1
|
Spina AA, Ceniti C, De Fazio R, Oppedisano F, Palma E, Gugliandolo E, Crupi R, Raza SHA, Britti D, Piras C, Morittu VM. Spectral Profiling (Fourier Transform Infrared Spectroscopy) and Machine Learning for the Recognition of Milk from Different Bovine Breeds. Animals (Basel) 2024; 14:1271. [PMID: 38731274 PMCID: PMC11083570 DOI: 10.3390/ani14091271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
The Podolica cattle breed is widespread in southern Italy, and its productivity is characterized by low yields and an extraordinary quality of milk and meats. Most of the milk produced is transformed into "Caciocavallo Podolico" cheese, which is made with 100% Podolica milk. Fourier Transform Infrared Spectroscopy (FTIR) is the technique that, in this research work, was applied together with machine learning to discriminate 100% Podolica milk from contamination of other Calabrian cattle breeds. The analysis on the test set produced a misclassification percentage of 6.7%. Among the 15 non-Podolica samples in the test set, 2 were misclassified and recognized as Podolica milk even though the milk was from other species. The correct classification rate improved to 100% when the same method was applied to the recognition of Podolica and Pezzata Rossa milk produced by the same farm. Furthermore, this technique was tested for the recognition of Podolica milk mixed with milk from other bovine species. The multivariate model and the respective confusion matrices obtained showed that all the 14 Podolica samples (test set) mixed with 40% non-Podolica milk were correctly classified. In addition, Pezzata Rossa milk produced by the same farm was detected as a contaminant in Podolica milk from the same farm down to concentrations as little as 5% with a 100% correct classification rate in the test set. The method described yielded higher accuracy values when applied to the discrimination of milks from different breeds belonging to the same farm. One of the reasons for this phenomenon could be linked to the elimination of the environmental variable. However, the results obtained in this work demonstrate the possibility of using FTIR to discriminate between milks from different breeds.
Collapse
Affiliation(s)
- Anna Antonella Spina
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (A.A.S.); (C.C.); (R.D.F.); (E.P.); (D.B.)
| | - Carlotta Ceniti
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (A.A.S.); (C.C.); (R.D.F.); (E.P.); (D.B.)
| | - Rosario De Fazio
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (A.A.S.); (C.C.); (R.D.F.); (E.P.); (D.B.)
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
| | - Ernesto Palma
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (A.A.S.); (C.C.); (R.D.F.); (E.P.); (D.B.)
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China;
| | - Domenico Britti
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (A.A.S.); (C.C.); (R.D.F.); (E.P.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
| | - Cristian Piras
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (A.A.S.); (C.C.); (R.D.F.); (E.P.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
| | - Valeria Maria Morittu
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
- Department of Medical and Surgical Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Molle A, Cipolat-Gotet C, Stocco G, Ferragina A, Berzaghi P, Summer A. The use of milk Fourier-transform infrared spectra for predicting cheesemaking traits in Grana Padano Protected Designation of Origin cheese. J Dairy Sci 2024; 107:1967-1979. [PMID: 37863286 DOI: 10.3168/jds.2023-23827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
The prediction of the cheese yield (%CY) traits for curd, solids, and retained water and the amount of fat, protein, solids, and energy recovered from the milk into the curd (%REC) by Bayesian models, using Fourier-transform infrared spectroscopy (FTIR), can be of significant economic interest to the dairy industry and can contribute to the improvement of the cheese process efficiency. The yields give a quantitative measure of the ratio between weights of the input and output of the process, whereas the nutrient recovery allows to assess the quantitative transfer of a component from milk to cheese (expressed in % of the initial weight). The aims of this study were: (1) to investigate the feasibility of using bulk milk spectra to predict %CY and %REC traits, and (2) to quantify the effect of the dairy industry and the contribution of single-spectrum wavelengths on the prediction accuracy of these traits using vat milk samples destined to the production of Grana Padano Protected Designation of Origin cheese. Information from 72 cheesemaking days (in total, 216 vats) from 3 dairy industries were collected. For each vat, the milk was weighed and analyzed for composition (total solids [TS], lactose, protein, and fat). After 48 h from cheesemaking, each cheese was weighed, and the resulting whey was sampled for composition as