based on red clover silage. Our objectives were to examine the effects of dietary CP content and supplementing a low-CP diet with dietary starch or rumen-protected Met (RPMet) on the performance, metabolism, and nitrogen use efficiency (NUE; milk N output/N intake) in dairy cows fed a red clover and grass silage-based diet. A total of 56 Holstein-Friesian dairy cows were blocked and randomly allocated to 1 of 4 diets over a 14-wk feeding period. Diets were based on red clover and grass silages at a ratio of 50:50 on a dry matter (DM) basis and were fed as a total mixed ration, with a 53:47 ratio of forage to concentrate (DM basis). The diets were formulated to supply a similar metabolizable protein (MP) content, and had a CP concentration of either 175 g/kg DM (control [CON]) or 150 g/kg DM (low-protein [LP]), or LP supplemented with either additional barley as a source of starch (LPSt; +64 g/kg DM) or RPMet (LPM; +0.3 g/100 g MP). At the end of the 14-wk feeding period, 20 cows (5 per treatment) continued to be fed the same diets for a further 6 d, and total urine output and fecal samples were collected. We observed that dietary treatment did not affect DM intake, with a mean of 21.5 kg/d; however, we also observed an interaction between diet and week with intake being highest in cows fed LPSt in wk 4 and CON in wk 9 and 14. Mean milk yield, 4% fat-corrected milk, and energy-corrected milk were not altered by treatment. Similarly, we found no effect of dietary treatment on milk fat, protein, or lactose content. In contrast, milk and plasma urea concentrations were highest in cows fed CON. The concentration of blood plasma β-hydroxybutyrate was highest in cows receiving LPM and lowest in LPSt. Apparent NUE was 28.6% in cows fed CON and was higher in cows fed any of the low-protein diets (LP, LPSt, or LPM), with a mean value of 34.2%. The sum of milk fatty acids with a chain length below C16:0 was also highest in cows fed CON. We observed that dietary treatment did not affect the apparent whole-tract nutrient digestibility of organic matter, N, neutral detergent fiber, and acid detergent fiber, with mean values of 0.785, 0.659, 0.660, and 0.651 kg/kg respectively, but urinary N excretion was approximately 60 g/d lower in cows fed the low-CP diets compared with CON. We conclude that reducing the CP content of red clover and grass silage-based diets from 175 to 150 g/kg DM while maintaining MP supply did not affect performance, but reduced the urinary N excretion and improved NUE, and that supplementing additional starch or RPMet had little further effect.
Collapse
Affiliation(s)
- M R Chowdhury
- Animal Science Research Centre, Harper Adams University, Newport, Shropshire TF10 8NB, United Kingdom; Department of Biochemistry and Chemistry, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - R G Wilkinson
- Animal Science Research Centre, Harper Adams University, Newport, Shropshire TF10 8NB, United Kingdom
| | - L A Sinclair
- Animal Science Research Centre, Harper Adams University, Newport, Shropshire TF10 8NB, United Kingdom.
| |
Collapse
|
7
|
Wei L, Zeng B, Li B, Guo W, Mu Z, Gan Y, Li Y. Hybridization alters red deer gut microbiome and metabolites. Front Microbiol 2024; 15:1387957. [PMID: 38784815 PMCID: PMC11112572 DOI: 10.3389/fmicb.2024.1387957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
The host genes play a crucial role in shaping the composition and structure of the gut microbiome. Red deer is listed as an endangered species by the International Union for the Conservation of Nature, and its pilose antlers have good medicinal value. Hybridization can lead to heterosis, resulting in increased pilose antler production and growth performance in hybrid deer. However, the role of the gut microbiome in hybrid deer remains largely unknown. In this study, alpha and beta diversity analysis showed that hybridization altered the composition and structure of the gut microbiome of the offspring, with the composition and structure of the hybrid offspring being more similar to those of the paternal parents. Interestingly, the LefSe differential analysis showed that there were some significantly enriched gut microbiome in the paternal parents (such as g_Prevotellaceae UCG-003, f_Bacteroidales RF16 group; Ambiguous_taxa, etc.) and the maternal parents (including g_Alistipes, g_Anaerosporobacter, etc.), which remained significantly enriched in the hybrid offspring. Additionally, the hybrid offspring exhibited a significant advantage over the parental strains, particularly in taxa that can produce short-chain fatty acids, such as g_Prevotellaceae UCG-003, g_Roseburia, g_Succinivibrio, and g_Lachnospiraceae UCG-006. Similar to bacterial transmission, metagenomic analysis showed that some signaling pathways related to pilose antler growth ("Wnt signaling pathway," "PI3K Akt signaling pathway," "MAPK signaling pathway") were also enriched in hybrid red deer after hybridization. Furthermore, metabolomic analysis revealed that compared with the paternal and maternal parents, the hybrid offspring exhibited significant enrichment in metabolites related to "Steroid hormone biosynthesis," "Tryptophan metabolism," "Valine, leucine and isoleucine metabolism," and "Vitamin B metabolism." Notably, the metagenomic analysis also showed that these metabolic pathways were significantly enriched in hybrid deer. Finally, a correlation analysis between the gut microbiome and metabolites revealed a significant positive correlation between the enriched taxa in hybrid deer, including the Bacteroidales RF16 group, Prevotellaceae, and Succinivibrio, and metabolites, such as 7α-hydroxytestosterone, L-kynurenine, indole, L-isoleucine, and riboflavin. The study contributes valuable data toward understanding the role of the gut microbiome from red deer in hybridization and provides reference data for further screening potential probiotics and performing microbial-assisted breeding that promotes the growth of red deer pilose antlers and bodies, development, and immunity.
Collapse
Affiliation(s)
- Limin Wei
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bo Li
- College of Resources and Environment, Aba Teachers University, Aba, China
| | - Wei Guo
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Zhenqiang Mu
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yunong Gan
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yanhong Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
8
|
Seleem MS, Wu ZH, Xing CQ, Zhang Y, Hanigan MD, Bu DP. Effects of rumen-encapsulated methionine and lysine supplementation and low dietary protein on nitrogen efficiency and lactation performance of dairy cows. J Dairy Sci 2024; 107:2087-2098. [PMID: 37923213 DOI: 10.3168/jds.2023-23404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
Low crude protein (CP) diets might be fed to dairy cows without affecting productivity if the balance of absorbed AA were improved, which would decrease the environmental effect of dairy farms. The aim of this study was to investigate the effects of supplementing ruminally protected Lys (RPL) and Met (RPM) at 2 levels of dietary CP on nutrient intake, milk production, milk composition, milk N efficiency (MNE), and plasma concentrations of AA in lactating Holstein cows and to evaluate these effects against the predictions of the new NASEM (2021) model. Fifteen multiparous cows were used in a replicated 3 × 3 Latin square design with 21-d periods. The 3 treatments were (1) a high-protein (HP) basal diet containing 16.4% CP (metabolizable protein [MP] balance of -130 g/d; 95% of target values), (2) a medium-protein diet containing 15% CP plus RPL (60 g/cow per day) and RPM (25 g/cow per day; MPLM; MP balance of -314 g/d; 87% of target values), and (3) a low-protein diet containing 13.6% CP plus RPL (60 g/cow per day) and RPM (25 g/cow per day; LPLM; MP balance of -479 g/d; 80% of target values). Dry matter intake was less for cows fed MPLM and LPLM diets compared with those fed the HP diet. Compared with the HP diet, the intake of CP, neutral detergent fiber, acid detergent fiber, and organic matter, but not starch, was lower for cows fed MPLM and LPLM diets. Milk production and composition were not affected by MPLM or LPLM diets relative to the HP diet. Milk urea N concentrations were reduced for the MPLM and LPLM diets compared with the HP diet, indicating that providing a low-protein diet supplemented with rumen-protected AA led to greater N efficiency. There was no significant effect of treatment on plasma AA concentrations except for proline, which significantly increased for the MPLM treatment compared with the other 2 treatments. Overall, the results supported the concept that milk performance might be maintained when feeding lactating dairy cows with low CP diets if the absorbed AA balance is maintained through RPL and RPM feeding. Further investigations are needed to evaluate responses over a longer time period with consideration of all AA rather than on the more aggregated MP and the ratio between Lys and Met.
Collapse
Affiliation(s)
- M S Seleem
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Z H Wu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - C Q Xing
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Y Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - M D Hanigan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060
| | - D P Bu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; Joint Laboratory on Integrated Crop-Tree-Livestock Systems, Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research, and World Agroforestry Center (ICRAF), Beijing 100193, China.
| |
Collapse
|
9
|
Oh J, Cho H, Jeong S, Kang K, Lee M, Jeon S, Kang H, Seo S. Effects of Dietary Crude Protein Level of Concentrate Mix on Growth Performance, Rumen Characteristics, Blood Metabolites, and Methane Emissions in Fattening Hanwoo Steers. Animals (Basel) 2024; 14:469. [PMID: 38338112 PMCID: PMC10854555 DOI: 10.3390/ani14030469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/14/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
This study aimed to investigate the effect of varying levels of dietary crude protein (CP) on growth performance, rumen characteristics, blood metabolites, and methane emissions in fattening Hanwoo steers. Twenty-four steers, weighing 504 ± 33.0 kg (16 months old), were assigned to four dietary treatments with different CP concentrations (15, 18, 19, and 21% of CP on a dry matter (DM) basis). A linear increasing trend in the average daily gain (ADG) was observed (p = 0.066). With increased dietary CP levels, the rumen ammonia concentration significantly increased (p < 0.001), while the propionate proportion linearly decreased (p = 0.004) and the proportions of butyrate and valerate linearly increased (p ≤ 0.003). The blood urea exhibited a linear increase (p < 0.001), whereas the blood non-esterified fatty acids and cholesterol showed a linear decrease (p ≤ 0.003) with increasing dietary CP. The methane concentration from eructation per intake (ppm/kg), forage neutral detergent fiber (NDF) intake, total NDF intake, and ADG exhibited linear decreases (p ≤ 0.014) across the treatments. In conclusion, increasing the dietary CP up to 21% in concentrates demonstrated a tendency to linearly increase the ADG and significantly decrease the propionate while increasing the butyrate. The methane concentration from eructation exhibited a tendency to linearly decrease with increasing dietary CP.
Collapse
Affiliation(s)
- Joonpyo Oh
- Cargill Animal Nutrition Korea, Seongnam 13630, Republic of Korea;
| | - Hyunjin Cho
- Division of Animal and Dairy Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| | - Sinyong Jeong
- Division of Animal and Dairy Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| | - Kyewon Kang
- Division of Animal and Dairy Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| | - Mingyung Lee
- Division of Animal and Dairy Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| | - Seoyoung Jeon
- Division of Animal and Dairy Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| | - Hamin Kang
- Division of Animal and Dairy Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| | - Seongwon Seo
- Division of Animal and Dairy Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| |
Collapse
|
10
|
Wei X, Wu H, Wang Z, Zhu J, Wang W, Wang J, Wang Y, Wang C. Rumen-protected lysine supplementation improved amino acid balance, nitrogen utilization and altered hindgut microbiota of dairy cows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:320-331. [PMID: 38053803 PMCID: PMC10694044 DOI: 10.1016/j.aninu.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 12/07/2023]
Abstract
This study was conducted to evaluate the effects of dietary crude protein (CP) and rumen-protected lysine (RPL) supplementation on lactation performance, amino acid (AA) balance, nitrogen (N) utilization and hindgut microbiota in dairy cows. Treatments were in a 2 × 2 factorial arrangement, and the main effects were CP concentration (16% vs. 18%) and RPL supplementation (with or without RPL at 40 g/cow per day). Forty cows were randomly allocated to 4 groups: low-CP diet (LP), low-CP diet plus RPL (LPL), high-CP diet (HP), high-CP diet plus RPL (HPL). The experiment was conducted for 8 weeks. Results showed that RPL increased the dry matter intake (P < 0.01), milk protein yield (P = 0.04) and energy corrected milk (P = 0.04), and tended to increase milk fat yield (P = 0.06) and fat corrected milk (P = 0.05). Cows in the HP group tended to have higher milk urea N (P = 0.07). Plasma concentrations of Arg, Ile, Lys, Met, Pro, total essential AA and total nonessential AA were increased by RPL (P < 0.05). The total essential AA, total nonessential AA and most AA (except Ile, Phe, Gly and Pro) were increased in the HP group (P < 0.05). N excretion was increased in the HP group through an increase in urea N excretion (P < 0.01) and an upward trend in plasma urea N (P = 0.07). In addition, RPL tended to increase milk protein N secretion (P = 0.08), milk N (P = 0.07) and microbial protein synthesis (P = 0.06), and decreased plasma urea N (P < 0.001). In the hindgut, the bacterial community were different between the LP and LPL groups (P < 0.01). The probiotic abundances of Christensenellaceae_R-7_group and Acinetobacter were increased by RPL (P = 0.03 and 0.03, respectively). The pathogenic abundances of Clostridium_sensu_stricto_1 (P < 0.001) and Turicibacter (P < 0.01) were decreased by RPL. In conclusion, supplementing RPL with low dietary CP could balance AA supply and increase milk protein yield, resulting in an improvement in N utilization efficiency, and altered the composition of the hindgut microbiota to favor the lactation performance of dairy cows.
