1
|
Aboragah AA, Wichasit N, Alharthi AA, Alhidary IA, Loor JJ. Alterations in one‑carbon metabolism and protein synthesis signals due to methionine supplementation and lipopolysaccharide challenge in Holstein fetal liver explants. Res Vet Sci 2024; 178:105386. [PMID: 39191197 DOI: 10.1016/j.rvsc.2024.105386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
One‑carbon metabolism (OCM) fueled by methionine (Met), choline, and folic acid is key for embryo development and fetal growth. We investigated effects of lipopolysaccharide (LPS) to induce inflammation in fetal liver tissue with or without Met on components of OCM and protein synthesis activity. Fetal liver harvested at slaughter from six multiparous pregnant Holstein dairy cows (37 ± 6 kg milk/d, 100 ± 3 d gestation) were incubated (0.2 ± 0.02 g) for 4 h at 37 °C with each of the following: ideal profile of amino acids (control; Lysine:Met 2.9:1), control plus LPS (1 μg/mL), increased Met supply (Met, Lys:Met 2.5:1), and Met+LPS. Data were analyzed as a 2 × 2 factorial (PROC MIXED, SAS 9.4). Ratios of mechanistic target of rapamycin (p-mTOR:mTOR) and eukaryotic elongation factor 2 (p-eEF2:eEF2) protein were lowest (P < 0.0 5) with LPS and highest with Met. Tissue amino acid concentrations were lowest (P < 0.0 5) with Met regardless of LPS suggesting enhanced use via mTOR. The marked increase (P = 0.02) in phosphorylation of S6 ribosomal protein (p-RPS6) with LPS suggested a pro-inflammatory response that was partly alleviated with Met+LPS. No effect (P = 0.4 5) on methionine adenosyl transferase 1 A (MAT1A) protein abundance was detected. Activity of betaine-homocysteine S-methyltransferase (BHMT) was greatest with Met, but Met+LPS dampened this effect (P = 0.0 5). Overall, fetal liver responds to inflammatory challenges and Met supply. The latter can stimulate protein synthesis via mTOR and alter some OCM reactions while having a modest anti-inflammatory effect.
Collapse
Affiliation(s)
- Ahmad A Aboragah
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| | - Nithat Wichasit
- Department of Agricultural Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Abdulrahman A Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ibrahim A Alhidary
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Division of Nutritional Sciences, University of Illinois, Urbana 61801, USA.
| |
Collapse
|
2
|
Qi H, Lin G, Guo S, Guo X, Yu C, Zhang M, Gao X. Met stimulates ARID1A degradation and activation of the PI3K-SREBP1 signaling to promote milk fat synthesis in bovine mammary epithelial cells. Anim Biotechnol 2023; 34:4094-4104. [PMID: 37837279 DOI: 10.1080/10495398.2023.2265167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Methionine (Met) can promote milk fat synthesis in bovine mammary epithelial cells (BMECs), but the potential molecular mechanism is largely unknown. In this report, we aim to explore the role and molecular mechanism of AT-rich interaction domain 1A (ARID1A) in milk fat synthesis stimulated by Met. ARID1A knockdown and activation indicated that ARID1A negatively regulated the synthesis of triglycerides, cholesterol and free fatty acids and the formation of lipid droplets in BMECs. ARID1A also negatively regulated the phosphorylation of PI3K and AKT proteins, as well as the expression and maturation of SREBP1. Met stimulated the phosphorylation of PI3K and AKT proteins, as well as the expression and maturation of SREBP1, while ARID1A gene activation blocked the stimulatory effects of Met. We further found that ARID1A was located in the nucleus of BMECs, and Met reduced the nuclear localization and expression of ARID1A. ARID1A gene activation blocked the stimulation of PI3K and SREBP1 mRNA expression by Met. In summary, our data suggests that ARID1A negatively regulates milk fat synthesis stimulated by Met in BMECs through inhibiting the PI3K-SREBP1 signaling pathway, which may provide some new perspectives for improving milk fat synthesis.
Collapse
Affiliation(s)
- Hao Qi
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Gang Lin
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Siqi Guo
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xudong Guo
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Congying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Minghui Zhang
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Xuejun Gao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
3
|
Huang B, Khan MZ, Kou X, Chen Y, Liang H, Ullah Q, Khan N, Khan A, Chai W, Wang C. Enhancing Metabolism and Milk Production Performance in Periparturient Dairy Cattle through Rumen-Protected Methionine and Choline Supplementation. Metabolites 2023; 13:1080. [PMID: 37887405 PMCID: PMC10608895 DOI: 10.3390/metabo13101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
For dairy cattle to perform well throughout and following lactations, precise dietary control during the periparturient phase is crucial. The primary issues experienced by periparturient dairy cows include issues like decreased dry matter intake (DMI), a negative energy balance, higher levels of non-esterified fatty acids (NEFA), and the ensuing inferior milk output. Dairy cattle have always been fed a diet high in crude protein (CP) to produce the most milk possible. Despite the vital function that dairy cows play in the conversion of dietary CP into milk, a sizeable percentage of nitrogen is inevitably expelled, which raises serious environmental concerns. To reduce nitrogen emissions and their production, lactating dairy cows must receive less CP supplementation. Supplementing dairy cattle with rumen-protected methionine (RPM) and choline (RPC) has proven to be a successful method for improving their ability to use nitrogen, regulate their metabolism, and produce milk. The detrimental effects of low dietary protein consumption on the milk yield, protein yield, and dry matter intake may be mitigated by these nutritional treatments. In metabolic activities like the synthesis of sulfur-containing amino acids and methylation reactions, RPM and RPC are crucial players. Methionine, a limiting amino acid, affects the production of milk protein and the success of lactation in general. According to the existing data in the literature, methionine supplementation has a favorable impact on the pathways that produce milk. Similarly, choline is essential for DNA methylation, cell membrane stability, and lipid metabolism. Furthermore, RPC supplementation during the transition phase improves dry matter intake, postpartum milk yield, and fat-corrected milk (FCM) production. This review provides comprehensive insights into the roles of RPM and RPC in optimizing nitrogen utilization, metabolism, and enhancing milk production performance in periparturient dairy cattle, offering valuable strategies for sustainable dairy farming practices.
Collapse
Affiliation(s)
- Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
- College of Life Sciences, Liaocheng University, Liaocheng 252059, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Nadar Khan
- Livestock and Dairy Development (Research) Department Khyber Pakhtunkhwa, Peshawar 25120, Pakistan
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
4
|
Li Q, Chen J, Liu J, Lin T, Liu X, Zhang S, Yue X, Zhang X, Zeng X, Ren M, Guan W, Zhang S. Leucine and arginine enhance milk fat and milk protein synthesis via the CaSR/G i/mTORC1 and CaSR/G q/mTORC1 pathways. Eur J Nutr 2023; 62:2873-2890. [PMID: 37392244 DOI: 10.1007/s00394-023-03197-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND AND AIMS Amino acids (AAs) not only constitute milk protein but also stimulate milk synthesis through the activation of mTORC1 signaling, but which amino acids that have the greatest impact on milk fat and protein synthesis is still very limited. In this study, we aimed to identify the most critical AAs involved in the regulation of milk synthesis and clarify how these AAs regulate milk synthesis through the G-protein-coupled receptors (GPCRs) signaling pathway. METHODS In this study, a mouse mammary epithelial cell line (HC11) and porcine mammary epithelial cells (PMECs) were selected as study subjects. After treatment with different AAs, the amount of milk protein and milk fat synthesis were detected. Activation of mTORC1 and GPCRs signaling induced by AAs was also investigated. RESULTS In this study, we demonstrate that essential amino acids (EAAs) are crucial to promote lactation by increasing the expression of genes and proteins related to milk synthesis, such as ACACA, FABP4, DGAT1, SREBP1, α-casein, β-casein, and WAP in HC11 cells and PMECs. In addition to activating mTORC1, EAAs uniquely regulate the expression of calcium-sensing receptor (CaSR) among all amino-acid-responsive GPCRs, which indicates a potential link between CaSR and the mTORC1 pathway in mammary gland epithelial cells. Compared with other EAAs, leucine and arginine had the greatest capacity to trigger GPCRs (p-ERK) and mTORC1 (p-S6K1) signaling in HC11 cells. In addition, CaSR and its downstream G proteins Gi, Gq, and Gβγ are involved in the regulation of leucine- and arginine-induced milk synthesis and mTORC1 activation. Taken together, our data suggest that leucine and arginine can efficiently trigger milk synthesis through the CaSR/Gi/mTORC1 and CaSR/Gq/mTORC1 pathways. CONCLUSION We found that the G-protein-coupled receptor CaSR is an important amino acid sensor in mammary epithelial cells. Leucine and arginine promote milk synthesis partially through the CaSR/Gi/mTORC1 and CaSR/Gq/mTORC1 signaling systems in mammary gland epithelial cells. Although this mechanism needs further verification, it is foreseeable that this mechanism may provide new insights into the regulation of milk synthesis.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaxin Liu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Tongbin Lin
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xinghong Liu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuchang Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xianhuai Yue
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoli Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China
| | - Man Ren
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
5
|
Li B, Khan MZ, Khan IM, Ullah Q, Cisang ZM, Zhang N, Wu D, Huang B, Ma Y, Khan A, Jiang N, Zahoor M. Genetics, environmental stress, and amino acid supplementation affect lactational performance via mTOR signaling pathway in bovine mammary epithelial cells. Front Genet 2023; 14:1195774. [PMID: 37636261 PMCID: PMC10448190 DOI: 10.3389/fgene.2023.1195774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Abstract
Mammary glands are known for their ability to convert nutrients present in the blood into milk contents. In cows, milk synthesis and the proliferation of cow mammary epithelial cells (CMECs) are regulated by various factors, including nutrients such as amino acids and glucose, hormones, and environmental stress. Amino acids, in particular, play a crucial role in regulating cell proliferation and casein synthesis in mammalian epithelial cells, apart from being building blocks for protein synthesis. Studies have shown that environmental factors, particularly heat stress, can negatively impact milk production performance in dairy cattle. The mammalian target of rapamycin complex 1 (mTORC1) pathway is considered the primary signaling pathway involved in regulating cell proliferation and milk protein and fat synthesis in cow mammary epithelial cells in response to amino acids and heat stress. Given the significant role played by the mTORC signaling pathway in milk synthesis and cell proliferation, this article briefly discusses the main regulatory genes, the impact of amino acids and heat stress on milk production performance, and the regulation of mTORC signaling pathway in cow mammary epithelial cells.
Collapse
Affiliation(s)
- Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High‐Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Zhuo-Ma Cisang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Nan Zhang
- Tibet Autonomous Region Animal Husbandry Station, Lhasa, China
| | - Dan Wu
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High‐Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nan Jiang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Lin G, Qi H, Guo X, Wang W, Zhang M, Gao X. ARID1B blocks methionine-stimulated mTOR activation to inhibit milk fat and protein synthesis in and proliferation of mouse mammary epithelial cells. J Nutr Biochem 2023; 114:109274. [PMID: 36681308 DOI: 10.1016/j.jnutbio.2023.109274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/03/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
Met can function through the mTOR signaling pathway, but the molecular mechanism is not fully understood. Here we investigated the role of ARID1B in this regulatory process. ARID1B knockdown promoted milk fat and protein synthesis in and cell proliferation of HC11 cells and increased mTOR mRNA expression and protein phosphorylation, whereas ARID1B gene activation had the opposite effects. ARID1B gene activation totally blocked Met's stimulation on mTOR mRNA expression. ARID1B bound to one region of the mTOR promoter, and Met reduced the binding of ARID1B on this promoter. LY294002 blocked Met-induced reduction of ARID1B mRNA and protein level. Cycloheximide treatment did not affect the decrease of ARID1B by Met. MG132 but not chloroquine restored ARID1B degradation induced by Met. Our data reveal that ARID1B is a key negative regulator of milk fat and protein synthesis in and proliferation of HC11 cells, and blocks Met-stimulated mTOR gene transcription.
Collapse
Affiliation(s)
- Gang Lin
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Hao Qi
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Xudong Guo
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Wenqiang Wang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Minghui Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Xuejun Gao
- College of Animal Science, Yangtze University, Jingzhou, China.
| |
Collapse
|
7
|
Fu L, Wang L, Liu L, Zhang L, Zhou Z, Zhou Y, Wang G, Loor JJ, Zhou P, Dong X. Effects of inoculation with active microorganisms derived from adult goats on growth performance, gut microbiota and serum metabolome in newborn lambs. Front Microbiol 2023; 14:1128271. [PMID: 36860489 PMCID: PMC9969556 DOI: 10.3389/fmicb.2023.1128271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
This study evaluated the effects of inoculation with adult goat ruminal fluid on growth, health, gut microbiota and serum metabolism in lambs during the first 15 days of life. Twenty four Youzhou dark newborn lambs were selected and randomly distributed across 3 treatments (n = 8/group): autoclaved goat milk inoculated with 20 mL sterilized normal saline (CON), autoclaved goat milk inoculated with 20 mL fresh ruminal fluid (RF) and autoclaved goat milk inoculated with 20 mL autoclaved ruminal fluid (ARF). Results showed that RF inoculation was more effective at promoting recovery of body weight. Compared with CON, greater serum concentrations of ALP, CHOL, HDL and LAC in the RF group suggested a better health status in lambs. The relative abundance of Akkermansia and Escherichia-Shigella in gut was lower in the RF group, whereas the relative abundance of Rikenellaceae_RC9_gut_group tended to increase. Metabolomics analysis shown that RF stimulated the metabolism of bile acids, small peptides, fatty acids and Trimethylamine-N-Oxide, which were found the correlation relationship with gut microorganisms. Overall, our study demonstrated that ruminal fluid inoculation with active microorganisms had a beneficial impact on growth, health and overall metabolism partly through modulating the gut microbial community.