well (TS, lactose, protein, and fat). Two spectra from each milk sample were collected in the range between 5,011 and 925 cm-1 and averaged before the data analysis. The calibration models were developed via a Bayesian approach by using the BGLR (Bayesian Generalized Linear Regression) package of R software. The performance of the models was assessed by the coefficient of determination (R2VAL) and the root mean squared error (RMSEVAL) of validation. Random cross-validation (CVL) was applied [80% calibration and 20% validation set] with 10 replicates. Then, a stratified cross-validation (SCV) was performed to assess the effect of the dairy industry on prediction accuracy. The study was repeated using a selection of informative wavelengths to assess the necessity of using whole spectra to optimize prediction accuracy. Results showed the feasibility of using FTIR spectra and Bayesian models to predict cheesemaking traits. The R2VAL values obtained with the CVL procedure were promising in particular for the %CY and %REC for protein, ranging from 0.44 to 0.66 with very low RMSEVAL (from 0.16 to 0.53). Prediction accuracy obtained with the SCV was strongly influenced by the dairy factory industry. The general low values gained with the SCV do not permit a practical application of this approach, but they highlight the importance of building calibration models with a dataset covering the largest possible sample variability. This study also demonstrated that the use of the full FTIR spectra may be redundant for the prediction of the cheesemaking traits and that a specific selection of the most informative wavelengths led to improved prediction accuracy. This could lead to the development of dedicated spectrometers using selected wavelengths with built-in calibrations for the online prediction of these innovative traits.
Collapse
Affiliation(s)
- Arnaud Molle
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | | | - Giorgia Stocco
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy.
| | - Alessandro Ferragina
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, D15 KN3K, Ireland
| | - Paolo Berzaghi
- University of Padova, Department of Animal Medicine, Production and Health, Padova, Italy 35020
| | - Andrea Summer
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| |
Collapse
|
3
|
Pazzola M, Stocco G, Ferragina A, Bittante G, Dettori ML, Vacca GM, Cipolat-Gotet C. Cheese yield and nutrients recovery in the curd predicted by Fourier-transform spectra from individual sheep milk samples. J Dairy Sci 2023; 106:6759-6770. [PMID: 37230879 DOI: 10.3168/jds.2023-23349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023]
Abstract
The objectives of this study were to explore the use of Fourier-transform infrared (FTIR) spectroscopy on individual sheep milk samples for predicting cheese-making traits, and to test the effect of the farm variability on their prediction accuracy. For each of 121 ewes from 4 farms, a laboratory model cheese was produced, and 3 actual cheese yield traits (fresh cheese, cheese solids, and cheese water) and 4 milk nutrient recovery traits (fat, protein, total solids, and energy) in the curd were measured. Calibration equations were developed using a Bayesian approach with 2 different scenarios: (1) a random cross-validation (80% calibration; 20% validation set), and (2) a leave-one-out validation (3 farms used as calibration, and the remaining one as validation set) to assess the accuracy of prediction of samples from external farms, not included in calibration set. The best performance was obtained for predicting the yield and recovery of total solids, justifying for the practical application of the method at sheep population and dairy industry levels. Performances for the remaining traits were lower, but still useful for the monitoring of the milk processing in the case of fresh curd and recovery of energy. Insufficient accuracies were found for the recovery of protein and fat, highlighting the complex nature of the relationships among the milk nutrients and their recovery in the curd. The leave-one-out validation procedure, as expected, showed lower prediction accuracies, as a result of the characteristics of the farming systems, which were different between calibration and validation sets. In this regard, the inclusion of information related to the farm could help to improve the prediction accuracy of these traits. Overall, a large contribution to the prediction of the cheese-making traits came from the areas known as "water" and "fingerprint" regions. These findings suggest that, according to the traits studied, the inclusion of water regions for the development of the prediction equation models is fundamental to maintain a high prediction accuracy. However, further studies are necessary to better understand the role of specific absorbance peaks and their contribution to the prediction of cheese-making traits, to offer reliable tools applicable along the dairy ovine chain.