Collapse
Affiliation(s)
- Xiaoshi Wei
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Hao Wu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zixiang Wang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jinpeng Zhu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Weijie Wang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Junhong Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yanming Wang
- Kemin (China) Technologies Co. Ltd., Zhuhai 519040, China
| | - Chong Wang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
11
|
Irawan A, Sofyan A, Wahyono T, Harahap MA, Febrisiantosa A, Sakti AA, Herdian H, Jayanegara A. Relationships between dietary rumen-protected lysine and methionine with the lactational performance of dairy cows - A meta-analysis. Anim Biosci 2023; 36:1666-1684. [PMID: 37605536 PMCID: PMC10623038 DOI: 10.5713/ab.23.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 07/13/2023] [Indexed: 08/23/2023] Open
Abstract
OBJECTIVE Our objective was to examine the relationships of supplemental rumen-protected lysine (RPL) or lysine + methionine (RPLM) on lactational performance, plasma amino acids (AA) concentration, and nitrogen use efficiency of lactating dairy cows by using a meta-analysis approach. METHODS A total of 56 articles comprising 77 experiments with either RPL or RPLM supplementation were selected and analyzed using a mixed model methodology by considering the treatments and other potential covariates as fixed effects and different experiments as random effects. RESULTS In early lactating cows, milk yield was linearly increased by RPL (β1 = 0.013; p<0.001) and RPLM (β1 = 0.014; p<0.028) but 3.5% fat-corrected milk (FCM) and energy-corrected milk (ECM) (kg/d) was increased by only RPL. RPL and RPLM did not affect dry matter intake (DMI) but positively increased (p<0.05) dairy efficiency (Milk yield/DMI and ECM/DMI). As a percentage, milk fat, protein, and lactose were unchanged by RPL or RPLM but the yield of all components was increased (p<0.05) by feeding RPL while only milk protein was increased by feeding RPLM. Plasma Lys concentration was linearly increased (p<0.05) with increasing supplemental RPL while plasma Met increased (p<0.05) by RPLM supplementation. The increase in plasma Lys had a strong linear relationship (R2 = 0.693 in the RPL dataset and R2 = 0.769 in the RPLM dataset) on milk protein synthesis (g/d) during early lactation. Nitrogen metabolism parameters were not affected by feeding RPL or RPLM, either top-dress or when supplemented to deficient diets. Lactation performance did not differ between AA-deficient or AA-adequate diets in response to RPL or RPLM supplementation. CONCLUSION RPL or RPLM showed a positive linear relationship on the lactational performance of dairy cows whereas greater improvement effects were observed during early lactation. Supplementing RPL or RPLM is recommended on deficient-AA diet but not on adequate-AA diet.
Collapse
Affiliation(s)
- Agung Irawan
- Vocational School, Universitas Sebelas Maret, Surakarta 57126,
Indonesia
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97331, OR,
USA
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor 16680,
Indonesia
| | - Ahmad Sofyan
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor 16680,
Indonesia
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911,
Indonesia
| | - Teguh Wahyono
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor 16680,
Indonesia
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, Daerah Istimewa Yogyakarta 55861,
Indonesia
| | - Muhammad Ainsyar Harahap
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911,
Indonesia
| | - Andi Febrisiantosa
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, Daerah Istimewa Yogyakarta 55861,
Indonesia
| | - Awistaros Angger Sakti
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911,
Indonesia
| | - Hendra Herdian
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor 16680,
Indonesia
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911,
Indonesia
| | - Anuraga Jayanegara
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor 16680,
Indonesia
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680,
Indonesia
| |
Collapse
|
12
|
Wang S, Kong F, Liu J, Xia J, Du W, Li S, Wang W. Comparative Analysis of Rumen Microbiota Composition in Dairy Cows with Simple Indigestion and Healthy Cows. Microorganisms 2023; 11:2673. [PMID: 38004685 PMCID: PMC10672840 DOI: 10.3390/microorganisms11112673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Simple indigestion in cows leads to substantial economic losses in the dairy industry. Despite ongoing efforts, an effective treatment for this issue remains elusive. Previous studies have emphasized the vital role of rumen microbes in maintaining ruminant health. To deepen our comprehension of the intricate interplay between rumen microbiota and simple indigestion, we undertook a study involving the analysis of rumen fluid from eight cows with simple indigestion and ten healthy cows. Additionally, we collected data pertaining to milk production, rumination behavior, and rumen characteristics. The results showed that cows with simple indigestion displayed significantly lower milk yield, reduced rumination duration, and weakened rumen contraction when contrasted with the healthy cows (p < 0.05). However, no significant difference in microbiota α-diversity emerged (p > 0.05). Principal coordinate analysis (PCoA) illuminated substantial variations in rumen microbial structure among the two groups (p < 0.05). Further analysis spotlighted distinctive bacteria in the rumen of the cows with indigestion, including Allisonella, Synergistes, Megasphaera, Clostridium_XIVb, Campylobacter, and Acidaminococcus. In contrast, Coraliomargarita, Syntrophococcus, and Coprococcus are the dominant bacterial genera in the rumen of healthy dairy cows. Importantly, these key bacterial genera also dominated the overarching microbial interaction network. The observation suggests that changes in the abundance of these dominant bacterial genera potentially underlie the principal etiology of cows with simple indigestion. The present findings can provide insights into simple indigestion prevention and treatment in dairy cows.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.W.); (F.K.); (J.L.); (J.X.); (W.D.); (S.L.)
| |
Collapse
|
13
|
Huang B, Khan MZ, Kou X, Chen Y, Liang H, Ullah Q, Khan N, Khan A, Chai W, Wang C. Enhancing Metabolism and Milk Production Performance in Periparturient Dairy Cattle through Rumen-Protected Methionine and Choline Supplementation. Metabolites 2023; 13:1080. [PMID: 37887405 PMCID: PMC10608895 DOI: 10.3390/metabo13101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
For dairy cattle to perform well throughout and following lactations, precise dietary control during the periparturient phase is crucial. The primary issues experienced by periparturient dairy cows include issues like decreased dry matter intake (DMI), a negative energy balance, higher levels of non-esterified fatty acids (NEFA), and the ensuing inferior milk output. Dairy cattle have always been fed a diet high in crude protein (CP) to produce the most milk possible. Despite the vital function that dairy cows play in the conversion of dietary CP into milk, a sizeable percentage of nitrogen is inevitably expelled, which raises serious environmental concerns. To reduce nitrogen emissions and their production, lactating dairy cows must receive less CP supplementation. Supplementing dairy cattle with rumen-protected methionine (RPM) and choline (RPC) has proven to be a successful method for improving their ability to use nitrogen, regulate their metabolism, and produce milk. The detrimental effects of low dietary protein consumption on the milk yield, protein yield, and dry matter intake may be mitigated by these nutritional treatments. In metabolic activities like the synthesis of sulfur-containing amino acids and methylation reactions, RPM and RPC are crucial players. Methionine, a limiting amino acid, affects the production of milk protein and the success of lactation in general. According to the existing data in the literature, methionine supplementation has a favorable impact on the pathways that produce milk. Similarly, choline is essential for DNA methylation, cell membrane stability, and lipid metabolism. Furthermore, RPC supplementation during the transition phase improves dry matter intake, postpartum milk yield, and fat-corrected milk (FCM) production. This review provides comprehensive insights into the roles of RPM and RPC in optimizing nitrogen utilization, metabolism, and enhancing milk production performance in periparturient dairy cattle, offering valuable strategies for sustainable dairy farming practices.
Collapse
Affiliation(s)
- Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
- College of Life Sciences, Liaocheng University, Liaocheng 252059, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Nadar Khan
- Livestock and Dairy Development (Research) Department Khyber Pakhtunkhwa, Peshawar 25120, Pakistan
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
14
|
Räisänen SE, Lapierre H, Price WJ, Hristov AN. Lactational performance effects of supplemental histidine in dairy cows: A meta-analysis. J Dairy Sci 2023; 106:6216-6231. [PMID: 37500429 DOI: 10.3168/jds.2022-22966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/26/2023] [Indexed: 07/29/2023]
Abstract
The objective of this meta-analysis was to examine the effects of supplemental His on lactational performance, plasma His concentration and efficiency of utilization of digestible His (EffHis) in dairy cows. The meta-analysis was performed on data from 17 studies published in peer-reviewed journals between 1999 and 2022. Five publications reported data from 2 separate experiments, which were included in the analyses as separate studies, therefore resulting in a total of 22 studies. In 10 studies, His was supplemented as rumen-protected (RP) His; in 1 study, 2 basal diets with different dHis levels were fed; and in the remaining experiments, free His was infused into the abomasum (4 studies), the jugular vein (3 studies) or deleted from a mixture of postruminally infused AA (4 studies). The main forages in the diets were corn silage in 14 and grass silage in 8 studies. If not reported in the publications, the supplies of dietary CP, metabolizable protein (MP), net energy of lactation, and digestible His (dHis) were estimated using NRC (2001). An initial meta-analysis was performed to test the standard mean difference (SMD; raw mean difference of treatment and control means divided by the pooled standard deviation of the means), that is, effect size, and the corresponding 95% confidence interval (CI) in production parameters between His-supplemented groups versus control. Further, regression analyses were also conducted to examine and compare the relationships between several response variables and dHis supply. Across studies, His supplementation increased plasma His concentration (SMD = 1.39; 95% CI: 1.17-1.61), as well as DMI (SMD = 0.240; 95% CI: 0.051-0.429) and milk yield (MY; SMD = 0.667; 95% CI: 0.468-0.866), respectively. Further, milk true protein concentration (MTP; SMD = 0.236; 95% CI: 0.046-0.425) and milk true protein yield (MTPY; SMD = 0.581; 95% CI: 0.387-0.776) were increased by His supplementation. Notably, the increase in MTP concentration and MTPY were 3.9 and 1.3 times greater for studies with MP-deficient (according to NRC 2001) diets compared with studies with MP-adequate diets. The regression analyses revealed that production parameters (DMI, MY, and MTPY) responded in a nonlinear manner to increasing His supply. Further, we detected a difference in the magnitude of change in MTPY and plasma His concentration with the level of His supply and between His supplementation methods, being greater for infused His compared with RPHis. Lastly, a linear and negative relationship between EffHis and the ratio of total digestible His to net energy for lactation supply was observed, indicating an important interaction between dHis and energy supply and EffHis (i.e., utilization of dHis to support protein export). Overall, these analyses confirm His as an important AA in dairy cattle nutrition.
Collapse
Affiliation(s)
- S E Räisänen
- Department of Animal Science, The Pennsylvania State University, State College, PA 16802; ETH Zürich, Department of Environmental Science, Institute of Agricultural Sciences, Zürich 8092, Switzerland
| | - H Lapierre
- Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - W J Price
- Statistical Programs, University of Idaho, Moscow, ID 83844
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, State College, PA 16802.
| |
Collapse
|
15
|
Zang Y, Silva LHP, Geng YC, Lange MJ, Zambom MA, Brito AF. Replacing ground corn with soyhulls plus palmitic acid in low metabolizable protein diets with or without rumen-protected amino acids: Effects on production and nutrient utilization in dairy cows. J Dairy Sci 2023; 106:4002-4017. [PMID: 37105871 DOI: 10.3168/jds.2022-22270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/28/2022] [Indexed: 04/29/2023]
Abstract
We previously observed that diets with reduced starch concentration decreased yields of milk and milk protein in dairy cows fed low metabolizable protein diets. Supplementation of reduced-starch diets with a lipid source may attenuate or eliminate production losses. Our objective was to investigate the effects of partially replacing ground corn with soyhulls plus a palmitic acid-enriched supplement on dry matter (DM) intake, milk yield and composition, plasma AA concentration, and N and energy utilization in cows fed low metabolizable protein diets (mean = -68 g/d balance) with or without rumen-protected Met, Lys, and His (RP-MLH). Sixteen multiparous Holstein cows averaging (mean ± standard deviation) 112 ± 28 d in milk, 724 ± 44 kg of body weight, and 46 ± 5 kg/d of milk in the beginning of the study were used in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Each period lasted 21 d, consisting of 14 d for diet adaptation and 7 d for data and sample collection. Diets were fed as follows: (1) high starch (HS), (2) HS plus RP-MLH (HS+AA), (3) reduced starch plus a palmitic acid-enriched supplement (RSPA), and (4) RSPA plus RP-MLH (RSPA+AA). The HS diet contained (DM basis) 26% ground corn and 7% soyhulls, and the RSPA diet had 10% ground corn, 22% soyhulls, and 1.5% palmitic acid. The HS diet averaged (DM basis) 32.6% starch and 4% ether extract, while starch and ether extract concentrations of the RSPA diet were 21.7 and 5.9%, respectively. All 4 diets had (DM basis) 40% corn silage, 5% mixed-mostly grass haylage, 5% grass hay, and 50% concentrate. Diets did not affect DM intake and milk yield. Contrarily, feeding RSPA and RSPA+AA increased yields of energy-corrected milk (47.0 vs. 44.8 kg/d) and milk fat (1.65 vs. 1.50 kg/d) compared with HS and HS+AA. Milk fat concentration tended to decrease when RP-MLH was supplemented to HS, but no change was seen when added to RS (starch level × RP-MLH interaction). Milk and plasma urea N increased, and milk N efficiency decreased in cows fed RSPA and RSPA+AA versus HS and HS+AA. Apparent total-tract digestibilites of crude protein and neutral detergent fiber, as well as urinary urea N and total N excretion, were greater in cows offered RSPA and RSPA+AA than HS and HS+AA. Plasma Met and His concentrations increased with supplemental RP-MLH. Intake of gross energy and digestible energy and the output of urinary and milk energy were all greater with feeding RSPA and RSPA+AA versus HS and HS+AA. In summary, partially replacing ground corn with soyhulls plus palmitic acid in diets supplemented or not with RP-MLH increased milk fat yield and fiber digestibility and maintained DM intake and milk yield, but with decreased milk N efficiency and elevated urinary N excretion.
