1
|
Wang H, Lu F, Feng X, Zhang Y, Di W, Chen M, Wu R, Rao M, Yin P, Hao Y, Zhai Z. Characterization of a novel antioxidant exopolysaccharide from an intestinal-originated bacteria Bifidobacterium pseudocatenulatum Bi-OTA128. Microbiol Res 2024; 289:127914. [PMID: 39353276 DOI: 10.1016/j.micres.2024.127914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
Microbial exopolysaccharides (EPSs) have attracted extensive attention for their biological functions in antioxidant activities. In this study, we characterized a novel EPS produced by Bifidobacterium pseudocatenulatum Bi-OTA128 which exhibited the highest antioxidant capacity compared to nine other ropy bacterial strains, achieving 76.50 % and 93.84 % in DPPH· and ABTS·+ scavenging activity, and ferric reducing power of 134.34 μM Fe2+. Complete genomic analysis identified an eps gene cluster involved in the EPS biosynthesis of Bi-OTA128 strain, which might be responsible for its ropy phenotype. The EPS was then isolated and purified by a DEAE-Sepharose Fast Flow column. A single elution part EPS128 was obtained with a recovery rate of 43.5 ± 1.78 % and a total carbohydrate content of 93.6 ± 0.76 %. Structural characterization showed that EPS128 comprised glucose, galactose, and rhamnose (molar ratio 4.0:1.2:1.1), featuring a putative complex backbone structure with four branched chains and an unusual acetyl group at O-2 of terminal rhamnose. Antioxidant assay in vitro indicated that EPS128 exhibited antioxidant potential with 50.52 % DPPH· and 65.40 % ABTS·+ scavenging activities, reaching 54.3 % and 70.44 % of the efficacy of standard Vitamin C at 2.0 mg/L. Furthermore, EPS128 showed protective effects against H2O2-induced oxidative stress in HepG2 cells by reducing cellular reactive oxygen species (ROS) and increasing cell viability. These findings present the first comprehensive report of an antioxidant EPS from B. pseudocatenulatum, highlighting its potential as a natural antioxidant for applications in the food industry and clinical settings.
Collapse
Affiliation(s)
- Hui Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fangzhou Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xin Feng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuchen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wenxuan Di
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Ruiyun Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Man Rao
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Zhengyuan Zhai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
2
|
Nguyen HT, Pham TT, Nguyen PT, Le-Buanec H, Rabetafika HN, Razafindralambo HL. Advances in Microbial Exopolysaccharides: Present and Future Applications. Biomolecules 2024; 14:1162. [PMID: 39334928 PMCID: PMC11430787 DOI: 10.3390/biom14091162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Microbial exopolysaccharides (EPSs) are receiving growing interest today, owing to their diversity in chemical structure and source, multiple functions, and immense potential applications in many food and non-food industries. Their health-promoting benefits for humans deserve particular attention because of their various biological activities and physiological functions. The aim of this paper is to provide a comprehensive review of microbial EPSs, covering (1) their chemical and biochemical diversity, including composition, biosynthesis, and bacterial sources belonging mainly to lactic acid bacteria (LAB) or probiotics; (2) their technological and analytical aspects, especially their production mode and characterization; (3) their biological and physiological aspects based on their activities and functions; and (4) their current and future uses in medical and pharmaceutical fields, particularly for their prebiotic, anticancer, and immunobiotic properties, as well as their applications in other industrial and agricultural sectors.
Collapse
Affiliation(s)
- Huu-Thanh Nguyen
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Thuy-Trang Pham
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Phu-Tho Nguyen
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Hélène Le-Buanec
- INSERM U976-HIPI Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | | | - Hary L Razafindralambo
- ProBioLab, 5004 Namur, Belgium
- TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté 2B, 5030 Gembloux, Belgium
| |
Collapse
|
3
|
Abdel-Monem DA, Sabry SA, Ghozlan HA, Zaghloul EH. Preparation of Novel Marine Enterococcus faecium MSD8 Exopolysaccharide Ointment and In Vivo Evaluation of Its Impact on Cutaneous Wound Healing in Male Albino Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10334-z. [PMID: 39133428 DOI: 10.1007/s12602-024-10334-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/13/2024]
Abstract
The current study describes the isolation of exopolysaccharide (EPS) producing lactic acid bacteria (LAB) from marine samples and testing different sugar additives with different proportions for enhanced EPS yield. The isolate MSD8 showed the most potential, yielding 200 mg/L of EPS after being cultivated at 37 °C for 48 h on de Man Rogosa and Sharpe medium (MRS) supplemented with 3% sucrose. The marine isolate MSD8 was identified as Enterococcus faecium with 99.58% probability using 16S rRNA gene sequencing. The obtained sequence was deposited in GenBank and assigned the accession number MW924065. The feature of MSD8-EPS was characterized by estimating the total carbohydrate content by UV-vis to be ~ 71%. The FTIR analysis further indicated the presence of characteristic bands of polysaccharide. The cytotoxicity of the produced MSD8-EPS was assessed using human skin fibroblasts (HSF). The IC50 was determined to be > 100 μg/mL, which signifies that MSD8-EPS is safe for skin application. The produced EPS was used to prepare a novel ointment, which was tested for wound healing ability in male albino rats. The ointment significantly (P ≤ 0.05) shortened the time needed for wound healing, as it successfully healed the wounds by 94.93% on the 7th day and completely (100%) healed the wound by the 12th day. In comparison, the control group was healed by 73.2% and 84.83%, respectively. The data confirm that the prepared ointment can safely be used for pharmaceutical wound care products.
Collapse
Affiliation(s)
- Doaa A Abdel-Monem
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Soraya A Sabry
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hanan A Ghozlan
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Eman H Zaghloul
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| |
Collapse
|
4
|
Wu M, Pakroo S, Nadai C, Molinelli Z, Speciale I, De Castro C, Tarrah A, Yang J, Giacomini A, Corich V. Genomic and functional evaluation of exopolysaccharide produced by Liquorilactobacillus mali t6-52: technological implications. Microb Cell Fact 2024; 23:158. [PMID: 38812023 PMCID: PMC11138040 DOI: 10.1186/s12934-024-02431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND This study explores the biosynthesis, characteristics, and functional properties of exopolysaccharide produced by the strain Liquorilactobacillus mali T6-52. The strain demonstrated significant EPS production with a non-ropy phenotype. RESULTS The genomic analysis unveiled genes associated with EPS biosynthesis, shedding light on the mechanism behind EPS production. These genes suggest a robust EPS production mechanism, providing insights into the strain's adaptability and ecological niche. Chemical composition analysis identified the EPS as a homopolysaccharide primarily composed of glucose, confirming its dextran nature. Furthermore, it demonstrated notable functional properties, including antioxidant activity, fat absorption capacity, and emulsifying activity. Moreover, the EPS displayed promising cryoprotective activities, showing notable performance comparable to standard cryoprotective agents. The EPS concentration also demonstrated significant freeze-drying protective effects, presenting it as a potential alternative cryoprotectant for bacterial storage. CONCLUSIONS The functional properties of L. mali T6-52 EPS reveal promising opportunities across various industrial domains. The strain's safety profile, antioxidant prowess, and exceptional cryoprotective and freeze-drying characteristics position it as an asset in food processing and pharmaceuticals.