Collapse
Affiliation(s)
- Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Giorgia Stocco
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy.
| | - Alessandro Ferragina
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Dublin D15 KN3K, Ireland
| | - Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE) University of Padova, 35020 Legnaro, PD, Italy
| | - Maria Luisa Dettori
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | | | | |
Collapse
|
4
|
Atashi H, Chen Y, Wilmot H, Vanderick S, Hubin X, Soyeurt H, Gengler N. Single-step genome-wide association for selected milk fatty acids in Dual-Purpose Belgian Blue cows. J Dairy Sci 2023; 106:6299-6315. [PMID: 37479585 DOI: 10.3168/jds.2022-22432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/17/2023] [Indexed: 07/23/2023]
Abstract
The aim of this study was to estimate genetic parameters and identify genomic regions associated with selected individual and groups of milk fatty acids (FA) predicted by milk mid-infrared spectrometry in Dual-Purpose Belgian Blue cows. The used data were 69,349 test-day records of milk yield, fat percentage, and protein percentage along with selected individual and groups FA of milk (g/dL milk) collected from 2007 to 2020 on 7,392 first-parity (40,903 test-day records), and 5,185 second-parity (28,446 test-day records) cows distributed in 104 herds in the Walloon Region of Belgium. Data of 28,466 SNPs, located on 29 Bos taurus autosomes (BTA), of 1,699 animals (639 males and 1,060 females) were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method. The SNP solutions were estimated using a single-step genomic best linear unbiased prediction approach. The proportion of genetic variance explained by each 25-SNP sliding window (with an average size of ~2 Mb) was calculated, and regions accounting for at least 1.0% of the total additive genetic variance were used to search for candidate genes. Average daily heritability estimated for the included milk FA traits ranged from 0.01 (C4:0) to 0.48 (C12:0) and 0.01 (C4:0) to 0.42 (C12:0) in the first and second parities, respectively. Genetic correlations found between milk yield and the studied individual milk FA, except for C18:0, C18:1 trans, C18:1 cis-9, were positive. The results showed that fat percentage and protein percentage were positively genetically correlated with all studied individual milk FA. Genome-wide association analyses identified 11 genomic regions distributed over 8 chromosomes [BTA1, BTA4, BTA10, BTA14 (4 regions), BTA19, BTA22, BTA24, and BTA26] associated with the studied FA traits, though those found on BTA14 partly overlapped. The genomic regions identified differed between parities and lactation stages. Although these differences in genomic regions detected may be due to the power of quantitative trait locus detection, it also suggests that candidate genes underlie the phenotypic expression of the studied traits may vary between parities and lactation stages. These findings increase our understanding about the genetic background of milk FA and can be used for the future implementation of genomic evaluation to improve milk FA profile in Dual-Purpose Belgian Blue cows.
Collapse
Affiliation(s)
- H Atashi
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; Department of Animal Science, Shiraz University, 71441-13131 Shiraz, Iran.
| | - Y Chen
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - H Wilmot
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; National Fund for Scientific Research (F.R.S.-FNRS), 1000 Brussels, Belgium
| | - S Vanderick
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - X Hubin
- Elevéo asbl Awé Group, 5590 Ciney, Belgium
| | - H Soyeurt
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - N Gengler
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
5
|
Villar-Hernández BDJ, Amalfitano N, Cecchinato A, Pazzola M, Vacca GM, Bittante G. Phenotypic Analysis of Fourier-Transform Infrared Milk Spectra in Dairy Goats. Foods 2023; 12:foods12040807. [PMID: 36832882 PMCID: PMC9955890 DOI: 10.3390/foods12040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The infrared spectrum of bovine milk is used to predict many interesting traits, whereas there have been few studies on goat milk in this regard. The objective of this study was to characterize the major sources of variation in the absorbance of the infrared spectrum in caprine milk samples. A total of 657 goats belonging to 6 breeds and reared on 20 farms under traditional and modern dairy systems were milk-sampled once. Fourier-transform infrared (FTIR) spectra were taken (2 replicates per sample, 1314 spectra), and each spectrum contained absorbance values at 1060 different wavenumbers (5000 to 930 × cm-1), which were treated as a response variable and analyzed one at a time (i.e., 1060 runs). A mixed model, including the random effects of sample/goat, breed, flock, parity, stage of lactation, and the residual, was used. The pattern and variability of the FTIR spectrum of caprine milk was similar to those of bovine milk. The major sources of variation in the entire spectrum were as follows: sample/goat (33% of the total variance); flock (21%); breed (15%); lactation stage (11%); parity (9%); and the residual unexplained variation (10%). The entire spectrum was segmented into five relatively homogeneous regions. Two of them exhibited very large variations, especially the residual variation. These regions are known to be affected by the absorbance of water, although they also exhibited wide variations in the other sources of variation. The average repeatability of these two regions were 45% and 75%, whereas for the other three regions it was about 99%. The FTIR spectrum of caprine milk could probably be used to predict several traits and to authenticate the origin of goat milk.