Collapse
Affiliation(s)
- Y Zang
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824; Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China 225009
| | - L H P Silva
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824
| | - Y C Geng
- Key Laboratory of Nonpoint Source Pollution Control, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China 100081
| | - M J Lange
- Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, Brazil 85960-000
| | - M A Zambom
- Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, Brazil 85960-000
| | - A F Brito
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824.
| |
Collapse
|
16
|
Zhou M, Huang F, Qi Y. Role of peptide transporters in small peptide uptake of bovine mammary epithelial cells cultured in a transwell chamber. Food Sci Nutr 2023; 11:3550-3557. [PMID: 37324887 PMCID: PMC10261739 DOI: 10.1002/fsn3.3343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Small peptides can be absorbed by the bovine mammary gland for the synthesis of milk protein, but the absorption mechanism still needs further study. In this study, the role of peptide transporters in small peptide uptake by bovine mammary epithelial cells (BMECs) was studied. First, BMECs were obtained and cultured in a transwell chamber. After 5 days of culture, the FITC-dextran permeability of the cell layer was detected. Then, 0.5 mM methionyl-methionine (Met-Met) was added to the medium of the lower and upper transwell chambers, respectively. The culture medium and BMECs were collected after 24 h of treatment. Liquid chromatography-mass spectrometry (LC-MS) was used to detect the concentration of Met-Met in the culture medium. Real-time PCR was used to detect the mRNA abundance of β-casein, oligopeptide transporter 2 (PepT2), and small peptide histidine transporter 1 (PhT1) in BMECs. Then, the BMECs were transfected with siRNA-PepT2 and siRNA-PhT1, respectively, and the uptake of β-Ala-Lys-N-7-amino-4-methylcoumarin-3-acetic acid (β-Ala-Lys-AMCA) in BMECs was detected. The results showed that, after 5 days of culture, the FITC-dextran permeability of BMECs was 0.6%, which was significantly lower than that of the control group. The absorption rates of Met-Met in the culture medium of the upper and lower chambers were 99.99% and 99.95%, respectively. The addition of Met-Met to the upper chamber significantly increased the mRNA abundance of β-casein and PepT2. The addition of Met-Met to the lower chamber significantly improved the mRNA abundance of β-casein, PepT2, and PhT1. The uptake of β-Ala-Lys-AMCA significantly decreased in BMECs transfected with siRNA-PepT2. These results suggested that the BMECs were successfully cultured in the transwell chamber and formed a cell layer with little permeability. The small peptides in both the upper and lower chambers of the transwell can be absorbed by BMECs in different ways. PepT2 plays an important role in the uptake of small peptides on both the basal and apical sides of BMECs, and PhT1 may be involved in the uptake of small peptides on the basal side of BMECs. Therefore, the addition of small peptides in dairy cow diets may be an effective dietary manipulation to increase milk protein concentration or yield.
Collapse
Affiliation(s)
- Miaomiao Zhou
- College of Agricultural Science and EngineeringLiaocheng UniversityLiaochengP.R. China
| | - Fei Huang
- College of Agricultural Science and EngineeringLiaocheng UniversityLiaochengP.R. China
| | - Yehui Qi
- College of Agricultural Science and EngineeringLiaocheng UniversityLiaochengP.R. China
| |
Collapse
|
17
|
Lorenzana-Moreno AV, Leal Lara H, Corona L, Granados O, Márquez-Mota CC. Production of 17 strains of edible mushroom grown on corn stover and its effect on the chemical composition and ruminal in vitro digestibility of the residual substrate. PLoS One 2023; 18:e0286514. [PMID: 37256902 DOI: 10.1371/journal.pone.0286514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023] Open
Abstract
The objective of this study was to evaluate the production (P) (g of fresh mushrooms /bag) and biological efficiency (BE) (g of fresh mushrooms per 100 g of dry substrate) of 17 fungal strains, namely Pleurotus ostreatus Po-IAP, Po-P38, Po-P14, Po-IE202, Po-Sfco, Po-JP, Po-Psma, and Po-POS, Pleurotus djamour Pd-PRO and Pd-UTMR, Pleurotus eryngii Pe-MB and Pe-PQ, Lentinula edodes L15, L9, L5, and LC, and Hericium erinaceus Heri, produced in corn stover (CS) and to assess the content of crude protein (CP), lignin (L), cellulose, hemicellulose, acid detergent fiber (ADF), and neutral detergent fiber (NDF) and in vitro digestibility of dry matter (IVDMD) of the residual substrate of CS, the so called spent mushroom substrate (SMS), in comparison to the non-inoculated substrate (C). The variables were analyzed as a completely randomized block design using R 4.0.3 software. Means were compared using Tukey's procedure. The Pleurotus spp. strains, compared to Lentinula spp. and Hericium spp., presented better BE and P. In comparison to C, the SMS increased the CP content (p < 0.05) from 10.8% (Po-JP) to 70.3% (LC), while NDF decreased (p < 0.05) from 11.5% (Pd-Pro) to 33.5% (L15) and IVDMD increased (p < 0.05) from 16.2% (Heri) to 47.7% (Pd-UTMR). In conclusion, of the 17 strains evaluated, the 3 strains of Lentinula edodes (L5, L15, and L9), one strain of Pleurotus djamour (Pd-UTMR), and one strain of Pleurotus ostreatus (Po-IAP) generated a SMS that, due to its nutritional improvement and increase in IVDMD, could be used as feed for ruminants. Our results also showed that corn stover is a suitable substrate to produce Pleurotus spp. fruiting bodies, with strain Po-IAP as the best yielding.
Collapse
Affiliation(s)
- Angélica Valeria Lorenzana-Moreno
- Departamento de Nutrición Animal y Bioquímica, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| | - Hermilo Leal Lara
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, México City, México
| | - Luis Corona
- Departamento de Nutrición Animal y Bioquímica, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| | - Omar Granados
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Claudia C Márquez-Mota
- Departamento de Nutrición Animal y Bioquímica, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
18
|
Guo Y, Fan Z, Li M, Xie H, Peng L, Yang C. Effects of Sodium Nitrate and Coated Methionine on Lactation Performance, Rumen Fermentation Characteristics, Amino Acid Metabolism, and Microbial Communities in Lactating Buffaloes. Microorganisms 2023; 11:675. [PMID: 36985248 PMCID: PMC10057408 DOI: 10.3390/microorganisms11030675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Sodium nitrate is used as a non-protein nitrogen supplement while methionine is considered as a common methionine additive for ruminants. This study investigated the effects of sodium nitrate and coated methionine supplementation on milk yield, milk composition, rumen fermentation parameters, amino acid composition, and rumen microbial communities in lactating buffaloes. Forty mid-lactation multiparous Murrah buffaloes within the initial days in milk (DIM) = 180.83 ± 56.78 d, milk yield = 7.63 ± 0.19 kg, body weight = 645 ± 25 kg were selected and randomly allocated into four groups (N = 10). All of animals received the same total mixed ratio (TMR) diet. Furthermore, the groups were divided into the control group (CON), 70 g/d sodium nitrate group (SN), 15 g/d palmitate coated L-methionine group (MET), and 70 g/d sodium nitrate +15 g/d palmitate coated L-methionine group (SN+MET). The experiment lasted for six weeks, including two weeks of adaption. The results showed that most rumen-free amino acids, total essential amino acids, and total amino acids in Group SN increased (p < 0.05), while the dry matter intake (DMI) and rumen acetate, propionate, valerate, and total volatile fatty acids (TVFA) in Group MET decreased (p < 0.05). However, there was no significant difference in milk yield, milk protein, milk fat, lactose, total solid content, and sodium nitrate residue in milk among groups (p > 0.05). Group SN+MET had a decreased rumen propionate and valerate (p < 0.05), while increasing the Ace, Chao, and Simpson indices of alpha diversity of rumen bacteria. Proteobacteria and Actinobacteriota were significantly increased (p < 0.05) in Group SN+MET, but Bacteroidota, and Spirochaetota were decreased (p < 0.05). In addition, Group SN+MET also increased the relative abundance of Acinetobacter, Lactococcus, Microbacterium, Chryseobacterium, and Klebsiella, which were positively correlated with cysteine and negatively correlated with rumen acetate, propionate, valerate, and TVFA. Rikenellaceae_RC9_gut_group was identified as a biomarker in Group SN. Norank_f__UCG-011 was identified as a biomarker in Group MET. Acinetobacter, Kurthia, Bacillus, and Corynebacterium were identified as biomarkers in Group SN+MET. In conclusion, sodium nitrate increased rumen free amino acids, while methionine decreased dry matter intake (DMI) and rumen volatile fatty acids. The combined use of sodium nitrate and methionine enriched the species abundance of microorganisms in the rumen and affected the composition of microorganisms in the rumen. However, sodium nitrate, methionine, and their combination had no significant effect on the milk yield and milk composition. It was suggested that the combined use of sodium nitrate and methionine in buffalo production was more beneficial.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| |
Collapse
|
19
|
Chowdhury MR, Wilkinson RG, Sinclair LA. Feeding lower-protein diets based on red clover and grass or alfalfa and corn silage does not affect milk production but improves nitrogen use efficiency in dairy cows. J Dairy Sci 2023; 106:1773-1789. [PMID: 36710192 DOI: 10.3168/jds.2022-22607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/23/2022] [Indexed: 01/29/2023]
Abstract
Reducing the dietary crude protein (CP) concentration can decrease the financial cost and lower the environmental impact of milk production. Two studies were conducted to examine the effects of reducing the dietary CP concentration on animal performance, nutrient digestibility, milk fatty acid (FA) profile, and nitrogen use efficiency (NUE; milk N/N intake) in dairy cows fed legume silage-based diets. Thirty-six multiparous Holstein-Friesian dairy cows that were 76 ± 14 (mean ± SD) days in milk and 698 ± 54 kg body weight were used in a 3 × 3 Latin square design in each of 2 studies, with 3 periods of 28 d. In study 1, cows were fed diets based on a 50:50 ratio of red clover to grass silage [dry matter (DM) basis] containing 1 of 3 dietary CP concentrations: high (H) = 175 g of CP/kg of DM; medium (M) = 165 g of CP/kg of DM; or low (L) = 150 g of CP/kg of DM. In study 2, cows were fed 175 g of CP/kg of DM with a 50:50 ratio of alfalfa to corn silage (H50) or 1 of 2 diets containing 150 g of CP/kg of DM with either a 50:50 (L50) or a 60:40 (L60) ratio of alfalfa to corn silage. Cows in both studies were fed a total mixed ration with a forage-to-concentrate ratio of 52:48 (DM basis). All diets were formulated to meet the MP requirements, except L (95% of MP requirements). In study 1, cows fed L ate 1.6 kg of DM/d less than those fed H or M, but milk yield was similar across treatments. Mean milk protein, fat, and lactose concentrations were not affected by diet. However, the apparent total-tract nutrient digestibility was decreased in cows fed L. The NUE was 5.7 percentage units higher in cows fed L than H. Feeding L also decreased milk and plasma urea concentrations by 4.4 mg/dL and 0.78 mmol/L, respectively. We found no effect of dietary treatment on the milk saturated or monounsaturated FA proportion, but the proportion of polyunsaturated FA was increased, and milk odd- and branched-chain FA decreased in cows fed L compared with H. In study 2, DM intake was 2 kg/d lower in cows receiving L50 than H50. Increasing the alfalfa content and feeding a low-CP diet (L60) did not alter DMI but decreased milk yield and milk protein concentration by 2 kg/d and 0.6 g/kg, respectively, compared with H50. Likewise, milk protein and lactose yield were decreased by 0.08 kg/d in cows receiving L60 versus H50. Diet had no effect on apparent nutrient digestibility. Feeding the low-CP diets compared with H50 increased the apparent NUE by approximately 5 percentage units and decreased milk and plasma urea concentrations by 7.2 mg/dL and 1.43 mmol/L, respectively. Dietary treatment did not alter milk FA profile except cis-9,trans-11 conjugated linoleic acid, which was higher in milk from cows receiving L60 compared with H50. We concluded that reducing CP concentration to around 150 g/kg of DM in red clover and grass or alfalfa and corn silage-based diets increases the apparent NUE and has little effect on nutrient digestibility or milk performance in dairy cows.
Collapse
Affiliation(s)
- M R Chowdhury
- Department of Agriculture and Environment, Harper Adams University, Newport, Shropshire, TF10 8NB, United Kingdom; Department of Biochemistry and Chemistry, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - R G Wilkinson
- Department of Agriculture and Environment, Harper Adams University, Newport, Shropshire, TF10 8NB, United Kingdom
| | - L A Sinclair
- Department of Agriculture and Environment, Harper Adams University, Newport, Shropshire, TF10 8NB, United Kingdom.
| |
Collapse
|
20
|
Jin CL, He YA, Jiang SG, Wang XQ, Yan HC, Tan HZ, Gao CQ. Chemical Composition of Pigeon Crop Milk and Factors Affecting Its Production: A Review. Poult Sci 2023; 102:102681. [PMID: 37098298 PMCID: PMC10149254 DOI: 10.1016/j.psj.2023.102681] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Pigeons are important commercial poultry in addition to being ornamental birds. In 2021, more than 111 million pairs of breeding pigeons were kept in stock and 1.6 billion squabs were slaughtered for meat in China. However, in many countries, pigeons are not domestic birds; thus, it is necessary to elucidate the factors involved in their growth and feeding strategy due to their economic importance. Pigeons are altricial birds, so feedstuffs cannot be digested by squabs, which instead are fed a mediator named pigeon crop milk. During lactation, breeding pigeons (both female and male) ingest diets and generate crop milk to feed squabs. Thus, research on squab growth is more complex than that on chicken and other poultry. To date, research on the measurement of crop milk composition and estimation of the factors affecting its production has not ceased, and these results are worth reviewing to guide production. Moreover, some studies have focused on the formation mechanism of crop milk, reporting that the synthesis of crop milk is controlled by prolactin and insulin-activated pathways. Furthermore, the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) pathway, target of rapamycin (TOR) pathway and AMP-activated protein kinase (AMPK) pathway were also reported to be involved in crop milk synthesis. Therefore, this review focuses on the chemical composition of pigeon crop milk and factors affecting its production during lactation. This work explores novel mechanisms and provides a theoretical reference for improving production in the pigeon industry, including for racing, ornamental purposes, and production of meat products.