Collapse
Affiliation(s)
- Manyu Wu
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Shadi Pakroo
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Chiara Nadai
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy
| | - Zeno Molinelli
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy
| | - Immacolata Speciale
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA, Italy
| | - Crisitina De Castro
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA, Italy
| | - Armin Tarrah
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Jijin Yang
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, Padova, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Padova, Italy
| |
Collapse
|
5
|
Dey G, Patil MP, Banerjee A, Sharma RK, Banerjee P, Maity JP, Singha S, Taharia M, Shaw AK, Huang HB, Kim GD, Chen CY. The role of bacterial exopolysaccharides (EPS) in the synthesis of antimicrobial silver nanomaterials: A state-of-the-art review. J Microbiol Methods 2023; 212:106809. [PMID: 37597775 DOI: 10.1016/j.mimet.2023.106809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
The emergence of multi-drug resistant (MDR) pathogens poses a significant global health concern due to the failure of conventional medical treatment. As a result, the development of several metallic (Ag, Au, Zn, Ti, etc.) nanoparticles, has gained prominence as an alternative to conventional antimicrobial therapies. Among these, green-synthesized silver nanoparticles (AgNPs) have gained significant attention due to their notable efficiency and broad spectrum of antimicrobial activity. Bacterial exopolysaccharides (EPS) have recently emerged as a promising biological substrate for the green synthesis of AgNPs. EPS possess polyanionic functional groups (hydroxyl, carboxylic, sulfate, and phosphate) that effectively reduce and stabilize AgNPs. EPS-mediated AgNPs exhibit a wide range of antimicrobial activity against various pathogenic microbes, including Gram-positive and Gram-negative bacteria, as well as fungi. The extraction and purification of bacterial EPS play a vital role in obtaining high-quality and -quantity EPS for industrial applications. This study focuses on the comprehensive methodology of EPS extraction and purification, encompassing screening, fermentation optimization, pretreatment, protein elimination, precipitation, and purification. The review specifically highlights the utilization of bacterial EPS-mediated AgNPs, covering EPS extraction, the synthesis mechanism of green EPS-mediated AgNPs, their characterization, and their potential applications as antimicrobial agents against pathogens. These EPS-mediated AgNPs offer numerous advantages, including biocompatibility, biodegradability, non-toxicity, and eco-friendliness, making them a promising alternative to traditional antimicrobials and opening new avenues in nanotechnology-based approaches to combat microbial infections.
Collapse
Affiliation(s)
- Gobinda Dey
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Maheshkumar Prakash Patil
- Industry-University Cooperation Foundation, Pukyong National University, 45 Yongso-ro, Busan 48513, Republic of Korea
| | - Aparna Banerjee
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Talca 3467987, Chile
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Environmental Science Laboratory, Department of Chemistry, Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India.
| | - Shuvendu Singha
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Md Taharia
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Arun Kumar Shaw
- Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Hsien-Bin Huang
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, 45 Yongso-ro, Busan 48513, Republic of Korea
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan.
| |
Collapse
|
6
|
Nicolescu CM, Bumbac M, Buruleanu CL, Popescu EC, Stanescu SG, Georgescu AA, Toma SM. Biopolymers Produced by Lactic Acid Bacteria: Characterization and Food Application. Polymers (Basel) 2023; 15:1539. [PMID: 36987319 PMCID: PMC10058920 DOI: 10.3390/polym15061539] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Plants, animals, bacteria, and food waste are subjects of intensive research, as they are biological sources for the production of biopolymers. The topic links to global challenges related to the extended life cycle of products, and circular economy objectives. A severe and well-known threat to the environment, the non-biodegradability of plastics obliges different stakeholders to find legislative and technical solutions for producing valuable polymers which are biodegradable and also exhibit better characteristics for packaging products. Microorganisms are recognized nowadays as exciting sources for the production of biopolymers with applications in the food industry, package production, and several other fields. Ubiquitous organisms, lactic acid bacteria (LAB) are well studied for the production of exopolysaccharides (EPS), but much less as producers of polylactic acid (PLA) and polyhydroxyalkanoates (PHAs). Based on their good biodegradability feature, as well as the possibility to be obtained from cheap biomass, PLA and PHAs polymers currently receive increased attention from both research and industry. The present review aims to provide an overview of LAB strains' characteristics that render them candidates for the biosynthesis of EPS, PLA, and PHAs, respectively. Further, the biopolymers' features are described in correlation with their application in different food industry fields and for food packaging. Having in view that the production costs of the polymers constitute their major drawback, alternative solutions of biosynthesis in economic terms are discussed.
Collapse
Affiliation(s)
- Cristina Mihaela Nicolescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Marius Bumbac
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
- Faculty of Sciences and Arts, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Claudia Lavinia Buruleanu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Elena Corina Popescu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Sorina Geanina Stanescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Andreea Antonia Georgescu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Siramona Maria Toma
- Doctoral School of University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
7
|
Kavitake D, Devi PB, Delattre C, Reddy GB, Shetty PH. Exopolysaccharides produced by Enterococcus genus - An overview. Int J Biol Macromol 2023; 226:111-120. [PMID: 36493920 DOI: 10.1016/j.ijbiomac.2022.12.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Exopolysaccharide (EPS) biomolecules produced by lactic acid bacteria (LAB) are of prodigious interest due to their unique structural, physico-chemical, and functional characteristics. Several genera of LAB including Enterococcus spp. have been studied for EPS production by various research groups worldwide. EPS produced by various strains from Enterococcus spp. have shown a wide range of functional and technological properties with potential commercial applications. Numerous techniques are used in the characterization of Enterococcus EPS to reveal their structure, linkage, monosaccharide units, functional groups, morphology, and thermal properties. Bioactive potentials of Enterococcus EPS include antioxidant, antibacterial, antibiofilm, anticancer, immunological, prebiotic, and antidiabetic potentials which have been widely reported. These functional and biological properties make Enterococcus EPS a candidate of great importance for multiple applications in the area of food, pharmaceuticals, biomedical and environmental. This review is focused on EPS produced by various strains of the Enterococcus genus isolated from different sources. Several procedures and parameters involved in the production and purification of Enterococcus EPS are also deliberated along with the functional aspects and potential applications.
Collapse
Affiliation(s)
- Digambar Kavitake
- Department of Biochemistry, ICMR - National Institute of Nutrition, Hyderabad, 500007, India
| | - Palanisamy Bruntha Devi
- Department of Food Science and Technology, Pondicherry University, Pondicherry 605014, India
| | - Cedric Delattre
- Clermont Auvergne INP, Institut Pascal, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - G Bhanuprakash Reddy
- Department of Biochemistry, ICMR - National Institute of Nutrition, Hyderabad, 500007, India.
