1
|
Zhang H, Dan N, Wang YQ, Gou CL. Protection effect of cis 9, trans 11-conjugated linoleic acid on oxidative stress and inflammatory damage in bovine mammary epithelial cells. Sci Rep 2024; 14:26295. [PMID: 39487250 PMCID: PMC11530692 DOI: 10.1038/s41598-024-77711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
The present study was conducted to observe the protective effects of c9, t11- conjugated linoleic acid (CLA) on oxidative stress and inflammation in bovine mammary epithelial cells (BMECs) exposed to H2O2. The BMECs were treated with different concentrations of H2O2 for 8 h, 600 µmol/L was determined to be the damage concentration. Using different concentrations of c9, t11-CLA to process BMECs for 24 h, 50 and 100 µmol/L were determined to be the effective concentrations for subsequent analyses. Thus, four BMEC groups were established: Control group; H2O2 group; 50 µmol/L c9, t11-CLA + H2O2 group; 100 µmol/L c9, t11-CLA + H2O2 group. We observed that the H2O2 group exhibited significantly lower total antioxidant activity (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities and significantly higher secretions of malondialdehyde (MDA), interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α and expressions of IL-1β, IL-6, and IL-8 than the control group (p < 0.05). Pretreatment with c9, t11-CLA enhanced SOD, CAT, and GPx activities and SOD mRNA expression and repressed IL-6 and IL-8 secretion and expression in H2O2-treated BMECs (p < 0.05). In conclusion, c9, t11-CLA treatment efficiently enhanced antioxidant capacity and decreased inflammation induced by H2O2 in BMECs.
Collapse
Affiliation(s)
- Hang Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tong Liao, People's Republic of China
| | - Ni Dan
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tong Liao, People's Republic of China.
| | - Yu-Qiong Wang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tong Liao, People's Republic of China
| | - Chang-Long Gou
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tong Liao, People's Republic of China
| |
Collapse
|
2
|
Badawy S, Liu Y, Guo M, Liu Z, Xie C, Marawan MA, Ares I, Lopez-Torres B, Martínez M, Maximiliano JE, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Conjugated linoleic acid (CLA) as a functional food: Is it beneficial or not? Food Res Int 2023; 172:113158. [PMID: 37689911 DOI: 10.1016/j.foodres.2023.113158] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Conjugated linoleic acid (CLA) has attracted great attention in recent years as a popular class of functional food that is broadly used. It refers to a group of geometric and positional isomers of linoleic acid (LA) with a conjugated double bond. The main natural sources of CLA are dairy products, beef and lamb, whereas only trace amounts occur naturally in plant lipids. CLA has been shown to improve various health issues, having effects on obesity, inflammatory, anti-carcinogenicity, atherogenicity, immunomodulation, and osteosynthesis. Also, compared to studies on humans, many animal researches reveal more positive benefits on health. CLA represents a nutritional avenue to improve lifestyle diseases and metabolic syndrome. Most of these effects are attributed to the two major CLA isomers [conjugated linoleic acid cis-9,trans-11 isomer (c9,t11), and conjugated linoleic acid trans-10,cis-12 isomer (t10,c12)], and their mixture (CLA mix). In contrast, adverse effects of CLA have been also reported, such as glucose homeostasis, insulin resistance, hepatic steatosis and induction of colon carcinogenesis in humans, as well as milk fat inhibition in ruminants, lowering chicken productivity, influencing egg quality and altering growth performance in fish. This review article aims to discuss the health benefits of CLA as a nutraceutical supplement and highlight the possible mechanisms of action that may contribute to its outcome. It also outlines the feasible adverse effects of CLA besides summarizing the recent peer-reviewed publications on CLA to ensure its efficacy and safety for proper application in humans.
Collapse
Affiliation(s)
- Sara Badawy
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Yanan Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhenli Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changqing Xie
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Marawan A Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|
3
|
da Costa Silva Kindelan S, Queiroz MP, Barbosa MQ, Viera VB, Guerra GC, Fernandes de Souza Araújo D, Jacielly dos Santos J, Lucia de Azevedo Oliveira M, Milhomens Ferreira Melo PC, Rufino Freitas JC, Gomes Dutra LM, Frazão Tavares de Melo MF, Barbosa Soares JK. Maternal rat prenatal and neonatal treatment with pequi pulp reduces anxiety and lipid peroxidation in brain tissue of rat offspring at adolescence. Heliyon 2023; 9:e19757. [PMID: 37809698 PMCID: PMC10559064 DOI: 10.1016/j.heliyon.2023.e19757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
The Pequi fruit (Caryocar Brasiliense cambess), typical of the Brazilian cerrado or savannah, is a source of essential fatty acids, carotenoids, and phenolic compounds. The aim of this study was to analyze the effects of consuming this fruit on anxiety behavior and lipid peroxidation in the brains of rats whose mothers were treated (by gavage) during pregnancy and lactation with Pequi fruit (pulp or nuts) at 2000 mg/kg of body weight. Anxiety parameters were assessed using the open field (OF), elevated plus maze (EPM), and light/dark box (LDB) tests. The brain was removed to measure malondialdehyde (MDA) levels. Data were analyzed using One-way Anova (p < 0.05). In the OF, the animals in the pulp group presented more time spent in the central area (20.37 ± 0.73 vs Control: 12.51 ± 0.39; Nuts: 8.28 ± 0.40) and increased locomotion (159.7 ± 6.10) compared to the other groups (Control: 127.3 ± 5.54; Nuts: 139.08 ± 6.57). In the EPM, the pulp group entered into the open arms (8.57 ± 0.36) and stayed more time in the central area (19.44 ± 1.17) compared to the Nuts group (7.14 ± 0.34; 13.00 ± 1.57). In the LDB the pulp group entered more (8.00 ± 0.42 vs Control: 7.16 ± 0.16 and Nuts: 7.42 ± 0.75) and stayed longer in the clear light side (92.18 ± 6.42) than all the other groups (Control: 71.44 ± 3.53; Nuts: 80.57 ± 6.50), respectively. Pulp group presented lower MDA in the brain (55.34 ± 3.04) compared to Control (72.06 ± 4.66) and Nuts (66.57 ± 2.45). We conclude that Pequi pulp consumption during pregnancy and lactation reduces lipid peroxidation in brain tissue and induces anxiolytic-like behavior in rat offspring. These effects were not observed in the Pequi nuts group.
Collapse
Affiliation(s)
- Suedna da Costa Silva Kindelan
- Program of Natural Sciences and Biotechnology, Federal University of Campina Grande, Cuité, Paraiba, Brazil
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | - Michelly Pires Queiroz
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | - Mayara Queiroga Barbosa
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | - Vanessa Bordin Viera
- Program of Natural Sciences and Biotechnology, Federal University of Campina Grande, Cuité, Paraiba, Brazil
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | - Gerlane Coelho Guerra
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Jany Jacielly dos Santos
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | | | | | - Juliano Carlo Rufino Freitas
- Program of Natural Sciences and Biotechnology, Federal University of Campina Grande, Cuité, Paraiba, Brazil
- Education and Health Center, Academic Unit of Biology and Chemistry, Federal University of Campina Grande, Cuité, Pariba, Brazil
| | - Larissa Maria Gomes Dutra
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | | | - Juliana Kessia Barbosa Soares
- Program of Natural Sciences and Biotechnology, Federal University of Campina Grande, Cuité, Paraiba, Brazil
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| |
Collapse
|
4
|
Veshkini A, Ceciliani F, Bonnet M, Hammon HM. Review: Effect of essential fatty acids and conjugated linoleic acid on the adaptive physiology of dairy cows during the transition period. Animal 2023; 17 Suppl 2:100757. [PMID: 36966026 DOI: 10.1016/j.animal.2023.100757] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Cows fed total mixed rations (silage-based) may not receive as much essential fatty acids (EFAs) and conjugated linoleic acids (CLAs) as cows fed pasture-based rations (fresh grass) containing rich sources of polyunsaturated fatty acids. CLA-induced milk fat depression allows dairy cows to conserve more metabolisable energy, thereby shortening the state of negative energy balance and reducing excessive fat mobilisation at early lactation. EFAs, particularly α-linolenic acid, exert anti-inflammatory and antioxidative properties, thereby modulating immune functions. Thus, combined EFA and CLA supplementation seems to be an effective nutritional strategy to relieve energy metabolism and to improve immune response, which are often compromised during the transition from late pregnancy to lactation in high-yielding dairy cows. There has been extensive research on this idea over the last two decades, and despite promising results, several interfering factors have led to varying findings, making it difficult to conclude whether and under what conditions EFA and CLA supplementations are beneficial for dairy cows during the transition period. This article reviews the latest studies on the effects of EFA and CLA supplementation, alone or in combination, on dairy cow metabolism and health during various stages around parturition. Our review article summarises and provides novel insights into the mechanisms by which EFA and/or CLA influence markers of metabolism, energy homeostasis and partitioning, immunity, and inflammation revealed by a deep molecular phenotyping.
Collapse
Affiliation(s)
- Arash Veshkini
- Institute of Nutritional Physiology Research, Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany; Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy.