Collapse
Affiliation(s)
- Lin Fu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Liaochuan Wang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Liu
- Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Li Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Ziyao Zhou
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zhou
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Peng Zhou
- Chongqing Academy of Animal Sciences, Chongqing, China,*Correspondence: Peng Zhou, ; Xianwen Dong,
| | - Xianwen Dong
- Chongqing Academy of Animal Sciences, Chongqing, China,*Correspondence: Peng Zhou, ; Xianwen Dong,
| |
Collapse
|
8
|
Khan MZ, Liu S, Ma Y, Ma M, Ullah Q, Khan IM, Wang J, Xiao J, Chen T, Khan A, Cao Z. Overview of the effect of rumen-protected limiting amino acids (methionine and lysine) and choline on the immunity, antioxidative, and inflammatory status of periparturient ruminants. Front Immunol 2023; 13:1042895. [PMID: 36713436 PMCID: PMC9878850 DOI: 10.3389/fimmu.2022.1042895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Overproduction of reactive oxygen species (ROS) is a well-known phenomenon experienced by ruminants, especially during the transition from late gestation to successful lactation. This overproduction of ROS may lead to oxidative stress (OS), which compromises the immune and anti-inflammatory systems of animals, thus predisposing them to health issues. Besides, during the periparturient period, metabolic stress is developed due to a negative energy balance, which is followed by excessive fat mobilization and poor production performance. Excessive lipolysis causes immune suppression, abnormal regulation of inflammation, and enhanced oxidative stress. Indeed, OS plays a key role in regulating the metabolic activity of various organs and the productivity of farm animals. For example, rapid fetal growth and the production of large amounts of colostrum and milk, as well as an increase in both maternal and fetal metabolism, result in increased ROS production and an increased need for micronutrients, including antioxidants, during the last trimester of pregnancy and at the start of lactation. Oxidative stress is generally neutralized by the natural antioxidant system in the body. However, in some special phases, such as the periparturient period, the animal's natural antioxidant system is unable to cope with the situation. The effect of rumen-protected limiting amino acids and choline on the regulation of immunity, antioxidative, and anti-inflammatory status and milk production performance, has been widely studied in ruminants. Thus, in the current review, we gathered and interpreted the data on this topic, especially during the perinatal and lactational stages.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China,Faculty of Veterinary and Animal Sciences, the University of Agriculture, Dera Ismail Khan, Pakistan
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mei Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, the University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China,*Correspondence: Zhijun Cao,
| |
Collapse
|
9
|
Zhang J, Deng L, Zhang X, Cao Y, Li M, Yao J. Multiple Essential Amino Acids Regulate Mammary Metabolism and Milk Protein Synthesis in Lactating Dairy Cows. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Danesh Mesgaran M, Kargar H, Janssen R, Danesh Mesgaran S, Ghesmati A, Vatankhah A. Rumen-protected zinc–methionine dietary inclusion alters dairy cow performances, and oxidative and inflammatory status under long-term environmental heat stress. Front Vet Sci 2022; 9:935939. [PMID: 36172606 PMCID: PMC9510689 DOI: 10.3389/fvets.2022.935939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Dairy cows are susceptible to heat stress due to the levels of milk production and feed intake. Dietary supplemental amino acids, particularly rate-limiting amino acids, for example, methionine (Met), may alleviate the potential negative consequences. Zinc (Zn) is beneficial to the immune system and mammary gland development during heat stress. We investigated the impact of a source of a rumen-protected Zn-Met complex (Loprotin, Kaesler Nutrition GmbH, Cuxhaven, Germany) in high-producing Holstein cows during a long-term environmental heat stress period. A total of 62 multiparous lactating Holstein cows were allocated in a completely randomized design to two dietary treatments, namely, basal diet without (control) and basal diet with the supplemental Zn-Met complex (RPZM) at 0.131% of diet DM. Cows in the RPZM group had higher energy-corrected milk (46.71 vs. 52.85 ± 1.72 kg/d for control and RPZM groups, respectively) as well as milk fat and protein concentration (27.28 vs. 32.80 ± 1.82 and 30.13 vs. 31.03 ± 0.25 g/kg for control and RPZM groups, respectively). The Zn-Met complex supplemented cows had lower haptoglobin and IL-1B concentration than the control (267 vs. 240 ± 10.53 mcg/mL and 76.8 vs. 60.0 ± 3.4 ng/L for control and RPZM groups, respectively). RPZM supplementation resulted in better oxidative status, indicated by higher total antioxidant status and lower malondialdehyde concentrations (0.62 vs. 0.68 ± 0.02 mmol/L and 2.01 vs. 1.76 ± 0.15 nmol/L for control and RPZM groups, respectively). Overall, the results from this study showed that RPZM dietary inclusion could maintain milk production and milk composition of animals during periods of heat stress. Enhanced performance of animals upon Zn-Met complex supplementation could be partly due to improved oxidative and immune status.
Collapse
Affiliation(s)
- Mohsen Danesh Mesgaran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
- *Correspondence: Mohsen Danesh Mesgaran
| | - Hassan Kargar
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | | - Aghil Ghesmati
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
11
|
Hao Q, Wang Z, Wang L, Han M, Zhang M, Gao X. Isoleucine stimulates mTOR and SREBP-1c gene expression for milk synthesis in mammary epithelial cells through BRG1-mediated chromatin remodelling. Br J Nutr 2022; 129:1-11. [PMID: 35593529 DOI: 10.1017/s0007114522001544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several amino acids can stimulate milk synthesis in mammary epithelial cells (MEC); however, the regulatory role of isoleucine (Ile) and underlying molecular mechanism remain poorly understood. In this study, we aimed to evaluate the regulatory effects of Ile on milk protein and fat synthesis in MEC and reveal the mediation mechanism of Brahma-related gene 1 (BRG1) on this regulation. Ile dose dependently affected milk protein and fat synthesis, mechanistic target of rapamycin (mTOR) phosphorylation, sterol regulatory element binding protein 1c (SREBP-1c) expression and maturation, and BRG1 protein expression in bovine MEC. Phosphatidylinositol 3 kinase (PI3K) inhibition by LY294002 treatment blocked the stimulation of Ile on BRG1 expression. BRG1 knockdown and gene activation experiments showed that it mediated the stimulation of Ile on milk protein and fat synthesis, mTOR phosphorylation, and SREBP-1c expression and maturation in MEC. ChIP-PCR analysis detected that BRG1 bound to the promoters of mTOR and SREBP-1c, and ChIP-qPCR further detected that these bindings were increased by Ile stimulation. In addition, BRG1 positively regulated the binding of H3K27ac to these two promoters, while it negatively affected the binding of H3K27me3 to these promoters. BRG1 knockdown blocked the stimulation of Ile on these two gene expressions. The expression of BRG1 was higher in mouse mammary gland in the lactating period, compared with that in the puberty or dry period. Taken together, these experimental data reveal that Ile stimulates milk protein and fat synthesis in MEC via the PI3K-BRG1-mTOR/SREBP-1c pathway.
Collapse
Affiliation(s)
- Qi Hao
- College of Animal Science, Yangtze University, Jingzhou434023, People's Republic of China
| | - Zhe Wang
- College of Animal Science, Yangtze University, Jingzhou434023, People's Republic of China
- College of Life Science, Northeast Agricultural University, Harbin150030, People's Republic of China
| | - Lulu Wang
- College of Animal Science, Yangtze University, Jingzhou434023, People's Republic of China
| | - Meihong Han
- College of Animal Science, Yangtze University, Jingzhou434023, People's Republic of China
| | - Minghui Zhang
- College of Animal Science, Yangtze University, Jingzhou434023, People's Republic of China
- College of Life Science, Northeast Agricultural University, Harbin150030, People's Republic of China
| | - Xuejun Gao
- College of Animal Science, Yangtze University, Jingzhou434023, People's Republic of China
| |
Collapse
|
12
|
Jeon SW, Conejos JRV, Lee JS, Keum SH, Lee HG. D-Methionine and 2-hydroxy-4-methylthiobutanoic acid i alter
beta-casein, proteins and metabolites linked in milk protein synthesis in bovine
mammary epithelial cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:481-499. [PMID: 35709129 PMCID: PMC9184702 DOI: 10.5187/jast.2022.e37] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022]
Affiliation(s)
- Seung-Woo Jeon
- Department of Animal Science and
Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea
| | - Jay Ronel V. Conejos
- Institute of Animal Science, College of
Agriculture and Food Sciences, University of the Philippines Los
Baños, College Batong Malake, Los Baños, Laguna
4031, Philippines
| | - Jae-Sung Lee
- Department of Animal Science and
Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea
| | - Sang-Hoon Keum
- Department of Animal Science and
Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea
| | - Hong-Gu Lee
- Department of Animal Science and
Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea
- Corresponding author: Hong-Gu Lee, Department of
Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea. Tel: +82-2-450-0410, E-mail:
| |
Collapse
|
13
|
14-3-3β is essential for milk composition stimulated by Leu/IGF-1 via IGF1R signaling pathway in BMECs. In Vitro Cell Dev Biol Anim 2022; 58:384-395. [PMID: 35648337 DOI: 10.1007/s11626-022-00682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 11/05/2022]
Abstract
The cell proliferation of bovine mammary epithelial cells (BMECs) and consequent milk synthesis are regulated by multiple factors. The purpose of this study was to examine the effect of 14-3-3β on cellular proliferation and milk fat/β-casein synthesis in BMECs and reveal its underlying mechanisms. In this study, we employed gene function analysis to explore the regulatory effect and molecular mechanisms of 14-3-3β on milk synthesis and proliferation in BMECs. We found that leucine and IGF-1 enhance cell proliferation and milk synthesis in a 14-3-3β-dependent manner and only exhibiting such effect in the presence of 14-3-3β. We further determined that 14-3-3β interacts with the IGF1R self-phosphorylation site and it additionally mediated leucine and IGF-1 to stimulate the synthesis of milk through the IGF1R-AKT-mTORC1 signaling pathway. In summary, our data indicated that 14-3-3β mediates the expression of milk fat and protein stimulated by leucine and IGF-1, leading to lactogenesis through IGF1R signaling pathway in BMECs.
Collapse
|
14
|
Lactation Activity and Mechanism of Milk-Protein Synthesis by Peptides from Oyster Hydrolysates. Nutrients 2022; 14:nu14091786. [PMID: 35565755 PMCID: PMC9100195 DOI: 10.3390/nu14091786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Oyster meat has a tender texture and delicate flavor, and the oyster is an aquatic shellfish with high nutritional and economic values. As they are rich in protein, oysters serve as a good source for the preparation of bioactive peptides. However, research on the lactation effect and mechanism of the synthesis of polypeptides from oyster hydrolysates is yet to be observed. This study aimed to analyze the lactation activity of the fraction UEC4-1 and explore its mechanism. The results show that, in an in vivo experiment, UEC4-1 could significantly increase the concentration of PRL in the serum and mammary tissue and the concentration of PRLR in the mammary tissue in rats with postpartum hypogalactia. UEC4-1 promoted the development of mammary tissue structure, resulting in active lactation. UEC4-1 promoted the proliferation of MCF-10A in a dose-dependent manner and could significantly upregulate the gene expression levels of PRL, PRLR, CSN1S1, CSN2, CSN3 and CCND1. UEC4-1 could also significantly increase the expression of mTOR, AKT1, RPS6KB1 and STAT5A in MCF-10A and improve its phosphorylation level. These results show that UEC4-1 had the ability to upregulate the proliferation and PRL synthesis of MCF-10A and promote lactation. The ability of UEC4-1 to regulate the milk-protein synthesis signaling pathway is the mechanism behind this. Oysters had a remarkable effect on lactating mothers’ sweating irritability after childbirth and may serve as an everyday diet to promote lactation. Postpartum dysgalactia is a common problem for lactating women. The study of the oyster’s lactation-active peptide can provide dietary nutrition guidance for postpartum lactating mothers, and it has the potential to be used for the development of drugs for the treatment of postpartum hypogalactia or oligogalactia.