Collapse
Affiliation(s)
| | - Nicolò Amalfitano
- Department of Agronomy, Food and Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Alessio Cecchinato
- Department of Agronomy, Food and Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | | | - Giovanni Bittante
- Department of Agronomy, Food and Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
- Correspondence:
| |
Collapse
|
6
|
Tiplady KM, Lopdell TJ, Sherlock RG, Johnson TJ, Spelman RJ, Harris BL, Davis SR, Littlejohn MD, Garrick DJ. Comparison of the genetic characteristics of directly measured and Fourier-transform mid-infrared-predicted bovine milk fatty acids and proteins. J Dairy Sci 2022; 105:9763-9791. [DOI: 10.3168/jds.2022-22089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
|
7
|
Correddu F, Gaspa G, Cesarani A, Macciotta NPP. Phenotypic and genetic characterization of the occurrence of noncoagulating milk in dairy sheep. J Dairy Sci 2022; 105:6773-6782. [PMID: 35840399 DOI: 10.3168/jds.2021-21661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/25/2022] [Indexed: 11/19/2022]
Abstract
Milk coagulation ability is of central importance for the sheep dairy industry because almost all sheep milk is destined for cheese processing. The occurrence of milk with impaired coagulation properties is an obstacle to cheese processing and, in turn, to the profitability of the dairy companies. In this work, we investigated the causes of noncoagulation of sheep milk; specifically, we studied the effect of milk physicochemical properties on milk coagulation status [coagulating and noncoagulating (NC) milk samples, which do or do not coagulate within 30 min, respectively], and whether mid-infrared spectroscopy (MIR) could be used to assess variability in coagulation status. We also investigated the genetic background of milk coagulation ability. Individual milk samples were collected from 996 Sarda ewes farmed in 47 flocks located in Sardinia (Italy). Considered traits were daily milk yield, milk composition traits, and milk coagulation properties (rennet coagulation time, curd firming time, and curd firmness), and MIR spectra were acquired. About 9% of samples did not coagulate within 30 min. A logistic regression approach was used to test the effect of milk-related traits on milk coagulation status. A principal component (PC) analysis was carried out on the milk MIR spectra, and PC scores were then used as covariates in a logistic regression model to assess their relationship with milk coagulation status. Results of the present work demonstrated that the probability of having NC samples increases as milk contents of proteins and chlorides and somatic cell score increase. The analysis of PC extracted from milk spectra that influenced coagulation status highlighted key regions associated with lactose and protein concentrations, and others not associated with routinely collected milk composition traits. These results suggest that the occurrence of NC is mostly related to damage of the epithelium secretory mammary cells, which occurs with the advancement of a lactation or due to unhealthy mammary gland status. Genetic analysis of milk coagulation status and of the extracted PC confirmed the genetic background of the milk coagulability of sheep milk.