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Muriel Bonnet
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Harald Michael Hammon
- Institute of Nutritional Physiology Research, Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| |
Collapse
|
5
|
Veshkini A, Gnott M, Vogel L, Kröger-Koch C, Tuchscherer A, Tröscher A, Bernabucci U, Trevisi E, Starke A, Mielenz M, Bachmann L, Hammon HM. Abomasal infusion of essential fatty acids and conjugated linoleic acid during late pregnancy and early lactation affects immunohematological and oxidative stress markers in dairy cows. J Dairy Sci 2023:S0022-0302(23)00231-X. [PMID: 37173257 DOI: 10.3168/jds.2022-22514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/05/2023] [Indexed: 05/15/2023]
Abstract
Oxidative stress and inflammation, as natural parts of metabolic adaptations during the transition from late gestation to early lactation, are critical indicators of dairy cows' metabolic health. This study was designed to investigate the effects of abomasal infusion of essential fatty acids (EFA), particularly α-linolenic acid, and conjugated linoleic acid (CLA) on plasma, erythrocyte, and liver markers of oxidative stress in dairy cows during the transition period. Rumen-cannulated German Holstein cows (n = 38) in their second lactation (11,101 ± 1,118 kg milk/305 d, mean ± standard deviation) were abomasally infused with one of the following treatments from d -63 antepartum until d 63 postpartum (PP): CTRL (n = 9; 76 g/d coconut oil); EFA (n = 9; 78 g/d linseed plus 4 g/d safflower oil); CLA (n = 10; isomers cis-9,trans-11 and trans-10,cis-12 CLA; 38 g/d); and EFA+CLA (n = 10; 120 g/d). Hematological parameters as well as markers of oxidative status were measured in plasma, erythrocytes, and liver before and after calving. Immunohematological parameters, including erythrocyte number, hematocrit, hemoglobin, mean corpuscular hemoglobin, leukocytes, and basophils, were affected by time, and their peak levels were observed on the day after calving. The oxidative stress markers glutathione peroxidase 1 and reactive oxygen metabolites in plasma and erythrocytes were both affected by time, exhibiting the highest levels on d 1 PP, whereas β-carotene, retinol, and tocopherol were at their lowest levels at the same time. Immunohematological parameters were only marginally affected by fatty acid treatment in a time-dependent manner. As such, lymphocyte and atypical lymphocyte counts were both significantly highest in the groups that received EFA at d 1 PP. Moreover, EFA supplementation increased the mean corpuscular volume and showed a trend for induction of mean corpuscular hemoglobin compared with the CLA group during the transition period. The PP mean thrombocyte volume was higher in the EFA than in the CLA group (except for d 28) and both EFA and CLA reduced number of thrombocytes and thrombocrit at distinct time points. Hepatic mRNA abundance of markers related to oxidative status, including glutathione peroxidase (GPX-1) and catalase (CAT), was lower (P < 0.05) in EFA-treated than non-EFA-treated cows at d 28 PP. Dairy cows at the onset of lactation were characterized by induced markers of both oxidative stress and inflammation. Supplementing EFA and CLA had minor and time-dependent effects on markers of oxidative stress in plasma, erythrocytes, and liver. A comparison of EFA supplementation with CLA or CTRL showed higher immunohematological response at d 1 PP and lower hepatic antioxidant levels by d 28 PP. Supplementation with EFA+CLA had only a minor effect on oxidative markers, which were more similar to those with the EFA treatment. Altogether, despite the time-dependent differences, the current findings show only minor effects of EFA and CLA supplementation in the prevention of early lactation-induced oxidative stress.
Collapse
Affiliation(s)
- A Veshkini
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - M Gnott
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - L Vogel
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C Kröger-Koch
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Tuchscherer
- Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | | | - U Bernabucci
- Department of Agronomic and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - A Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - M Mielenz
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - L Bachmann
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; Faculty of Agriculture and Food Sciences, University of Applied Science Neubrandenburg, 17033 Neubrandenburg, Germany
| | - H M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
6
|
A Novel TLR4-SYK Interaction Axis Plays an Essential Role in the Innate Immunity Response in Bovine Mammary Epithelial Cells. Biomedicines 2022; 11:biomedicines11010097. [PMID: 36672605 PMCID: PMC9855420 DOI: 10.3390/biomedicines11010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Mammary gland epithelium, as the first line of defense for bovine mammary gland immunity, is crucial in the process of mammary glands’ innate immunity, especially that of bovine mammary epithelial cells (bMECs). Our previous studies successfully marked SYK as an important candidate gene for mastitis traits via GWAS and preliminarily confirmed that SYK expression is down-regulated in bMECs with LPS (E. coli) stimulation, but its work mechanism is still unclear. In this study, for the first time, in vivo, TLR4 and SYK were colocalized and had a high correlation in mastitis mammary epithelium; protein−protein interaction results also confirmed that there was a direct interaction between them in mastitis tissue, suggesting that SYK participates in the immune regulation of the TLR4 cascade for bovine mastitis. In vitro, TLR4 also interacts with SYK in LPS (E. coli)-stimulated or GBS (S. agalactiae)-infected bMECs, respectively. Moreover, TLR4 mRNA expression and protein levels were little affected in bMECsSYK- with LPS stimulation or GBS infection, indicating that SYK is an important downstream element of the TLR4 cascade in bMECs. Interestingly, IL-1β, IL-8, NF-κB and NLRP3 expression in LPS-stimulated or GBS-infected bMECsSYK- were significantly higher than in the control group, while AKT1 expression was down-regulated, implying that SYK could inhibit the IL-1β, IL-8, NF-κB and NLRP3 expression and alleviate inflammation in bMECs with LPS and GBS. Taken together, our solid evidence supports that TLR4/SYK/NF-κB signal axis in bMECs regulates the innate immunity response to LPS or GBS.
Collapse
|
7
|
Viola I, Tizzani P, Perona G, Lussiana C, Mimosi A, Ponzio P, Cornale P. Hazelnut Skin in Ewes' Diet: Effects on Colostrum Immunoglobulin G and Passive Transfer of Immunity to the Lambs. Animals (Basel) 2022; 12:ani12223220. [PMID: 36428447 PMCID: PMC9686705 DOI: 10.3390/ani12223220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Passive immunity transfer has a pivotal role in newborn lambs, where the colostrum represents the primary source of immunoglobulins. This study hypothesized that the high content in polyphenolic compounds, mono- and poly-unsaturated fatty acids, and vitamin E of hazelnut skin affects blood and colostrum immunoglobulin G (IgG) concentration and related gamma-glutamyl-transferase (GGT) and lactate dehydrogenase (LDH) levels in sheep and their lambs. In the last 45 days of pregnancy, ewes were divided into a control (CTR) and a hazelnut skin supplemented group (HZN). Blood and colostrum were collected from ewes and lambs before the first suckling, at 24 and 48 h after birth, then IgG concentration, GGT and LDH activity levels were measured. IgG concentration in the colostrum and in lamb's serum were significantly greater in HZN than CTR. No significant difference was detected for ewe's blood. A significant positive correlation was found between IgG and GGT in lambs' serum and colostrum, between IgG and LDH, as well as between GGT and LDH in lambs' serum and colostrum. Our results suggest that hazelnut skin supplementation influences IgG colostrum concentration, with improved immune passive transfer to the suckling lambs. The transfer of maternal derived immune factors is confirmed by the GGT and LDH enzyme activity levels.
Collapse
Affiliation(s)
- Irene Viola
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Paolo Tizzani
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Giovanni Perona
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Carola Lussiana
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Antonio Mimosi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Patrizia Ponzio
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Paolo Cornale
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
- Correspondence:
| |
Collapse
|
8
|
Cis-9, Trans-11 CLA Alleviates Lipopolysaccharide-Induced Depression of Fatty Acid Synthesis by Inhibiting Oxidative Stress and Autophagy in Bovine Mammary Epithelial Cells. Antioxidants (Basel) 2021; 11:antiox11010055. [PMID: 35052560 PMCID: PMC8773093 DOI: 10.3390/antiox11010055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Lipopolysaccharide (LPS) is the dominating endotoxin of Gram-negative bacteria, which can cause mastitis. Bovine mammary epithelial cells (BMECs), as major components of the mammary gland, usually suffer LPS challenge. Cis-9, trans-11 conjugated linoleic acid (CLA) has been reported to have anti-inflammatory characteristics, while its anti-oxidative ability to maintain cellular homeostasis in BMECs under LPS challenge is limited. Therefore, we studied whether cis-9, trans-11 CLA can restore the disturbance of cellular homeostasis indicated by the redox status and autophagy level caused by LPS and have an effect on cellular function- milk fat metabolism. For oxidative stress, LPS challenge promoted the formation of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) and decreased the concentration of glutathione. Anti-oxidative signaling regulated by transcription factor nuclear factor, erythroid 2 like 2 (Nrf2) was also depressed by LPS at the mRNA and protein level. However, cis-9, trans-11 CLA pretreatment downregulated the formation of ROS and TBARS and upregulated the expression of antioxidative enzymes. As a part of innate immunity, autophagy was also motivated by LPS challenge, while CLA decreased the autophagy level. LPS and H2O2 inhibited milk fat synthesis-related transcription factor sterol regulatory element binding protein (SREBP1), peroxisome proliferator activated receptor gamma (PPARG) and their downstream enzymes. Furthermore, 50 uM cis-9, trans-11 CLA promoted the mRNA and protein abundance of milk fat synthesis-related genes and lipid droplet formation in BMECs. In conclusion, LPS challenge disturbed the cellular homeostasis and depressed milk fat synthesis in BMECs; while cis-9, trans-11 CLA alleviated oxidative stress and decreased autophagy level, thus promoting milk fat synthesis, which offers a natural therapeutic strategy for mastitis.