Collapse
|
15
|
Ma N, Liang Y, Cardoso FF, Parys C, Cardoso FC, Shen X, Loor JJ. Insulin signaling and antioxidant proteins in adipose tissue explants from dairy cows challenged with hydrogen peroxide are altered by supplementation of arginine or arginine plus methionine. J Anim Sci 2022; 100:6523279. [PMID: 35137127 PMCID: PMC8956129 DOI: 10.1093/jas/skac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 11/14/2022] Open
Abstract
Arginine (Arg) and methionine (Met) can elicit anti-inflammatory and antioxidant effects in animals. Unlike Met, however, it is unknown if the supply of Arg can impact key aspects of adipose tissue (AT) function in dairy cows. Since Met and Arg metabolism are linked through the synthesis of polyamines, it is also possible that they have a complementary effect on aspects of AT function during a stress challenge. In this experiment, subcutaneous AT was harvested from four lactating multiparous Holstein cows (~27.0 kg milk per day, body condition score 3.38 ± 0.23) and used for incubations (4 h) with the following: control medium with an "ideal" profile of essential amino acids (IPAA; CTR; Lys:Met 2.9:1), IPAA plus 100 μM H2O2 (HP), H2O2 plus greater Arg supply (HPARG; Lys:Arg 1:1), or H2O2 plus greater Arg and methionine (Met) supply (HPARGMET; Lys:Met 2.5:1 and Lys:Arg 1:1). Western blotting was used to measure abundance of 18 protein targets associated with insulin and AA signaling, nutrient transport, inflammation, and antioxidant response. Reverse transcription polymerase chain reaction (RT-PCR) was used to assess effects on genes associated with Arg metabolism. Among the protein targets measured, although abundance of phosphorylated (p) AKT serine/threonine kinase (P = 0.05) and p-mechanistic target of rapamycin (P = 0.04) were lowest in HP explants, this effect was attenuated in HPARG and especially HPARGMET compared with CTR. Compared with HP, incubation with HPARG led to upregulation of the AA transporter solute carrier family 1 member 3 (L-glutamate transporter; P = 0.03), the reactive oxygen species detoxification-related enzyme glutathione S-transferase mu 1 (GSTM1; P = 0.03), and fatty acid synthase (P = 0.05). Those effects were accompanied by greater abundance of solute carrier family 2 member 4 (insulin-induced glucose transporter) in explants incubated with HPARG and also HPARGMET (P = 0.04). In addition, compared with other treatments, the peak response in abundance of the intracellular energy sensor 5'-prime-AMP-activated protein kinase was detected with HPARGMET (P = 0.003). There was no effect of Arg or Arg plus Met on the mRNA abundance of genes associated with Arg metabolism (ARG1, NOS2, AMD1, SMS, and SRM). Overall, supplementation of Arg alone or with Met partially alleviated the negative effects induced by H2O2. More systematic studies need to be conducted to explore the function of Arg supply with or without Met on AT function.
Collapse
Affiliation(s)
- Nana Ma
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yusheng Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Fabiana F Cardoso
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Claudia Parys
- Evonik Operations GmbH, Nutrition & Care, 63457 Hanau, Germany
| | - Felipe C Cardoso
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA,Corresponding author:
| |
Collapse
|
16
|
Zhou J, Yue S, Xue B, Wang Z, Wang L, Peng Q, Hu R, Xue B. Effect of hyperthermia on cell viability, amino acid transfer, and
milk protein synthesis in bovine mammary epithelial cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 64:110-122. [PMID: 35174346 PMCID: PMC8819330 DOI: 10.5187/jast.2021.e128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
The reduction of milk yield caused by heat stress in summer is the main condition
restricting the economic benefits of dairy farms. To examine the impact of
hyperthermia on bovine mammary epithelial (MAC-T) cells, we incubated the MAC-T
cells at thermal-neutral (37°C, CON group) and hyperthermic (42°C,
HS group) temperatures for 6 h. Subsequently, the cell viability and apoptotic
rate of MAC-T cells, apoptosis-related genes expression, casein and amino acid
transporter genes, and the expression of the apoptosis-related proteins were
examined. Compared with the CON group, hyperthermia significantly decreased the
cell viability (p < 0.05) and elevated the apoptotic
rate (p < 0.05) of MAC-T cells. Moreover, the expression
of heat shock protein (HSP)70,
HSP90B1, Bcl-2-associated X protein (BAX),
Caspase-9, and Caspase-3 genes was
upregulated (p < 0.05). The expression of HSP70 and BAX
(pro-apoptotic) proteins was upregulated (p < 0.05)
while that of B-cell lymphoma (BCL)2 (antiapoptotic) protein was downregulated
(p < 0.05) by hyperthermia. Decreased mRNA
expression of mechanistic target of rapamycin (mTOR) signaling pathway-related
genes, amino acid transporter genes (SLC7A5,
SLC38A3, SLC38A2, and
SLC38A9), and casein genes (CSNS1,
CSN2, and CSN3) was found in the heat
stress (HS) group (p < 0.05) in contrast with the CON
group. These findings illustrated that hyperthermia promoted cell apoptosis and
reduced the transport of amino acids into cells, which inhibited the milk
proteins synthesis in MAC-T cells.
Collapse
Affiliation(s)
- Jia Zhou
- Animal Nutrition Institute, Sichuan
Agricultural University, Chengdu 611130, China
| | - Sungming Yue
- Department of Bioengineering, Sichuan Water Conservancy
Vocation College, Chengdu 611845, China
| | - Benchu Xue
- Animal Nutrition Institute, Sichuan
Agricultural University, Chengdu 611130, China
| | - Zhisheng Wang
- Animal Nutrition Institute, Sichuan
Agricultural University, Chengdu 611130, China
| | - Lizhi Wang
- Animal Nutrition Institute, Sichuan
Agricultural University, Chengdu 611130, China
| | - Quanhui Peng
- Animal Nutrition Institute, Sichuan
Agricultural University, Chengdu 611130, China
| | - Rui Hu
- Animal Nutrition Institute, Sichuan
Agricultural University, Chengdu 611130, China
| | - Bai Xue
- Animal Nutrition Institute, Sichuan
Agricultural University, Chengdu 611130, China
- Corresponding author: Bai Xue, Animal Nutrition
Institute, Sichuan Agricultural University, Chengdu 611130, China. Tel:
+86-28-86291781, E-mail:
| |
Collapse
|
17
|
Zhou J, Yue S, Xue B, Wang Z, Wang L, Peng Q, Xue B. Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:1126-1141. [PMID: 34796352 PMCID: PMC8564303 DOI: 10.5187/jast.2021.e93] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/23/2021] [Indexed: 01/06/2023]
Abstract
Recent evidence has shown that methionine (Met) supplementation can improve milk
protein synthesis under hyperthermia (which reduces milk production). To explore
the mechanism by which milk protein synthesis is affected by Met supplementation
under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a
hyperthermic temperature of 42°C for 6 h in media with different
concentrations of Met. While the control group (CON) contained a normal amino
acid concentration profile (60 μg/mL of Met), the three treatment groups
were supplemented with Met at concentrations of 10 μg/mL (MET70, 70
μg/mL of Met), 20 μg/mL (MET80, 80 μg/mL of Met), and 30
μg/mL (MET90,90 μg/mL of Met). Our results show that additional
Met supplementation increases the mRNA and protein levels of BCL2 (B-cell
lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels
of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an
additional supplementary concentration of 20 μg/mL (group Met80).
Supplementation with higher concentrations of Met decreased the mRNA levels of
Caspase-3 and
Caspase-9, and increased protein levels of
heat shock protein (HSP70). The total protein levels of the mechanistic target
of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT,
ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6),
increased with increasing Met supplementation, and peaked at 80 μg/mL Met
(group Met80). In addition, we also found that additional Met supplementation
upregulated the gene expression of αS1-casein (CSN1S1),
β-casein (CSN2), and the amino acid transporter genes
SLC38A2, SLC38A3 which are known to be
mTOR targets. Additional Met supplementation, however, had no effect on the gene
expression of κ-casein (CSN3) and solute carrier family
34 member 2 (SLC34A2). Our results suggest that additional Met
supplementation with 20 μg/mL may promote the synthesis of milk proteins
in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis,
activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of
amino acids into these cells.
Collapse
Affiliation(s)
- Jia Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuangming Yue
- Department of Bioengineering, Sichuan Water Conservancy Vocation College, Chengdu 611845, China
| | - Benchu Xue
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhisheng Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lizhi Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Quanhui Peng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bai Xue
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
18
|
Fu L, Zhang L, Liu L, Yang H, Zhou P, Song F, Dong G, Chen J, Wang G, Dong X. Effect of Heat Stress on Bovine Mammary Cellular Metabolites and Gene Transcription Related to Amino Acid Metabolism, Amino Acid Transportation and Mammalian Target of Rapamycin (mTOR) Signaling. Animals (Basel) 2021; 11:ani11113153. [PMID: 34827885 PMCID: PMC8614368 DOI: 10.3390/ani11113153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary This study mainly employed metabolomics technology to determine changes of intracellular metabolite concentrations related to milk protein synthesis induced by heat stress (HS) in bovine mammary epithelial cells. HS was associated with significant differences in intracellular amino acid metabolism resulting in an increase in the intracellular amino acid concentrations. Moreover, HS promoted amino acid transportation and the activity of the mammalian target of rapamycin (mTOR) signaling pathway, which plays an important role as a central regulator of cell metabolism, growth, proliferation and survival. Greater expression of the alpha-S2-casein gene (CSN1S2) was also observed during HS. Overall, our study indicated that bovine mammary epithelial cells may have the ability to resist HS damage and continue milk protein synthesis partly through enhanced intracellular amino acid absorption and metabolism and by activating the mTOR signaling pathway during HS. Abstract Heat stress (HS) is one of the most serious factors to negatively affect the lactation performance of dairy cows. Bovine mammary epithelial cells are important for lactation. It was demonstrated that HS decreases the lactation performance of dairy cows, partly through altering gene expression within bovine mammary epithelial tissue. However, the cellular metabolism mechanisms under HS remains largely unknown. The objective of this study was to determine whether HS induced changes in intracellular metabolites and gene transcription related to amino acid metabolism, amino acid transportation and the mTOR signaling pathway. Immortalized bovine mammary epithelial cell lines (MAC-T cells, n = 5 replicates/treatment) were incubated for 12 h at 37 °C (Control group) and 42 °C (HS group). Relative to the control group, HS led to a greater mRNA expression of heat shock protein genes HSF1, HSPB8, HSPA5, HSP90AB1 and HSPA1A. Compared with the control group, metabolomics using liquid chromatography tandem–mass spectrometry identified 417 differential metabolites with p < 0.05 and a variable importance in projection (VIP) score >1.0 in the HS group. HS resulted in significant changes to the intracellular amino acid metabolism of glutathione, phenylalanine, tyrosine, tryptophan, valine, leucine, isoleucine, arginine, proline, cysteine, methionine, alanine, aspartate and glutamate. HS led to a greater mRNA expression of the amino acid transporter genes SLC43A1, SLC38A9, SLC36A1, and SLC3A2 but a lower mRNA expression of SLC7A5 and SLC38A2. Additionally, HS influenced the expression of genes associated with the mTOR signaling pathway and significantly upregulated the mRNA expression of mTOR, AKT, RHEB, eIF4E and eEF2K but decreased the mRNA expression of TSC1, TSC2 and eEF2 relative to the control group. Compared with the control group, HS also led to greater mRNA expression of the CSN1S2 gene. Overall, our study indicates that bovine mammary epithelial cells may have the ability to resist HS damage and continue milk protein synthesis partly through enhanced intracellular amino acid absorption and metabolism and by activating the mTOR signaling pathway during HS.
Collapse
Affiliation(s)
- Lin Fu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
| | - Li Zhang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
| | - Li Liu
- Faculty of Pharmaceutical Engineering, Chongqing Chemical Industry Vocational College, Chongqing 401228, China;
| | - Heng Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China;
| | - Peng Zhou
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
| | - Fan Song
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
| | - Guozhong Dong
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (G.D.); (J.C.)
| | - Juncai Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (G.D.); (J.C.)
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
- Correspondence: (G.W.); (X.D.)
| | - Xianwen Dong
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
- Correspondence: (G.W.); (X.D.)
| |
Collapse
|
19
|
Regulation of Milk Protein Synthesis by Free and Peptide-Bound Amino Acids in Dairy Cows. BIOLOGY 2021; 10:biology10101044. [PMID: 34681143 PMCID: PMC8533557 DOI: 10.3390/biology10101044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
Milk protein (MP) synthesis in the mammary gland of dairy cows is a complex biological process. As the substrates for protein synthesis, amino acids (AAs) are the most important nutrients for milk synthesis. Free AAs (FAAs) are the main precursors of MP synthesis, and their supplies are supplemented by peptide-bound AAs (PBAAs) in the blood. Utilization of AAs in the mammary gland of dairy cows has attracted the great interest of researchers because of the goal of increasing MP yield. Supplying sufficient and balanced AAs is critical to improve MP concentration and yield in dairy cows. Great progress has been made in understanding limiting AAs and their requirements for MP synthesis in dairy cows. This review focuses on the effects of FAA and PBAA supply on MP synthesis and their underlying mechanisms. Advances in our knowledge in the field can help us to develop more accurate models to predict dietary protein requirements for dairy cows MP synthesis, which will ultimately improve the nitrogen utilization efficiency and lactation performance of dairy cows.