Collapse
|
21
|
Van den Bossche T, Goossens K, Ampe B, Haesaert G, De Sutter J, De Boever JL, Vandaele L. Effect of supplementing rumen-protected methionine, lysine, and histidine to low-protein diets on the performance and nitrogen balance of dairy cows. J Dairy Sci 2023; 106:1790-1802. [PMID: 36710179 DOI: 10.3168/jds.2022-22041] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/07/2022] [Indexed: 01/30/2023]
Abstract
Lowering the dietary protein content can reduce N excretions and NH3 emissions from manure and increase milk N efficiency of dairy cows. However, milk yield (MY) and composition can be compromised due to AA deficiency. Methionine and Lys are known as first limiting EAA for dairy cows, and recently His is also mentioned as limiting, especially in grass-based or low-protein diets. To examine this, a trial was conducted with a 3-wk pre-experimental adaptation period (diet 16.5% crude protein), followed by a depletion period of 4 wk, in which 39 cows (average ± standard deviation: 116 ± 29.3 d in milk, 1.8 ± 1.2 lactations, 638 ± 73.2 kg of body weight, and 32.7 ± 5.75 kg MY/d) received a low-protein diet (CTRL) (14.5% crude protein). Then, taking into account parity, His plasma concentration, and MY, cows were randomly assigned to 1 of 3 treatment groups during the rumen-protected (RP) AA period of 7 wk; (1) CTRL; (2) CTRL + RP-Met + RP-Lys (MetLys); (3) CTRL + RP-Met + RP-Lys + RP-His (MetLysHis). Products were dosed, assuming requirements for digestible (d) Met, dLys, and dHis being, respectively, 2.4%, 7.0%, and 2.4% of intestinal digestible protein. In the cross-back period of 5 wk, all cows received the CTRL diet. During the last week of each period, a N balance was conducted by collecting total urine and spot samples of feces. Total feces production was calculated using the inert marker TiO2. Statistical analysis was performed with a linear mixed model with cow as random effect and data of the last week of the pre-experimental period used as covariate for the animal performance variables. No effect of supplementing RP-Met and RP-Lys nor RP-Met, RP-Lys, and RP-His on feed intake, milk performance, or milk N efficiency was observed. However, the plasma AA profile indicated additional supply of dMet, dLys, and dHis. Nevertheless, evaluation of the AA uptake relative to the cow's requirements showed that most EAA (exclusive Arg and Thr) were limiting over the whole experiment. Only dHis was sufficiently supplemented during the RP-AA period due to an overestimation of the diet's dMet and dLys supply in the beginning of the trial. The numerically increased milk urea N and urinary N excretion when RP-Met, RP-Lys, and RP-His were added to the low-protein diet suggest an increased catabolism of the excess His.
Collapse
Affiliation(s)
| | - K Goossens
- ILVO, 9090 Melle, East-Flanders, Belgium
| | - B Ampe
- ILVO, 9090 Melle, East-Flanders, Belgium
| | - G Haesaert
- Bioscience Engineering, Ghent University, 9000 Gent, East-Flanders, Belgium
| | - J De Sutter
- Orffa Additives B.V., 4817 ZL Breda, Brabant, the Netherlands
| | | | - L Vandaele
- ILVO, 9090 Melle, East-Flanders, Belgium.
| |
Collapse
|
22
|
Pan F, Li P, Hao G, Liu Y, Wang T, Liu B. Enhancing Milk Production by Nutrient Supplements: Strategies and Regulatory Pathways. Animals (Basel) 2023; 13:ani13030419. [PMID: 36766308 PMCID: PMC9913681 DOI: 10.3390/ani13030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The enhancement of milk production is essential for dairy animals, and nutrient supplements can enhance milk production. This work summarizes the influence of nutrient supplements-including amino acids, peptides, lipids, carbohydrates, and other chemicals (such as phenolic compounds, prolactin, estrogen and growth factors)-on milk production. We also attempt to provide possible illuminating insights into the subsequent effects of nutrient supplements on milk synthesis. This work may help understand the strategy and the regulatory pathway of milk production promotion. Specifically, we summarize the roles and related pathways of nutrients in promoting milk protein and fat synthesis. We hope this review will help people understand the relationship between nutritional supplementation and milk production.
Collapse
Affiliation(s)
- Fengguang Pan
- Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Peizhi Li
- Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Guijie Hao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou 313001, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Yinuo Liu
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Tian Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
- Correspondence: (T.W.); (B.L.)
| | - Boqun Liu
- Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
- Correspondence: (T.W.); (B.L.)
| |
Collapse
|
23
|
Abedal-Majed MA, Titi HH, Al-Qaisi M, Abdelqader A, Tabbaa MJ. The effects of rumen protected methionine supplementation on the performance of primiparous dairy cows using the Presynch-Ovsynch protocol. Anim Sci J 2023; 94:e13835. [PMID: 37144633 DOI: 10.1111/asj.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
The purpose of this study was to examine the effects of rumen-protected methionine (RPM) supplementation on the reproductive and productive performance of primiparous dairy cows fed two levels of protein. The Presynch-Ovsynch protocol was used to synchronize 36 lactating Holstein cows that were assigned randomly to one of six dietary treatments: (1) 14% CP and without RPM diet (14CP-0RPM; n = 6), (2) 14% CP and 15 g/head/day RPM (14CP-15RPM; n = 6), (3) 14% CP and 25 g/head/day RPM (14CP-25RPM; n = 6), (4) 16% CP and without RPM diet (16CP-0RPM; n = 6), (5) 16% CP and 15 g/head/day RPM (16CP-15RPM; n = 6), and (6) 16% CP and 25 g/head/day RPM (16CP-25RPM; n = 6). Independent of CP levels, feeding RPM had reduced the calving interval (P < 0.01). Feeding RPM increased (P < 0.01) overall plasma progesterone (P4). Feeding 16CP-15RPM increased (P < 0.01) overall plasma P4. Feeding 16% CP increased (P < 0.01) 4% fat corrected milk, energy corrected milk, milk fat and protein yield, and milk casein. Moreover, feeding the 25RPM has increased (P < 0.01) 4% fat corrected milk, energy corrected milk, milk fat, and protein yield. Compared with other treatments, feeding 16CP-25RPM or 16CP-15RPM enhanced (P < 0.01) milk yield and milk fat yield. In conclusion, feeding 16% CP with RPM boosted the productivity and reduced the calving interval in primiparous lactating dairy cows.
Collapse
Affiliation(s)
| | - Hosam Hani Titi
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Mohmmad Al-Qaisi
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Anas Abdelqader
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Mohammad Jihad Tabbaa
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, Jordan
| |
Collapse
|
24
|
Fatehi F, Parnian-khajehdizaj F, Tar M, Salem A. Partial dried dairy waste as a protein source in a dairy cow diet: Effects on lactation performance, ruminal measurements, nutrient digestibility, and nitrogen balance. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Effects of rumen-protected lysine and methionine supplementation in low-crude protein diets on lactation performance, nitrogen metabolism, rumen fermentation, and blood metabolites in Holstein cows. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Ny V, Needham T, Ceacero F. Potential benefits of amino acid supplementation for cervid performance and nutritional ecology, with special focus on lysine and methionine: A review. ANIMAL NUTRITION 2022; 11:391-401. [PMID: 36382203 PMCID: PMC9633987 DOI: 10.1016/j.aninu.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022]
Abstract
Deer farming is a thriving industry for venison, velvet antlers, trophy hunting, and other by-products. Feeding and nutrition are important factors for improving production performance, especially dietary protein and amino acids (AAs), as they are the main components of all tissues. Only a few studies on AA supplementation (Lys, Met, Arg) have been performed on cervids, which show positive effects on weight gain, ADG, feed-:gain ratio, plasma AAs, carcass weight, dressing percentage, yield of high-quality muscles, storage of internal fat during winter, DM and CP digestibility, plasma protein- and fat-related metabolite concentrations, antler burr perimeter, weight, length and mineralisation, velvet antler yield, rumen volatile fatty acids, and microbiome composition. All these effects are relevant for supporting the production of cervids products, from venison to velvet or trophy antlers, as well as their general performance and well-being of captive-bred cervids. The current available information suggests that AA supplementation can be especially interesting for animals fed low protein rations, and growing animals, but should be avoided in high rations and during winter, since it may promote the accumulation of internal fat. Potential effects on milk production and the concentrations of different hormones involved in the regulation of the antler cycle should be further explored.
Collapse
Affiliation(s)
- Veit Ny
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Czech Republic
- Department of Cattle Breeding, Institute of Animal Science, Prague, Czech Republic
- Food Research Institute Prague, Czech Republic
| | - Tersia Needham
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Czech Republic
| | - Francisco Ceacero
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Czech Republic
- Corresponding author.
| |
Collapse
|
27
|
Methionine Supplementation during Pregnancy of Goats Improves Kids' Birth Weight, Body Mass Index, and Postnatal Growth Pattern. BIOLOGY 2022; 11:biology11071065. [PMID: 36101442 PMCID: PMC9312974 DOI: 10.3390/biology11071065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022]
Abstract
The last third of gestation is a period of high energy and protein demand for the dam to support fetal growth and the following onset of lactation. Methionine is an essential amino acid that contributes to protein formation, fetal development, and milk synthesis; thus, is likely to have positive effects on the weight and size of the newborn and, afterward, milk yield and milk composition, which may improve growth patterns of the progeny. To test these hypotheses, we used 60 pregnant multiparous Alpine goats with similar live weights and gestational ages (~Day 100 of pregnancy; Mean ± SD; 1410 ± 14 days old and 50.4 ± 6.6 kg) and were separated into two groups: control and supplemented with the delivery. Treatments were T-MET (n = 30; received 1% herbal methionine Optimethione® dry matter based on from Day 100 of the pregnancy to delivery) or T-CTL (n = 30; served as the control and did not receive methionine). The methionine powder provided individual supplementation and was adjusted every week as the live weight and dry matter intake changed. At birth, the weight, body mass index (BMI), birth type, and sex of the kids were determined. Subsequently, the progeny was weighed weekly up to weaning. Two weeks after parturition, the milk composition was recorded weekly, and the milk yield was recorded monthly. The maternal live weight at the start (Mean ± SEM; T-CTL: 50.5 ± 1.1 vs. T-MET: 50.3 ± 1.3 kg) and end (T-CTL: 54.2 ± 1.3 vs. T-MET: 52.8 ± 1.4 kg) of the experiment did not differ statistically among treatments (p > 0.05); however, daily live weight changes tended to differ between groups (T-CTL: 73 ± 10 vs. T-MET: 51 ± 7 g day−1; p = 0.06). The birth weight (T-CTL: 3.1 ± 0.1 vs. T-MET: 3.5 ± 0.1 kg; p < 0.001), daily live weight change (T-CTL: 121 ± 6 vs. T-MET: 141 ± 6 g day−1; p < 0.01), and weaning weight (T-CTL: 8.3 ± 0.2 vs. T-MET: 9.3 ± 0.3 kg; p < 0.01) differed between treatments. The BMI at birth (T-CTL: 0.28 ± 0.01 vs. T-MET: 0.3 ± 0.01 units kg m−2; p < 0.01) and at weaning (T-CTL: 0.85 ± 0.1 kg vs. T-MET: 1.00 ± 0.06 units kg m−2; p < 0.05) differed between treatments. Milk components (protein, fat, lactose, and solids non-fat) and milk yield were similar between treatments (p > 0.05). It is concluded that the inclusion of methionine in the maternal goat diet during the last third of gestation increases the birth and growth variables of the progeny but without significant influence on the milk yield and composition.