Collapse
|
9
|
Liu XX, Zhang HY, Song X, Yang Y, Xiong ZQ, Xia YJ, Ai LZ. Reasons for the differences in biotransformation of conjugated linoleic acid by Lactobacillus plantarum. J Dairy Sci 2021; 104:11466-11473. [PMID: 34454770 DOI: 10.3168/jds.2021-20532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/06/2021] [Indexed: 01/02/2023]
Abstract
Conjugated linoleic acid (CLA) has attracted a great deal of attention for its functions in weight loss, regulation of metabolism, and antioxidant capabilities. Many microorganisms, including rumen bacteria, propionic acid bacilli, and Lactobacillus, have CLA biotransformation ability. The CLA production capability of different species is different, as are those different strains of the same species. However, the reasons for this discrepancy remain unclear. In this study, 14 strains of Lactobacillus plantarum were found, through gas chromatography-mass spectrometry analysis, to be capable of converting linoleic acid to CLA. The transcriptional levels of CLA-related genes in the high- (AR195, WCFS1, and AR488) and low-yield strains (AR176, AR269, and AR611) were analyzed using real-time quantitative PCR. The transcriptional levels of cla-hy, cla-dh, and cla-dc in AR195 were the lowest in the exponential phase, but it had the highest CLA yield. Correlation analysis showed no correlation between CLA yield and the transcription level of these genes in the exponential phase. The results showed that a high transcriptional level in the exponential phase of cla-hy, cla-dh, and cla-dc did not necessarily lead to high CLA production. Investigation of the transcription level in different growth phases showed that the CLA biotransformation abilities of Lactobacillus plantarum strains significantly depended on the transcriptional maintenance of cla-hy, cla-dh, and cla-dc. We observed a correlation between CLA production and increased levels of cla-hy transcription, but a prerequisite is needed: the transcription of cla-dh and cla-dc should be upregulated and maintained a high transcriptional level during the platform period. This study provides a new strategy for screening high CLA-producing strains. It also lays a theoretical foundation for regulating CLA biotransformation and increasing the yield of CLA.
Collapse
Affiliation(s)
- Xin-Xin Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hong-Yun Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhi-Qiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yong-Jun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lian-Zhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
10
|
Rojas MM, Villalpando DM, Alexander-Aguilera A, Ferrer M, García HS. Effect of CLA supplementation on factors related to vascular dysfunction in arteries of orchidectomized rats. Prostaglandins Other Lipid Mediat 2021; 157:106586. [PMID: 34438054 DOI: 10.1016/j.prostaglandins.2021.106586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/22/2023]
Abstract
The vascular endothelium is a monolayer of flat epithelial cells located between the circulating blood and the underlying connective tissue. It conveys key functions that when impaired, lead to endothelial dysfunction. This condition is responsible for the pathogenesis of vascular diseases. The cardioprotective effect of sex hormones is widely known; hence, a murine orchidectomized model has been employed to study the effects caused by their deficiency. In the search for approaches to maintain vascular health, the effect of dietary fatty acids as CLA on cardiovascular diseases has been studied. Some proven beneficial properties of CLA are antioxidant, antiatherogenic and anti-inflammatory. Our objective was to evaluate the effect of a diet supplemented with 1.8 % (w/w) of CLA, administered during eight weeks, on the amount of cholesterol oxidation products (COPs) produced by orchidectomy and on factors related to vascular dysfunction in the aorta and the mesenteric arteries. The diet with CLA prevented the increase in prostanoids formation and maintained the normal physiological conditions of NO and antioxidant activity. In addition, it prevented the increase in cholesterol and COPs at the vascular wall. CLA-supplemented diet prevented the orchidectomy-induced alterations on prostanoids, NO and COPs and also improved the antioxidant activity. These findings could contribute to understand the mechanisms of actions of CLA involved in the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Mibsam M Rojas
- Food Research and Development Unit, National Technology of Mexico/Technological Institute of Veracruz, Ver., Mexico
| | - Diva M Villalpando
- Physiology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | | | - Mercedes Ferrer
- Physiology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.
| | - Hugo S García
- Food Research and Development Unit, National Technology of Mexico/Technological Institute of Veracruz, Ver., Mexico.
| |
Collapse
|
11
|
Ceciliani F, Audano M, Addis MF, Lecchi C, Ghaffari MH, Albertini M, Tangorra F, Piccinini R, Caruso D, Mitro N, Bronzo V. The untargeted lipidomic profile of quarter milk from dairy cows with subclinical intramammary infection by non-aureus staphylococci. J Dairy Sci 2021; 104:10268-10281. [PMID: 34147223 DOI: 10.3168/jds.2020-19975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/06/2021] [Indexed: 11/19/2022]
Abstract
This observational study determined the lipidome of cow milk during subclinical intramammary infection (IMI) by non-aureus staphylococci (NAS), also defined as coagulase-negative staphylococci, using an untargeted approach. Among the pathogens causing bovine IMI, NAS have become the most frequently isolated bacteria from milk samples. Although the application of system biology approaches to mastitis has provided pivotal information by investigating the transcriptome, proteome, peptidome, and metabolome, the milk lipidome during mammary gland inflammation remains undisclosed. To cover this gap, we determined the milk lipidome of 17 dairy cows with IMI caused by NAS (NAS-IMI), and we compared the results with those of healthy quarter milk from 11 cows. The lipidome was determined following a liquid chromatography-quadrupole time-of-flight mass spectrometry approach. Sixteen subclasses of lipids were identified in both groups of animals. From 2,556 measured lipids, the abundance of 597 changed more than 10-fold in quarter milk with NAS-IMI compared with healthy quarters. The results demonstrate the influence of NAS-IMI on the milk lipidome, implying significant changes in lipid species belonging to the family of triacylglycerols and sphingomyelins, and contribute to the understanding of inflammatory processes in the bovine udder, highlighting potential novel biomarkers for improving mastitis diagnostics.
Collapse
Affiliation(s)
- F Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy.
| | - M Audano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - M F Addis
- Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy
| | - C Lecchi
- Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy
| | - M H Ghaffari
- Institute for Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - M Albertini
- Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy
| | - F Tangorra
- Department of Veterinary Science for Health, Animal Production and Food Safety, 26900 Lodi, Italy
| | - R Piccinini
- Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy
| | - D Caruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - N Mitro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - V Bronzo
- Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy
| |
Collapse
|
12
|
Abazarikia A, Zhandi M, Towhidi A, Shakeri M, Yousefi AR, Aliyan A. Conjugated linoleic acid improves meiotic spindle morphology and developmental competence of heat-stressed bovine oocyte. Theriogenology 2021; 172:67-72. [PMID: 34116267 DOI: 10.1016/j.theriogenology.2021.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
This study was conducted to elucidate the effects of introducing conjugated linoleic acid (CLA) on meiotic spindle organization of heat stressed (HS) matured oocytes and the resulting blastocysts DNA methylation as well as the expression of the genes involved in DNA methylation (DNMT3a, DNMT3b and DNMT1). Immature bovine oocytes were cultured at 41 °C for the first 12 h and 38.5 °C for the second 12 h of maturation time in the presence of 0 and 50 μM of CLA (HS and HS + CLA groups, respectively). A group of oocytes cultured in medium with no CLA supplementation at normal temperature (38.5 °C for 24 h) was considered as negative control (C). Percentage of normal spindle, and cleavage and blastocyst rates were significantly decreased in the HS group compared to the C group (P < 0.05). The global DNA methylation and expression level of DNMT3a gene were increased in HS group compared to the C groups (P < 0.05), while the expression level of DNMT3b was decreased. The CLA supplementation improved the percentage of normal microtubules shape in MII oocytes as well as the developmental competence in the HS + CLA group compared to the HS group (P < 0.05). However, global DNA methylation and expression level of DNMT3a/b were not ameliorated by CLA supplementation (P > 0.05). Based on the obtained results, CLA proved to be capable of improving the oocyte developmental competence as well as decreased the aberrant spindle organization of heat-stressed oocytes and it would not cause epigenetic alteration in the obtained blastocysts.