Collapse
Affiliation(s)
- F Correddu
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy.
| | - G Gaspa
- Department of Agricultural, Forestry and Alimentary Sciences, University of Torino, 10095 Grugliasco, Italy
| | - A Cesarani
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy
| | - N P P Macciotta
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
8
|
van den Berg I, Ho PN, Nguyen TV, Haile-Mariam M, Luke TDW, Pryce JE. Using mid-infrared spectroscopy to increase GWAS power to detect QTL associated with blood urea nitrogen. Genet Sel Evol 2022; 54:27. [PMID: 35436852 PMCID: PMC9014603 DOI: 10.1186/s12711-022-00719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/05/2022] [Indexed: 11/20/2022] Open
Abstract
Blood urea nitrogen (BUN) is an indicator trait for urinary nitrogen excretion. Measuring BUN level requires a blood sample, which limits the number of records that can be obtained. Alternatively, BUN can be predicted using mid-infrared (MIR) spectroscopy of a milk sample and thus records become available on many more cows through routine milk recording processes. The genetic correlation between MIR predicted BUN (MBUN) and BUN is 0.90. Hence, genetically, BUN and MBUN can be considered as the same trait. The objective of our study was to perform genome-wide association studies (GWAS) for BUN and MBUN, compare these two GWAS and detect quantitative trait loci (QTL) for both traits, and compare the detected QTL with previously reported QTL for milk urea nitrogen (MUN). The dataset used for our analyses included 2098 and 18,120 phenotypes for BUN and MBUN, respectively, and imputed whole-genome sequence data. The GWAS for MBUN was carried out using either the full dataset, the 2098 cows with records for BUN, or 2000 randomly selected cows, so that the dataset size is comparable to that for BUN. The GWAS results for BUN and MBUN were very different, in spite of the strong genetic correlation between the two traits. We detected 12 QTL for MBUN, on bovine chromosomes 2, 3, 9, 11, 12, 14 and X, and one QTL for BUN on chromosome 13. The QTL detected on chromosomes 11, 14 and X overlapped with QTL detected for MUN. The GWAS results were highly sensitive to the subset of records used. Hence, caution is warranted when interpreting GWAS based on small datasets, such as for BUN. MBUN may provide an attractive alternative to perform a more powerful GWAS to detect QTL for BUN.
Collapse
|
9
|
Khanal P, Tempelman RJ. The use of milk Fourier-transform mid-infrared spectroscopy to diagnose pregnancy and determine spectral regional associations with pregnancy in US dairy cows. J Dairy Sci 2022; 105:3209-3221. [DOI: 10.3168/jds.2021-21079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022]
|
10
|
Tiplady KM, Lopdell TJ, Reynolds E, Sherlock RG, Keehan M, Johnson TJJ, Pryce JE, Davis SR, Spelman RJ, Harris BL, Garrick DJ, Littlejohn MD. Sequence-based genome-wide association study of individual milk mid-infrared wavenumbers in mixed-breed dairy cattle. Genet Sel Evol 2021; 53:62. [PMID: 34284721 PMCID: PMC8290608 DOI: 10.1186/s12711-021-00648-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/22/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Fourier-transform mid-infrared (FT-MIR) spectroscopy provides a high-throughput and inexpensive method for predicting milk composition and other novel traits from milk samples. While there have been many genome-wide association studies (GWAS) conducted on FT-MIR predicted traits, there have been few GWAS for individual FT-MIR wavenumbers. Using imputed whole-genome sequence for 38,085 mixed-breed New Zealand dairy cattle, we conducted GWAS on 895 individual FT-MIR wavenumber phenotypes, and assessed the value of these direct phenotypes for identifying candidate causal genes and variants, and improving our understanding of the physico-chemical properties of milk. RESULTS Separate GWAS conducted for each of 895 individual FT-MIR wavenumber phenotypes, identified 450 1-Mbp genomic regions with significant FT-MIR wavenumber QTL, compared to 246 1-Mbp genomic regions with QTL identified for FT-MIR predicted milk composition traits. Use of mammary RNA-seq data and gene annotation information identified 38 co-localized and co-segregating expression QTL (eQTL), and 31 protein-sequence mutations for FT-MIR wavenumber phenotypes, the latter including a null mutation in the ABO gene that has a potential role in changing milk oligosaccharide profiles. For the candidate causative genes implicated in these analyses, we examined the strength of association between relevant loci and each wavenumber across the mid-infrared spectrum. This revealed shared association patterns for groups of genomically-distant loci, highlighting clusters of loci linked through their biological roles in lactation and their presumed impacts on the chemical composition of milk. CONCLUSIONS This study demonstrates the utility of FT-MIR wavenumber phenotypes for improving our understanding of milk composition, presenting a larger number of QTL and putative causative genes and variants than found from FT-MIR predicted composition traits. Examining patterns of significance across the mid-infrared spectrum for loci of interest further highlighted commonalities of association, which likely reflects the physico-chemical properties of milk constituents.