| | | |
Collapse
|
8
|
Kaur N, Dey P. Bacterial Exopolysaccharides as Emerging Bioactive Macromolecules: From Fundamentals to Applications. Res Microbiol 2022; 174:104024. [PMID: 36587857 DOI: 10.1016/j.resmic.2022.104024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Microbial exopolysaccharides (EPS) are extracellular carbohydrate polymers forming capsules or slimy coating around the cells. EPS can be secreted by various bacterial genera that can help bacterial cells in attachment, environmental adaptation, stress tolerance and are an integral part of microbial biofilms. Several gut commensals (e.g., Lactobacillus, Bifidobacterium) produce EPS that possess diverse bioactivities. Bacterial EPS also has extensive commercial applications in the pharmaceutical and food industries. Owing to the structural and functional diversity, genetic and metabolic engineering strategies are currently employed to increase EPS production. Therefore, the current review provides a comprehensive overview of the fundamentals of bacterial exopolysaccharides, including their classification, source, biosynthetic pathways, and functions in the microbial community. The review also provides an overview of the diverse bioactivities of microbial EPS, including immunomodulatory, anti-diabetic, anti-obesity, and anti-cancer properties. Since several gut microbes are EPS producers and gut microbiota helps maintain a functional gut barrier, emphasis has been given to the intestinal-level bioactivities of the gut microbial EPS. Collectively, the review provides a comprehensive overview of microbial bioactive exopolysaccharides.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
9
|
Allaith SA, Abdel-aziz ME, Thabit ZA, Altemimi AB, Abd El-Ghany K, Giuffrè AM, Al-Manhel AJA, Ebrahim HS, Mohamed RM, Abedelmaksoud TG. Screening and Molecular Identification of Lactic Acid Bacteria Producing β-Glucan in Boza and Cider. FERMENTATION-BASEL 2022; 8:350. [DOI: 10.3390/fermentation8080350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The goal of this study was screening and molecular identification of Lactic Acid Bacteria (LAB) producing β-glucan from different species isolated from boza and cider compared to a standard strain for Lactobacillus rhamnosus NRRL 1937 (LGG). From 48 unknown isolates, four LAB strains were selected. Based on the NCBI database, their nomenclature was A3, B6, and C9 for Limosilactobacillus fermentum SH1, SH2, and SH3 along with D6 for Leuconostoc mesenteroides SH4. Also, their similarity values were 100%, 99.8%, 100%, and 100%, respectively. The potential of Exopolysaccharide (EPS) (as β-glucan) production for selected LAB strains by gtf gene, conventional PCR and gene expression using both LGG as a control and LAB 16S rRNA gene as a house-keeping gene was investigated. In addition, EPS (mg/100 mL), cell mass (mg/100 mL), pH, total carbohydrate%, total protein% and β-glucan% by the HPLC for all selected LAB isolates were studied. All results of genetic and chemical tests proved the superiority of B6 treatment for L. fermentum SH2. The results showed the superiority of B6 treatment in gtf gene expression (14.7230 ± 0.070-fold) followed by C9 and A3 treatments, which were 10.1730 ± 0.231-fold and 8.6139 ± 0.320-fold, respectively. while D6 treatment recorded the lowest value of gene expression (0.8566 ± 0.040-fold) compared to the control LGG (one-fold). The results also demonstrated that B6 treatment was superior to the other treatments in terms of EPS formation, with a value of 481 ± 1.00 mg/100 mL, followed by the C9 treatment at 440 ± 2.00 mg/100 mL, compared to the LGG (control) reaching 199.7 ± 3.51 mg/100 mL. Also, the highest % of quantitative and qualitative β-glucan in EPS was observed in B6 followed by C9, D6 and A3 which were 5.56 ± 0.01%, 4.46 ± 0.01%, 0.25 ± 0.008% and 0.12 ± 0.008%, respectively compared to control (0.31 ± 0.01%). Finally, the presented results indicate the importance of screening the local LAB isolates to obtain a superior strain for β-glucan production which will be introduced in a subsequent study under optimum conditions.
Collapse
|
10
|
Sørensen HM, Rochfort KD, Maye S, MacLeod G, Brabazon D, Loscher C, Freeland B. Exopolysaccharides of Lactic Acid Bacteria: Production, Purification and Health Benefits towards Functional Food. Nutrients 2022; 14:2938. [PMID: 35889895 PMCID: PMC9319976 DOI: 10.3390/nu14142938] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Lactic acid bacteria (LAB) are capable of synthesising metabolites known as exopolysaccharides (EPS) during fermentation. Traditionally, EPS plays an important role in fermented dairy products through their gelling and thickening properties, but they can also be beneficial to human health. This bioactivity has gained attention in applications for functional foods, which leads them to have prebiotic, immunomodulatory, antioxidant, anti-tumour, cholesterol-lowering and anti-obesity activity. Understanding the parameters and conditions is crucial to optimising the EPS yields from LAB for applications in the food industry. This review provides an overview of the functional food market together with the biosynthesis of EPS. Factors influencing the production of EPS as well as methods for isolation, characterisation and quantification are reviewed. Finally, the health benefits associated with EPS are discussed.
Collapse
Affiliation(s)
- Helena Mylise Sørensen
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Keith D. Rochfort
- School of Nursing, Psychotherapy and Community Health, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Susan Maye
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, P67 DD36 Mitchelstown, Ireland; (S.M.); (G.M.)
| | - George MacLeod
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, P67 DD36 Mitchelstown, Ireland; (S.M.); (G.M.)
| | - Dermot Brabazon
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Christine Loscher
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
| | - Brian Freeland
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
| |
Collapse
|
11
|
Werning ML, Hernández-Alcántara AM, Ruiz MJ, Soto LP, Dueñas MT, López P, Frizzo LS. Biological Functions of Exopolysaccharides from Lactic Acid Bacteria and Their Potential Benefits for Humans and Farmed Animals. Foods 2022; 11:1284. [PMID: 35564008 PMCID: PMC9101012 DOI: 10.3390/foods11091284] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Lactic acid bacteria (LAB) synthesize exopolysaccharides (EPS), which are structurally diverse biopolymers with a broad range of technological properties and bioactivities. There is scientific evidence that these polymers have health-promoting properties. Most commercialized probiotic microorganisms for consumption by humans and farmed animals are LAB and some of them are EPS-producers indicating that some of their beneficial properties could be due to these polymers. Probiotic LAB are currently used to improve human health and for the prevention and treatment of specific pathologic conditions. They are also used in food-producing animal husbandry, mainly due to their abilities to promote growth and inhibit pathogens via different mechanisms, among which the production of EPS could be involved. Thus, the aim of this review is to discuss the current knowledge of the characteristics, usage and biological role of EPS from LAB, as well as their postbiotic action in humans and animals, and to predict the future contribution that they could have on the diet of food animals to improve productivity, animal health status and impact on public health.
Collapse
Affiliation(s)
- María Laura Werning
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
| | - Annel M. Hernández-Alcántara
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (A.M.H.-A.); (P.L.)
| | - María Julia Ruiz
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires, Buenos Aires 7000, Argentina
| | - Lorena Paola Soto
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza 3038, Argentina
| | - María Teresa Dueñas
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain;
| | - Paloma López
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (A.M.H.-A.); (P.L.)
| | - Laureano Sebastián Frizzo
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza 3038, Argentina
| |
Collapse
|
12
|
Pourjafar H, Ansari F, Sadeghi A, Samakkhah SA, Jafari SM. Functional and health-promoting properties of probiotics' exopolysaccharides; isolation, characterization, and applications in the food industry. Crit Rev Food Sci Nutr 2022; 63:8194-8225. [PMID: 35266799 DOI: 10.1080/10408398.2022.2047883] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Exopolysaccharides (EPS) are extracellular sugar metabolites/polymers of some slim microorganisms and, a wide variety of probiotics have been broadly investigated for their ability to produce EPS. EPS originated from probiotics have potential applications in food, pharmaceutical, cosmetology, wastewater treatment, and textiles industries, nevertheless slight is recognized about their function. The present review purposes to comprehensively discuss the structure, classification, biosynthesis, extraction, purification, sources, health-promoting properties, techno-functional benefits, application in the food industry, safety, toxicology, analysis, and characterization methods of EPS originated from probiotic microorganisms. Various studies have shown that probiotic EPS used as stabilizers, emulsifiers, gelling agents, viscosifiers, and prebiotics can alter the nutritional, texture, and rheological characteristics of food and beverages and play a major role in improving the quality of these products. Numerous studies have also proven the beneficial health effects of probiotic EPS, including antioxidant, antimicrobial, anti-inflammatory, immunomodulatory, anticancer, antidiabetic, antibiofilm, antiulcer, and antitoxin activities. Although the use of probiotic EPS has health effects and improves the organoleptic and textural properties of food and pharmaceutical products and there is a high tendency for their use in related industries, the production yield of these products is low and requires basic studies to support their products in large scale.