Collapse
Affiliation(s)
- Amirhossein Abazarikia
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahdi Zhandi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Armin Towhidi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Malak Shakeri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ali Reza Yousefi
- Department of Pathology and Experimental Animals, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Amir Aliyan
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Khatam University, Tehran 1991633356, Iran
| |
Collapse
|
13
|
Yang C, Zhu B, Ye S, Fu Z, Li J. Isomer-Specific Effects of cis-9, trans-11- and trans-10, cis-12-CLA on Immune Regulation in Ruminal Epithelial Cells. Animals (Basel) 2021; 11:ani11041169. [PMID: 33921651 PMCID: PMC8072642 DOI: 10.3390/ani11041169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The significant contribution of rumen microbiota to the balance of the innate immunity of rumen epithelium has been extensively verified. As the natural rumen microbial metabolites, information regarding the immunoprotective effects of different conjugated linoleic acid (CLA) isomers on ruminal epithelial cells (RECs) is limited. In this study, the 100 μM trans-10,cis-12-CLA exerted better anti-inflammatory effects than the cis-9,trans-11-CLA by significantly downregulating the expression of genes related to inflammation, cell proliferation and migration in RECs upon lipopolysaccharide (LPS) stimulation. The trans-10,cis-12-CLA, but not cis-9,trans-11-CLA, significantly suppressed the biological signals of gene ontology (GO) terms’ response to lipopolysaccharide, the regulation of signal transduction and cytokine production and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways NF-κB, chemokine, NOD-like receptor, Hippo, PI3K-Akt, TGF-β and Rap1 signaling in RECs upon LPS stimulation. Furthermore, pretreatment with trans-10,cis-12-CLA significantly reduced the expression of lipogenic genes and the biosynthesis of the unsaturated fatty acid pathway in RECs compared with the LPS group, however, cis-9,trans-11-CLA exhibited the opposite results. These results suggest the distinct isomer differences of CLA in the regulation of inflammatory responses and adipocytokine signaling in RECs and will provide important references for determining their target use in the future. Abstract In this study, we used transcriptomics and qPCR to investigate the potential immunoprotective effects of different conjugated linoleic acid (CLA) isomers, the natural rumen microbial metabolites, on lipopolysaccharide (LPS)-induced inflammation of ruminal epithelial cells (RECs) in vitro. The results showed that 100 μM trans-10,cis-12-CLA exerted higher anti-inflammatory effects than cis-9,trans-11-CLA by significantly downregulating the expression of genes related to inflammation, cell proliferation and migration in RECs upon LPS stimulation. Transcriptomic analyses further indicated that pretreatment with trans-10,cis-12-CLA, but not cis-9,trans-11-CLA, significantly suppressed the biological signals of GO terms’ response to LPS, the regulation of signal transduction and cytokine production and KEGG pathways NF-κB, chemokine, NOD-like receptor, Hippo, PI3K-Akt, TGF-β and Rap1 signaling in RECs upon LPS stimulation. Furthermore, pretreatment with trans-10,cis-12-CLA significantly reduced the expression of lipogenic genes and the biosynthesis of the unsaturated fatty acid pathway in RECs compared with the LPS group, however, cis-9,trans-11-CLA exhibited the opposite results. These results suggest the distinct isomer differences of CLA in the regulation of inflammatory responses and adipocytokine signaling in RECs and will provide important references for determining their target use in the future.
Collapse
Affiliation(s)
- Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (C.Y.); (B.Z.); (S.Y.)
| | - Binna Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (C.Y.); (B.Z.); (S.Y.)
| | - Shijie Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (C.Y.); (B.Z.); (S.Y.)
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (C.Y.); (B.Z.); (S.Y.)
- Correspondence: (Z.F.); (J.L.)
| | - Jinjun Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (Z.F.); (J.L.)
| |
Collapse
|
14
|
Ávila G, Catozzi C, Pravettoni D, Sala G, Martino P, Meroni G, Lecchi C, Ceciliani F. In vitro effects of conjugated linoleic acid (CLA) on inflammatory functions of bovine monocytes. J Dairy Sci 2020; 103:8554-8563. [PMID: 32684447 DOI: 10.3168/jds.2020-18659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022]
Abstract
The conjugated linoleic acid (CLA) isomers, a group of naturally occurring isomers of the essential fatty acid (FA) linoleic acid, have received special attention in animal and human nutrition. Although they have long been used as dietary integrators in dairy cows, the effects of CLA isomers on bovine immune cells remain mostly undisclosed. The present study aimed to cover this gap and investigate the in vitro effects of CLA on inflammatory functions, including chemotaxis, phagocytosis, killing capability, and extracellular respiratory burst of purified bovine monocytes (CD14+). The apoptosis rate of monocytes was addressed as well. Once assessed, the effects of different concentrations (10, 50, 100, and 500 μM) of the 2 main CLA isomers, namely cis-9,trans-11 and trans-10,cis-12, the experiments were carried out using a concentration of 50 μM of the CLA isomers, both individually and in a mixture (50:50). The immunomodulatory activities of linoleic acid, an essential FA, and stearic acid, a saturated FA, were also investigated. Only the 50:50 CLA mixture was able to reduce monocyte apoptosis and to increase the extracellular respiratory burst during experimental proinflammatory conditions, as assessed by measuring production of reactive oxygen species. Linoleic acid and CLA had no effects on chemotaxis, phagocytosis, or killing capability. Remarkably, treatment of monocytes with stearic acid significantly reduced their chemotactic capability. The present results demonstrated that CLA isomers do have immunomodulatory effects on some functions of bovine monocytes, and that the mixture of the 2 CLA isomers is more effective than the CLA isomers individually.
Collapse
Affiliation(s)
- G Ávila
- Department of Veterinary Medicine, Università Degli Studi di Milano, 26900, Milano, Italy
| | - C Catozzi
- Department of Veterinary Medicine, Università Degli Studi di Milano, 26900, Milano, Italy
| | - D Pravettoni
- Department of Veterinary Medicine, Università Degli Studi di Milano, 26900, Milano, Italy
| | - G Sala
- Department of Veterinary Medicine, Università Degli Studi di Milano, 26900, Milano, Italy
| | - P Martino
- Department of Veterinary Medicine, Università Degli Studi di Milano, 26900, Milano, Italy
| | - G Meroni
- Department of Veterinary Medicine, Università Degli Studi di Milano, 26900, Milano, Italy
| | - C Lecchi
- Department of Veterinary Medicine, Università Degli Studi di Milano, 26900, Milano, Italy
| | - F Ceciliani
- Department of Veterinary Medicine, Università Degli Studi di Milano, 26900, Milano, Italy.
| |
Collapse
|
15
|
Effect of Supplementation of Herd Diet with Olive Cake on the Composition Profile of Milk and on the Composition, Quality and Sensory Profile of Cheeses Made Therefrom. Animals (Basel) 2020; 10:ani10060977. [PMID: 32512814 PMCID: PMC7341197 DOI: 10.3390/ani10060977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Replacing conventional feed with waste biomass produced by crop-industrial processes can be a good practice for the sustainability of crop-livestock systems and an interesting solution for their disposal—as long as they maintain the quality of products. Considering the relationship between feeding management and qualitative profile in products of animal origin, the aim of our study was to assess the effect of dietary olive cake supplementation on nutritional quality, fatty acid composition, volatile and sensory profile of milk and the cheese produced by dairy cows. The experiment was carried out on eighty-four healthy dairy Friesian cows, divided into two homogenous groups. Animals were fed with a conventional diet (CTR group) and a conventional diet supplemented with dried olive cake (OC group). Data showed that olive cake utilization in the diet of lactating dairy cows may modify the quality of dairy products. The increased unsaturated fatty acids (oleic acid, vaccenic acid and CLA) and decreased SFA (short- and medium-chain fatty acids) suggest a positive role of olive cake in improving the nutritional and nutraceutical properties of the cheese. Moreover, the olive cake affected not only the volatile profile of the cheese, but also its appearance, smell and taste, which are associated with a higher score of acceptance. Abstract Aim of the present study was to assess the effect of dietary dried partially destoned olive cake supplement on nutritional quality and sensory profile of milk and cheese produced by dairy cows. The experiment was carried out on eighty-four healthy dairy Friesian cows divided into two homogenous groups. The control group (CTR) received a conventional diet, whereas the experimental group (OC) received a conventional diet supplemented with olive cake as 15% of DM. The trial lasted five months. Monthly, on individual milk samples, yield and physical-chemical parameters were determined. Milk was used for the artisanal cheese production. On 10 samples of cheese for each group, physical-chemical and fatty acid profile were determined. Electronic nose analysis and sensory evaluation were performed. Data were analyzed by ANOVA. The diet affected (p < 0.05) the milk yield, exclusively in September. Yield and quality of cheese of OC group after 60 d of ripening showed higher (p < 0.05) yield, moisture and fat content, lower (p < 0.05) pH, protein, salt and ash content, higher (p < 0.01) MUFA and PUFA and CLA content, lower (p < 0.05) SFA, higher (p < 0.01) UFA/SFA and hypocholesterolemic/hypercholesterolemic ratios, better (p < 0.01) atherogenic and thrombogenic indices. Data show dietary olive cake supplementation in lactating dairy cows improves nutritional and nutraceutical properties of cheese, volatile profile and level of assessors’ acceptance.