Collapse
|
20
|
Ma N, Liang Y, Coleman DN, Li Y, Ding H, Liu F, Cardoso FF, Parys C, Cardoso FC, Shen X, Loor JJ. Methionine supplementation during a hydrogen peroxide challenge alters components of insulin signaling and antioxidant proteins in subcutaneous adipose explants from dairy cows. J Dairy Sci 2021; 105:856-865. [PMID: 34635354 DOI: 10.3168/jds.2021-20541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022]
Abstract
Enhanced postruminal supply of methionine (Met) during the peripartal period alters protein abundance of insulin, AA, and antioxidant signaling pathways in subcutaneous adipose tissue (SAT). Whether SAT is directly responsive to supply of Met and can induce molecular alterations is unknown. Our objective was to examine whether enhanced Met supply during an oxidative stress challenge in vitro alters insulin, AA, inflammation, and antioxidant signaling-related protein networks. Four late-lactation Holstein cows (average 27.0 kg of milk per day) were used for SAT collection. Tissue was incubated in duplicate for 4 h in a humidified incubator with 5% CO2 at 37°C according to the following experimental design: control medium with an "ideal" profile of essential AA (CTR; Lys:Met 2.9:1), CTR plus 100 μM H2O2 (HP), or CTR with greater Met supply plus 100 μM H2O2 (HPMET; Lys:Met 2.5:1). Molecular targets associated with insulin signaling, lipolysis, antioxidant nuclear factor, erythroid 2 like 2 (NFE2L2), inflammation, and AA metabolism were determined through reverse-transcription quantitative PCR and western blotting. Data were analyzed using the MIXED procedure of SAS 9.4 (SAS Institute Inc.). Among proteins associated with insulin signaling, compared with CTR, HP led to lower abundance of phosphorylated AKT serine/threonine kinase (p-AKT) and solute carrier family 2 member 4 (SLC2A4; insulin-induced glucose transporter). Although incubation with HPMET restored abundance of SLC2A4 to levels in the CTR and upregulated abundance of fatty acid synthase (FASN) and phosphorylated 5'-prime-AMP-activated protein kinase (p-AMPK), it did not alter p-AKT, which remained similar to HP. Among proteins associated with AA signaling, compared with CTR, challenge with HP led to lower abundance of phosphorylated mechanistic target of rapamycin (p-MTOR), and HPMET did not restore abundance to CTR levels. Among inflammation-related targets studied, incubation with HPMET led to greater protein abundance of nuclear factor kappa B subunit p65 (NFKB-RELA). The response in NFKB observed with HPMET was associated with a marked upregulation of the antioxidant transcription regulator NFE2L2 and the antioxidant enzyme glutathione peroxidase 1 (GPX1). No effects of treatment were detected for mRNA abundance of proinflammatory cytokines or antioxidant enzymes, underscoring the importance of post-transcriptional regulation. Overall, data indicated that short-term challenge with H2O2 was particularly effective in reducing insulin and AA signaling. Although a greater supply of Met had little effect on those pathways, it seemed to restore the protein abundance of the insulin-induced glucose transporter. Overall, the concomitant upregulation of key inflammation and antioxidant signaling proteins when a greater level of Met was supplemented to oxidant-challenged SAT highlighted the potential role of this AA in regulating the inflammatory response and oxidant status. Further studies should be conducted to assess the role of postruminal supply of Met and other AA in the regulation of immune, antioxidant, and metabolic systems in peripartal cow adipose tissue.
Collapse
Affiliation(s)
- N Ma
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Y Liang
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - D N Coleman
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Y Li
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801; Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - H Ding
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801; Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - F Liu
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801; Department of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450086, Henan, China
| | - F F Cardoso
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - C Parys
- Evonik Operations GmbH
- Nutrition & Care, Hanau 63457, Germany
| | - F C Cardoso
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - X Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - J J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
21
|
Elolimy AA, Liang Y, Lopes MG, Loor JJ. Antioxidant networks and the microbiome as components of efficiency in dairy cattle. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Han M, Zhang M. The regulatory mechanism of amino acids on milk protein and fat synthesis in mammary epithelial cells: a mini review. Anim Biotechnol 2021; 34:402-412. [PMID: 34339350 DOI: 10.1080/10495398.2021.1950743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mammary epithelial cell (MEC) is the basic unit of the mammary gland that synthesizes milk components including milk protein and milk fat. MECs can sense to extracellular stimuli including nutrients such as amino acids though different sensors and signaling pathways. Here, we review recent advances in the regulatory mechanism of amino acids on milk protein and fat synthesis in MECs. We also highlight how these mechanisms reflect the amino acid requirements of MECs and discuss the current and future prospects for amino acid regulation in milk production.
Collapse
Affiliation(s)
- Meihong Han
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Minghui Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
23
|
Palombo V, Alharthi A, Batistel F, Parys C, Guyader J, Trevisi E, D'Andrea M, Loor JJ. Unique adaptations in neonatal hepatic transcriptome, nutrient signaling, and one-carbon metabolism in response to feeding ethyl cellulose rumen-protected methionine during late-gestation in Holstein cows. BMC Genomics 2021; 22:280. [PMID: 33865335 PMCID: PMC8053294 DOI: 10.1186/s12864-021-07538-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Methionine (Met) supply during late-pregnancy enhances fetal development in utero and leads to greater rates of growth during the neonatal period. Due to its central role in coordinating nutrient and one-carbon metabolism along with immune responses of the newborn, the liver could be a key target of the programming effects induced by dietary methyl donors such as Met. To address this hypothesis, liver biopsies from 4-day old calves (n = 6/group) born to Holstein cows fed a control or the control plus ethyl-cellulose rumen-protected Met for the last 28 days prepartum were used for DNA methylation, transcriptome, metabolome, proteome, and one-carbon metabolism enzyme activities. RESULTS Although greater withers and hip height at birth in Met calves indicated better development in utero, there were no differences in plasma systemic physiological indicators. RNA-seq along with bioinformatics and transcription factor regulator analyses revealed broad alterations in 'Glucose metabolism', 'Lipid metabolism, 'Glutathione', and 'Immune System' metabolism due to enhanced maternal Met supply. Greater insulin sensitivity assessed via proteomics, and efficiency of transsulfuration pathway activity suggested beneficial effects on nutrient metabolism and metabolic-related stress. Maternal Met supply contributed to greater phosphatidylcholine synthesis in calf liver, with a role in very low density lipoprotein secretion as a mechanism to balance metabolic fates of fatty acids arising from the diet or adipose-depot lipolysis. Despite a lack of effect on hepatic amino acid (AA) transport, a reduction in metabolism of essential AA within the liver indicated an AA 'sparing effect' induced by maternal Met. CONCLUSIONS Despite greater global DNA methylation, maternal Met supply resulted in distinct alterations of hepatic transcriptome, proteome, and metabolome profiles after birth. Data underscored an effect on maintenance of calf hepatic Met homeostasis, glutathione, phosphatidylcholine and taurine synthesis along with greater efficiency of nutrient metabolism and immune responses. Transcription regulators such as FOXO1, PPARG, E2F1, and CREB1 appeared central in the coordination of effects induced by maternal Met. Overall, maternal Met supply induced better immunometabolic status of the newborn liver, conferring the calf a physiologic advantage during a period of metabolic stress and suboptimal immunocompetence.
Collapse
Affiliation(s)
- Valentino Palombo
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via De Sanctis snc, 86100, Campobasso, Italy
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Abdulrahman Alharthi
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fernanda Batistel
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Claudia Parys
- Evonik Operations GmbH, Hanau-Wolfgang, 63457, Essen, Germany
| | - Jessie Guyader
- Evonik Operations GmbH, Hanau-Wolfgang, 63457, Essen, Germany
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Mariasilvia D'Andrea
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via De Sanctis snc, 86100, Campobasso, Italy
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
24
|
Toledo MZ, Stangaferro ML, Gennari RS, Barletta RV, Perez MM, Wijma R, Sitko EM, Granados G, Masello M, Van Amburgh ME, Luchini D, Giordano JO, Shaver RD, Wiltbank MC. Effects of feeding rumen-protected methionine pre- and postpartum in multiparous Holstein cows: Lactation performance and plasma amino acid concentrations. J Dairy Sci 2021; 104:7583-7603. [PMID: 33865588 DOI: 10.3168/jds.2020-19021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 02/18/2021] [Indexed: 12/16/2022]
Abstract
Objectives were to evaluate the effect of feeding rumen-protected methionine (RPM) in pre- and postpartum total mix ration (TMR) on lactation performance and plasma AA concentrations in dairy cows. A total of 470 multiparous Holstein cows [235 cows at University of Wisconsin (UW) and 235 cows at Cornell University (CU)] were enrolled approximately 4 wk before parturition, housed in close-up dry cow and replicated lactation pens. Pens were randomly assigned to treatment diets (pre- and postpartum, respectively): UW control (CON) diet = 2.30 and 2.09% of Met as percentage of metabolizable protein (MP) and RPM diet = 2.83 and 2.58% of Met as MP; CU CON = 2.22 and 2.19% of Met as percentage of MP, and CU RPM = 2.85 and 2.65% of Met as percentage of MP. Treatments were evaluated until 112 ± 3 d in milk (DIM). Milk yield was recorded daily. Milk samples were collected at wk 1 and 2 of lactation, and then every other week, and analyzed for milk composition. For lactation pens, dry matter intake (DMI) was recorded daily. Body weight and body condition score were determined from 4 ± 3 DIM and parturition until 39 ± 3 and 49 DIM, respectively. Plasma AA concentrations were evaluated within 3 h after feeding during the periparturient period [d -7 (±4), 0, 7 (±1), 14 (±1), and 21 (±1); n = 225]. In addition, plasma AA concentrations were evaluated (every 3 h for 24 h) after feeding in cows at 76 ± 8 DIM (n = 16) and within 3 h after feeding in cows at 80 ± 3 DIM (n = 72). The RPM treatment had no effect on DMI (27.9 vs. 28.0 kg/d) or milk yield (48.7 vs. 49.2 kg/d) for RPM and CON, respectively. Cows fed the RPM treatment had increased milk protein concentration (3.07 vs. 2.95%) and yield (1.48 vs. 1.43 kg/d), and milk fat concentration (3.87 vs. 3.77%), although milk fat yield did not differ. Plasma Met concentrations tended to be greater for cows fed RPM at 7 d before parturition (25.9 vs. 22.9 µM), did not differ at parturition (22.0 vs. 20.4 µM), and were increased on d 7 (31.0 vs. 21.2 µM) and remained greater with consistent concentrations until d 21 postpartum (d 14: 30.5 vs. 19.0 µM; d 21: 31.0 vs. 17.8 µM). However, feeding RPM decreased Leu, Val, Asn, and Ser (d 7, 14, and 21) and Tyr (d 14). At a later stage in lactation, plasma Met was increased for RPM cows (34.4 vs. 16.7 µM) consistently throughout the day, with no changes in other AA. Substantial variation was detected for plasma Met concentration (range: RPM = 8.9-63.3 µM; CON = 7.8-28.8 µM) among cows [coefficient of variation (CV) > 28%] and within cow during the day (CV: 10.5-27.1%). In conclusion, feeding RPM increased plasma Met concentration and improved lactation performance via increased milk protein production.
Collapse
Affiliation(s)
- Mateus Z Toledo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison 53706
| | | | - Rodrigo S Gennari
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison 53706
| | - Rafael V Barletta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison 53706
| | - Martin M Perez
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Robert Wijma
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Emily M Sitko
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - German Granados
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | | | | | | | - Julio O Giordano
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Randy D Shaver
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison 53706
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison 53706.
| |
Collapse
|
25
|
Effects of Different Parts on the Chemical Composition, Silage Fermentation Profile, In Vitro and In Situ Digestibility of Paper Mulberry. Animals (Basel) 2021; 11:ani11020413. [PMID: 33562856 PMCID: PMC7914576 DOI: 10.3390/ani11020413] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Paper mulberry (Broussonetia papyrifera, PM) is a potential roughage source widely distributed in Asia, but the chemical composition, silage fermentation, and digestibility are not fully understood. Here, we compared the chemical composition, silage fermentation, and digestibility of leaf, stem, and whole plant of PM to evaluate its feeding value. The result showed that the leaf had lower fiber content and higher protein content than the stem and whole plant. Meanwhile, the stem silage had the lowest pH value and lactate content, while those in the leaf were the highest. The in vitro and in situ digestibility showed the leaf was more digestible. Our study gives the reference of different parts of PM to be used as a feedstuff. Abstract Paper mulberry (Broussonetia papyrifera, PM) is high protein but unutilized as a feed source. The study explores the different parts (leaf, stem, and whole plant) of PM chemical composition, silage fermentation, and in vitro and in situ digestibility, aiming to give some guidelines to PM usage as feed. The result showed that the leaf had a higher fresh weight than the stem (p < 0.05). The dry matter contents of the three groups had no differences. The highest crude protein, ether extract, water-soluble carbohydrate, ash, calcium, phosphorus, amino acid contents, and butter capacity were observed in the leaf (p < 0.05). The stem had the highest (p < 0.05) neutral detergent fiber, acid detergent fiber, and lignin contents. After ensiling, the stem silage had the lowest pH value, ammonia nitrate (NH3-N), lactate, acetate, and propionate (p < 0.05). The leaf silage had the highest pH value (p < 0.05). The lactate, acetate, and propionate in the leaf and whole plant silage had no difference. The butyrate was not detected in all silage. The in vitro and in situ digestibility experiments showed the leaf had the highest digestibility (p < 0.05), which could produce more volatile fatty acids and have a higher effective digestibility. These results allow a greater understanding of PM to be used as a feedstuff.