Collapse
Affiliation(s)
- Kathryn M. Tiplady
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
- School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| | - Thomas J. Lopdell
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Edwardo Reynolds
- School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| | - Richard G. Sherlock
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Michael Keehan
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Thomas JJ. Johnson
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Jennie E. Pryce
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| | - Stephen R. Davis
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Richard J. Spelman
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Bevin L. Harris
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Dorian J. Garrick
- School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| | - Mathew D. Littlejohn
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
- School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| |
Collapse
|
11
|
Rovere G, de Los Campos G, Lock AL, Worden L, Vazquez AI, Lee K, Tempelman RJ. Prediction of fatty acid composition using milk spectral data and its associations with various mid-infrared spectral regions in Michigan Holsteins. J Dairy Sci 2021; 104:11242-11258. [PMID: 34275636 DOI: 10.3168/jds.2021-20267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/28/2021] [Indexed: 11/19/2022]
Abstract
Fatty acid composition in milk is not only reflective of nutritional quality but also potentially predictive of other attributes (e. g. including the cow's energy balance and its relative output of methane emissions). Furthermore, a higher ratio of long-chain to short-chain fatty acids or mean carbon number has been associated with negative energy balance in dairy cows, whereas enhanced nutritional properties have been generally associated with higher levels of unsaturation. We set out to directly compare Bayesian regression strategies with partial least squares for the prediction of various milk fatty acids using Fourier-transform infrared spectrum data on 777 milk samples taken from 579 cows on 4 Michigan dairy herds between 5 and 90 d in milk. We also set out to identify those spectral regions that might be associated with fatty acids and whether carbon number or level of unsaturation might contribute to the strength of these associations. These associations were based on adaptively clustered windows of wavenumbers to mitigate the distorting effects of severe multicollinearity on marginal associations involving individual wavenumbers. In general, Bayesian regression methods, particularly the variable selection method BayesB, outperformed partial least squares regression for cross-validation prediction accuracy for both individual fatty acids and fatty acid groups. Strong signals for wavenumber associations using BayesB were well distributed throughout the mid-infrared spectrum, particularly between 910 and 3,998 cm-1. Carbon number appeared to be linearly related to strength of wavenumber associations for 38 moderately to highly predicted fatty acids within the spectral regions of 2,286 to 2,376 and 2,984 to 3,100 cm-1, whereas nonlinear associations were determined within 1,141 to 1,205; 1,570 to 1,630; and 1,727 to 1,768 cm-1. However, no such associations were detected with level of unsaturation. Spectral regions where there were significant relationships between strength of association and carbon number may be useful targets for inferring the relative proportion of long-chain to short-chain fatty acids, and hence energy balance.
Collapse
Affiliation(s)
- G Rovere
- Department of Animal Science, Michigan State University, East Lansing 48824-1225; Department of Epidemiology and Biostatistics, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing 48824-1225
| | - G de Los Campos
- Department of Epidemiology and Biostatistics, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing 48824-1225; Department of Statistics and Probability, Michigan State University, East Lansing 48824-1225
| | - A L Lock
- Department of Animal Science, Michigan State University, East Lansing 48824-1225
| | - L Worden
- Department of Animal Science, Michigan State University, East Lansing 48824-1225
| | - A I Vazquez
- Department of Epidemiology and Biostatistics, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing 48824-1225
| | - K Lee
- Michigan State University Extension, Lake City, MI 49651
| | - R J Tempelman
- Department of Animal Science, Michigan State University, East Lansing 48824-1225.