Collapse
|
16
|
Ianni A, Martino C, Innosa D, Bennato F, Grotta L, Martino G. Zinc supplementation of lactating dairy cows: effects on chemical-nutritional quality and volatile profile of Caciocavallo cheese. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:825-835. [PMID: 31480170 PMCID: PMC7206391 DOI: 10.5713/ajas.19.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/06/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of the present study was to investigate the effect of dietary zinc supplementation of Friesian cows on chemical-nutritional and aromatic properties of Caciocavallo cheese after 7 days (C7) and 120 days (C120) of ripening. METHODS Twenty eight Friesian cows, balanced for parity, milk production and days in milk, were randomly assigned to 2 groups. The control group (CG) was fed with a conventional complete diet, while the experimental group (zinc group, ZG) received a daily zinc supplementation of 60 mg for kg of dry complete feed. During the experimental period, the milk yield was monitored and samples of milk and caciocavallo cheese were collected and analyzed for chemical-nutritional composition and aromatic profile. RESULTS The enrichment of dairy cows diet with zinc, did not influence milk yield and composition, however a marked reduction of somatic cell count was evidenced. Both in milk and cheese the ZG samples were characterized by a lower concentration of satured fatty acids and an increase in oleic, vaccenic and rumenic acids. The aromatic profile of dairy products was also positively affected by dietary zinc intake, with an increase in concentration of carboxylic acids, esters and lactones. CONCLUSION The present results suggest a positive role of dietary zinc intake in improving the quality of bovine milk and related cheese, in particular for the increase in concentration of bioactive fatty acids such as rumenic acid. The changes evidenced in cheese through the analysis of the volatile profile, would be consistent with the development of interesting organoleptic properties, although further evaluations should be performed to confirm the consumer acceptability of these changes.
Collapse
Affiliation(s)
- Andrea Ianni
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Camillo Martino
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Denise Innosa
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Francesca Bennato
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Lisa Grotta
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Giuseppe Martino
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
17
|
Haubold S, Kröger-Koch C, Starke A, Tuchscherer A, Tröscher A, Kienberger H, Rychlik M, Bernabucci U, Trevisi E, Hammon HM. Effects of abomasal infusion of essential fatty acids and conjugated linoleic acid on performance and fatty acid, antioxidative, and inflammatory status in dairy cows. J Dairy Sci 2019; 103:972-991. [PMID: 31704022 DOI: 10.3168/jds.2019-17135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/23/2019] [Indexed: 12/26/2022]
Abstract
The objective of this study was to test the effects of essential fatty acids (EFA), particularly α-linolenic acid, and conjugated linoleic acid (CLA) supplementation on fatty acid (FA) composition, performance, and systemic and hepatic antioxidative and inflammatory responses in dairy cows. Four cows (126 ± 4 d in milk) were investigated in a 4 × 4 Latin square and were abomasally infused with 1 of the following for 6 wk: (1) coconut oil (control treatment, CTRL; 38.3 g/d; providing saturated FA), (2) linseed and safflower oil (EFA treatment; 39.1 and 1.6 g/d, respectively; providing mainly α-linolenic acid), (3) Lutalin (BASF, Ludwigshafen, Germany; CLA treatment; cis-9,trans-11 and trans-10,cis-12 CLA, 4.6 g/d each), (4) or EFA+CLA. The initial dosage was doubled every 2 wk, resulting in 3 dosages (dosage 1, 2, and 3). Cows were fed a corn silage-based total mixed ration with a high n-6/n-3 FA ratio. Dry matter intake and milk yield were recorded daily, and milk composition was measured weekly. The FA compositions of milk fat and blood plasma were analyzed at wk 0, 2, 4, and 6. The plasma concentration and hepatic mRNA abundance of parameters linked to the antioxidative and inflammatory response were analyzed at wk 0 and 6 of each treatment period. Infused FA increased in blood plasma and milk of the respective treatment groups in a dose-dependent manner. The n-6/n-3 FA ratio in milk fat was higher in CTRL and CLA than in EFA and EFA+CLA. The sum of FA <C16 in milk fat decreased in CLA and EFA+CLA in a dosage-dependent manner. Energy-corrected milk and milk fat decreased in CLA and EFA+CLA in a dosage-dependent manner and were higher in EFA and CTRL than in CLA at dosages 2 and 3. Energy balance tended to be highest in CLA cows. Milk protein content was lower in CLA and EFA+CLA than in CTRL. Milk urea concentration decreased in CLA and EFA+CLA in a dosage-dependent manner and was lower in CLA and EFA+CLA than in EFA and CTRL at dosages 2 and 3. Milk citrate concentration increased in CLA in a dosage-dependent manner and was higher in CLA and EFA+CLA than in EFA and CTRL. Glutathione peroxidase activity in blood plasma was lower in CTRL than in EFA, and plasma concentration of β-carotene increased in EFA and EFA+CLA with dosage. Increased milk citrate pointed at reduced de novo FA synthesis and a better antioxidative status in milk due to CLA treatment. Supplementation with CLA may also affect milk protein synthesis, but EFA and CLA treatment did not influence the inflammatory status in a consistent manner in mid-lactating cows.
Collapse
Affiliation(s)
- S Haubold
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C Kröger-Koch
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - A Tuchscherer
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | | | - H Kienberger
- Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, 85354 Freising, Germany
| | - M Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, 85354 Freising, Germany
| | - U Bernabucci
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - H M Hammon
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
18
|
Caroprese M, Ciliberti M, Albenzio M, Marino R, Santillo A, Sevi A. Role of antioxidant molecules in milk of sheep. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Abazarikia AH, Zhandi M, Shakeri M, Towhidi A, Yousefi AR. In vitro supplementation of trans-10, cis-12 conjugated linoleic acid ameliorated deleterious effect of heat stress on bovine oocyte developmental competence. Theriogenology 2019; 142:296-302. [PMID: 31708194 DOI: 10.1016/j.theriogenology.2019.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 11/26/2022]
Abstract
Environmental stresses, such as heat stress (HS), have been shown to have diverse effects on the developmental competence of oocytes. The aim of this study was to determine the effect of exogenous conjugated linoleic acid (CLA) supplementation in maturation medium on bovine oocyte maturation and developmental competence under HS condition. Accordingly, cumulus-oocyte complexes (COCs) were cultured at 41 °C and 38.5 °C for the first and second 12 h of maturation in the presence of 0 (PC), 50 (CLA50-HS) and 100 (CLA100-HS) μM CLA. Also, a group of COCs were cultured at 38.5 °C for 24 h of maturation without CLA supplementation as negative control (NC). Nuclear maturation, level of intracellular glutathione (GSH), reactive oxygen species (ROS) content, cleavage and blastocyst rates as well as relative expression of BAX, and BCL2 genes in blastocysts were investigated. Our finding for the PC and NC groups revealed that HS decreased the percentage of MII oocytes, cleavage and blastocyst rates (P < 0.05). Moreover, HS lead to an increase in ROS levels and relative expression of BAX gene, decreased the intracellular content of GSH and relative expression of BCL2 gene (P < 0.05). However, the cleavage and blastocyst rates tended to increase in the CLA-supplemented groups compared to PC group (p < 0.10). Also, ROS and GSH levels in the matured oocytes decreased and increased in the CLA50-HS group compared to the PC group (P < 0.05), respectively. The ratio of expression levels of BAX to BCL2 genes was not different between the PC and CLA50-HS groups (P > 0.05). These findings suggest that HS has undesirable effects on the maturation competence of bovine oocyte and subsequent embryo development while administration of CLA can ameliorate some of adverse effects of HS.
Collapse
Affiliation(s)
- Amir Hossein Abazarikia
- Department of Animal Science, Faculty College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahdi Zhandi
- Department of Animal Science, Faculty College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Malak Shakeri
- Department of Animal Science, Faculty College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Armin Towhidi
- Department of Animal Science, Faculty College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ali Reza Yousefi
- Department of Pathology and Experimental Animals, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Iran
| |
Collapse
|
20
|
Yang F, Chen F, Li L, Yan L, Badri T, Lv C, Yu D, Zhang M, Jang X, Li J, Yuan L, Wang G, Li H, Li J, Cai Y. Three Novel Players: PTK2B, SYK, and TNFRSF21 Were Identified to Be Involved in the Regulation of Bovine Mastitis Susceptibility via GWAS and Post-transcriptional Analysis. Front Immunol 2019; 10:1579. [PMID: 31447828 PMCID: PMC6691815 DOI: 10.3389/fimmu.2019.01579] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022] Open
Abstract
Bovine mastitis is a common inflammatory disease caused by multiple factors in early lactation or dry period. Genome wide association studies (GWAS) can provide a convenient and effective strategy for understanding the biological basis of mastitis and better prevention. 2b-RADseq is a high-throughput sequencing technique that offers a powerful method for genome-wide genetic marker development and genotyping. In this study, single nucleotide polymorphisms (SNPs) of the immune-regulated gene correlative with mastitis were screened and identified by two stage association analysis via GWAS-2b-RADseq in Chinese Holstein cows. We have screened 10,058 high quality SNPs from 7,957,920 tags and calculated their allele frequencies. Twenty-seven significant SNPs were co-labeled in two GWAS analysis models [Bayesian (P < 0.001) and Logistic regression (P < 0.01)], and only three SNPs (rs75762330, C > T, PIC = 0.2999; rs88640083, A > G, PIC = 0.1676; rs20438858, G > A, PIC = 0.3366) were annotated to immune-regulated genes (PTK2B, SYK, and TNFRSF21). Identified three SNPs are located in non-coding regions with low or moderate genetic polymorphisms. However, independent sample population validation (Case-control study) data showed that three important SNPs (rs75762330, P < 0.025, OR > 1; rs88640083, P < 0.005, OR > 1; rs20438858, P < 0.001, OR < 1) were significantly associated with clinical mastitis trait. Importantly, PTK2B and SYK expression was down-regulated in both peripheral blood leukocytes (PBLs) of clinical mastitis cows and in vitro LPS (E. coli)-stimulated bovine mammary epithelial cells, while TNFRSF21 was up-regulated. Under the same conditions, expression of Toll-like receptor 4 (TLR4), AKT1, and pro-inflammatory factors (IL-1β and IL-8) were also up-regulated. Interestingly, network analysis indicated that PTK2B and SYK are co-expressed in innate immune signaling pathway of Chinese Holstein. Taken together, these results provided strong evidence for the study of SNPs in bovine mastitis, and revealed the role of SYK, PTK2B, and TNFRSF21 in bovine mastitis susceptibility/tolerance.