Collapse
Affiliation(s)
- Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Food Sciences and Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Fereshteh Ansari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz, Iran
| | - Alireza Sadeghi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Shohre Alian Samakkhah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary of Medicine, Amol University of Special Modern Technology, Amol, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
13
|
Efficient isolation of membrane-associated exopolysaccharides of four commercial bifidobacterial strains. Carbohydr Polym 2022; 278:118913. [PMID: 34973732 DOI: 10.1016/j.carbpol.2021.118913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/27/2021] [Accepted: 11/14/2021] [Indexed: 11/23/2022]
Abstract
Bifidobacteria confer many health effects, such as fiber digestion, pathogen inhibition and immune system maturation, especially in the newborn infant. The bifidobacterial exopolysaccharides (EPS) are often associated with important health effects, but their thorough investigation is hampered by lack of knowledge of the EPS localization, which is important for efficient EPS isolation. Here we present a straightforward isolation procedure to obtain EPS of four commercial bifidobacterial strains (B. adolescentis, B. bifidum, B. breve, and B. infantis), that are localized at the cell membrane (evidenced using cryo-EM). This procedure can be applied to other bifidobacterial strains, to facilitate the easy isolation and purification for biological experiments and future application in nutraceuticals. In addition, we demonstrate structural differences in the EPS of the four bifidobacterial strains, in terms of monosaccharide composition and size, highlighting the potential of the isolated EPS for determining specific structure-activity effects of bifidobacteria.
Collapse
|
14
|
Valorisation of fruit waste for enhanced exopolysaccharide production by Xanthomonas campestries using statistical optimisation of medium and process. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Romero Soto L, Thabet H, Maghembe R, Gameiro D, Van-Thuoc D, Dishisha T, Hatti-Kaul R. Metabolic potential of the moderate halophile Yangia sp. ND199 for co-production of polyhydroxyalkanoates and exopolysaccharides. Microbiologyopen 2021; 10:e1160. [PMID: 33650793 PMCID: PMC7892980 DOI: 10.1002/mbo3.1160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/02/2022] Open
Abstract
Yangia sp. ND199 is a moderately halophilic bacterium isolated from mangrove samples in Northern Vietnam, which was earlier reported to grow on several sugars and glycerol to accumulate poly(hydroxyalkanoates) (PHA). In this study, the potential of the bacterium for co‐production of exopolysaccharides (EPS) and PHA was investigated. Genome sequence analysis of the closely related Yangia sp. CCB‐M3 isolated from mangroves in Malaysia revealed genes encoding enzymes participating in different EPS biosynthetic pathways. The effects of various cultivation parameters on the production of EPS and PHA were studied. The highest level of EPS (288 mg/L) was achieved using sucrose and yeast extract with 5% NaCl and 120 mM phosphate salts but with modest PHA accumulation (32% of cell dry weight, 1.3 g/L). Growth on fructose yielded the highest PHA concentration (85% of CDW, 3.3 g/L) at 90 mM phosphate and higher molecular weight EPS at 251 mg/L yield at 120 mM phosphate concentration. Analysis of EPS showed a predominance of glucose, followed by fructose and galactose, and minor amounts of acidic sugars.
Collapse
Affiliation(s)
- Luis Romero Soto
- Division of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden.,Instituto de Investigación y Desarrollo de Procesos Químicos, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Habib Thabet
- Division of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden.,Food Science and Technology Department, Ibb University, Ibb, Yemen
| | - Reuben Maghembe
- Division of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden.,Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Denise Gameiro
- Division of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Doan Van-Thuoc
- Department of Biotechnology and Microbiology, Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| | - Tarek Dishisha
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Evaluation of antioxidant, antibacterial and cytotoxicity activities of exopolysaccharide from Enterococcus strains isolated from traditional Iranian Kishk. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01092-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Optimization of Exopolysaccharide (EPS) Production by Rhodotorula mucilaginosa sp. GUMS16. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5030039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Exopolysaccharides (EPSs) are important biopolymers with diverse applications such as gelling compounds in food and cosmetic industries and as bio-flocculants in pollution remediation and bioplastics production. This research focuses on enhancing crude EPS production from Rhodotorula mucilaginosa sp. GUMS16 using the central composite design method in which five levels of process variables of sucrose, pH, and ammonium sulfate were investigated with sucrose and ammonium sulfate serving as carbon and nitrogen sources during microbial incubation. The optimal crude EPS production of 13.48 g/100 mL was achieved at 1 g/100 mL of sucrose concentration, 14.73 g/100 mL of ammonium sulfate at pH 5. Variations in ammonium sulfate concentrations (1.27–14.73 g/100 mL) presented the most significant effects on the crude EPS yield, while changes in sucrose concentrations (1–5 g/100 mL) constituted the least important process variable influencing the EPS yield. The Rhodotorula mucilaginosa sp. GUMS16 may have the potential for large-scale production of EPS for food and biomedical applications.
Collapse
|
18
|
Prete R, Alam MK, Perpetuini G, Perla C, Pittia P, Corsetti A. Lactic Acid Bacteria Exopolysaccharides Producers: A Sustainable Tool for Functional Foods. Foods 2021; 10:1653. [PMID: 34359523 PMCID: PMC8305620 DOI: 10.3390/foods10071653] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022] Open
Abstract
Lactic acid bacteria (LAB) used in the food industry, mainly for the production of dairy products, are able to synthetize exopolysaccharides (EPS). EPS play a central role in the assessment of rheological and sensory characteristics of dairy products since they positively influence texture and organoleptic properties. Besides these, EPS have gained relevant interest for pharmacological and nutraceutical applications due to their biocompatibility, non-toxicity and biodegradability. These bioactive compounds may act as antioxidant, cholesterol-lowering, antimicrobial and prebiotic agents. This review provides an overview of exopolysaccharide-producing LAB, with an insight on the factors affecting EPS production, their dairy industrial applications and health benefits.
Collapse
Affiliation(s)
- Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| | - Mohammad Khairul Alam
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| | - Giorgia Perpetuini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| | - Carlo Perla
- Dalton Biotecnologie srl, Spoltore, 65010 Pescara, Italy;
| | - Paola Pittia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| |
Collapse
|
19
|
Abarquero D, Renes E, Fresno JM, Tornadijo ME. Study of exopolysaccharides from lactic acid bacteria and their industrial applications: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daniel Abarquero
- Department of Food Hygiene and Technology Faculty of Veterinary Science University of León León 24071 Spain
| | - Erica Renes
- Department of Food Hygiene and Technology Faculty of Veterinary Science University of León León 24071 Spain
| | - José María Fresno
- Department of Food Hygiene and Technology Faculty of Veterinary Science University of León León 24071 Spain
| | - María Eugenia Tornadijo
- Department of Food Hygiene and Technology Faculty of Veterinary Science University of León León 24071 Spain
| |
Collapse
|
20
|
Detection, Isolation, and Purification of Bifidobacterial Exopolysaccharides. Methods Mol Biol 2021. [PMID: 33649951 DOI: 10.1007/978-1-0716-1274-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
This chapter describes some of the available methods to assess EPS production in bifidobacteria, being largely based on those developed for the same purpose for members of the lactic acid bacteria group. The first step is detection of putative EPS-producing bifidobacteria based on a mucoid and/or ropy phenotype. Next, a basic procedure is described for the isolation of the glycan polymer based on the release from bifidobacterial cells grown and collected from the surface of agar-MRSc ("crude EPS"), followed by a purification procedure intended to remove other bacterial macromolecules (DNA and proteinaceous material) to generate "purified EPS." Finally, several methods used for quantification and physical-chemical characterization of isolated/purified polysaccharide are outlined.