| |
Collapse
|
12
|
Bittante G, Savoia S, Cecchinato A, Pegolo S, Albera A. Phenotypic and genetic variation of ultraviolet-visible-infrared spectral wavelengths of bovine meat. Sci Rep 2021; 11:13946. [PMID: 34230594 PMCID: PMC8260661 DOI: 10.1038/s41598-021-93457-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/22/2021] [Indexed: 01/07/2023] Open
Abstract
Spectroscopic predictions can be used for the genetic improvement of meat quality traits in cattle. No information is however available on the genetics of meat absorbance spectra. This research investigated the phenotypic variation and the heritability of meat absorbance spectra at individual wavelengths in the ultraviolet-visible and near-infrared region (UV-Vis-NIR) obtained with portable spectrometers. Five spectra per instrument were taken on the ribeye surface of 1185 Piemontese young bulls from 93 farms (13,182 Herd-Book pedigree relatives). Linear animal model analyses of 1481 single-wavelengths from UV-Vis-NIRS and 125 from Micro-NIRS were carried out separately. In the overlapping regions, the proportions of phenotypic variance explained by batch/date of slaughter (14 ± 6% and 17 ± 7%,), rearing farm (6 ± 2% and 5 ± 3%), and the residual variances (72 ± 10% and 72 ± 5%) were similar for the UV-Vis-NIRS and Micro-NIRS, but additive genetics (7 ± 2% and 4 ± 2%) and heritability (8.3 ± 2.3% vs 5.1 ± 0.6%) were greater with the Micro-NIRS. Heritability was much greater for the visible fraction (25.2 ± 11.4%), especially the violet, blue and green colors, than for the NIR fraction (5.0 ± 8.0%). These results allow a better understanding of the possibility of using the absorbance of visible and infrared wavelengths correlated with meat quality traits for the genetic improvement in beef cattle.
Collapse
Affiliation(s)
- Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova (Padua), viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Simone Savoia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova (Padua), viale dell'Università 16, 35020, Legnaro, PD, Italy.,Associazione Nazionale Allevatori Bovini di Razza Piemontese, Strada Trinità 32/A, 12061, Carrù, CN, Italy.,Department of Animal Breeding and Genetics, Interbull Centre, SLU, PO Box 7023, 750 07, Uppsala, Sweden
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova (Padua), viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Sara Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova (Padua), viale dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Andrea Albera
- Associazione Nazionale Allevatori Bovini di Razza Piemontese, Strada Trinità 32/A, 12061, Carrù, CN, Italy
| |
Collapse
|
13
|
Zaalberg RM, Poulsen NA, Bovenhuis H, Sehested J, Larsen LB, Buitenhuis AJ. Genetic analysis on infrared-predicted milk minerals for Danish dairy cattle. J Dairy Sci 2021; 104:8947-8958. [PMID: 33985781 DOI: 10.3168/jds.2020-19638] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/26/2021] [Indexed: 11/19/2022]
Abstract
A group of milk components that has shown potential to be predicted with milk spectra is milk minerals. Milk minerals are important for human health and cow health. Having an inexpensive and fast way to measure milk mineral concentrations would open doors for research, herd management, and selective breeding. The first aim of this study was to predict milk minerals with infrared milk spectra. Additionally, milk minerals were predicted with infrared-predicted fat, protein, and lactose content. The second aim was to perform a genetic analysis on infrared-predicted milk minerals, to identify QTL, and estimate variance components. For training and validating a multibreed prediction model for individual milk minerals, 264 Danish Jersey cows and 254 Danish Holstein cows were used. Partial least square regression prediction models were built for Ca, Cu, Fe, K, Mg, Mn, Na, P, Se, and Zn based on 80% of the cows, selected randomly. Prediction models were externally validated with 8 herds based on the remaining 20% of the cows. The prediction models were applied on a population of approximately 1,400 Danish Holstein cows with 5,600 infrared spectral records and 1,700 Danish Jersey cows with 7,200 infrared spectral records. Cows from this population had 50k imputed genotypes. Prediction accuracy was good for P and Ca, with external R2 ≥ 0.80 and a relative prediction error of 5.4% for P and 6.3% for Ca. Prediction was moderately good for Na with an external R2 of 0.63, and a relative error of 18.8%. Prediction accuracies of milk minerals based on infrared-predicted fat, protein, and lactose content were considerably lower than those based on the infrared milk spectra. This shows that the milk infrared spectrum contains valuable information on milk minerals, which is currently not used. Heritability for infrared-predicted Ca, Na, and P varied from low (0.13) to moderate (0.36). Several QTL for infrared-predicted milk minerals were observed that have been associated with gold standard milk minerals previously. In conclusion, this study has shown infrared milk spectra were good at predicting Ca, Na, and P in milk. Infrared-predicted Ca, Na, and P had low to moderate heritability estimates.