Collapse
|
28
|
Gebeyew K, Yang C, Mi H, Cheng Y, Zhang T, Hu F, Yan Q, He Z, Tang S, Tan Z. Lipid metabolism and m 6A RNA methylation are altered in lambs supplemented rumen-protected methionine and lysine in a low-protein diet. J Anim Sci Biotechnol 2022; 13:85. [PMID: 35821163 PMCID: PMC9277831 DOI: 10.1186/s40104-022-00733-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/15/2022] [Indexed: 01/19/2023] Open
Abstract
Background Methionine or lysine has been reported to influence DNA methylation and fat metabolism, but their combined effects in N6-methyl-adenosine (m6A) RNA methylation remain unclarified. The combined effects of rumen-protected methionine and lysine (RML) in a low-protein (LP) diet on lipid metabolism, m6A RNA methylation, and fatty acid (FA) profiles in the liver and muscle of lambs were investigated. Sixty-three male lambs were divided into three treatment groups, three pens per group and seven lambs per pen. The lambs were fed a 14.5% crude protein (CP) diet (adequate protein [NP]), 12.5% CP diet (LP), and a LP diet plus RML (LP + RML) for 60 d. Results The results showed that the addition of RML in a LP diet tended to lower the concentrations of plasma leptin (P = 0.07), triglyceride (P = 0.05), and non-esterified FA (P = 0.08). Feeding a LP diet increased the enzyme activity or mRNA expression of lipogenic enzymes and decreased lipolytic enzymes compared with the NP diet. This effect was reversed by supplementation of RML with a LP diet. The inclusion of RML in a LP diet affected the polyunsaturated fatty acids (PUFA), n-3 PUFA, and n-6 PUFA in the liver but not in the muscle, which might be linked with altered expression of FA desaturase-1 (FADS1) and acetyl-CoA carboxylase (ACC). A LP diet supplemented with RML increased (P < 0.05) total m6A levels in the liver and muscle and were accompanied by decreased expression of fat mass and obesity-associated protein (FTO) and alkB homologue 5 (ALKBH5). The mRNA expressions of methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14) in the LP + RML diet group were lower than those in the other two groups. Supplementation of RML with a LP diet affected only liver YTH domain family (YTHDF2) proteins (P < 0.05) and muscle YTHDF3 (P = 0.09), which can be explained by limited m6A-binding proteins that were mediated in mRNA fate. Conclusions Our findings showed that the inclusion of RML in a LP diet could alter fat deposition through modulations of lipogenesis and lipolysis in the liver and muscle. These changes in fat metabolism may be associated with the modification of m6A RNA methylation. Graphical abstract A systematic graph illustrates the mechanism of dietary methionine and lysine influence on lipid metabolism and M6A. The green arrow with triangular heads indicates as activation and brown-wine arrows with flat heads indicates as suppression.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00733-z.
Collapse
Affiliation(s)
- Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Hui Mi
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Yan Cheng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Tianxi Zhang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Fan Hu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Qiongxian Yan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128, Hunan, China
| | - Shaoxun Tang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China. .,University of Chinese Academy of Science, Beijing, 100049, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128, Hunan, China
| |
Collapse
|
29
|
Elsaadawy SA, Wu Z, Bu D. Feasibility of Supplying Ruminally Protected Lysine and Methionine to Periparturient Dairy Cows on the Efficiency of Subsequent Lactation. Front Vet Sci 2022; 9:892709. [PMID: 35774986 PMCID: PMC9237544 DOI: 10.3389/fvets.2022.892709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to evaluate the effects of supplying ruminally protected Lys (RPL) and ruminally protected Met (RPM) to transition cows' diets on the efficiency of subsequent lactation. A total of 120 prepartum Holstein cows were assigned into four treatments blocked by the anticipated calving date, previous lactation milk yield, number of lactations, and body condition score and fed either RPL, RPM, or the combination (RPML) or control diet (CON) throughout the transition period (3 weeks before till 3 weeks after calving). From 22 to 150 days in milk (DIM), all animals (100 cows) were fed a combination of RPM and RPL (0.17% RPM and 0.41% RPL of DM; n = 25 cows/treatment) as follows; CON-RPML, RPM-RPML, RPL-RPML, and RPML-RPML. Milk production and dry matter intake (DMI) were measured daily; milk and blood samples were taken at 21, 30, 60, 90, 120, and 150 DIM. Supplemented amino acids (AA) were mixed with the premix and added to the total mixed ration during the experiment. DMI (p < 0.001) and energy-corrected milk (ECM, p = 0.04) were higher for cows that were fed RPML-RPML than other cows. Compared with CON-RPML, yields of milk total protein, lactose, and nitrogen efficiency were increased (p < 0.01), whereas milk urea nitrogen (MUN; p = 0.002) was decreased for other treatments. However, supplemental AA did not affect milk lactose percentage, fat yield, feed efficiency, or serum total protein concentration (p > 0.10). Transition cows that consumed AA had a greater peak of milk yield (p < 0.01), as well as quickly reached the peak of milk (p < 0.004). There were differences in β-hydroxybutyrate concentration during the early lactation, with a lower level for AA groups (p < 0.05), and the difference faded with the progression of lactation (p > 0.10). Fertility efficiency as measured by pregnancy rate was improved by supplemental AA during the perinatal period (p < 0.05). In conclusion, transition cows consumed RPM and RPL, increased post-calving DMI, milk production, milk protein yield, nitrogen efficiency, and improved fertility performance.
Collapse
Affiliation(s)
- Samy A. Elsaadawy
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaohai Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Centre (ICRAF), Beijing, China
- Hunan Co-Innovation Center of Safety Animal Production, Changsha, China
| |
Collapse
|
30
|
Wei C, He T, Wan X, Liu S, Dong Y, Qu Y. Meta-Analysis of Rumen-Protected Methionine in Milk Production and Composition of Dairy Cows. Animals (Basel) 2022; 12:ani12121505. [PMID: 35739842 PMCID: PMC9219501 DOI: 10.3390/ani12121505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In terms of amino acid nutrition of dairy cows, many scholars have shown that adding rumen-protected methionine to dairy cow feed can improve milk yield and milk components such as milk protein, lactose and milk fat, but the research of some scholars is inconsistent. This paper aims to summarize and analyze all the research contents through meta-analysis and comprehensively understand the impact of rumen-protected methionine on the milk yield and milk composition of dairy cows. The results show that adding rumen-protected methionine to cow feed did not significantly improve milk yield nor the lactose concentration in milk but did improve the fat and protein concentrations in milk, and the effects were better in the high-protein feed than that in the low-protein feed. Abstract This study aims to evaluate the influence of rumen-protected methionine (RPM) on the milk yield and milk compositions of dairy cows by employing a meta-analysis method. The articles in the publication databases between January 2010 and January 2022 which reported on various concentrations of RPM supplements in dairy cow diets and then monitored the milk yield and milk compositions were searched. A total of 14 studies were included, covering 27 treatments with a total of 623 dairy cows. Comprehensive Meta-Analysis V3 was used for statistical analysis, the forest map was drawn by the standard mean difference (SMD) with a 95% confidence interval (95% CI), and the SMD was calculated by a random effect model. The dose effect curve was drawn by fitting the SMD and RPM dose of each study to explore the optimal dosage of RPM. Compared with the basal diet, the RPM supplement significantly increased the percentages of milk fat (SMD (95% CI): 1.017% [0.388, 1.646]) and milk protein (SMD (95% CI): 0.884 [0.392, 1.377]). However, the milk yield (SMD (95% CI): 0.227 kg/d [−0.193, 0.647]) and lactose concentration (SMD (95% CI): 0.240% [−0.540, 1.020]) were not affected. The subgroup analysis found that the effect of the RPM supplement on the milk fat and milk protein was greater in the high-protein feed than in the low-protein feed. Multiple regression analysis showed that feeding RPM significantly improved the milk yield and milk protein percentage of dairy cows. The results of the dose–effect analysis show that the optimal range for the RPM was 7.5–12.5 g/d. RPM supplements in a dairy diet can improve the milk protein percentages and milk fat percentages of dairy cows.
Collapse
|
31
|
Letelier P, Zanton GI, Dórea JRR, Wattiaux MA. Plasma essential amino acid concentration and profile are associated with performance of lactating dairy cows as revealed through meta-analysis and hierarchical clustering. J Dairy Sci 2022; 105:5044-5061. [PMID: 35525617 DOI: 10.3168/jds.2021-21028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/16/2022] [Indexed: 11/19/2022]
Abstract
Our aim was to explore whether changes in plasma essential AA (EAA) concentration ([EAA]p) or profile (defined here as the molar proportion of individual [EAA]p relative to the total [EAA]p) may serve as an indicator of the EAA status of a cow. We undertook a meta-analysis with the objectives to determine if different plasma EAA profiles exist among cows and to explore the association of [EAA]p or the profile of EAA with lactating cow performance and measures of N utilization. We hypothesized the existence of differences in [EAA]p and different plasma EAA profile for cows with greater milk output, feed efficiency, and greater N use efficiency (NUE; milk true protein-N:N intake) compared with cows with lower milk output, feed efficiency, and lower NUE. The data set included 22 feeding trials and 96 dietary treatments. First, a mixed-effect model analysis was used to predict [EAA]p in response to the categorical fixed effect of EAA, continuous fixed effect of National Research Council model-predicted metabolizable protein (MP) supply, continuous fixed effect of body weight, the fixed effect of EAA and MP supply interaction, the fixed effect of EAA and body weight interaction, and the random effect of study. Then, residuals of the model were standardized based on Z-score and clustered using the hierarchical method (Euclidean distance and Ward's minimum variance method) resulting in 2 clusters. Finally, a fixed-effect model was used to evaluate the significance with which clusters were associated with [EAA]p, cow performance, feed efficiency, and NUE. The total concentration of [EAA]p was lower (784 vs. 983 µM) and the concentration of each EAA was on average 22 µM lower for cows in cluster 1 compared with cluster 2 with the smallest and greatest difference found for Met (4 µM) and Val (59 µM), respectively. The percentage difference in [EAA]p was the smallest for Thr (-5.3%) and the greatest for Leu (-37.1%). There was no difference between clusters for Arg, His, and Met molar proportions; however, cows in cluster 1 had a lower molar proportion of Leu and a tendency for lower molar proportion of Val compared with cows in cluster 2. Additionally, cows in cluster 1 had greater molar proportions of Ile, Lys, and Thr and a tendency for greater molar proportion of Phe compared with cows in cluster 2. The fixed-effect model analysis indicated that cows in cluster 1 had higher milk energy output (+3.2 Mcal/d), true protein yield (+87 g/d) and fat yield (+236 g/d), feed efficiency (milk Mcal:dry matter intake; +8% unit), and a tendency for greater MP efficiency (Milk true protein/MP supply; +2.3% unit) than cows in cluster 2. These results suggested greater use of EAA by the mammary gland (as reflected by greater milk protein synthesis) and lower hepatic catabolism of AA (as reflected by a tendency to greater MP efficiency) in cows of cluster 1 compared with cluster 2. Our findings should be evaluated further, including whether the relative molar proportions of plasma EAA might serve as a holistic indicator of the EAA status of cows as related to their productivity, feed efficiency and N utilization.
Collapse
Affiliation(s)
- P Letelier
- Department of Animal and Dairy Science, University of Wisconsin-Madison, Madison 53706
| | - G I Zanton
- USDA Agricultural Research Service; US Dairy Forage Research Center, Madison, WI 53706
| | - J R R Dórea
- Department of Animal and Dairy Science, University of Wisconsin-Madison, Madison 53706
| | - M A Wattiaux
- Department of Animal and Dairy Science, University of Wisconsin-Madison, Madison 53706.
| |
Collapse
|
32
|
Elsaadawy SA, Wu Z, Wang H, Hanigan MD, Bu D. Supplementing Ruminally Protected Lysine, Methionine, or Combination Improved Milk Production in Transition Dairy Cows. Front Vet Sci 2022; 9:780637. [PMID: 35400096 PMCID: PMC8990851 DOI: 10.3389/fvets.2022.780637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/14/2022] [Indexed: 12/23/2022] Open
Abstract
The objectives of this study were to evaluate the effects of dietary supplementation of ruminally protected lysine (RPL), or methionine (RPM), and their combination (RPML) on the production efficiency of transition cows. A total of 120 pre-partum multiparous Holstein cows were assigned to four treatments based on previous lactation milk production, days (d) of pregnancy, lactation, and body condition score (BCS). Cows were fed a basal diet [pre-calving: 1.53 Mcal/kg dry matter (DM) and post-calving: 1.70 Mcal/kg DM] with or without supplemental ruminally protected amino acids (RPAA). Treatments were the basal diets without supplemental amino acids (CONTROL, n = 30), with supplemental methionine (RPM, pre-calving at 0.16% of DM and post-calving at 0.12% of DM, n = 30), with supplemental lysine (RPL, pre-calving at 0.33% of DM and post-calving at 0.24% DM, n = 30), and the combination (RPML, pre-calving at 0.16% RPM + 0.33% RPL of DM and post-calving at 0.12% RPM + 0.24 % RPL DM, n = 30). The dietary content of lysine was balanced to be within 6.157.2% metabolizable protein (MP)-lysine and that of methionine was balanced within 2.1-2.35% MP-methionine. Dry matter intake (DMI) was measured daily. Milk samples were taken on d 7, 14, and 21 days relative to calving (DRC), and milk yields were measured daily. Blood samples were taken on d -21, -14, -7 before expected calving and d 0, 7, 14, and 21 DRC. Data were analyzed using SAS software. There were significant Trt × time interactions (P < 0.01) for DMI pre- and post-calving period. The CON cows had lower DMI than RPM, RPL, and RPML, both pre-calving (P < 0.01) and post-calving periods (P < 0.01). Energy-corrected milk (P < 0.01), milk fat (P < 0.01), protein (P = 0.02), and lactose (P < 0.01) percentage levels were greater for RPM, RPL, and RPML cows compared to CON. Supplementing RPAA assisted in maintaining BCS post-calving than CON (P < 0.01). Blood concentrations of β-hydroxybutyrate decreased with RPM or RPL or the combination pre-calving (P < 0.01) and tended to decrease post-calving (P = 0.10). These results demonstrated that feeding RPL and RPM improved DMI and milk production efficiency, maintained BCS, and reduced β-hydroxybutyrate concentrations of transition cows.