Collapse
|
21
|
Nachtigall C, Surber G, Bulla J, Rohm H, Jaros D. Pilot scale isolation of exopolysaccharides from Streptococcus thermophilus DGCC7710: Impact of methodical details on macromolecular properties and technofunctionality. Eng Life Sci 2021; 21:220-232. [PMID: 33716620 PMCID: PMC7923592 DOI: 10.1002/elsc.202000073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/02/2022] Open
Abstract
Exopolysaccharides (EPS) from Streptococcus thermophilus provide similar technofunctionality such as water binding, viscosity enhancing and emulsifying effects as commercial thickeners at a significant lower concentration. Despite their high technofunctional potential, hetero polysaccharides from lactic acid bacteria are still not commercially used in unfermented foods, as the small amount of synthesised EPS calls for a high isolation effort. This study aims to analyse the macromolecular properties of EPS and cell containing isolates from S. thermophilus DGCC7710 obtained by different isolation protocols, and to link these data to the technofunctionality in model food systems. The EPS content of the isolates was affected by the microfiltration/ultrafiltration membranes used for cell removal/dialysis, respectively, and was 89% at maximum. There was no link between purity of the isolates, molecular mass (3 × 106 Da) and intrinsic viscosity (0.53 - 0.59 mL/mg) of the EPS. After adding EPS containing isolates to milk, gel stiffness after acidification increased by 25% at maximum, depending on the type and concentration of the specific isolate. Partly purified, cell containing isolates were effective at low absolute EPS concentration (approx. 0.1 g/kg) and therefore represent, together with their simple isolation protocol, an interesting approach to introduce microbial EPS into non-fermented products.
Collapse
Affiliation(s)
| | - Georg Surber
- Chair of Food EngineeringTechnische Universität DresdenDresdenGermany
| | - Jannis Bulla
- Chair of Food EngineeringTechnische Universität DresdenDresdenGermany
| | - Harald Rohm
- Chair of Food EngineeringTechnische Universität DresdenDresdenGermany
| | - Doris Jaros
- Chair of Food EngineeringTechnische Universität DresdenDresdenGermany
| |
Collapse
|
22
|
Nachtigall C, Rohm H, Jaros D. Degradation of Exopolysaccharides from Lactic Acid Bacteria by Thermal, Chemical, Enzymatic and Ultrasound Stresses. Foods 2021; 10:396. [PMID: 33670305 PMCID: PMC7917928 DOI: 10.3390/foods10020396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/02/2022] Open
Abstract
During isolation, exopolysaccharides (EPS) from lactic acid bacteria are subject of thermal, chemical, enzymatic or ultrasound stress of different intensity that may affect macromolecular properties, for instance molecular mass or (intrinsic) viscosity. These parameters are, however, crucial, as they are associated with the technofunctional potential of EPS replacing commercial thickeners in nonfermented products. The aim of this study was to systematically examine treatments EPS are usually exposed to during isolation and to investigate the underlying degradation mechanisms. Solutions (1.0 g/L) of EPS from Streptococcus thermophilus, isolated as gently as possible, and commercial dextran were analyzed for molecular mass distributions as representative measure of molecule alterations. Generally, acid, excessive heat and ultrasonication, intensified by simultaneous application, showed EPS degradation effects. Thus, recommendations are given for isolation protocols. Ultrasonic degradation at 114 W/cm² fitted into the random chain scission model and followed third- (S. thermophilus EPS) or second-order kinetics (dextran). The degradation rate constant reflects the sensitivity to external stresses and was DGCC7710 EPS > DGCC7919 EPS > dextran > ST143 EPS. Due to their exceptional structural heterogeneity, the differences could not be linked to individual features. The resulting molecular mass showed good correlation (r² = 0.99) with dynamic viscosity.
Collapse
Affiliation(s)
- Carsten Nachtigall
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Harald Rohm
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Doris Jaros
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
23
|
Nachtigall C, Vogel C, Rohm H, Jaros D. How Capsular Exopolysaccharides Affect Cell Surface Properties of Lactic Acid Bacteria. Microorganisms 2020; 8:E1904. [PMID: 33266168 PMCID: PMC7759885 DOI: 10.3390/microorganisms8121904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Some lactic acid bacteria are able to produce exopolysaccharides that, based on localization, can be distinguished in free and capsular or cell-bound exopolysaccharides (CPS). Up to now, the former were the focus of current research, mainly because of the technofunctional benefits they exhibit on fermented dairy products. On the other hand, CPS affect the surface properties of bacteria cells and thus also the textural properties of fermented foods, but data are very scarce. As the cell surface properties are strongly strain dependent, we present a new approach to investigate the impact of CPS on cell surface hydrophobicity and moisture load. CPS positive and negative Streptococcus thermophilus and Weissella cibaria were subjected to ultrasonication suitable to detach CPS without cell damage. The success of the method was verified by scanning electron and light microscopy as well as by cultivation experiments. Before applying ultrasonication cells with CPS exhibiting an increased hydrophilic character, enhanced moisture load, and faster water adsorption compared to the cells after CPS removal, emphasizing the importance of CPS on the textural properties of fermented products. The ultrasonic treatment did not alter the cell surface properties of the CPS negative strains.
Collapse
Affiliation(s)
- Carsten Nachtigall
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany; (H.R.); (D.J.)
| | - Cordula Vogel
- Institute of Soil Science and Site Ecology, Technische Universität Dresden, 01062 Dresden, Germany;
| | - Harald Rohm
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany; (H.R.); (D.J.)
| | - Doris Jaros
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany; (H.R.); (D.J.)
| |
Collapse
|
24
|
Bertsch A, Roy D, LaPointe G. Fermentation of Wheat Bran and Whey Permeate by Mono-Cultures of Lacticaseibacillus rhamnosus Strains and Co-culture With Yeast Enhances Bioactive Properties. Front Bioeng Biotechnol 2020; 8:956. [PMID: 32850769 PMCID: PMC7427622 DOI: 10.3389/fbioe.2020.00956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
The aim of this work was to obtain a bioingredient (BI) with bioactive properties through the solid fermentation of a wheat bran-whey permeate (WB/WP) mixture with three strains of Lacticaseibacillus rhamnosus (R0011, ATCC 9595, and RW-9595M) in mono or co-culture with Saccharomyces cerevisiae. The choice of these strains was based on their capacity to produce the same exopolysaccharide (EPS), but at different yields. The solid fermentation of WB/WP revealed a similar growth pattern, sugar utilization and metabolite production between strains and types of culture. Lactic acid, soluble protein, free amino acid and phenolic compound content in BI were compared to NFWB. Water soluble polysaccharides (including EPS) were significantly increased in co-culture for (44%) ATCC 9595, (40%) R0011 and (27%) RW-9595M. The amount of bound Total Phenolic Content (TPC) as well as the antioxidant activity in BI were higher after fermentation. The free phenolic acid content was higher after fermentation with ATCC 9595 (53-59%), RW-9595M (45-46%), and R0011 (29-39%) compared to non-fermented NFWB. Fermentation by these strains increased the amounts of free caffeic acid and 4-hydroxybenzoic acid in both types of culture. The bound phenolic acid content was enhanced in co-culture for the BI obtained from the highest EPS producer strain RW-9595M which was 30% higher than NFWB. After in vitro digestion, bioaccessibility of free total phenolic acids was improved by more than 40% in BI compared to NFWB. The co-culture increased recovery of TPC (%) and antioxidant activity compared to monoculture for the strains in digested product. In contrast, the recovery of bound total phenolic acids in co-culture was 33 and 38% lower when compared to monoculture for R0011 and RW-9595M. Our findings provide new insights into the impact of LAB/yeast co-culture on the bioactive properties of fermented wheat bran.