Collapse
|
26
|
Coleman DN, Alharthi AS, Liang Y, Lopes MG, Lopreiato V, Vailati-Riboni M, Loor JJ. Multifaceted role of one-carbon metabolism on immunometabolic control and growth during pregnancy, lactation and the neonatal period in dairy cattle. J Anim Sci Biotechnol 2021; 12:27. [PMID: 33536062 PMCID: PMC7860211 DOI: 10.1186/s40104-021-00547-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Dairy cattle undergo dramatic metabolic, endocrine, physiologic and immune changes during the peripartal period largely due to combined increases in energy requirements for fetal growth and development, milk production, and decreased dry matter intake. The negative nutrient balance that develops results in body fat mobilization, subsequently leading to triacylglycerol (TAG) accumulation in the liver along with reductions in liver function, immune dysfunction and a state of inflammation and oxidative stress. Mobilization of muscle and gluconeogenesis are also enhanced, while intake of vitamins and minerals is decreased, contributing to metabolic and immune dysfunction and oxidative stress. Enhancing post-ruminal supply of methyl donors is one approach that may improve immunometabolism and production synergistically in peripartal cows. At the cellular level, methyl donors (e.g. methionine, choline, betaine and folic acid) interact through one-carbon metabolism to modulate metabolism, immune responses and epigenetic events. By modulating those pathways, methyl donors may help increase the export of very low-density lipoproteins to reduce liver TAG and contribute to antioxidant synthesis to alleviate oxidative stress. Thus, altering one-carbon metabolism through methyl donor supplementation is a viable option to modulate immunometabolism during the peripartal period. This review explores available data on the regulation of one-carbon metabolism pathways in dairy cows in the context of enzyme regulation, cellular sensors and signaling mechanisms that might respond to increased dietary supply of specific methyl donors. Effects of methyl donors beyond the one-carbon metabolism pathways, including production performance, immune cell function, mechanistic target or rapamycin signaling, and fatty acid oxidation will also be highlighted. Furthermore, the effects of body condition and feeding system (total mixed ration vs. pasture) on one-carbon metabolism pathways are explored. Potential effects of methyl donor supply during the pepartum period on dairy calf growth and development also are discussed. Lastly, practical nutritional recommendations related to methyl donor metabolism during the peripartal period are presented. Nutritional management during the peripartal period is a fertile area of research, hence, underscoring the importance for developing a systems understanding of the potential immunometabolic role that dietary methyl donors play during this period to promote health and performance.
Collapse
Affiliation(s)
- Danielle N. Coleman
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Abdulrahman S. Alharthi
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Yusheng Liang
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Matheus Gomes Lopes
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Vincenzo Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Mario Vailati-Riboni
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| |
Collapse
|
27
|
Edick A, Audette J, Burgos S. CRISPR-Cas9-mediated knockout of GCN2 reveals a critical role in sensing amino acid deprivation in bovine mammary epithelial cells. J Dairy Sci 2021; 104:1123-1135. [DOI: 10.3168/jds.2020-18700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022]
|
28
|
Rosa F, Osorio JS. Quantitative determination of histone methylation via fluorescence resonance energy transfer (FRET) technology in immortalized bovine mammary alveolar epithelial cells supplemented with methionine. PLoS One 2020; 15:e0244135. [PMID: 33347518 PMCID: PMC7751961 DOI: 10.1371/journal.pone.0244135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Methionine (Met) is an essential precursor of S-adenosylmethionine (SAM), which is the primary methyl donor required for biological processes such as DNA and histone methylation, which alter gene expression. In dairy cows, dietary Met has been observed to exert transcriptional alterations with beneficial effects on milk biosynthesis; however, the extent of these effects via SAM remains unknown. Therefore, we evaluated the effect of Met supply on histone methylation in lysine residues K9 and K27 in the histone tail H3 via a fluorescence resonance energy transfer (FRET) system in immortalized bovine mammary alveolar epithelial cells (MACT) incubated varying concentration of Met. The histone methylation data was complemented with global DNA methylation, cellular protein synthesis, and RT-qPCR analysis of genes related to Met cycle, DNA and histone methylation, AA transporters, and protein synthesis. The histone methylation data was performed on MACT cells seeded at 30,000 cells/well in 96-well plates 24 h prior to transfection. The transfections of FRET gene reporter plasmids H3K9 and H3K27 was performed with 0.3 μL/well of Lipofectamine® 3000 and 50 ng of plasmid DNA per well. At 24 h post-transfection, cells were treated with 0, 125, 250, and 500 μM of Met, and quantification of histone methylation was performed at 0, 12, and 24 h post-treatment as well as cell viability at 24 h using CellProfiler software. An inverted microscope for live imagining (EVOS® FL Auto) equipped with a motorized scanning stage, and an environment-controlled chamber at 37˚C and 5.0% of CO2 was used to take 4 pictures/well at 4x magnification. A more defined response on histone methylation was observed in H3K9 than H3K27 to Met supply, where maximal histone methylation in H3K9 was observed with 125 μM of Met. This greater histone methylation in H3K9 at 125 μM was accompanied by greater cellular protein concentration. The linear increase in Met supply causes a linear decrease in global DNA methylation, while linearly upregulating genes related to the Met cycle (i.e., MAT1A, PEMT, SAHH, and MTR). The histone methylation data suggest that, to some extent, methyl-donors such as Met may affect the methylation sites, H3K9 and H3K27, and consequently causing a different epigenetic alteration. In the context of the dairy cow, further refinement to this FRET assay to study histone methylation could lead to establishing novel potential mechanisms of how dietary methyl donors may control the structural conformation of the bovine genome and, by extension, gene expression.
Collapse
Affiliation(s)
- Fernanda Rosa
- Department of Dairy and Food Sciences, South Dakota State University, Brookings, South Dakota, United States of America
| | - Johan S. Osorio
- Department of Dairy and Food Sciences, South Dakota State University, Brookings, South Dakota, United States of America
- * E-mail:
| |
Collapse
|
29
|
Dai W, Zhao F, Liu J, Liu H. ASCT2 Is Involved in SARS-Mediated β-Casein Synthesis of Bovine Mammary Epithelial Cells with Methionine Supply. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13038-13045. [PMID: 31597423 DOI: 10.1021/acs.jafc.9b03833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The methionine (Met) uptake into mammary cells depends upon the corresponding amino acid (AA) transporters, which play a regulatory role in the mammary protein production beyond transport. Our previous studies have identified that seryl-tRNA synthetase (SARS) could be a novel mediator to regulate essential AA-stimulated casein synthesis in primary bovine mammary epithelial cells (BMECs). However, the regulatory mechanisms of Met in milk protein production in dairy cows remain further clarified. Here, we aimed to investigate the effects of Met on milk protein synthesis in BMECs and explore the underlying mechanism. The effects of Met on the AA transporter, casein synthesis, and the related signaling pathway were evaluated in the BMECs treated with 0.6 mM Met for 6 h combined with or without the inhibition of AA transporter (ASCT2, a neutral AA transporter) activity by the corresponding inhibitor (GPNA). Besides, the effects of SARS on the cells were mainly evaluated in the BMECs treated with 0.6 mM Met for 6 h together with or without SARS knockdown by RNAi interference. The gene expression of AA transporters and pathway-related genes were analyzed by the real-time quantitative polymerase chain reaction method, and the protein expression of related proteins were determined by the western blot assay. Results showed that 0.6 mM Met remarkably enhanced cell growth and β-casein synthesis compared to the supply of other Met concentrations. Among 13 amino acid transporters, 0.6 mM Met highly increased ASCT2 expression. This Met-stimulated ASCT2 expression and the enhanced mammary intracellular Met uptake were both decreased by the addition of 500 μM GPNA, an inhibitor of ASCT2. In the presence of 0.6 mM Met, the inhibition of ASCT2 activity (by GPNA) and SARS expression (by RNAi) both reduced β-casein synthesis. Additionally, 0.6 mM Met increased the gene expression of mTOR, S6K1, 4EBP1, and Akt; in contrast, the inhibition of ASCT2 by GPNA lowered the gene expression of these four genes. Collectively, this work suggests that ASCT2 is involved in the SARS-mediated Met stimulation of β-casein synthesis through enhancing mammary Met uptake and activating the mTOR signaling pathway in BMECs.
Collapse
Affiliation(s)
- Wenting Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Fengqi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
30
|
Dai H, Coleman DN, Lopes MG, Hu L, Martinez-Cortés I, Parys C, Shen X, Loor JJ. Alterations in immune and antioxidant gene networks by gamma-d-glutamyl-meso-diaminopimelic acid in bovine mammary epithelial cells are attenuated by in vitro supply of methionine and arginine. J Dairy Sci 2020; 104:776-785. [PMID: 33189269 DOI: 10.3168/jds.2020-19307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptor 1 (NOD1) is a cytosolic pattern recognition receptor with a crucial role in the innate immune response of cells triggered by the presence of compounds such as gamma-d-glutamyl-meso-diaminopimelic acid (iE-DAP) present in the peptidoglycan of all gram-negative and certain gram-positive bacteria. Methionine (Met) and arginine (Arg) are functional AA with immunomodulatory properties. In the present study, we aimed to assess the effect of increased Met and Arg supply on mRNA abundance of genes associated with innate immune response, antioxidant function, and AA metabolism during iE-DAP challenge in bovine mammary epithelial cells (BMEC). Primary BMEC (n = 4 per treatment) were precultured in modified medium for 12 h with the following AA formulations: ideal profile of AA (control), increased Met supply (incMet), increased Arg supply (incArg), or increased supply of Met plus Arg (incMetArg). Subsequently, cells were challenged with or without iE-DAP (10 μg/mL) for 6 h. Data were analyzed as a 2 × 2 × 2 factorial using the MIXED procedure of SAS 9.4. Greater mRNA abundance of NOD1, the antioxidant enzyme SOD1, and AA transporters (SLC7A1 and SLC3A2) was observed in the incMet cells after iE-DAP stimulation. Although increased Met alone had no effect, incMetArg led to greater abundance of the inflammatory cytokine IL-6, and the antioxidant enzyme GPX1 after iE-DAP stimulation. The increased Arg alone downregulated NOD1 after iE-DAP stimulation, coupled with a downregulation in the AA transporters mRNA abundance (SLC7A1, SLC7A5, SLC3A2, and SLC38A9), and upregulation in GSS and KEAP1 mRNA abundance. Overall, the data indicated that increased supply of both Met and Arg in the culture medium were more effective in modulating the innate immune response and antioxidant capacity of BMEC during in vitro iE-DAP stimulation.