Collapse
Affiliation(s)
- Samy A. Elsaadawy
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zaohai Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mark D. Hanigan
- Department of Dairy Science, Virginia Tech, Blacksburg, VA, United States
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Centre (ICRAF), Beijing, China
- Hunan Co-Innovation Center of Safety Animal Production, Changsha, China
| |
Collapse
|
33
|
Malacco V, Beckett L, Hilger S, Doane P, Reis R, Donkin S. Effects of increased doses of lysine in a rumen-protected form on plasma amino acid concentration and lactational performance of dairy cows fed a lysine-deficient diet. J Dairy Sci 2022; 105:3064-3077. [DOI: 10.3168/jds.2021-20823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022]
|
34
|
Hisadomi S, Haruno A, Fujieda T, Sugino T, Oba M. Effects of rumen-protected glutamate supplementation during the periparturient period on digestibility, inflammation, metabolic responses, and performance in dairy cows. J Dairy Sci 2022; 105:3129-3141. [PMID: 35086702 DOI: 10.3168/jds.2021-21357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
The objective of this study was to evaluate the effects of feeding rumen-protected glutamate during the periparturient period (d -21 ± 3 to d 21 ± 3 relative to calving) on apparent total-tract digestibility (ATTD), inflammation, metabolic responses, and production performance of dairy cows. Fifty-two multiparous Holstein cows were blocked by parity, body condition score, and expected calving date, and randomly assigned to one of the experimental diets with rumen-protected monosodium glutamate (RP-Glu; intestinally available Glu = 8.8%) or without RP-Glu (control) at d -21 ± 3 relative to expected calving date. The RP-Glu was fed at 4% and 3% of dietary dry matter, before and after calving, respectively. Prepartum diets contained 17.1% and 16.5% crude protein, and 13.1% and 13.3% starch, and postpartum diets contained 18.8% and 18.3% crude protein, and 22.5% and 22.7% starch on a dry matter basis, respectively for RP-Glu and control treatments. A subset of 19 cows was used to measure ATTD. Cows fed the RP-Glu had greater ATTD of dry matter (70.6 vs. 69.1%), crude protein (75.1 vs. 72.6%), and ether extract (66.0 vs 61.2%) on d 5 ± 1 after calving. Cows fed the RP-Glu also had greater dry matter intake (15.7 vs. 13.7 kg/d) on d 1 after calving. Cows fed the RP-Glu had greater plasma concentrations of Glu (4.60 vs. 3.89 µmol/dL) and insulin-like growth factor-1 (44.2 vs. 30.1 mg/mL), lower serum concentrations of free fatty acids (670 vs. 981 μEq/L) and total bilirubin (0.22 vs. 0.34 mg/dL), and lower plasma 3-methylhistidine concentration (1.28 vs. 1.50 μmol/dL) on d 4 after calving. However, these treatment effects observed between d 1 and d 5 ± 1 immediately after calving did not continue until d 21 after calving. Concentrations of serum amyloid A, serum haptoglobin, and plasma lipopolysaccharide binding protein were not affected by the treatment. In addition, no differences were observed for serum β-hydroxybutyrate concentration and milk yield during the postpartum period between the 2 groups, and cows fed the RP-Glu had a decreased lactose yield. These findings suggest that feeding RP-Glu during the periparturient period can increase digestive capacity and feed intake, and decrease mobilization of body fat and protein immediately after calving without increasing milk production.
Collapse
Affiliation(s)
- S Hisadomi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - A Haruno
- Ajinomoto Co. Inc., Tokyo, Japan 104-8315
| | - T Fujieda
- Ajinomoto Co. Inc., Tokyo, Japan 104-8315
| | - T Sugino
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan 739-8528
| | - M Oba
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5.
| |
Collapse
|
35
|
Wang Z, Song Y, Sun S, Zhao C, Fu S, Xia C, Bai Y. Metabolite Comparison between Serum and Follicular Fluid of Dairy Cows with Inactive Ovaries Postpartum. Animals (Basel) 2022; 12:ani12030285. [PMID: 35158609 PMCID: PMC8833624 DOI: 10.3390/ani12030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although the milk production of dairy cows has increased rapidly in recent decades, the reproductive performance of dairy cows has gradually declined. In modern intensive dairy farms, prevention and treatment of inactive ovaries has become an important challenge of reproduction disorders during early lactation. Our aim is to screen out metabolites and metabolic pathways related to inactive ovaries through serum and follicular fluid metabolomics. We found that the changes in serum and follicular fluid were mainly enriched in nine metabolic pathways. In serum, these included d-glutamine and d-glutamate metabolism, alanine, aspartic and glutamate metabolism, arginine and proline metabolism, pentose and glucuronate interconversions, and glycerophospholipid metabolism. In follicular fluid, they were valine, leucine, and isoleucine biosynthesis; arachidonic acid metabolism; glycerophospholipid metabolism; starch and sucrose metabolism; phenylalanine metabolism; and pentose and glucuronate interconversion. The common metabolic pathways of disease-related serum and follicular fluid were pentose and glucuronate interconversions and glycerophospholipid metabolism. This research will provide a theoretical basis for exploring the causes of inactive ovaries and provide new ideas for the prevention and treatment of inactive ovaries in the future. Abstract Inactive ovaries (IO) accounts for 50% of ovarian disease in postpartum dairy cows, which seriously affects their reproductive efficiency. To investigate the metabolic changes in the serum and follicular fluid of dairy cows with IO during lactation, six estrus (E) cows and six IO cows at 50 to 55 days in milk were selected based on B ultrasonic detection and clinical manifestations. The differential metabolites in serum and follicular fluid between the E cows and IO cows were identified by ultra-high-pressure liquid chromatography–quadrupole time-of-flight mass spectrometry, combined with multidimensional statistical methods. The results showed that dairy cows with IO were in a subclinical ketosis status where beta-hydroxybutyrate (BHB) exceeded 1.20 mmol/L, 14 differential metabolites in the serum of IO cows included 10 increased metabolites and 4 decreased metabolites, and 14 differential metabolites in the follicular fluid of IO cows included 8 increased metabolites and 6 decreased metabolites. These differential metabolites mainly involved nine metabolic pathways. The common enrichment pathway of different metabolites in serum and follicular fluid were glycerophospholipid metabolism and pentose and glucuronate interconversions. In conclusion, there were significant differences in the differential metabolites and enrichment pathways between serum and follicular fluid of IO cows, implying that there were complex changes in blood metabolism and local follicular metabolism of IO cows, whose interactions need further investigation.
Collapse
Affiliation(s)
- Zhijie Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.W.); (Y.S.); (S.S.); (S.F.)
| | - Yuxi Song
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.W.); (Y.S.); (S.S.); (S.F.)
| | - Shuhan Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.W.); (Y.S.); (S.S.); (S.F.)
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Shixin Fu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.W.); (Y.S.); (S.S.); (S.F.)
| | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.W.); (Y.S.); (S.S.); (S.F.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing 163319, China
- Correspondence: (C.X.); (Y.B.)
| | - Yunlong Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.W.); (Y.S.); (S.S.); (S.F.)
- Correspondence: (C.X.); (Y.B.)
| |
Collapse
|
36
|
Fagundes MA, Hall JO, Eun JS. Plasma methionine appearance and residual potential of supplemented N-acetyl-L-methionine through ruminal or abomasal infusion in dairy cows. Anim Sci J 2022; 93:e13797. [PMID: 36504475 DOI: 10.1111/asj.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 12/14/2022]
Abstract
The present study investigated the plasma methionine (Met) and residual potential of N-acetyl-L-Met (NALM) in lactating dairy cows. Six cows (75 ± 20.1 days-in-milk) were used in a replicated 3 × 3 Latin square design. Within each square, cows were randomly assigned to a sequence of three dietary treatments during each of the three 13-day periods (10 days of treatment adaptation and 3 days of data collection and sampling). The three dietary treatments are as follows: basal diet without NALM (control); control diet with 30 g/day of NALM by rumen placement (30NALM), and control diet with 60 g/day of NALM by rumen placement (60NALM). Rumen NALM dosing led to a linear increase in plasma Met concentration. Abomasal infusion with NALM resulted in both linear and quadratic increases in plasma Met concentration. No NALM was detected in milk, liver, plasma, and muscle samples after rumen placement or abomasal infusion. Supplementation of NALM did not affect dry matter intake and milk yield. The absence of plasma NALM and increases in plasma Met concentration for both ruminal and abomasal NALM dosing suggest that NALM supplemented by either rumen placement or abomasal infusion to lactating dairy cows is deacetylated before entering the central circulation.
Collapse
Affiliation(s)
- Mark A Fagundes
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Jeffery O Hall
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Jong-Su Eun
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| |
Collapse
|
37
|
Sahraei Belverdy M, Khadem AA, Alamouti AA, Khani J, Calsamiglia S. Use of fat-coated or heat-treated soybean meal for partial replacement of solvent-extracted soybean meal in the diets of early lactation dairy cows. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context Soybean meal (SBM) is the most important protein source used to feed dairy cows, and methods have been developed to increase its nutritional value by protecting the proteins against rumen degradation. Protection of solvent-extracted SBM with saturated fats can achieve this, but effects on lactation performance and nutrient digestibility have not been investigated. Aims We evaluated effects on performance, nutrient digestibility and blood metabolites of high-yielding dairy cows when dietary solvent-extracted SBM was partially replaced with two fat-coated SBM products containing palmitic acid or a palmitic–stearic acid mix, or with standard heat-treated SBM. Methods Forty lactating Holstein cows were used in a randomised complete block design experiment with two phases each of 26 days (20 days of diet adaptation and 6 days of data collection). Experimental diets comprised (per kg DM) 271 g maize silage, 138 g other forages and 590 g concentrate, with 6.74 MJ net energy for lactation, 157 g crude protein and 366 g neutral detergent fibre. The control diet contained solvent-extracted SBM at 73.1 g/kg, which was partially replaced in the three test diets: two with fat-coated SBM (400 g fat/kg, enriched with palmitic acid or 50:50 palmitic:stearic acids), and one with heat-treated SBM. Diets were offered ad libitum during the experiment, and cows were milked three times daily. Key results Solvent-extracted SBM had significantly lower rumen undegraded protein concentration than the other three products. Dry matter intake was not affected by dietary treatment (27.7 ± 0.531 kg/day), nor was milk yield (47.8–50.3 kg/day), but milk fat yield tended to be greater (P < 0.10) with diets containing fat-coated than solvent-extracted SBM. The diet with palmitic acid coated SBM showed higher apparent total tract digestibilities of ether extract, dry matter, organic matter, crude protein and neutral detergent fibre than palmitic:stearic acid coated or solvent-extracted SBM treatments. Heat-treated SBM diet likewise showed higher digestibilities of ether extract, dry matter, organic matter, and acid and neutral detergent fibres than the solvent-extracted SBM diet. Concentrations of urea nitrogen in plasma and milk were not affected by treatment. Conclusions Feeding heat-treated or fat-coated SBM did not increase milk production of high-yielding cows; however, use of fat-coated SBM increased milk fat yield. Both palmitic acid coating and heat treatment improved total tract digestibility. Implications Feeding fat-coated SBM to dairy cows can protect SBM in the rumen and increase milk fat yield.
Collapse
|
38
|
Malacco VM, Martins LF, Maciel IC, Lage CF, Coelho RR, Costa ALB, Moura AM, Saturnino HM, Coelho SG, Reis RB. Effects of partial replacement of solvent-extracted soybean meal by amino resin-treated soybean meal in the concentrate supplement of high producing grazing dairy cows. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Regulation of Milk Protein Synthesis by Free and Peptide-Bound Amino Acids in Dairy Cows. BIOLOGY 2021; 10:biology10101044. [PMID: 34681143 PMCID: PMC8533557 DOI: 10.3390/biology10101044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
Milk protein (MP) synthesis in the mammary gland of dairy cows is a complex biological process. As the substrates for protein synthesis, amino acids (AAs) are the most important nutrients for milk synthesis. Free AAs (FAAs) are the main precursors of MP synthesis, and their supplies are supplemented by peptide-bound AAs (PBAAs) in the blood. Utilization of AAs in the mammary gland of dairy cows has attracted the great interest of researchers because of the goal of increasing MP yield. Supplying sufficient and balanced AAs is critical to improve MP concentration and yield in dairy cows. Great progress has been made in understanding limiting AAs and their requirements for MP synthesis in dairy cows. This review focuses on the effects of FAA and PBAA supply on MP synthesis and their underlying mechanisms. Advances in our knowledge in the field can help us to develop more accurate models to predict dietary protein requirements for dairy cows MP synthesis, which will ultimately improve the nitrogen utilization efficiency and lactation performance of dairy cows.