Collapse
Affiliation(s)
- Annalisse Bertsch
- Department of Food Science, Laval University, Quebec City, QC, Canada
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC, Canada
| | - Denis Roy
- Department of Food Science, Laval University, Quebec City, QC, Canada
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC, Canada
| | - Gisèle LaPointe
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
25
|
Malaka R, Maruddin F, Dwyana Z, Vargas MV. Assessment of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus ropy strain in different substrate media. Food Sci Nutr 2020; 8:1657-1664. [PMID: 32180973 PMCID: PMC7063361 DOI: 10.1002/fsn3.1452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/05/2020] [Indexed: 12/30/2022] Open
Abstract
The aim of this research was to determine the optimal medium for Exopolysaccharides (EPS) production by a Lactobacillus delbrueckii subsp. bulgaricus ropy strain isolated from a locally produced commercial fermented milk, in reconstituted skim milk (RSM) 10% (w/v), milk whey (MW), and soy milk whey (SMW), under optimal growth conditions for this strain. Milk whey was made by coagulating fresh milk using papaya latex 3% (v/v); soy milk whey was obtained from tofu household industry. The chemical composition of the substrate media was determined by proximate analysis, and sterilization was accomplished in an autoclave at 121°C for 15 min. Culture media were inoculated with 1% (v/v) of a starter culture of L. delbrueckii subsp. bulgaricus and then incubated at 30°C for 16 hr. EPS production, lactic acid content, cell counting, and pH were determined after the media were cooled at 5°C. Findings showed that on the basis of the growth characteristics of L. delbrueckii subsp. bulgaricus, the best medium for EPS production was RSM 10% (258.60 ± 26.86 mg/L) compared to the milk whey (69.60 ± 9.48 mg/L) and soy milk whey (49.80 ± 9.04 mg/L).
Collapse
Affiliation(s)
- Ratmawati Malaka
- Laboratory of Biotechnology of Milk Processing Department of Animal Science Faculty of Animal Science Hasanuddin University Makassar Indonesia
| | - Fatma Maruddin
- Laboratory of Biotechnology of Milk Processing Department of Animal Science Faculty of Animal Science Hasanuddin University Makassar Indonesia
| | - Zaraswati Dwyana
- Laboratory of Microbiology Department of Biology Faculty of Mathematic and Natural Sciences Hasanuddin University Makassar Indonesia
| | - Maynor V Vargas
- Laboratory of Chemistry and Applied Biosciences National Technical University (UTN) Alajuela Costa Rica
| |
Collapse
|
26
|
Gagliano MC, Sudmalis D, Pei R, Temmink H, Plugge CM. Microbial Community Drivers in Anaerobic Granulation at High Salinity. Front Microbiol 2020; 11:235. [PMID: 32174895 PMCID: PMC7054345 DOI: 10.3389/fmicb.2020.00235] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/31/2020] [Indexed: 01/24/2023] Open
Abstract
In the recent years anaerobic sludge granulation at elevated salinities in upflow anaerobic sludge blanket (UASB) reactors has been investigated in few engineering based studies, never addressing the microbial community structural role in driving aggregation and keeping granules stability. In this study, the combination of different techniques was applied in order to follow the microbial community members and their structural dynamics in granules formed at low (5 g/L Na+) and high (20 g/L Na+) salinity conditions. Experiments were carried out in four UASB reactors fed with synthetic wastewater, using two experimental set-ups. By applying 16S rRNA gene analysis, the comparison of granules grown at low and high salinity showed that acetotrophic Methanosaeta harundinacea was the dominant methanogen at both salinities, while the dominant bacteria changed. At 5 g/L Na+, cocci chains of Streptoccoccus were developing, while at 20 g/L Na+ members of the family Defluviitaleaceae formed long filaments. By means of Fluorescence in Situ Hybridization (FISH) and Scanning Electron Microscopy (SEM), it was shown that aggregation of Methanosaeta in compact clusters and the formation of filaments of Streptoccoccus and Defluviitaleaceae during the digestion time were the main drivers for the granulation at low and high salinity. Interestingly, when the complex protein substrate (tryptone) in the synthetic wastewater was substituted with single amino acids (proline, leucine and glutamic acid), granules at high salinity (20 g/L Na+) were not formed. This corresponded to a decrease of Methanosaeta relative abundance and a lack of compact clustering, together with disappearance of Defluviitaleaceae and consequent absence of bacterial filaments within the dispersed biomass. In these conditions, a biofilm was growing on the glass wall of the reactor instead, highlighting that a complex protein substrate such as tryptone can contribute to granules formation at elevated salinity.
Collapse
Affiliation(s)
- Maria Cristina Gagliano
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Wetsus - European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
| | - Dainis Sudmalis
- Department of Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Ruizhe Pei
- Wetsus - European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
| | - Hardy Temmink
- Wetsus - European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands.,Department of Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Wetsus - European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
| |
Collapse
|
27
|
Pintado AIE, Ferreira JA, Pintado MME, Gomes AMP, Malcata FX, Coimbra MA. Efficiency of purification methods on the recovery of exopolysaccharides from fermentation media. Carbohydr Polym 2019; 231:115703. [PMID: 31888825 DOI: 10.1016/j.carbpol.2019.115703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
De-Man Rogosa and Sharpe (MRS) is a complex medium commonly used to obtain exopolysaccharides (EPS) from lactic acid bacteria. However, the various nutrients (carbon and nitrogen sources) of media and supplements added to enhance the bacterial growth and EPS production, may interfere with the purification of the extracts resulting in an over-estimation of the EPS and erroneous structural assignments. The efficiency of trichloroacetic acid (TCA)/pronase and 5-sulfosalicylic acid - SSA methods was evaluated. In addition, the interference of the major MRS broth components as well as lactose was evaluated using xanthan gum as model control EPS. It was concluded that MRS medium is a major source of interfering compounds in the quantification of EPS, mainly glucose-rich material and to a lesser extent mannoproteins from yeast extract. This effect was found to be potentiated by the presence of lactose. TCA/pronase method was shown to be more efficient in eliminating interferents.
Collapse
Affiliation(s)
- Ana I E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - José A Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-072 Porto, Portugal
| | - Manuela M E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana M P Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - F Xavier Malcata
- LEPABE/Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel A Coimbra
- QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
28
|
Bancalari E, D'Incecco P, Savo Sardaro ML, Neviani E, Pellegrino L, Gatti M. Impedance microbiology to speed up the screening of lactic acid bacteria exopolysaccharide production. Int J Food Microbiol 2019; 306:108268. [PMID: 31352303 DOI: 10.1016/j.ijfoodmicro.2019.108268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 11/15/2022]
Abstract
Bacterial production of exopolysaccharides (EPS) is of increasing interest near food manufacturers, biotechnology industries and nutritionists because of their different roles. Several analytical methods are available for recovery, quantification and characterization of EPS from lactic acid bacteria (LAB) in food. However, direct screening method for production of EPS is still based on the visual observation of filamentous texture of the colonies developed on supplemented solid growth media. To overcome weaknesses of many currently used screening methods, we propose adopting impedance microbiology to evaluate the EPS production from LAB in milk. In this work we have proven that the peculiar shape of capacitance curve of Lactobacillus delbrueckii subsp. bulgaricus 2214, measured in milk by means of a BacTrac 4300® system, is due to production of EPS. Besides the pH measurement, the amounts of EPS evaluated after 0, 8, 13 and 55 h of incubation in milk, were in agreement with the evaluation of gene expression and confirmed by the observations by confocal laser scanning microscopy and by transmission electron microscopy. With the aim to verify the applicability of the proposed method, the drop entity of the capacitance curve (ΔE%) of 22 EPS-producing (EPS+) LAB strains and one negative (EPS-) control was evaluated both in broth medium and in milk. The positive ΔE% value found for all of the strains cultivated in the clear broth medium allowed to confirm the EPS production, simply observing a strain-dependent amount of EPS on surface of the measurement electrodes of the device. When the same EPS+ strains were cultivated in milk, the obtained ΔE% values showed that only a few of them were able to produce EPS in this environment, supporting their diversified ability to utilize lactose for this purpose. Results obtained by this multidisciplinary study demonstrate that impedance microbiology represents a suitable method to overcome the limits of the most commonly used methods to screen LAB for EPS production in milk. Moreover, these results also open a door to the application to other food and beverages, in which the EPS produced in situ could be of great interest for food industry.