Collapse
Affiliation(s)
- H Dai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China; Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - D N Coleman
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - M G Lopes
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - L Hu
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - I Martinez-Cortés
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Agricultural and Animal Production Department, UAM-Xochimilco, Mexico City, Mexico 04960
| | - C Parys
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang, 63457, Germany
| | - X Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
31
|
Coleman DN, Lopreiato V, Alharthi A, Loor JJ. Amino acids and the regulation of oxidative stress and immune function in dairy cattle. J Anim Sci 2020; 98:S175-S193. [PMID: 32810243 PMCID: PMC7433927 DOI: 10.1093/jas/skaa138] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Vincenzo Lopreiato
- Department of Health Science, Interdepartmental Services Centre of Veterinary for Human and Animal Health, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Abdulrahman Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL.,Division of Nutritional Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
32
|
Yu Y, Yuan X, Li P, Wang Y, Yu M, Gao X. Vaccarin promotes proliferation of and milk synthesis in bovine mammary epithelial cells through the Prl receptor-PI3K signaling pathway. Eur J Pharmacol 2020; 880:173190. [DOI: 10.1016/j.ejphar.2020.173190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/23/2022]
|
33
|
McFadden JW, Girard CL, Tao S, Zhou Z, Bernard JK, Duplessis M, White HM. Symposium review: One-carbon metabolism and methyl donor nutrition in the dairy cow. J Dairy Sci 2020; 103:5668-5683. [PMID: 32278559 DOI: 10.3168/jds.2019-17319] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022]
Abstract
The present review focuses on methyl donor metabolism and nutrition in the periparturient and lactating dairy cow. Methyl donors are involved in one-carbon metabolism, which includes the folate and Met cycles. These cycles work in unison to support lipid, nucleotide, and protein synthesis, as well as methylation reactions and the maintenance of redox status. A key feature of one-carbon metabolism is the multi-step conversion of tetrahydrofolate to 5-methyltetrahyrofolate. Homocysteine and 5-methyltetrahyrofolate are utilized by vitamin B12-dependent Met synthase to couple the folate and Met cycles and generate Met. Methionine may also be remethylated from choline-derived betaine under the action of betaine hydroxymethyltransferase. Regardless, Met is converted within the Met cycle to S-adenosylmethionine, which is universally utilized in methyl-group transfer reactions including the synthesis of phosphatidylcholine. Homocysteine may also enter the transsulfuration pathway to generate glutathione or taurine for scavenging of reactive oxygen metabolites. In the transition cow, a high demand exists for compounds with a labile methyl group. Limited methyl group supply may contribute to inadequate hepatic phosphatidylcholine synthesis and hepatic triglyceride export, systemic oxidative stress, and compromised milk production. To minimize the perils associated with methyl donor deficiency, the peripartum cow relies on de novo methylneogenesis from tetrahydrofolate. In addition, dietary supplementation of rumen-protected folic acid, vitamin B12, Met, choline, and betaine are potential nutritional approaches to target one-carbon pools and improve methyl donor balance in transition cows. Such strategies have merit considering research demonstrating their ability to improve milk production efficiency, milk protein synthesis, hepatic health, and immune response. This review aims to summarize the current understanding of folic acid, vitamin B12, Met, choline, and betaine utilization in the dairy cow. Methyl donor co-supplementation, fatty acid feeding strategies that may optimize methyl donor supplementation efficacy, and potential epigenetic mechanisms are also considered.
Collapse
Affiliation(s)
- J W McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| | - C L Girard
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada J1M 0C8
| | - S Tao
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| | - Z Zhou
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - J K Bernard
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| | - M Duplessis
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada J1M 0C8
| | - H M White
- Department of Dairy Science, University of Wisconsin, Madison 53706
| |
Collapse
|
34
|
Amino acid transportation, sensing and signal transduction in the mammary gland: key molecular signalling pathways in the regulation of milk synthesis. Nutr Res Rev 2020; 33:287-297. [DOI: 10.1017/s0954422420000074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe mammary gland, a unique exocrine organ, is responsible for milk synthesis in mammals. Neonatal growth and health are predominantly determined by quality and quantity of milk production. Amino acids are crucial maternal nutrients that are the building blocks for milk protein and are potential energy sources for neonates. Recent advances made regarding the mammary gland further demonstrate that some functional amino acids also regulate milk protein and fat synthesis through distinct intracellular and extracellular pathways. In the present study, we discuss recent advances in the role of amino acids (especially branched-chain amino acids, methionine, arginine and lysine) in the regulation of milk synthesis. The present review also addresses the crucial questions of how amino acids are transported, sensed and transduced in the mammary gland.
Collapse
|
35
|
Zou H, Hu R, Dong X, Shah AM, Wang Z, Ma J, Peng Q, Xue B, Wang L, Zhang X, Zeng S, Wang X, Shi J, Li F. Lipid Catabolism in Starved Yak Is Inhibited by Intravenous Infusion of β-Hydroxybutyrate. Animals (Basel) 2020; 10:ani10010136. [PMID: 31952136 PMCID: PMC7022817 DOI: 10.3390/ani10010136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/06/2020] [Accepted: 01/11/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Yak, which is the predominant and semi-domesticated livestock on the Qinghai-Tibet Plateau, suffers severe starvation and body weight reduction in the cold season because of the harsh highland environment. Lipids are important energy sources to starvation animals. β-hydroxybutyrate (BHBA) that is derived from lipid decomposition as the primary ketone body is with the function not only to provide energy for animals as energy materials, but also regulate lipid metabolism as signaling molecular. However, the effects of starvation and BHBA on lipid metabolism and its mechanism are still unclear for ruminant animals. Herein, we investigated the effects of starvation and intravenous infusion of BHBA solution on Yak growth, serum biochemistry, hormones, subcutaneous adipocyte morphology, fatty acid composition, activity of enzymes related to lipid metabolism, and signal pathway. The results showed that starvation promoted lipid catabolism and BHBA infusion up-regulated the mRNA expression of receptor GPR109A in subcutaneous adipose tissue, inhibited the Cyclic adenosine monophosphate(cAMP)/Protein kinase A (PKA)/cAMP-responsive element binding protein (CREB) signaling pathway, and inhibited lipolysis. Our study was beneficial for enriching the nutrition regulation theory of yaks and improving their growth potential. Abstract Lipid is the chief energy source for starved animals. β-hydroxybutyrate (BHBA) is the main ketone body produced by lipid decomposition. In Chinese hamster ovary (CHO) cell experiment, it was found that BHBA could be used not only as an energy substance, but also as a ligand of GPR109A for regulating lipid metabolism. However, whether BHBA can regulate lipid metabolism of yaks, and its effective concentration and signal pathway are not clear. This study investigated the effects and mechanism of starvation and BHBA on the lipid metabolism of yak. Eighteen male Jiulong yaks were selected and then randomly divided into three groups: normal feeding group (NG), starvation group (SG), and starvation with BHBA infusion group (SBG). The yaks in the NG group were freely fed during the trial, while the yaks in the SG and SBG groups fasted; from 7th to 9th days of the experiment, the NG and SG were infused continuous with 0.9% normal saline and SBG was infused 1.7 mmol/L BHBA solution respectively. The blood samples were collected on the 0th, 1st, 3rd, 5th, 7th, and 9th day of experiment. The subcutaneous adipose tissue of all the yaks in this study were taken from live bodies after infusion. Serum glucose, lipid metabolites, hormone concentrations, and mRNA and protein expressions of key factors of lipid metabolism and signaling pathway in subcutaneous adipose tissue were measured. The results showed that, as compared with NG, starvation significantly reduced the body weight of yak in SG, and significantly increased the concentration of BHBA in serum and the mRNA expression of PKA and CREB1 in subcutaneous adipose tissue, while the mRNA expression of MEK, PKC, ERK1/2, the area of adipocytes, and the proportion of saturated fatty acid were decreased. Whereas, further increase of BHBA concentration through infusion promoted the mRNA expression of GPR109A receptor in the subcutaneous adipose tissue of SBG, inhibited the mRNA expression of AC and PKA, and decreased the phosphorylation protein abundance of CREB1, and significantly increased the diameter and area of adipocytes. These findings suggest that starvation led to enhanced lipid catabolism in yaks. An increasing BHBA concentration could increase the mRNA expression of GPR109A receptor in subcutaneous adipose tissue and inhibit the cAMP/PKA/CREB signaling pathway and lipid decomposition.
Collapse
Affiliation(s)
- Huawei Zou
- “Low Carbon Breeding Cattle and Safety Production” University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 61130, China; (H.Z.); (R.H.); (X.D.); (A.M.S.); (J.M.); (Q.P.); (B.X.); (L.W.); (X.Z.); (S.Z.); (X.W.); (J.S.); (F.L.)
| | - Rui Hu
- “Low Carbon Breeding Cattle and Safety Production” University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 61130, China; (H.Z.); (R.H.); (X.D.); (A.M.S.); (J.M.); (Q.P.); (B.X.); (L.W.); (X.Z.); (S.Z.); (X.W.); (J.S.); (F.L.)
| | - Xianwen Dong
- “Low Carbon Breeding Cattle and Safety Production” University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 61130, China; (H.Z.); (R.H.); (X.D.); (A.M.S.); (J.M.); (Q.P.); (B.X.); (L.W.); (X.Z.); (S.Z.); (X.W.); (J.S.); (F.L.)
| | - Ali Mujtaba Shah
- “Low Carbon Breeding Cattle and Safety Production” University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 61130, China; (H.Z.); (R.H.); (X.D.); (A.M.S.); (J.M.); (Q.P.); (B.X.); (L.W.); (X.Z.); (S.Z.); (X.W.); (J.S.); (F.L.)
- Department of Livestock Production, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Zhisheng Wang
- “Low Carbon Breeding Cattle and Safety Production” University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 61130, China; (H.Z.); (R.H.); (X.D.); (A.M.S.); (J.M.); (Q.P.); (B.X.); (L.W.); (X.Z.); (S.Z.); (X.W.); (J.S.); (F.L.)
- Correspondence:
| | - Jian Ma
- “Low Carbon Breeding Cattle and Safety Production” University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 61130, China; (H.Z.); (R.H.); (X.D.); (A.M.S.); (J.M.); (Q.P.); (B.X.); (L.W.); (X.Z.); (S.Z.); (X.W.); (J.S.); (F.L.)
| | - Quanhui Peng
- “Low Carbon Breeding Cattle and Safety Production” University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 61130, China; (H.Z.); (R.H.); (X.D.); (A.M.S.); (J.M.); (Q.P.); (B.X.); (L.W.); (X.Z.); (S.Z.); (X.W.); (J.S.); (F.L.)
| | - Bai Xue
- “Low Carbon Breeding Cattle and Safety Production” University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 61130, China; (H.Z.); (R.H.); (X.D.); (A.M.S.); (J.M.); (Q.P.); (B.X.); (L.W.); (X.Z.); (S.Z.); (X.W.); (J.S.); (F.L.)
| | - Lizhi Wang
- “Low Carbon Breeding Cattle and Safety Production” University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 61130, China; (H.Z.); (R.H.); (X.D.); (A.M.S.); (J.M.); (Q.P.); (B.X.); (L.W.); (X.Z.); (S.Z.); (X.W.); (J.S.); (F.L.)
| | - Xiangfei Zhang
- “Low Carbon Breeding Cattle and Safety Production” University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 61130, China; (H.Z.); (R.H.); (X.D.); (A.M.S.); (J.M.); (Q.P.); (B.X.); (L.W.); (X.Z.); (S.Z.); (X.W.); (J.S.); (F.L.)
| | - Shaoyu Zeng
- “Low Carbon Breeding Cattle and Safety Production” University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 61130, China; (H.Z.); (R.H.); (X.D.); (A.M.S.); (J.M.); (Q.P.); (B.X.); (L.W.); (X.Z.); (S.Z.); (X.W.); (J.S.); (F.L.)
| | - Xueying Wang
- “Low Carbon Breeding Cattle and Safety Production” University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 61130, China; (H.Z.); (R.H.); (X.D.); (A.M.S.); (J.M.); (Q.P.); (B.X.); (L.W.); (X.Z.); (S.Z.); (X.W.); (J.S.); (F.L.)
| | - Junhua Shi
- “Low Carbon Breeding Cattle and Safety Production” University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 61130, China; (H.Z.); (R.H.); (X.D.); (A.M.S.); (J.M.); (Q.P.); (B.X.); (L.W.); (X.Z.); (S.Z.); (X.W.); (J.S.); (F.L.)
| | - Fengpeng Li
- “Low Carbon Breeding Cattle and Safety Production” University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 61130, China; (H.Z.); (R.H.); (X.D.); (A.M.S.); (J.M.); (Q.P.); (B.X.); (L.W.); (X.Z.); (S.Z.); (X.W.); (J.S.); (F.L.)
| |
Collapse
|
36
|
Hu L, Chen Y, Cortes IM, Coleman DN, Dai H, Liang Y, Parys C, Fernandez C, Wang M, Loor JJ. Supply of methionine and arginine alters phosphorylation of mechanistic target of rapamycin (mTOR), circadian clock proteins, and α-s1-casein abundance in bovine mammary epithelial cells. Food Funct 2020; 11:883-894. [DOI: 10.1039/c9fo02379h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Methionine (Met) and arginine (Arg) regulate casein protein abundance through alterations in activity of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway.