Collapse
Affiliation(s)
- Fan Yang
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fanghui Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lili Li
- National Animal Husbandry Station, Beijing, China
| | - Li Yan
- Department of Radiation Oncology, Linyi People Hospital, Linyi, China
| | - Tarig Badri
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chenglong Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Daolun Yu
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Manling Zhang
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xiaojun Jang
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jie Li
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Lu Yuan
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Genlin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jun Li
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Ianni A, Iannaccone M, Martino C, Innosa D, Grotta L, Bennato F, Martino G. Zinc supplementation of dairy cows: Effects on chemical composition, nutritional quality and volatile profile of Giuncata cheese. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Dietary selenium intake in lactating dairy cows modifies fatty acid composition and volatile profile of milk and 30-day-ripened caciotta cheese. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03322-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Ianni A, Bennato F, Martino C, Innosa D, Grotta L, Martino G. Effects of selenium supplementation on chemical composition and aromatic profiles of cow milk and its derived cheese. J Dairy Sci 2019; 102:6853-6862. [PMID: 31202652 DOI: 10.3168/jds.2019-16382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/23/2019] [Indexed: 11/19/2022]
Abstract
This study aimed to investigate the effect of dietary selenium supplementation of Friesian cows on chemical-nutritional and volatile fraction of caciocavallo cheese. A sample of 32 Friesian cows, balanced for parity, milk production, and days in milk, were randomly assigned to 2 groups. The control group (CG) was fed with a conventional feeding strategy, while the experimental group (SeG) received a daily selenomethionine supplementation of 0.45 mg/kg in total mixed ration. During the experimental period, milk yield was monitored, and samples of milk and caciocavallo cheese were collected and analyzed to obtain information on chemical-nutritional composition and volatile compounds profile. Dietary Se integration did not induce variations on milk yield or composition but significantly lowered the somatic cell count (SCC). In both milk and cheese, samples from SeG were characterized by a lower concentration of saturated fatty acids (SFA) and increases in linoleic and rumenic acids. The volatile compounds profile of dairy products was also positively affected by dietary Se intake, with an increase in concentration of free fatty acids, esters, and aldehydes. These results suggest that Se plays a positive role in improving bovine mammary gland functionality and the nutraceutical properties of milk and caciocavallo cheese made therefrom. Such findings could contribute to the production of cheeses with interesting organoleptic properties, although further sensorial evaluations should be performed to deeply investigate these changes and confirm consumer acceptability.
Collapse
Affiliation(s)
- Andrea Ianni
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Italy 64100
| | - Francesca Bennato
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Italy 64100
| | - Camillo Martino
- Department of Veterinary Medicine, University of Perugia, Italy 06126
| | - Denise Innosa
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Italy 64100
| | - Lisa Grotta
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Italy 64100
| | - Giuseppe Martino
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Italy 64100.
| |
Collapse
|
24
|
Ianni A, Di Maio G, Pittia P, Grotta L, Perpetuini G, Tofalo R, Cichelli A, Martino G. Chemical-nutritional quality and oxidative stability of milk and dairy products obtained from Friesian cows fed with a dietary supplementation of dried grape pomace. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3635-3643. [PMID: 30629293 DOI: 10.1002/jsfa.9584] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/29/2018] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The aim of the study was to evaluate the nutritional properties of milk and cheese obtained from Friesian cows fed with a diet supplemented with dried grape pomace, a by-product of the oenological industry, which is very rich in polyphenols. This approach is inspired by the increasing interest in foods containing functional ingredients that may have beneficial effects on human health. During the testing period, analyses of the chemical and nutritional properties of milk and dairy products derived from it were performed; particular attention was given to the effect of cheese ripening on the oxidative stability and fermentation process, evaluating respectively the presence of malondialdehyde and γ-aminobutyric acid. RESULTS Dietary enrichment with grape pomace did not affect the milk composition but induced modifications in the fatty acid profiles in both milk and cheese with an increase in concentration of linoleic acid, trans-vaccenic acid, rumenic acid and total n-6 fatty acids. Moreover, after 30 days of cheese ripening, an increased oxidative stability and an increased concentration of γ-aminobutyric acid were found. CONCLUSIONS Our results indicated a general improvement in nutritional parameters of milk and related cheese obtained from Friesian cows that received the feeding enrichment with dried grape pomace. Further analysis should be performed to improve knowledge of the chemical and microbiological mechanisms at the source of these findings. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrea Ianni
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Gaetano Di Maio
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Paola Pittia
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Lisa Grotta
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giorgia Perpetuini
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Rosanna Tofalo
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Sciences, G. D'Annunzio University, Chieti, Italy
| | - Giuseppe Martino
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
25
|
Ianni A, Innosa D, Martino C, Grotta L, Bennato F, Martino G. Zinc supplementation of Friesian cows: Effect on chemical-nutritional composition and aromatic profile of dairy products. J Dairy Sci 2019; 102:2918-2927. [PMID: 30772019 DOI: 10.3168/jds.2018-15868] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022]
Abstract
Zinc represents an essential microelement for several biochemical mechanisms. The body's inability to store zinc necessarily requires a constant dietary supply to avoid alteration of physiological functions. The aim of the present study was to investigate the effect of dietary enrichment with zinc on chemical-nutritional and aromatic properties of milk and cheese. Thirty commercial dairy cows, balanced for parity, milk production, and days in milk, were randomly assigned to 2 groups. The control group was fed with a conventional complete diet (22 kg of dry matter/animal per day), whereas the experimental group received a daily zinc supplementation of 60 mg per kg of dry complete feed. During the experimental period, the milk yield was monitored and samples of milk and caciotta cheese were collected to obtain information about the chemical-nutritional composition and aromatic profile. Dietary zinc integration did not influence milk yield and composition, but induced a marked reduction of somatic cell count and improved the oxidative stability of ripened caciotta cheese. In both milk and cheese, the experimental group samples were characterized by a lower concentration of saturated fatty acids and an increase in oleic acid, vaccenic acid, and rumenic acid. The aromatic profile of dairy products was also positively affected by dietary zinc intake, with an increase in concentration of carboxylic acids, aldehydes, and esters. The present results suggest a positive role of zinc in improving animal health and nutraceutical properties of milk and corresponding cheese. Taking into account the analysis of volatile compounds, zinc dietary supplementation of dairy cows should contribute to the production of cheeses with interesting organoleptic properties, although more studies are necessary to confirm the consumer acceptability of these changes.
Collapse
Affiliation(s)
- Andrea Ianni
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Denise Innosa
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Camillo Martino
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Lisa Grotta
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Francesca Bennato
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Giuseppe Martino
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy.
| |
Collapse
|
26
|
Queiroz MP, Lima MDS, de Melo MFFT, Bertozzo CCDMS, de Araújo DF, Guerra GCB, Queiroga RDCRDE, Soares JKB. Maternal suppplementation with conjugated linoleic acid reduce anxiety and lipid peroxidation in the offspring brain. J Affect Disord 2019; 243:75-82. [PMID: 30236761 DOI: 10.1016/j.jad.2018.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 08/09/2018] [Accepted: 09/10/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Maternal consumption of fatty acids can alter neuronal membrane function, synaptic connections, and protect the brain from alterations caused by disturbances such as lipid peroxidation and anxiety in the offspring. We aimed to investigate how the maternal consumption of conjugated linoleic acid (CLA) interferes in anxiety behavior of the offspring and cerebral lipid peroxidation. METHODS Three groups were formed: control (CG) - diet without CLA; CLA1 - diet containing 1% of CLA; and CLA3 - diet containing 3% of CLA. These diets were offered to the mothers from the 7th day of gestation until the end of lactation. The following behavioral tests were used: Elevated plus maze (EPM), Open Field (OF) and Light-dark Box (LDB). Levels of malondialdehyde (MDA) and glutathione were measured in the offspring's brains. Data were analyzed by ANOVA followed by the Holm-Sidak post-test or the Kruskal-Wallis test (p < 0.05). RESULTS CLA1 and CLA3 showed higher number of entries in the open arms and time spent in the central area in EPM, they translocated and ambulated more in the clear area of the LDB and presented more rearing in the OF compared to CG (p < 0.05); moreover, they presented higher concentration of glutathione and lower MDA in brain tissue (p < 0.05). LIMITATIONS We evaluated the effect of maternal consumption of CLA on anxiety and lipid peroxidation in rats' offspring, but a similar study should be performed in humans. CONCLUSIONS Maternal intake of CLA induced a decrease in the parameters of anxiety and cerebral lipid peroxidation in the offspring.