Collapse
|
40
|
Laroche JP, Gervais R, Lapierre H, Ouellet DR, Tremblay GF, Halde C, Boucher MS, Charbonneau É. Milk production and efficiency of utilization of nitrogen, metabolizable protein, and amino acids are affected by protein and energy supplies in dairy cows fed alfalfa-based diets. J Dairy Sci 2021; 105:329-346. [PMID: 34635363 DOI: 10.3168/jds.2021-20923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
Alfalfa has a lower fiber digestibility and a greater concentration of degradable protein than grasses. Dairy cows could benefit from an increased digestibility of alfalfa fibers, or from a better match between nitrogen and energy supplies in the rumen. Alfalfa cultivars with improved fiber digestibility represent an opportunity to increase milk production, but no independent studies have tested these cultivars under the agroclimatic conditions of Canada. Moreover, decreasing metabolizable protein (MP) supply could increase N use efficiency while decreasing environmental impact, but it is often associated with a decrease in milk protein yield, possibly caused by a reduced supply of essential AA. This study evaluated the performance of dairy cows fed diets based on a regular or a reduced-lignin alfalfa cultivar and measured the effect of energy levels at low MP supply when digestible His (dHis), Lys (dLys), and Met (dMet) requirements were met. Eight Holstein cows were used in a double 4 × 4 Latin square design, each square representing an alfalfa cultivar. Within each square, 4 diets were tested: the control diet was formulated for an adequate supply of MP and energy (AMP_AE), whereas the 3 other diets were formulated to be deficient in MP (DMP; formulated to meet 90% of the MP requirement) with deficient (94% of requirement: DMP_DE), adequate (99% of requirement: DMP_AE), or excess energy supply (104% of requirement; DMP_EE). Alfalfa cultivars had no significant effect on all measured parameters. As compared with cows receiving AMP_AE, the dry matter intake of cows fed DMP_AE and DMP_EE was not significantly different but decreased for cows fed DMP_DE. The AMP_AE diet provided 103% of MP and 108% of NEL requirements whereas DMP_DE, DMP_AE, and DMP_EE diets provided 84, 87, and 87% of MP and 94, 101, and 107% of NEL requirements, respectively. In contrast to design, feeding DMP_EE resulted in a similar energy supply compared with AMP_AE, although MP supply has been effectively reduced. This resulted in a maintained milk and milk component yields and improved the efficiency of utilization of N, MP, and essential AA. The DMP diets decreased total N excretion, whereas DMP_AE and DMP_EE diets also decreased milk urea-N concentration. Reducing MP supply without negative effects on dairy cow performance is possible when energy, dHis, dLys, and dMet requirements are met. This could reduce N excretion and decrease the environmental impact of milk production.
Collapse
Affiliation(s)
- J-P Laroche
- Département des Sciences Animales, Université Laval, Québec, QC, Canada, G1V 0A6; Lactanet, Sainte-Anne-de-Bellevue, QC, Canada, H9X 3R4
| | - R Gervais
- Département des Sciences Animales, Université Laval, Québec, QC, Canada, G1V 0A6
| | - H Lapierre
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada, J1M 0C8
| | - D R Ouellet
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada, J1M 0C8
| | - G F Tremblay
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Québec, QC, Canada, G1V 2J3
| | - C Halde
- Département de Phytologie, Université Laval, Québec, QC, Canada, G1V 0A6
| | - M-S Boucher
- Département de Phytologie, Université Laval, Québec, QC, Canada, G1V 0A6
| | - É Charbonneau
- Département des Sciences Animales, Université Laval, Québec, QC, Canada, G1V 0A6.
| |
Collapse
|
41
|
Inhuber V, Windisch W, Bächler B, Schuster M, Spiekers H, Ettle T. Effects of supplementing a CP-reduced diet with rumen-protected methionine on Fleckvieh bull fattening. Animal 2021; 15:100366. [PMID: 34601210 DOI: 10.1016/j.animal.2021.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022] Open
Abstract
The objective of this study was to evaluate the effect of supplementing a CP-reduced diet with rumen-protected methionine on growth performance of Fleckvieh bulls. A total of 69 bulls (367 ± 25 kg BW) were assigned to three feeding groups (n = 23 per group). The control (CON) diet contained 13.7% CP and 2.11 g methionine/kg diet (both DM basis) and was set as positive control. The diet reduced in CP (nitrogen) (RED) diet as negative control and the experimental RED + rumen-protected methionine (MET) diet were characterised by deficient CP concentrations (both 9.04% CP). The RED + MET diet differed from the RED diet in methionine concentration (2.54 g/kg DM vs. 1.56 g/kg DM, respectively) due to supplementation of rumen-protected methionine. Rumen-protected lysine was added to both RED and RED + MET at 2.7 g/kg DM to ensure a sufficient lysine supply relative to total and metabolisable protein intake. Metabolisable energy (ME) and nutrient composition were similar for CON, RED, and RED + MET. Bulls were fed for 105 days (d) on average. Individual feed intake was recorded daily; individual BW was recorded at the beginning of the experiment, once per month, and directly before slaughter. At slaughter, blood samples were collected and carcass traits were assessed. Reduction in dietary CP concentration reduced feed intake, and in combination with lower dietary CP concentration, daily intake of CP for RED and RED + MET was lower compared with CON (P < 0.01). Daily ME intake was reduced in RED and RED + MET compared with CON (P < 0.01). Consequently growth performance and carcass weights were reduced (both P < 0.01) in both RED and RED + MET compared with CON. Supplemental rumen-protected methionine was reflected in increased serum methionine concentration in RED + MET (P < 0.05) as compared to RED but it did not affect growth performance, carcass traits and serum amino acid (AA) concentrations, except for lysine which was reduced (P < 0.01) compared to CON and RED. In conclusion, bulls fed RED or RED + MET diets were exposed to a ruminal CP deficit and subsequently a deficit of prececal digestible protein, but methionine did not appear to be the first-limiting essential AA for growth under the respective experimental conditions.
Collapse
Affiliation(s)
- V Inhuber
- Technical University of Munich, Chair of Animal Nutrition, Liesel-Beckmann-Straße 2, 85354 Freising, Germany; Bavarian State Research Center for Agriculture, Institute for Animal Nutrition and Feed Management, Prof.-Duerrwaechter-Platz 3, 85586 Poing/Grub, Germany
| | - W Windisch
- Technical University of Munich, Chair of Animal Nutrition, Liesel-Beckmann-Straße 2, 85354 Freising, Germany
| | - B Bächler
- Technical University of Munich, Bavarian Center for Biomolecular Mass Spectrometry, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - M Schuster
- Bavarian State Research Center for Agriculture, Dept. of Quality Assurance and Analysis, Prof.-Duerrwaechter-Platz 3, 85586 Poing/Grub, Germany
| | - H Spiekers
- Bavarian State Research Center for Agriculture, Institute for Animal Nutrition and Feed Management, Prof.-Duerrwaechter-Platz 3, 85586 Poing/Grub, Germany
| | - T Ettle
- Bavarian State Research Center for Agriculture, Institute for Animal Nutrition and Feed Management, Prof.-Duerrwaechter-Platz 3, 85586 Poing/Grub, Germany.
| |
Collapse
|
42
|
Replacing Soybean Meal with Distillers Dried Grains with Solubles plus Rumen-Protected Lysine and Methionine: Effects on Growth Performance, Nutrients Digestion, Rumen Fermentation, and Serum Parameters in Hu Sheep. Animals (Basel) 2021; 11:ani11082428. [PMID: 34438885 PMCID: PMC8388632 DOI: 10.3390/ani11082428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Improving the economic benefits and precise nutrient supply are hotspots of the sheep breeding industry. Evaluation of the production performance, the rumen fermentation, and blood metabolism indexes found that replacement of soybean meal with distillers dried grains with solubles in a diet with adequate metabolizable protein and amino acids (lysine and methionine) could maintain the normal growth performance of Hu sheep. The comprehensive evaluation results provide a reference for reducing production costs, improving production efficiency, and decreasing the nitrogen excretion of the sheep breeding industry. Besides, the study will help in the development of low-protein diets with amino acid balance for sheep. Abstract (1) Background: we investigated the influence of dietary soybean meal (SBM) replaced with distillers dried grains with solubles (DDGS) plus rumen-protected (RP) lysine and methionine on the growth performance, nutrients digestion, rumen fermentation, and serum parameters of Hu sheep. (2) Methods: ninety Hu sheep were allocated to five groups: the control group (CON) which received the SBM diet, the DDGS group (NSM), the DDGS diet with RP lysine group (DRPL), the DDGS diet with RP methionine group (DRPM), and the DDGS diet with a mixture of RP lysine and methionine group (DRPLM). (3) Results: Final BW and carcass weight of the DRPLM and CON groups were greater (p ≤ 0.05) compared to NSM, DRPL, and DRPM groups. The DRPLM group tended to increase the dry matter intake (DMI, p = 0.06), average daily gain (ADG, p = 0.06), dressing percentage (p = 0.07), and tail fat weight (p = 0.09). The DRPLM group had increased (p ≤ 0.05) apparent digestibility and had altered ruminal fermentation characteristics. (4) Conclusions: replacement of SBM with DDGS in a diet with adequate metabolizable protein and by-pass amino acids (lysine and methionine) could maintain the growth performance of Hu sheep.
Collapse
|
43
|
Morris DL, Kononoff PJ. Dietary fatty acid and starch content and supplemental lysine supply affect energy and nitrogen utilization in lactating Jersey cows. J Dairy Sci 2021; 104:10753-10779. [PMID: 34364648 DOI: 10.3168/jds.2020-20055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/14/2021] [Indexed: 11/19/2022]
Abstract
The effects of dietary fatty acid (FA) and starch content as well as supplemental digestible Lys (sdLys) on production, energy utilization, and N utilization were evaluated. Each factor was fed at 5 different amounts, and factor limits were as follows: 3.0 to 6.2% of dry matter (DM) for FA; 20.2 to 31.3% of DM for starch, and 0 to 17.8 g/d of sdLys. Dietary FA and starch were increased by replacing soyhulls with supplemental fat and corn grain, respectively, and sdLys increased with rumen-protected Lys. Fifteen unique treatments were fed to 25 Jersey cows (mean ± SD; 80 ± 14 d in milk) across 3 blocks in a partially balanced incomplete block design. Each block consisted of 4 periods of 28 d, where the final 4 d were used to determine milk production and composition, feed intake, energy utilization (via total collection and headbox-style indirect calorimetry), and N utilization (via total collection). Response surface models were used to evaluate treatment responses. Increasing dietary FA decreased DM intake and milk protein yield. When dietary starch was less than 24%, milk protein concentration increased with increasing sdLys, but when dietary starch was greater than 26% milk protein concentration decreased with increasing sdLys. Digestibility of FA increased when dietary FA increased from 3.0 to 4.2% and decreased as FA increased beyond 4.2%. Although neutral detergent fiber digestibility decreased as dietary starch increased, energy digestibility increased. As dietary FA increased, metabolizable energy (ME) content quadratically increased. Supply of ME increased as dietary FA increased from 3.0 to 4.2% and decreased as FA increased beyond 4.2%. Increasing dietary FA and starch decreased CH4 production and urinary energy. Increasing dietary starch increased the efficiency of utilizing dietary N for milk N. Increasing sdLys quadratically decreased N balance as sdLys increased from 0 to 8 g/d and increased N balance as sdLys increased from 8 to 18 g/d. Increasing dietary FA can increase ME content, however, at high dietary FA, decreased DM intake and FA digestibility resulted in a plateau in ME content and a decrease in ME supply. Our results demonstrate that sdLys supply is important for milk protein when dietary starch is low, and some Lys may be preferentially used for muscle protein synthesis at the expense of milk protein when sdLys is high.
Collapse
Affiliation(s)
- D L Morris
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln 68583
| | - P J Kononoff
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln 68583.
| |
Collapse
|
44
|
Amino Acids Supplementation for the Milk and Milk Protein Production of Dairy Cows. Animals (Basel) 2021; 11:ani11072118. [PMID: 34359247 PMCID: PMC8300144 DOI: 10.3390/ani11072118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The composition of milk not only has nutritional implications, but is also directly related to the income of dairy producers. As regards milk’s composition, concerns around milk protein have emerged from the increased consumption of casein products. The synthesis of proteins in milk is a highly complex and high-cost process, because the conversion efficiency of dietary protein to milk protein is very low in dairy cows. Thus, some studies have increased milk protein by using protein supplements or a single amino acid (AA) supply. AAs are the building blocks of protein, and can also stimulate the protein synthetic pathway. This review mainly concerns the use of AAs for producing milk protein in high-producing dairy cows, particularly with methionine, lysine, and histidine. Understanding the mechanisms of AAs will help to promote milk protein synthesis in the dairy industry. Abstract As the preference of consumers for casein products has increased, the protein content of milk from dairy cows is drawing more attention. Protein synthesis in the milk of dairy cows requires a proper supply of dietary protein. High protein supplementation may help to produce more milk protein, but residues in feces and urine cause environmental pollution and increase production costs. As such, previous studies have focused on protein supplements and amino acid (AA) supply. This review concerns AA nutrition for enhancing milk protein in dairy cows, and mainly focuses on three AAs: methionine, lysine, and histidine. AA supplementation for promoting protein synthesis is related to the mammalian target of rapamycin (mTOR) complex and its downstream pathways. Each AA has different stimulating effects on the mTOR translation initiation pathway, and thus manifests different milk protein yields. This review will expand our understanding of AA nutrition and the involved pathways in relation to the synthesis of milk protein in dairy cows.