Collapse
Affiliation(s)
- Elena Bancalari
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Paolo D'Incecco
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Italy
| | | | - Erasmo Neviani
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Luisa Pellegrino
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Italy
| | - Monica Gatti
- Department of Food and Drug, University of Parma, Parma, Italy.
| |
Collapse
|
29
|
Wang L, Wang Y, Li Q, Tian K, Xu L, Liu G, Guo C. Exopolysaccharide, Isolated From a Novel Strain Bifidobacterium breve lw01 Possess an Anticancer Effect on Head and Neck Cancer - Genetic and Biochemical Evidences. Front Microbiol 2019; 10:1044. [PMID: 31143171 PMCID: PMC6520658 DOI: 10.3389/fmicb.2019.01044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
Probiotic bacteria exopolysaccharides (EPS) have been recognized as molecules that regulate immune development and have anti-inflammation and anticancer effects. Yet, these bioactivities are of interspecies diversity; thus, examining the gene clusters of EPS and biosynthesis pathways are essential for selecting the better application of specific EPS. In this study, we isolated a new Bifidobacterium strain, named B. breve lw01. A complete genome of B. breve lw01 was sequenced revealing a circular 2,313,172 bp chromosome. Furthermore, a deep excavation of genome sequence from different database based on the comparison-selected results was performed to explore the gene cluster responsible for EPS synthesis. We found that B. breve lw01 harbors a new EPS-encoding cluster with 14 predicted genes, which could be divided into three groups according to the biosynthesis pathway hypothesis. Using tertiary purification, high purity EPS were obtained. EPS is composed of rhamnose (Rha), arabinose (Ara), galactose (Gal), glucose (Glc), and mannose (Man) in a molar ratio of 0.35:0.44:1.38:0.67:1.65. With reference to its bioactivity, it showed to possess anticancer activity against Head and Neck Squamous Cell Carcinoma cell line by regulating cell cycle arrest and cell apoptosis promotion. To sum up, this study examined the biosynthesis and bioactivity of EPS using a new isolated B. breve strain, which could be used to clarify its further application in functional food or drug industry.
Collapse
Affiliation(s)
- Lin Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yifei Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Qingxiang Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Kaiyue Tian
- Department of Oral and Maxillofacial Plastic and Trauma Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Le Xu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Guorong Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
30
|
Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Appl Microbiol Biotechnol 2019; 103:2857-2871. [PMID: 30729286 DOI: 10.1007/s00253-019-09659-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
Abstract
Cold-adapted microorganisms inhabiting permanently low-temperature environments were initially just a biological curiosity but have emerged as rich sources of numerous valuable tools for application in a broad spectrum of innovative technologies. To overcome the multiple challenges inherent to life in their cold habitats, these microorganisms have developed a diverse array of highly sophisticated synergistic adaptations at all levels within their cells: from cell envelope and enzyme adaptation, to cryoprotectant and chaperone production, and novel metabolic capabilities. Basic research has provided valuable insights into how these microorganisms can thrive in their challenging habitat conditions and into the mechanisms of action of the various adaptive features employed, and such insights have served as a foundation for the knowledge-based development of numerous novel biotechnological tools. In this review, we describe the current knowledge of the adaptation strategies of cold-adapted microorganisms and the biotechnological perspectives and commercial tools emerging from this knowledge. Adaptive features and, where possible, applications, in relation to membrane fatty acids, membrane pigments, the cell wall peptidoglycan layer, the lipopolysaccharide component of the outer cell membrane, compatible solutes, antifreeze and ice-nucleating proteins, extracellular polymeric substances, biosurfactants, chaperones, storage materials such as polyhydroxyalkanoates and cyanophycins and metabolic adjustments are presented and discussed.
Collapse
|
31
|
Yan S, Yang B, Stanton C, Ross RP, Zhao J, Zhang H, Chen W. Ropy exopolysaccharide-producing Bifidobacterium longum
YS108R as a starter culture for fermented milk. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shuang Yan
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- School of Food Science and Technology; Jiangnan University; Wuxi 214122 China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- School of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- International Joint Research Center for Probiotics & Gut Health; Jiangnan University; Wuxi 214122 China
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health; Jiangnan University; Wuxi 214122 China
- Teagasc Food Research Centre; Moorepark Fermoy Cork R93 XE12 Ireland
- APC Microbiome Ireland; University College Cork; Cork T12 K8AF Ireland
| | - Reynolds Paul Ross
- International Joint Research Center for Probiotics & Gut Health; Jiangnan University; Wuxi 214122 China
- APC Microbiome Ireland; University College Cork; Cork T12 K8AF Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- School of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- International Joint Research Center for Probiotics & Gut Health; Jiangnan University; Wuxi 214122 China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- International Joint Research Center for Probiotics & Gut Health; Jiangnan University; Wuxi 214122 China
- Beijing Innovation Centre of Food Nutrition and Human Health; Beijing Technology & Business University; Beijing 100048 China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- School of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- International Joint Research Center for Probiotics & Gut Health; Jiangnan University; Wuxi 214122 China
- Beijing Innovation Centre of Food Nutrition and Human Health; Beijing Technology & Business University; Beijing 100048 China
| |
Collapse
|
32
|
Khanal SN, Lucey JA. Effect of fermentation temperature on the properties of exopolysaccharides and the acid gelation behavior for milk fermented by Streptococcus thermophilus strains DGCC7785 and St-143. J Dairy Sci 2018; 101:3799-3811. [DOI: 10.3168/jds.2017-13203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022]
|
33
|
Lynch KM, Zannini E, Coffey A, Arendt EK. Lactic Acid Bacteria Exopolysaccharides in Foods and Beverages: Isolation, Properties, Characterization, and Health Benefits. Annu Rev Food Sci Technol 2018; 9:155-176. [DOI: 10.1146/annurev-food-030117-012537] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kieran M. Lynch
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
34
|
Khalil ES, Abd Manap MY, Mustafa S, Alhelli AM, Shokryazdan P. Probiotic Properties of Exopolysaccharide-Producing Lactobacillus Strains Isolated from Tempoyak. Molecules 2018; 23:E398. [PMID: 29438288 PMCID: PMC6017292 DOI: 10.3390/molecules23020398] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 01/22/2023] Open
Abstract
Tempoyak is a functional Malaysian food (an acid-fermented condiment) which is produced from the pulp of the durian (Durio zibethinus) fruit. The current study aimed to isolate and identify potential exopolysaccharide (EPS)-producing Lactobacillus strains from tempoyak for potential use as probiotics. Seven isolates (DUR2, DUR4, DUR5, DUR8, DUR12, DUR18, and DUR20) out of 44 were able to produce EPS, and exhibited resistance to acid and bile salt compared to the reference strains Lactobacillus rhmnosus (ATCC53103) and L. plantarum (ATCC8014). The seven isolated strains belonged to five different species-L. plantarum, L. fermentum, L. crispatus, L. reuteri, and L. pentosus-which were identified using API 50 CHL and 16S rRNA gene sequences (Polymerase chain reaction, PCR - based). The seven strains displayed different ability to produce EPS (100-850 mg/L). Isolates exhibited a high survivability to acid (pH 3.0), bile salts (0.3%), and gastrointestinal tract model (<70%). Results showed that the auto-aggregation and cell surface hydrophobicity ranged from 39.98% to 60.09% and 50.80% to 80.53%, respectively, whereas, the highest co-aggregation value (66.44%) was observed by L. fermentum (DUR8) with Pseudomonas aeruginosa. The isolates showed good inhibitory activity against tested pathogens, high antioxidant activity (32.29% to 73.36%), and good ability to reduce cholesterol (22.55% to 75.15%). Thus, the seven tested strains have value as probiotics.