Collapse
Affiliation(s)
- Michelly Pires Queiroz
- Program of Food Science and Tecnology, Federal University of Paraiba, Cidade Universitária, s/n - Castelo Branco III, João Pessoa, PB 58051-085, Brazil.
| | - Martiniano da Silva Lima
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | | | | | | | | | - Rita de Cassia Ramos do Egypto Queiroga
- Program of Food Science and Tecnology, Federal University of Paraiba, Cidade Universitária, s/n - Castelo Branco III, João Pessoa, PB 58051-085, Brazil; Laboratory of Bromatology, Department of Nutrition, Federal University of Paraiba, João Pessoa, PB, Brazil.
| | - Juliana Késsia Barbosa Soares
- Program of Food Science and Tecnology, Federal University of Paraiba, Cidade Universitária, s/n - Castelo Branco III, João Pessoa, PB 58051-085, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| |
Collapse
|
27
|
Abuelo A, Hernández J, Benedito JL, Castillo C. Redox Biology in Transition Periods of Dairy Cattle: Role in the Health of Periparturient and Neonatal Animals. Antioxidants (Basel) 2019; 8:antiox8010020. [PMID: 30642108 PMCID: PMC6356809 DOI: 10.3390/antiox8010020] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/31/2018] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
Dairy cows undergo various transition periods throughout their productive life, which are associated with periods of increased metabolic and infectious disease susceptibility. Redox balance plays a key role in ensuring a satisfactory transition. Nevertheless, oxidative stress (OS), a consequence of redox imbalance, has been associated with an increased risk of disease in these animals. In the productive cycle of dairy cows, the periparturient and neonatal periods are times of increased OS and disease susceptibility. This article reviews the relationship of redox status and OS with diseases of cows and calves, and how supplementation with antioxidants can be used to prevent OS in these animals.
Collapse
Affiliation(s)
- Angel Abuelo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | - Joaquín Hernández
- Departamento de Patoloxía Animal, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - José L Benedito
- Departamento de Patoloxía Animal, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Cristina Castillo
- Departamento de Patoloxía Animal, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| |
Collapse
|
28
|
(-)-Epigallocatechin-3-gallate and hydroxytyrosol improved antioxidative and anti-inflammatory responses in bovine mammary epithelial cells. Animal 2019; 13:2847-2856. [DOI: 10.1017/s1751731119001356] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
29
|
Han L, Zhou Z, Ma Y, Batistel F, Osorio J, Loor J. Phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) in mammary tissue of Holstein cows during the periparturient period is associated with mRNA abundance of antioxidant gene networks. J Dairy Sci 2018; 101:6511-6522. [DOI: 10.3168/jds.2017-14257] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
|
30
|
Urio M, Sandri E, Ticiani E, Oliveira D. Technical Note: Culturing sheep lactating mammary explants for gene expression studies. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
31
|
Gross JJ, Grossen-Rösti L, Héritier R, Tröscher A, Bruckmaier RM. Inflammatory and metabolic responses to an intramammary lipopolysaccharide challenge in early lactating cows supplemented with conjugated linoleic acid. J Anim Physiol Anim Nutr (Berl) 2017; 102:e838-e848. [DOI: 10.1111/jpn.12843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/02/2017] [Indexed: 11/27/2022]
Affiliation(s)
- J. J. Gross
- Veterinary Physiology; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - L. Grossen-Rösti
- Veterinary Physiology; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - R. Héritier
- Veterinary Physiology; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | | | - R. M. Bruckmaier
- Veterinary Physiology; Vetsuisse Faculty; University of Bern; Bern Switzerland
| |
Collapse
|
32
|
Castellani F, Vitali A, Bernardi N, Marone E, Palazzo F, Grotta L, Martino G. Dietary supplementation with dried olive pomace in dairy cows modifies the composition of fatty acids and the aromatic profile in milk and related cheese. J Dairy Sci 2017; 100:8658-8669. [PMID: 28843691 DOI: 10.3168/jds.2017-12899] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023]
Abstract
This study aimed to evaluate the effect of dietary integration of dried olive pomace (DOP), a by-product of olive oil separation, on nutritional and aromatic properties of milk and cheese. Twenty dairy cows were divided into 2 groups that were balanced for milk yield, parity, and days in milk. The control group was fed a conventional diet (20 kg of dry matter/head per day), whereas the experimental group (EG) received the conventional diet supplemented with DOP as 10% of dry matter. During the trial, milk yield was recorded and the samples of milk, cheese, total mixed rations, and DOP were collected and analyzed to determine the chemical-nutritional composition and aromatic profile. Atherogenic and thrombogenic indices were calculated on the basis of the fatty acid (FA) profile of milk and cheese. Data were analyzed according to the mixed model for milk yield and chemical composition, including cows nested within treatment as a random effect, whereas the general linear model was used for the analysis of cheese parameters. Differences were assessed by Tukey's test. The EG diet had a lower content of palmitic, stearic, and linoleic acids and a higher level of oleic acid compared with the control. Dietary DOP integration did not affect milk yield and composition with the exception of protein content, which was greater in EG and significantly affected by diet and period. Instead, period was found to be significant for fat and casein in both groups. Dietary supplementation with DOP modified the FA profile of milk and cheese. There was a decrease in short- and medium-chain FA, but significance was achieved only for palmitic acid. The stearic, isomer trans of oleic (in particular vaccenic acid), oleic, and isomer trans of linoleic acids significantly increased. Monounsaturated FA increased in EG milk and cheese and saturated FA were significantly lower, whereas no difference was marked between the groups regarding level of polyunsaturated FA. Supplementation with DOP reduced atherogenic and thrombogenic indices and increased conjugated linoleic acid in both milk and cheese. The free fatty acids, ketones, lactones, esters, and phenylalanine catabolites were increased in raw milk, whereas only leucine metabolism was affected by diet in pasteurized milk cheese at both 1 and 30 d of ripening. The present results pointed out that DOP supplementation may improve the nutritional and nutraceutical properties and modify the aroma of milk and derived cheese.
Collapse
Affiliation(s)
- F Castellani
- Facoltà di Bioscienze e Tecnologie Agroalimentari ed Ambientali, Università di Teramo, Teramo, Italy, 64100
| | - A Vitali
- Facoltà di Bioscienze e Tecnologie Agroalimentari ed Ambientali, Università di Teramo, Teramo, Italy, 64100
| | - N Bernardi
- Facoltà di Bioscienze e Tecnologie Agroalimentari ed Ambientali, Università di Teramo, Teramo, Italy, 64100
| | - E Marone
- Facoltà di Bioscienze e Tecnologie Agroalimentari ed Ambientali, Università di Teramo, Teramo, Italy, 64100
| | - F Palazzo
- Facoltà di Bioscienze e Tecnologie Agroalimentari ed Ambientali, Università di Teramo, Teramo, Italy, 64100
| | - L Grotta
- Facoltà di Bioscienze e Tecnologie Agroalimentari ed Ambientali, Università di Teramo, Teramo, Italy, 64100
| | - G Martino
- Facoltà di Bioscienze e Tecnologie Agroalimentari ed Ambientali, Università di Teramo, Teramo, Italy, 64100.
| |
Collapse
|
33
|
Schäfers S, Meyer U, von Soosten D, Hüther L, Drong C, Eder K, Most E, Tröscher A, Pelletier W, Zeyner A, Dänicke S. Influence of conjugated linoleic acids and vitamin E on milk fatty acid composition and concentrations of vitamin A and α-tocopherol in blood and milk of dairy cows. J Anim Physiol Anim Nutr (Berl) 2017; 102:e431-e441. [PMID: 28815782 DOI: 10.1111/jpn.12762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/14/2017] [Indexed: 11/28/2022]
Abstract
The objective of this trial was to investigate the influences of conjugated linoleic acid (CLA) and vitamin E (Vit. E) and their interactions on fatty acid composition and vitamins in milk (α-tocopherol, retinol and β-carotene) as well as on α-tocopherol in blood of pluriparous cows from week 6 ante partum until week 10 post-partum (p.p.). We assigned 59 pluriparous German Holstein cows to four treatment groups with the treatment factors CLA and Vit. E at two levels in a 2 × 2 factorial design. Milk fatty acid composition and milk vitamins were analysed on lactation days 7 and 28. α-tocopherol in blood serum was analysed on days -42, -7, 1, 7, 14, 28 and 70 relative to parturition. Milk concentration of α-tocopherol was influenced by Vit. E (p < .001) and CLA (p = .034). Percentage of cis-9, trans-11 CLA in total milk fat was influenced by treatment with CLA (p < .001), while for percentage of trans-10, cis-12 CLA an interaction between treatment and day (p = .019), driven by an increase in both CLA groups from day 7 to day 28, was found. Serum ratios of α-tocopherol to cholesterol were influenced by Vit. E (p < .001). Results suggest that treatment with CLA during late pregnancy and early lactation is suitable to enhance the proportion of trans-10, cis-12 CLA in milk and thereby influencing nutritional properties. As treatment with Vit. E did not have an impact on milk fatty acid composition, it might be possible to increase the antioxidative capacity of the dairy cow without affecting milk properties. Consequently, combined treatment with CLA and Vit. E might elicit synergistic effects on the cow and milk quality by increasing the proportion of CLA in milk fat as well as the excretion of Vit. E and the Vit. E levels in serum.