Collapse
|
45
|
Effects of rumen-protected methionine and lysine supplementation on milk yields and components, rumen fermentation, and the rumen microbiome in lactating yaks (Bos grunniens). Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Zang Y, Silva LHP, Geng YC, Ghelichkhan M, Whitehouse NL, Miura M, Brito AF. Dietary starch level and rumen-protected methionine, lysine, and histidine: Effects on milk yield, nitrogen, and energy utilization in dairy cows fed diets low in metabolizable protein. J Dairy Sci 2021; 104:9784-9800. [PMID: 34147220 DOI: 10.3168/jds.2020-20094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
Our objective was to investigate the interactions between starch level and rumen-protected Met, Lys, His (RP-MLH) on milk yield, plasma AA concentration, and nutrient utilization in dairy cows fed low metabolizable protein diets (mean = -119 g/d of metabolizable protein balance). Sixteen multiparous Holstein cows (138 ± 46 d in milk, 46 ± 6 kg/d in milk) were used in a replicated 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments. Each period lasted 21 d with 14 d for diet adaptation and 7 d for data and sample collection. Dietary starch level varied by replacing (dry matter basis) pelleted beet pulp and soyhulls with ground corn resulting in the following treatments: (1) 20% pelleted beet pulp and 10% soyhulls (reduced starch = RS), (2) RS plus RP-MLH (RS+AA), (3) 30% ground corn (high starch = HS), and (4) HS plus RP-MLH (HS+AA). Dietary starch concentrations averaged 12.3 and 34.4% for RS and HS basal diets, respectively. Diets were supplemented with RP-MLH products to supply digestible Met, Lys, and His. Compared with RS and RS+AA diets, HS and HS+AA diets increased yields of milk (37.9 vs. 40.1 kg/d) and milk protein (1.07 vs. 1.16 kg/d) and decreased dry matter intake (25.9 vs. 25.2 kg/d), milk urea N (12.6 vs. 11.0 mg/dL), and plasma urea N (13.3 vs. 11.6 mg/dL). Milk N efficiency was greater in cows fed the HS and HS+AA than RS and RS+AA diets (28.9 vs. 25%), and RP-MLH supplementation improved milk true protein concentration. Starch level × RP-MLH interactions were observed for plasma concentrations of Arg and Lys, with RP-MLH being more effective to increase plasma Arg (+16%) and Lys (+23%) when supplemented to the RS than the HS basal diet. Replacing pelleted beet pulp and soyhulls with ground corn lowered the plasma concentrations of all essential AA except Met and Thr. In addition, the plasma concentrations of His and Met increased with RP-MLH. The apparent total-tract digestibilities of neutral and acid detergent fiber were lower, and those of starch and ether extract greater in cows offered the HS and HS+AA diets than RS and RS+AA diets. Urinary excretion of urea N decreased by replacing pelleted beet pulp and soyhulls with ground corn. Enteric CH4 production, CH4 yield, and CH4 intensity all decreased in the HS and HS+AA versus RS and RS+AA diets. Diets did not affect the intakes of gross energy, metabolizable energy, and net energy of lactation. In contrast, digestible energy intake increased with feeding the RS and RS+AA diets, whereas CH4 energy decreased in cows fed the HS and HS+AA diets. Supplementation with RP-MLH had no effect on energy utilization variables. Overall, the lack of interactions between dietary starch level and RP-MLH supplementation on most variables measured herein showed that the effects of starch intake and RP-MLH were independent or additive.
Collapse
Affiliation(s)
- Y Zang
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824
| | - L H P Silva
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824
| | - Y C Geng
- Key Laboratory of Nonpoint Source Pollution Control, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China 100081
| | - M Ghelichkhan
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824
| | - N L Whitehouse
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824
| | - M Miura
- Ajinomoto Co. Inc., Kawasaki-shi, Japan 210-8681
| | - A F Brito
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824.
| |
Collapse
|
47
|
Binggeli S, Lapierre H, Charbonneau E, Ouellet DR, Pellerin D. Economic and environmental effects of revised metabolizable protein and amino acid recommendations on Canadian dairy farms. J Dairy Sci 2021; 104:9981-9998. [PMID: 34099284 DOI: 10.3168/jds.2020-19893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/16/2021] [Indexed: 12/18/2022]
Abstract
The objective of this research was to evaluate the potential economic and environmental effects of the formulation model used to balance dairy rations for metabolizable protein (MP) or 3 essential AA (EAA: His, Lys, and Met) in 3 regions of Canada with different farming systems. The Maritimes, Central Canada, and the Prairies reference dairy farms averaged 63, 71, 144 mature cows per herd and 135, 95, 255 ha of land, respectively. Using N-CyCLES, a whole-farm linear program model, dairy rations were balanced for (1) MP, based on National Research Council (NRC) requirements (MP_2001); (2) MP plus Lys and Met, based on NRC (AA_2001); (3) MP (MP_Rev); or (4) for His, Lys, and Met (AA_Rev), both based on a revised factorial approach revisiting both supply and requirements of MP and EAA. Energy was balanced to meet requirements based on NRC (2001). Assuming the requirements were met within each approach, it was considered that milk yield and composition were not affected by the type of formulation. Given the assumptions of the study, when compared with MP_2001 formulation, balancing dairy rations using the AA_Rev approach reduced calculated farm N balance by 3.8%, on average from 12.71 to 12.24 g/kg of fat- and protein-corrected milk; it also enhanced farm net income by 4.5%, from 19.00 to 19.70 $CAN/100 kg of fat- and protein-corrected milk, by reducing inclusion of protein concentrate in dairy rations. Calculated animal N efficiency was on average 4.3% higher with AA_Rev than with MP_2001 for mid-lactation cows. This gain in N efficiency would result in a reduction in N2O emission by manure, contributing to a partial decrease of total greenhouse gas emission by 1.7%, through a reduction of N excreted in manure. With the AA_2001 formulation, farm N balance was 1% higher than with MP_2001 formulation while reducing farm net income by 6.4%, due to the need to purchase rumen-protected AA, with no effect on total greenhouse gas emission. Both MP formulations lead to fairly similar outputs. The AA_Rev formulation also indicated that His might be a co-limiting AA with Met in dairy rations balanced with ingredients usually included in Canadian dairy rations. Given the assumptions of the study, balancing dairy rations for 3 EAA (His, Lys, and Met) rather than MP, has some potential positive effects on Canadian dairy farms by increasing net incomes through a reduction of crude protein supply, leading to a decreased environmental effect.
Collapse
Affiliation(s)
- S Binggeli
- Department of Animal Science, Université Laval, Québec, QC, Canada G1V 0A6.
| | - H Lapierre
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - E Charbonneau
- Department of Animal Science, Université Laval, Québec, QC, Canada G1V 0A6
| | - D R Ouellet
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - D Pellerin
- Department of Animal Science, Université Laval, Québec, QC, Canada G1V 0A6
| |
Collapse
|
48
|
Räisänen SE, Lage CFA, Fetter ME, Melgar A, Pelaez AM, Stefenoni HA, Wasson DE, Cueva SF, Zhu X, Miura M, Hristov AN. Histidine dose-response effects on lactational performance and plasma amino acid concentrations in lactating dairy cows: 2. Metabolizable protein-deficient diet. J Dairy Sci 2021; 104:9917-9930. [PMID: 34099295 DOI: 10.3168/jds.2021-20189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
The objective of this experiment was to determine the effect of increasing digestible His (dHis) levels with a rumen-protected (RP) His product on milk production, milk composition, and plasma AA concentrations in lactating dairy cows fed a metabolizable protein (MP)-deficient diet, according to the National Research Council dairy model from 2001. The companion paper presents results on the effect of increasing dHis dose with a MP-adequate basal diet. Twenty Holstein cows, of which 8 were rumen-cannulated, were used in a replicated 4 × 4 Latin square design experiment with four 28-d periods. Treatments were a control diet supplying 1.8% dHis of MP or 37 g/d (dHis1.8) and the control diet supplemented RP-His to provide 2.2, 2.6, or 3.0%, dHis of MP, or 53, 63, and 74 g/d (dHis2.2, dHis2.6, and dHis3.0, respectively). Histidine dose did not affect dry matter intake, but milk yield increased quadratically and energy-corrected milk yield increased linearly with increasing dHis dose. Histidine dose had a quadratic effect on milk fat concentration but did not affect milk fat yield. Lactose concentration decreased linearly, whereas lactose yield increased linearly with increasing dHis dose. There was a tendency for a linear increase in milk true protein concentration, and milk true protein yield increased linearly with dHis dose. Further, plasma His concentration increased linearly with increasing dHis dose and calculated apparent efficiency of His utilization decreased quadratically with increasing dHis supply. Histidine had minor or no effects on rumen fermentation. In the conditions of this experiment, RP-His supplementation of an MP-deficient corn silage-based diet increased milk yield linearly up to a dHis supply of 63 g/d (or 2.6% dHis of MP) and increased feed efficiency, energy-corrected milk yield and milk true protein yield linearly up to a dHis supply of 74 g/d (or 3.0% dHis of MP) in lactating dairy cows.
Collapse
Affiliation(s)
- S E Räisänen
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - C F A Lage
- Department of Animal Science, The Pennsylvania State University, University Park 16802; School of Veterinary Medicine, University of California, Davis, Tulare 93274
| | - M E Fetter
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Agricultural Innovation Institute of Panama (IDIAP), City of Knowledge 07144, Panama
| | - A M Pelaez
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - H A Stefenoni
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - D E Wasson
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - S F Cueva
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - X Zhu
- Department of Animal Science, The Pennsylvania State University, University Park 16802; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - M Miura
- Ajinomoto Co. Inc., Kawasaki, Japan 210-8681
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
49
|
McLain KA, Morris DL, Kononoff PJ. Effect of feeding hydrolyzed feather meal and rumen-protected lysine on milk protein and energy utilization in late-lactation Jersey cows. J Dairy Sci 2021; 104:8708-8720. [PMID: 34053754 DOI: 10.3168/jds.2020-19657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022]
Abstract
Hydrolyzed feather meal (HFM) is a feed that is high in rumen undegradable protein; however, it is low in Lys compared with other high rumen undegradable protein sources. Additionally, processing methods differ by facility, which affects AA composition and protein digestibility. The objective of this study was to use lactating dairy cows to determine the effects of feeding 2 sources of HFM that differed by the amount of blood they contained and also to study the effects of supplementing rumen-protected (RP) Lys when these sources of HFM are fed. In this study, 12 multiparous Jersey cows were enrolled in a triplicated 4 × 4 Latin square with 4 periods 28 d in length. Cows were fed 2 total mixed rations that differed by source of HFM. The HFM was included at 4.5% of the diet dry matter, and one source was produced with the addition of poultry blood. Cows were randomly assigned to 1 of 4 treatment sequences. Treatments were as follows: HFM without added blood and no RP-Lys, HFM with added blood and no RP-Lys, HFM without blood and with RP-Lys (22 g of digestible Lys), and HFM with added blood and RP-Lys. The source of HFM containing blood tended to increase dry matter intake (18.3 vs. 17.3 ± 0.72 kg/d), and increased milk yield (20.5 vs. 18.4 ± 1.31 kg/d) and protein yield (0.788 vs. 0.694 ± 0.040 kg/d). The inclusion of RP-Lys did not affect milk or protein yield. In cows fed HFM containing blood, plasma concentration of Lys (82.1 vs. 70.8 ± 4.06 μM) and His (27.8 vs. 17.9 ± 3.15 μM) was higher. The addition of RP-Lys had no effect on the concentration of either plasma Lys or His. Gross energy intake tended to increase for HFM containing more blood (81.4 vs. 77.3 ± 3.29 Mcal/d); however, no difference was observed for intake of digestible energy (52.0 ± 2.20 Mcal/d) or metabolizable energy (46.4 ± 2.02 Mcal/d). Similar to dry matter intake, N intake increased with the inclusion of HFM containing blood, but crude protein digestibility decreased (61.6 vs. 66.0%). Results of this study highlight that source of HFM can be a factor that affects milk production and that this in part is due to differences in the profile of AA. Additionally, the observation that plasma His and milk protein increased with the consumption of HFM containing more blood suggests that His may have played a role in increasing milk and milk protein yield.
Collapse
Affiliation(s)
- K A McLain
- Department of Animal Science, University of Nebraska, Lincoln 68583
| | - D L Morris
- Department of Animal Science, University of Nebraska, Lincoln 68583
| | - P J Kononoff
- Department of Animal Science, University of Nebraska, Lincoln 68583.
| |
Collapse
|
50
|
Effects of rumen-protected methionine supplementation on the performance of high production dairy cows in the tropics. PLoS One 2021; 16:e0243953. [PMID: 33930018 PMCID: PMC8087032 DOI: 10.1371/journal.pone.0243953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/16/2021] [Indexed: 11/19/2022] Open
Abstract
Increasing methionine availability in dairy cow diets during the first third of lactation may enhance their performance and health. The aim of this study was to determine the effect of supplementing rumen-protected methionine (Smartamine® M, SM) in a lactation diet with protein and energy levels calculated according to the literature. Seventy-six multiparous Holstein cows (39.1 ± 6.8 kg of milk/d and 65 ± 28 DIM) were assigned to 1 of 2 dietary treatments (38/treatment) according to a randomized complete block design with a 2-wk (covariate) and 10-wk experimental period. Treatments were a basal diet (CON; 3.77 Lys:1Met); and CON + 23 g SM (2.97 Lys:1 Met). Individual milk samples were taken every 2 weeks to determine milk composition. Blood was collected from 24 cows on d+30 d to measure plasma AA levels. Body weight and body condition score (BCS) were measured at the beginning and the end of the experiment. The SM diet promoted higher milk yield (41.7 vs. 40.1 kg/d; P = 0.03). Energy-corrected milk yield (41.0 vs. 38.0 kg/d), milk protein yield (1.30 vs. 1.18 kg/d), milk protein (3.14% vs. 2.97%) and casein (2.39% vs. 2.28%) were also different (P < 0.01) as well as milk fat yield (1.42 vs. 1.29 kg/d; P = 0.02). A trend (P = 0.06) for higher milk fat % (3.41% vs. 3.21%) was observed. Both diets resulted in similar body weight, but CON-fed cows tended (P = 0.08) to have higher BCS. Higher plasma methionine levels were determined with SM compared with CON (29.6 vs. 18.4 μM; P < 0.01), but lysine and histidine were not different. Dietary supplementation of RPM improved productive performance by increasing milk yield and milk components yields, suggesting better dietary AA utilization when Met levels are adjusted in Lys-adequate lactation diets.
Collapse
|