Collapse
Affiliation(s)
- Eilaf Suliman Khalil
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
- Department of Dairy Production, University of Khartoum, Khartoum North 13314, Khartoum, Sudan.
| | - Mohd Yazid Abd Manap
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
| | - Shuhaimi Mustafa
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
| | - Amaal M Alhelli
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
| | - Parisa Shokryazdan
- Agriculture Biotechnology Research Institute of Iran (ABRII), East and North-East Branch, P.O. Box 91735/844, Mashhad, Iran.
| |
Collapse
|
35
|
Malick A, Khodaei N, Benkerroum N, Karboune S. Production of exopolysaccharides by selected Bacillus strains: Optimization of media composition to maximize the yield and structural characterization. Int J Biol Macromol 2017; 102:539-549. [DOI: 10.1016/j.ijbiomac.2017.03.151] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/23/2022]
|
36
|
Khanal SN, Lucey JA. Evaluation of the yield, molar mass of exopolysaccharides, and rheological properties of gels formed during fermentation of milk by Streptococcus thermophilus strains St-143 and ST-10255y. J Dairy Sci 2017; 100:6906-6917. [DOI: 10.3168/jds.2017-12835] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/06/2017] [Indexed: 11/19/2022]
|
37
|
Gangoiti M, Puertas A, Hamet M, Peruzzo P, Llamas M, Medrano M, Prieto A, Dueñas M, Abraham A. Lactobacillus plantarum CIDCA 8327: An α-glucan producing-strain isolated from kefir grains. Carbohydr Polym 2017; 170:52-59. [DOI: 10.1016/j.carbpol.2017.04.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/07/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
|
38
|
Pérez-Ramos A, Mohedano ML, López P, Spano G, Fiocco D, Russo P, Capozzi V. In Situ β-Glucan Fortification of Cereal-Based Matrices by Pediococcus parvulus 2.6: Technological Aspects and Prebiotic Potential. Int J Mol Sci 2017; 18:E1588. [PMID: 28754020 PMCID: PMC5536075 DOI: 10.3390/ijms18071588] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 01/31/2023] Open
Abstract
Bacterial exopolysaccharides produced by lactic acid bacteria are of increasing interest in the food industry, since they might enhance the technological and functional properties of some edible matrices. In this work, Pediococcus parvulus 2.6, which produces an O2-substituted (1,3)-β-d-glucan exopolysaccharide only synthesised by bacteria, was proposed as a starter culture for the production of three cereal-based fermented foods. The obtained fermented matrices were naturally bio-fortified in microbial β-glucans, and used to investigate the prebiotic potential of the bacterial exopolysaccharide by analysing the impact on the survival of a probiotic Lactobacillus plantarum strain under starvation and gastrointestinal simulated conditions. All of the assays were performed by using as control of the P. parvulus 2.6's performance, the isogenic β-glucan non-producing 2.6NR strain. Our results showed a differential capability of P. parvulus to ferment the cereal flours. During the fermentation step, the β-glucans produced were specifically quantified and their concentration correlated with an increased viscosity of the products. The survival of the model probiotic L. plantarum WCFS1 was improved by the presence of the bacterial β-glucans in oat and rice fermented foods under starvation conditions. The probiotic bacteria showed a significantly higher viability when submitted to a simulated intestinal stress in the oat matrix fermented by the 2.6 strain. Therefore, the cereal flours were a suitable substrate for in situ bio-fortification with the bacterial β-glucan, and these matrices could be used as carriers to enhance the beneficial properties of probiotic bacteria.
Collapse
Affiliation(s)
- Adrián Pérez-Ramos
- Centro de Investigaciones Biológicas (CIB), CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - María Luz Mohedano
- Centro de Investigaciones Biológicas (CIB), CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Paloma López
- Centro de Investigaciones Biológicas (CIB), CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy.
| | - Pasquale Russo
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
- Promis Biotech srl, Via Napoli 25, 71122 Foggia, Italy.
| | - Vittorio Capozzi
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| |
Collapse
|
39
|
Zeidan AA, Poulsen VK, Janzen T, Buldo P, Derkx PMF, Øregaard G, Neves AR. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev 2017; 41:S168-S200. [DOI: 10.1093/femsre/fux017] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 01/14/2023] Open
|
40
|
Pachekrepapol U, Lucey J, Gong Y, Naran R, Azadi P. Characterization of the chemical structures and physical properties of exopolysaccharides produced by various Streptococcus thermophilus strains. J Dairy Sci 2017; 100:3424-3435. [DOI: 10.3168/jds.2016-12125] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
|
41
|
Nguyen HT, Truong DH, Kouhoundé S, Ly S, Razafindralambo H, Delvigne F. Biochemical Engineering Approaches for Increasing Viability and Functionality of Probiotic Bacteria. Int J Mol Sci 2016; 17:E867. [PMID: 27271598 PMCID: PMC4926401 DOI: 10.3390/ijms17060867] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 01/02/2023] Open
Abstract
The literature presents a growing body of evidence demonstrating the positive effect of probiotics on health. Probiotic consumption levels are rising quickly in the world despite the fluctuation of their viability and functionality. Technological methods aiming at improving probiotic characteristics are thus highly wanted. However, microbial metabolic engineering toolbox is not available for this kind of application. On the other hand, basic microbiology teaches us that bacteria are able to exhibit adaptation to external stresses. It is known that adequately applied sub-lethal stress, i.e., controlled in amplitude and frequency at a given stage of the culture, is able to enhance microbial robustness. This property could be potentially used to improve the viability of probiotic bacteria, but some technical challenges still need to be overcome before any industrial implementation. This review paper investigates the different technical tools that can be used in order to define the proper condition for improving viability of probiotic bacteria and their implementation at the industrial scale. Based on the example of Bifidobacterium bifidum, potentialities for simultaneously improving viability, but also functionality of probiotics will be described.
Collapse
Affiliation(s)
- Huu-Thanh Nguyen
- Natural Products and Industrial Biochemistry Research Group (NPIB), Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong Ward, District 7, 700000 Ho Chi Minh City, Vietnam.
- Microbial Processes and Interactions (MiPI), Agro-biochem Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Dieu-Hien Truong
- Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong Ward, District 7, 700000 Ho Chi Minh City, Vietnam.
| | - Sonagnon Kouhoundé
- Microbial Processes and Interactions (MiPI), Agro-biochem Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Sokny Ly
- Microbial Processes and Interactions (MiPI), Agro-biochem Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Hary Razafindralambo
- Food technology and Formulation, Agro-Biochem Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Frank Delvigne
- Microbial Processes and Interactions (MiPI), Agro-biochem Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.
| |
Collapse
|