Collapse
Affiliation(s)
- S Schäfers
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - U Meyer
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - D von Soosten
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - L Hüther
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - C Drong
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - K Eder
- Department of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Gießen, Germany
| | - E Most
- Department of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Gießen, Germany
| | | | | | - A Zeyner
- Institute of Agricultural and Nutritional Sciences, Group Animal Nutrition, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - S Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| |
Collapse
|
34
|
Mavangira V, Sordillo LM. Role of lipid mediators in the regulation of oxidative stress and inflammatory responses in dairy cattle. Res Vet Sci 2017; 116:4-14. [PMID: 28807478 DOI: 10.1016/j.rvsc.2017.08.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/20/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
Periparturient dairy cows experience an increased incidence and severity of several inflammatory-based diseases such as mastitis and metritis. Factors associated with the physiological adaptation to the onset of lactation can impact the efficiency of the inflammatory response at a time when it is most needed to eliminate infectious pathogens that cause these economically important diseases. Oxidative stress, for example, occurs when there is an imbalance between the production of oxygen radicals during periods of high metabolic demand and the reduced capabilities of the host's antioxidant defenses. The progressive development of oxidative stress in early lactation cows is thought to be a significant underlying factor leading to dysfunctional inflammatory responses. Reactive oxygen species (ROS) are also produced by leukocytes during inflammation resulting in positive feedback loops that can further escalate oxidative stress during the periparturient period. During oxidative stress, ROS can modify polyunsaturated fatty acids (PUFA) associated with cellular membranes, resulting in the biosynthesis of oxidized products called oxylipids. Depending on the PUFA substrate and oxidation pathway, oxylipids have the capacity of either enhancing or resolving inflammation. In mediating their effects, oxylipids can directly or indirectly target sites of ROS production and thus control the degree of oxidative stress. This review discusses the evidence supporting the roles of oxylipids in the regulation of oxidative stress and the subsequent development of uncontrolled inflammatory responses. Further, the utility of some of the oxylipids as oxidative stress markers that can be exploited in developing and monitoring therapies for inflammatory-based diseases in dairy cattle is discussed. Understanding of the link between some oxylipids and the development or resolution of oxidative stress could provide novel therapeutic targets to limit immunopathology, reduce antibiotic usage, and optimize the resolution of inflammatory-based diseases in periparturient dairy cows.
Collapse
Affiliation(s)
- Vengai Mavangira
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824, United States
| | - Lorraine M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824, United States.
| |
Collapse
|
35
|
Basiricò L, Morera P, Dipasquale D, Tröscher A, Bernabucci U. Comparison between conjugated linoleic acid and essential fatty acids in preventing oxidative stress in bovine mammary epithelial cells. J Dairy Sci 2017; 100:2299-2309. [PMID: 28088424 DOI: 10.3168/jds.2016-11729] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/19/2016] [Indexed: 01/01/2023]
Abstract
Some in vitro and in vivo studies have demonstrated protective effects of conjugated linoleic acid (CLA) isomers against oxidative stress and lipid peroxidation. However, only a few and conflicting studies have been conducted showing the antioxidant potential of essential fatty acids. The objectives of the study were to compare the effects of CLA to other essential fatty acids on the thiol redox status of bovine mammary epithelia cells (BME-UV1) and their protective role against oxidative damage on the mammary gland by an in vitro study. The BME-UV1 cells were treated with complete medium containing 50 μM of cis-9,trans-11 CLA, trans-10,cis-12 CLA, α-linolenic acid, γ-linolenic acid, and linoleic acid. To assess the cellular antioxidant response, glutathione, NADPH, and γ-glutamyl-cysteine ligase activity were measured 48 h after addition of fatty acids (FA). Intracellular reactive oxygen species and malondialdehyde production were also assessed in cells supplemented with FA. Reactive oxygen species production after 3 h of H2O2 exposure was assessed to evaluate and to compare the potential protection of different FA against H2O2-induced oxidative stress. All FA treatments induced an intracellular GSH increase, matched by high concentrations of NADPH and an increase of γ-glutamyl-cysteine ligase activity. Cells supplemented with FA showed a reduction in intracellular malondialdehyde levels. In particular, CLA isomers and linoleic acid supplementation showed a better antioxidant cellular response against oxidative damage induced by H2O2 compared with other FA.
Collapse
Affiliation(s)
- L Basiricò
- Dipartimento di Scienze e Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, via S. Camillo De Lellis, s.n.c, 01100 Viterbo, Italy
| | - P Morera
- Dipartimento di Scienze e Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, via S. Camillo De Lellis, s.n.c, 01100 Viterbo, Italy
| | - D Dipasquale
- Dipartimento di Scienze e Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, via S. Camillo De Lellis, s.n.c, 01100 Viterbo, Italy
| | | | - U Bernabucci
- Dipartimento di Scienze e Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, via S. Camillo De Lellis, s.n.c, 01100 Viterbo, Italy.
| |
Collapse
|
36
|
Hanschke N, Kankofer M, Ruda L, Höltershinken M, Meyer U, Frank J, Dänicke S, Rehage J. The effect of conjugated linoleic acid supplements on oxidative and antioxidative status of dairy cows. J Dairy Sci 2016; 99:8090-8102. [PMID: 27497903 DOI: 10.3168/jds.2015-10685] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/24/2016] [Indexed: 01/07/2023]
Abstract
Dairy cows develop frequently negative energy balance around parturition and in early lactation, resulting in excessive mobilization of body fat and subsequently in increased risk of ketosis and other diseases. Dietary conjugated linoleic acid (CLA) supplements are used in dairy cows mainly for their depressing effect on milk fat content, but are also proposed to have antioxidative properties. As negative energy balance is associated with oxidative stress, which is also assumed to contribute to disease development, the present study was conducted to examine effects of CLA on oxidative and antioxidative status of lactating dairy cows. German Holstein cows (primiparous n=13, multiparous n=32) were divided into 3 dietary treatment groups receiving 100g/d of control fat supplement, containing 87% stearic acid (CON; n=14), 50g/d of control fat supplement and 50g/d of CLA supplement (CLA 50; n=15), or 100g/d of CLA supplement (CLA 100; n=16). The CLA supplement was lipid-encapsulated and contained 12% of trans-10,cis-12 CLA and cis-9,trans-11 CLA each. Supplementation took place between d1 and 182 postpartum; d 182 until 252 postpartum served as a depletion period. Blood was sampled at d -21, 1, 21, 70, 105, 140, 182, 224, and 252 relative to calving. The antioxidative status was determined using the ferric-reducing ability of plasma, α-tocopherol, α-tocopherol-to-cholesterol mass ratio, and retinol. For determination of oxidative status concentrations of hydroperoxides, thiobarbituric acid-reactive substances (TBARS), N'-formylkynurenine, and bityrosine were measured. Mixed models of fixed and random effects with repeated measures were used to evaluate period 1 (d -21 to 140) and 2 (d182-252) separately. Cows showed increased oxidative stress and lipid peroxidation during the periparturient period in terms of increased serum concentrations of hydroperoxides and TBARS, which decreased throughout lactation. During period 1, the supplemented cows had lower TBARS concentrations, which was not detectable in period 2. The other determined parameters were not affected by CLA supplementation. The obtained results show that dietary CLA supplementation in the chosen dosage, formulation, and application period had a marginal antioxidative effect in terms of lipid peroxidation in lactating dairy cows.
Collapse
Affiliation(s)
- N Hanschke
- Clinic for Cattle, University of Veterinary Medicine, Foundation, 30173, Hannover, Germany.
| | - M Kankofer
- University of Life Sciences, 20-033, Lublin, Poland
| | - L Ruda
- Clinic for Cattle, University of Veterinary Medicine, Foundation, 30173, Hannover, Germany
| | - M Höltershinken
- Clinic for Cattle, University of Veterinary Medicine, Foundation, 30173, Hannover, Germany
| | - U Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 38116, Braunschweig, Germany
| | - J Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, 70599 Stuttgart, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 38116, Braunschweig, Germany
| | - J Rehage
- Clinic for Cattle, University of Veterinary Medicine, Foundation, 30173, Hannover, Germany
| |
Collapse
|