Collapse
Affiliation(s)
- Liangyu Hu
- College of Animal Science and Technology
- Yangzhou University
- Yangzhou
- P.R. China
- Department of Animal Sciences and Division of Nutritional Sciences
| | - Yifei Chen
- College of Animal Science and Technology
- Yangzhou University
- Yangzhou
- P.R. China
| | - Ismael M. Cortes
- Agricultural and Animal Production Department
- UAM-Xochimilco
- Mexico City
- Mexico 04960
| | - Danielle N. Coleman
- Department of Animal Sciences and Division of Nutritional Sciences
- University of Illinois
- Urbana 61801
- USA
| | - Hongyu Dai
- Department of Animal Sciences and Division of Nutritional Sciences
- University of Illinois
- Urbana 61801
- USA
- College of Veterinary Medicine
| | - Yusheng Liang
- Department of Animal Sciences and Division of Nutritional Sciences
- University of Illinois
- Urbana 61801
- USA
| | | | - Carlos Fernandez
- Animal Science Department
- Universitàt Politècnica de Valencia
- 46022 Valencia
- Spain
| | - Mengzhi Wang
- College of Animal Science and Technology
- Yangzhou University
- Yangzhou
- P.R. China
| | - Juan J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences
- University of Illinois
- Urbana 61801
- USA
| |
Collapse
|
37
|
Zhen Z, Zhang M, Yuan X, Li M. Transcription factor E2F4 is a positive regulator of milk biosynthesis and proliferation of bovine mammary epithelial cells. Cell Biol Int 2020; 44:229-241. [PMID: 31475773 DOI: 10.1002/cbin.11225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/22/2019] [Indexed: 01/24/2023]
Abstract
The transcription factor E2F4 is a key determinant of cell differentiation and cell-cycle progression, but its function and regulatory mechanism are not completely understood. Here, we report that E2F4 acts as a positive regulator of the biosynthesis of milk components and proliferation of bovine mammary epithelial cells (BMECs). Overexpression of E2F4 in BMECs resulted in the upregulation of β-casein, triglyceride, and lactose levels and increased cell proliferation, whereas E2F4 knockdown by small interfering RNA had the opposite effects. We further detected that overexpression of E2F4 significantly increased the messenger RNA expression of mTOR, SREBP-1c, and Cyclin D1, and increased protein levels of SREBP-1c, and Cyclin D1, and the ratio of p-mTOR/mTOR, whereas E2F4 knockdown had the opposite effects. E2F4 was almost entirely located in the nucleus, and we further identified, via ChIP-qPCR analysis, that mTOR, SREBP-1c, and Cyclin D1 were E2F4 target genes, and exogenous administration of methionine, leucine, β-estradiol, and prolactin markedly increased the protein levels of E2F4 and its binding to the promoters of these three genes. In summary, our data reveal that E2F4 responds to extracellular stimuli and regulates the expression of mTOR, SREBP-1c, and Cyclin D1 for milk biosynthesis and proliferation of BMECs.
Collapse
Affiliation(s)
- Zhen Zhen
- The Key Laboratory of Dairy Science of Education Ministry, Food College, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Minghui Zhang
- The Key Laboratory of Dairy Science of Education Ministry, Food College, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Xiaohan Yuan
- The Key Laboratory of Dairy Science of Education Ministry, Food College, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Meng Li
- The Key Laboratory of Dairy Science of Education Ministry, Food College, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| |
Collapse
|
38
|
Dai H, Coleman DN, Hu L, Martinez-Cortés I, Wang M, Parys C, Shen X, Loor JJ. Methionine and arginine supplementation alter inflammatory and oxidative stress responses during lipopolysaccharide challenge in bovine mammary epithelial cells in vitro. J Dairy Sci 2019; 103:676-689. [PMID: 31733877 DOI: 10.3168/jds.2019-16631] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022]
Abstract
Mastitis, inflammation of the udder, is one of the most common diseases hampering milk yield of dairy cows. Methionine (Met) and arginine (Arg) are key nutrients with potential to regulate inflammation and oxidative stress. The aim of this study was to evaluate the effect of increased supply of Met and Arg on mRNA and protein abundance associated with innate immune response and redox balance during lipopolysaccharide (LPS) stimulation in primary bovine mammary epithelial cells (BMEC). Primary BMEC (n = 4 replicates per treatment) were pre-incubated for 12 h in media with the following amino acid combinations: ideal profile of amino acids (control; Con), increased Met supply (incMet), increased Arg supply (incArg), and increased supply of Met and Arg (incMetArg). Subsequently, cells were challenged with or without LPS (1 µg/mL) and incubated for 6 h. Data were analyzed as a 2 × 2 × 2 factorial using the MIXED procedure of SAS 9.4 (SAS Institute Inc., Cary, NC). The downregulation of SLC36A1 and SLC7A1 mRNA abundance induced by LPS was attenuated in the incArg cultures. Although challenge with LPS led to lower abundance of proteins related to the antioxidant response (NFE2L2, NQO1, GPX1), lower levels of ATG7, and lower mRNA abundance of GPX3, we found little effect in cultures with incMet or incArg. Cultures with incMet, incArg, or incMetArg led to attenuation of the upregulation of SOD2 and NOS2 induced by LPS. Abundance of phosphorylated p65 (RELA) was greater after LPS stimulation, but the response was attenuated in cultures with incMet. The greater ratio of pRELA to total RELA in responses to LPS was also attenuated in cultures with incMetArg. The greater mRNA abundance of the proinflammatory cytokine IL1B induced by LPS was attenuated in cultures with incMet, and the same trend induced by LPS on CXCL2 was also alleviated in cultures with incArg. Overall, the data suggest that greater supply of Met and Arg alleviated the proinflammatory responses triggered by LPS through controlling the abundance of proinflammatory cytokines and chemokines and activity of NF-κB. Little benefit on oxidative stress induced by LPS challenge in BMEC was detected with greater supply of Met and Arg.
Collapse
Affiliation(s)
- H Dai
- College of Veterinary Medicine, Nanjing Agricultural University, 210095 P. R. China; Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - D N Coleman
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - L Hu
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; College of Animal Science and Technology, Yangzhou University, 225009 P. R. China
| | - I Martinez-Cortés
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Agricultural and Animal Production Department, UAM-Xochimilco, Mexico City 04960
| | - M Wang
- College of Animal Science and Technology, Yangzhou University, 225009 P. R. China
| | - C Parys
- Evonik Nutrition and Care GmbH, Hanau-Wolfgang, 63457, Germany
| | - X Shen
- College of Veterinary Medicine, Nanjing Agricultural University, 210095 P. R. China
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
39
|
Seryl-tRNA synthetase is involved in methionine stimulation of β-casein synthesis in bovine mammary epithelial cells. Br J Nutr 2019; 123:489-498. [PMID: 31711551 PMCID: PMC7015878 DOI: 10.1017/s0007114519002885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the well-characterised mechanisms of amino acids (AA) regulation of milk protein synthesis in mammary glands (MG), the underlying specific AA regulatory machinery in bovine MG remains further elucidated. As methionine (Met) is one of the most important essential and limiting AA for dairy cows, it is crucial to expand how Met exerts its regulatory effects on dairy milk protein synthesis. Our previous work detected the potential regulatory role of seryl-tRNA synthetase (SARS) in essential AA (EAA)-stimulated bovine casein synthesis. Here, we investigated whether and how SARS participates in Met stimulation of casein production in bovine mammary epithelial cells (BMEC). With or without RNA interference against SARS, BMEC were treated with the medium in the absence (containing all other EAA and devoid of Met alone)/presence (containing 0·6 mm of Met in the medium devoid of Met alone) of Met. The protein abundance of β-casein and members of the mammalian target of rapamycin (mTOR) and general control nonderepressible 2 (GCN2) pathways was determined by immunoblot assay after 6 h treatment, the cell viability and cell cycle progression were determined by cell counting and propidium iodide-staining assay after 24 h treatment, and protein turnover was determined by l-[ring-3H5]phenylalanine isotope tracing assay after 48 h treatment. In the absence of Met, there was a general reduction in cell viability, total protein synthesis and β-casein production; in contrast, total protein degradation was enhanced. SARS knockdown strengthened these changes. Finally, SARS may work to promote Met-stimulated β-casein synthesis via affecting mTOR and GCN2 routes in BMEC.
Collapse
|
40
|
Ghaffari MH, Schuh K, Dusel G, Frieten D, Koch C, Prehn C, Adamski J, Sauerwein H, Sadri H. Mammalian target of rapamycin signaling and ubiquitin-proteasome-related gene expression in skeletal muscle of dairy cows with high or normal body condition score around calving. J Dairy Sci 2019; 102:11544-11560. [PMID: 31587900 DOI: 10.3168/jds.2019-17130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022]
Abstract
The objective of the current study was to investigate the effects of overconditioning around calving on gene expression of key components of the mammalian target of rapamycin (mTOR) pathway and ubiquitin-proteasome system (UPS) in skeletal muscle as well as the AA profiles in both serum and muscle of periparturient cows. Fifteen weeks antepartum, 38 multiparous Holstein cows were allocated to either a high body condition group (HBCS; n = 19) or a normal body condition group (NBCS; n = 19) and were fed different diets until dry-off (d -49 relative to calving) to amplify the difference. The groups were also stratified for comparable milk yields (NBCS: 10,361 ± 302 kg; HBCS: 10,315 ± 437 kg). At dry-off, the NBCS cows (parity: 2.42 ± 1.84; body weight: 665 ± 64 kg) had a body condition score (BCS) <3.5 and backfat thickness (BFT) <1.2 cm, whereas the HBCS cows (parity: 3.37 ± 1.67; body weight: 720 ± 57 kg) had a BCS >3.75 and BFT >1.4 cm. During the dry period and the subsequent lactation, both groups were fed identical diets but maintained the BCS and BFT differences. Blood samples and skeletal muscle biopsies (semitendinosus) were repeatedly (d -49, +3, +21, and +84 relative to calving) collected for assessing the concentrations of free AA and the mRNA abundance of various components of mTOR and UPS. The differences in BCS and BFT were maintained throughout the study. The circulating concentrations of most AA with the exception of Gly, Gln, Met, and Phe increased in early lactation in both groups. The serum concentrations of Ala (d +21 and +84) and Orn (d +84) were lower in HBCS cows than in NBCS cows, but those of Gly, His, Leu, Val, Lys, Met, and Orn on d -49 and Ile on d +21 were greater in HBCS cows than in NBCS cows. The serum concentrations of 3-methylhistidine, creatinine, and 3-methylhistidine:creatinine ratio increased after calving (d +3) but did not differ between the groups. The muscle concentrations of all AA (except for Cys) remained unchanged over time and did not differ between groups. The muscle concentrations of Cys were greater on d -49 but tended to be lower on d +21 in HBCS cows than in NBCS cows. On d +21, mTOR and eukaryotic translation initiation factor 4E binding protein 1 mRNA abundance was greater in HBCS cows than in NBCS cows, whereas ribosomal protein S6 kinase 1 was not different between the groups. The mRNA abundance of ubiquitin-activating enzyme 1 (d +21), ubiquitin-conjugating enzyme 1 (d +21), atrogin-1 (d +21), and ring finger protein-1 (d +3) enzymes was greater in HBCS cows than in NBCS cows, whereas ubiquitin-conjugating enzyme 2 was not different between the groups. The increased mRNA abundance of key components of mTOR signaling and of muscle-specific ligases of HBCS cows may indicate a simultaneous activation of anabolic and catabolic processes and thus increased muscle protein turnover, likely as a part of the adaptive response to prevent excessive loss of skeletal muscle mass during early lactation.
Collapse
Affiliation(s)
- M H Ghaffari
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - K Schuh
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany; Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - G Dusel
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - D Frieten
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - C Prehn
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - J Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan 85350, Germany; German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - H Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran.
| |
Collapse
|
41
|
Kvainickas A, Nägele H, Qi W, Dokládal L, Jimenez-Orgaz A, Stehl L, Gangurde D, Zhao Q, Hu Z, Dengjel J, De Virgilio C, Baumeister R, Steinberg F. Retromer and TBC1D5 maintain late endosomal RAB7 domains to enable amino acid-induced mTORC1 signaling. J Cell Biol 2019; 218:3019-3038. [PMID: 31431476 PMCID: PMC6719456 DOI: 10.1083/jcb.201812110] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/30/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
Retromer is an evolutionarily conserved multiprotein complex that orchestrates the endocytic recycling of integral membrane proteins. Here, we demonstrate that retromer is also required to maintain lysosomal amino acid signaling through mTORC1 across species. Without retromer, amino acids no longer stimulate mTORC1 translocation to the lysosomal membrane, which leads to a loss of mTORC1 activity and increased induction of autophagy. Mechanistically, we show that its effect on mTORC1 activity is not linked to retromer's role in the recycling of transmembrane proteins. Instead, retromer cooperates with the RAB7-GAP TBC1D5 to restrict late endosomal RAB7 into microdomains that are spatially separated from the amino acid-sensing domains. Upon loss of retromer, RAB7 expands into the ragulator-decorated amino acid-sensing domains and interferes with RAG-GTPase and mTORC1 recruitment. Depletion of retromer in Caenorhabditis elegans reduces mTORC1 signaling and extends the lifespan of the worms, confirming an evolutionarily conserved and unexpected role for retromer in the regulation of mTORC1 activity and longevity.
Collapse
Affiliation(s)
- Arunas Kvainickas
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Heike Nägele
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Wenjing Qi
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ladislav Dokládal
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ana Jimenez-Orgaz
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Luca Stehl
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Dipak Gangurde
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Qian Zhao
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Zehan Hu
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Ralf Baumeister
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Florian Steinberg
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| |
Collapse
|
42
|
Li X, Li P, Wang L, Zhang M, Gao X. Lysine Enhances the Stimulation of Fatty Acids on Milk Fat Synthesis via the GPRC6A-PI3K-FABP5 Signaling in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7005-7015. [PMID: 31174423 DOI: 10.1021/acs.jafc.9b02160] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Amino acids can enhance milk fat synthesis in bovine mammary epithelial cells (BMECs), but the molecular mechanism is not well-known. In this study, we explored the regulatory role and molecular mechanism of lysine (Lys) on milk fat synthesis induced by fatty acids (FAs). We show that Lys dose-dependently affects number of cells and milk fat synthesis, and has more stimulatory effects in the presence of FAs. Lys enhances FA-induced sterol regulatory element binding protein 1c (SREBP-1c) expression and maturation in a fatty-acid-binding protein 5 (FABP5)-dependent manner. We further show that the Lys stimulates FABP5 expression via the GPRC6A (GPCR, class C, group 6, subtype A)-PI3K (phosphatidylinositol 3-kinase) signaling. Lys dose-dependently affects GPRC6A expression and localization at the plasma membrane. In summary, our data reveals that Lys enhances FAs-stimulated SREBP-1c expression and maturation leading to milk fat synthesis via the GPRC6A-PI3K-FABP5 signaling in BMECs.
Collapse
Affiliation(s)
- Xueying Li
- School of Animal Science , Yangtze University , Jingzhou 434020 , China
| | - Ping Li
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| | - Lulu Wang
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| | - Minghui Zhang
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| | - Xuejun Gao
- School of Animal Science , Yangtze University , Jingzhou 434020 , China
| |
Collapse
|
43
|
Ghaffari MH, Sadri H, Schuh K, Dusel G, Frieten D, Koch C, Prehn C, Adamski J, Sauerwein H. Biogenic amines: Concentrations in serum and skeletal muscle from late pregnancy until early lactation in dairy cows with high versus normal body condition score. J Dairy Sci 2019; 102:6571-6586. [PMID: 31056318 DOI: 10.3168/jds.2018-16034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Biogenic amines (BA) are a class of nitrogenous compounds that are involved in a wide variety of physiological processes, but their role in transition cows is poorly understood. Our objectives were to describe the longitudinal changes of BA in serum and in skeletal muscle during the transition period and to characterize temporal responses of BA in relation to body condition score (BCS) of periparturient dairy cows. Fifteen weeks before calving, 36 multiparous Holstein cows were assigned to 2 groups (n = 18 per group) that were fed differently to reach either high [HBCS; net energy for lactation (NEL) = 7.2 MJ/kg of dry matter (DM)] or normal BCS (NBCS; NEL = 6.8 MJ/kg of DM) at dry-off. The targeted BCS and back fat thickness (BFT) at dry-off (HBCS, >3.75 and >1.4 cm; NBCS, <3.5 and <1.2 cm) were reached. Thereafter, both groups were fed identical diets. Blood samples and muscle (semitendinosus) biopsies were collected at d -49, +3, +21, and +84 relative to parturition. In serum and skeletal muscle, BA concentrations were measured using a targeted metabolomics assay. The data were analyzed as a repeated measure using the MIXED procedure of SAS. The serum concentrations of most BA (i.e., creatinine, taurine, carnosine putrescine, spermine, α-aminoadipic acid, acetylornithine, kynurenine, serotonin, hydroxyproline, asymmetric dimethylarginine, and symmetric dimethylarginine) fluctuated during the transition period, while others (i.e., spermidine, phenylethylamine) did not change with time. The muscle concentrations of BA remained unchanged over time. Creatinine had the highest concentrations in the serum, while carnosine had the highest concentration among the muscle BA. The serum concentrations of creatinine (d +21), putrescine (d +84), α-aminoadipic acid (d +3), and hydroxyproline (d +21) were or tended to be higher for HBCS compared with NBCS postpartum. The serum concentrations of symmetric dimethylarginine (d -49) and acetylornithine (d +84) were or tended to be lower for HBCS compared with NBCS, respectively. The serum kynurenine/tryptophan ratio was greater with HBCS than with NBCS (d +84). Compared with NBCS, HBCS was associated with lower muscle concentrations of carnosine, but those of hydroxyproline were higher (d -49). In both serum and muscle, the asymmetric dimethylarginine concentrations were greater with HBCS than with NBCS (d -49). No correlation was found between serum and skeletal muscle BA. This study indicates that overconditioning of dairy cows may influence serum and muscle BA concentrations in the periparturient period.
Collapse
Affiliation(s)
- M H Ghaffari
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran.
| | - K Schuh
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany; Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - G Dusel
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Dörte Frieten
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - C Prehn
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 München-Neuherberg, Germany
| | - J Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 München-Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
44
|
Yu M, Wang Y, Wang Z, Liu Y, Yu Y, Gao X. Taurine Promotes Milk Synthesis via the GPR87-PI3K-SETD1A Signaling in BMECs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1927-1936. [PMID: 30678459 DOI: 10.1021/acs.jafc.8b06532] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Taurine, a β-aminosulfonic acid, exerts many cellular physiological functions. It is still unknown whether taurine can regulate milk synthesis in the mammary gland. Therefore, in this study we investigated the effects and mechanism of taurine on milk synthesis in mammary epithelial cells (MECs). Bovine MECs (BMECs) cultured in FBS-free OPTI-MEMImedium were treated with taurine (0, 0.08, 0.16, 0.24, 0.32, and 0.4 mM). Taurine treatment led to increased milk protein and fat synthesis, mTOR phosphorylation, and SREBP-1c protein expression, in a dose-dependent manner, with an apparent maximum at 0.24 mM. Gene function study approaches revealed that the GPR87-PI3K-SETD1A signaling was required for taurine to increase the mTOR and SREBP-1c mRNA levels. Taurine stimulated GPR87 expression and cell membrane localization in a dose dependent manner, suggesting a sensing mechanism of GPR87 to extracellular taurine. Collectively, these data demonstrate that taurine promotes milk synthesis via the GPR87-PI3K-SETD1A signaling.
Collapse
Affiliation(s)
- Mengmeng Yu
- Agricultural College of Guangdong Ocean University , Zhanjiang , 524088 , China
| | - Yang Wang
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin , 150030 , China
| | - Zhe Wang
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin , 150030 , China
| | - Yanxu Liu
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin , 150030 , China
| | - Yang Yu
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin , 150030 , China
| | - Xuejun Gao
- Agricultural College of Guangdong Ocean University , Zhanjiang , 524088 , China
| |
Collapse
|
45
|
Salama AAK, Duque M, Wang L, Shahzad K, Olivera M, Loor JJ. Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mammary epithelial cells in vitro. J Dairy Sci 2019; 102:2469-2480. [PMID: 30639019 DOI: 10.3168/jds.2018-15219] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
Heat stress (HS) causes reductions in milk production, but it is unclear whether this effect is due to reduced number or functional capacity (or both) of mammary cells. Methionine supplementation improves milk protein, whereas Arg is taken up in excess by mammary cells to produce energy and nonessential AA that can be incorporated into milk protein. To evaluate molecular mechanisms by which mammary functional capacity is affected by HS and Met or Arg, mammary alveolar (MAC-T) cells were incubated at thermal-neutral (37°C) or HS (42°C) temperatures. Treatments were optimal AA profiles (control; Lys:Met = 2.9:1.0; Lys:Arg = 2.1:1.0), control plus Met (Lys:Met = 2.5:1.0), or control plus Arg (Lys:Arg = 1.0:1.0). After incubation for 6 h, cells were harvested and RNA and protein were extracted for quantitative real-time PCR and Western blotting. Protein abundance of mechanistic target of rapamycin (MTOR), eukaryotic initiation factor 2a, serine-threonine protein kinase (AKT), 4E binding protein 1 (EIF4EBP1), and phosphorylated EIF4EBP1 was lower during HS. The lower phosphorylated EIF4EBP1 with HS would diminish translation initiation and reduce protein synthesis. Both Met and Arg had no effect on MTOR proteins, but the phosphorylated EIF4EBP1 decreased by AA, especially Arg. Additionally, Met but not Arg decreased the abundance of phosphorylated eukaryotic elongation factor 2, which could be positive for protein synthesis. Although HS upregulated the heat shock protein HSPA1A, the apoptotic gene BAX, and the translation inhibitor EIF4EBP1, the mRNA abundance of PPARG, FASN, ACACA (lipogenesis), and BCL2L1 (antiapoptotic) decreased. Greater supply of Met or Arg reversed most of the effects of HS occurring at the mRNA level and upregulated the abundance of HSPA1A. In addition, compared with the control, supply of Met or Arg upregulated genes related to transcription and translation (MAPK1, MTOR, SREBF1, RPS6KB1, JAK2), insulin signaling (AKT2, IRS1), AA transport (SLC1A5, SLC7A1), and cell proliferation (MKI67). Upregulation of microRNA related to cell growth arrest and apoptosis (miR-34a, miR-92a, miR-99, and miR-184) and oxidative stress (miR-141 and miR-200a) coupled with downregulation of fat synthesis-related microRNA (miR-27ab and miR-221) were detected with HS. Results suggest that HS has a direct negative effect on synthesis of protein and fat, mediated in part by coordinated changes in mRNA, microRNA, and protein abundance of key networks. The positive responses with Met and Arg raise the possibility that supplementation with these AA during HS might have a positive effect on mammary metabolism.
Collapse
Affiliation(s)
- A A K Salama
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - M Duque
- Grupo de Investigación Biogénesis, Facultad de Ciencias Agrarias, Universidad de Antioquia, Carrera 75 # 65-87, Medellín, Colombia
| | - L Wang
- Department of Animal Science, Southwest University, Rongchang, Chongqing 402460, China
| | - K Shahzad
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - M Olivera
- Grupo de Investigación Biogénesis, Facultad de Ciencias Agrarias, Universidad de Antioquia, Carrera 75 # 65-87, Medellín, Colombia
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
46
|
Qi H, Meng C, Jin X, Li X, Li P, Gao X. Methionine Promotes Milk Protein and Fat Synthesis and Cell Proliferation via the SNAT2-PI3K Signaling Pathway in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11027-11033. [PMID: 30274521 DOI: 10.1021/acs.jafc.8b04241] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Methionine (Met) plays a critical regulatory role in milk production, however, the molecular mechanism of action of Met is largely unknown. This study therefore aimed to investigate the influence of Met on milk synthesis in and proliferation of bovine mammary epithelial cells (BMECs) and explore the underlying mechanism. BMECs cultured in fetal bovine serum (FBS) free Dulbecco's modified eagle's medium (DMEM)/F-12 medium were treated with Met (0, 0.3, 0.6, 0.9, and 1.2 mM). Results showed that Met (0.6 mM) significantly increased milk protein and fat synthesis and cell proliferation. Met stimulation also increased mTOR phosphorylation and protein expression of SREBP-1c and Cyclin D1. Gene function study approaches further revealed that SNAT2 is a key regulator of these signaling pathways. PI3K inhibition experiments demonstrated that SNAT2 stimulates these pathways through regulating PI3K activity, and SNAT2 inhibition experiments further revealed that SNAT2 is required for Met to activate PI3K. Furthermore, immunofluorescence observation detected that Met stimulates SNAT2 cytoplasmic expression. Collectively, these findings demonstrate that Met positively regulates milk protein and fat synthesis and cell proliferation via the SNAT2-PI3K signaling pathway in BMECs.
Collapse
Affiliation(s)
- Hao Qi
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| | - Chunyu Meng
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| | - Xin Jin
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| | - Xueying Li
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| | - Ping Li
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| | - Xuejun Gao
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| |
Collapse
|
47
|
Luo C, Qi H, Huang X, Li M, Zhang L, Lin Y, Gao X. GlyRS is a new mediator of amino acid‐induced milk synthesis in bovine mammary epithelial cells. J Cell Physiol 2018; 234:2973-2983. [DOI: 10.1002/jcp.27115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/02/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Chaochao Luo
- The Key Laboratory of Dairy Science of Education MinistryNortheast Agricultural UniversityHarbin China
| | - Hao Qi
- The Key Laboratory of Dairy Science of Education MinistryNortheast Agricultural UniversityHarbin China
| | - Xin Huang
- The Key Laboratory of Dairy Science of Education MinistryNortheast Agricultural UniversityHarbin China
| | - Meng Li
- The Key Laboratory of Dairy Science of Education MinistryNortheast Agricultural UniversityHarbin China
| | - Li Zhang
- The Key Laboratory of Dairy Science of Education MinistryNortheast Agricultural UniversityHarbin China
| | - Ye Lin
- The Key Laboratory of Dairy Science of Education MinistryNortheast Agricultural UniversityHarbin China
| | - Xuejun Gao
- The Key Laboratory of Dairy Science of Education MinistryNortheast Agricultural UniversityHarbin China
| |
Collapse
|
48
|
Dong X, Zhou Z, Wang L, Saremi B, Helmbrecht A, Wang Z, Loor J. Increasing the availability of threonine, isoleucine, valine, and leucine relative to lysine while maintaining an ideal ratio of lysine:methionine alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription. J Dairy Sci 2018; 101:5502-5514. [DOI: 10.3168/jds.2017-13707] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
|