Collapse
Affiliation(s)
- R M Zaalberg
- Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark.
| | - N A Poulsen
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - H Bovenhuis
- Animal Breeding and Genomics, Wageningen University and Research, 6700AH, Wageningen, The Netherlands
| | - J Sehested
- Department of Animal Science, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - L B Larsen
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - A J Buitenhuis
- Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| |
Collapse
|
14
|
Stocco G, Dadousis C, Vacca GM, Pazzola M, Paschino P, Dettori ML, Ferragina A, Cipolat-Gotet C. Breed of goat affects the prediction accuracy of milk coagulation properties using Fourier-transform infrared spectroscopy. J Dairy Sci 2021; 104:3956-3969. [PMID: 33612240 DOI: 10.3168/jds.2020-19491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/23/2020] [Indexed: 01/23/2023]
Abstract
The prediction of traditional goat milk coagulation properties (MCP) and curd firmness over time (CFt) parameters via Fourier-transform infrared (FTIR) spectroscopy can be of significant economic interest to the dairy industry and can contribute to the breeding objectives for the genetic improvement of dairy goat breeds. Therefore, the aims of this study were to (1) explore the variability of milk FTIR spectra from 4 goat breeds (Camosciata delle Alpi, Murciano-Granadina, Maltese, and Sarda), and to assess the possible discriminant power of milk FTIR spectra among breeds, (2) assess the viability to predict coagulation traits by using milk FTIR spectra, and (3) quantify the effect of the breed on the prediction accuracy of MCP and CFt parameters. In total, 611 individual goat milk samples were used. Analysis of variance of measured MCP and CFt parameters was carried out using a mixed model including the farm and pendulum as random factors, and breed, parity, and days in milk as fixed factors. Milk spectra for each goat were collected over the spectral range from wavenumber 5,011 to 925 × cm-1. Discriminant analysis of principal components was used to assess the ability of FTIR spectra to identify breed of origin. A Bayesian model was used to calibrate equations for each coagulation trait. The accuracy of the model and the prediction equation was assessed by cross-validation (CRV; 80% training and 20% testing set) and stratified CRV (SCV; 3 breeds in the training set, one breed in the testing set) procedures. Prediction accuracy was assessed by using coefficient of determination of validation (R2VAL), the root mean square error of validation (RMSEVAL), and the ratio performance deviation. Moreover, measured and FTIR predicted traits were compared in the SCV procedure by assessing their least squares means for the breed effect, Pearson correlations, and variance heteroscedasticity. Results showed the feasibility of using FTIR spectra and multivariate analyses to correctly assign milk samples to their breeds of origin. The R2VAL values obtained with the CRV procedure were moderate to high for the majority of coagulation traits, with RMSEVAL and ratio performance deviation values increasing as the coagulation process progresses from rennet addition. Prediction accuracy obtained with the SCV were strongly influenced by the breed, presenting general low values restricting a practical application. In addition, the low Pearson correlation coefficients of Sarda breed for all the traits analyzed, and the heteroscedastic variances of Camosciata delle Alpi, Murciano-Granadina, and Maltese breeds, further indicated that it is fundamental to consider the differences existing among breeds for the prediction of milk coagulation traits.
Collapse
Affiliation(s)
- Giorgia Stocco
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Christos Dadousis
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | | | - Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Pietro Paschino
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Maria Luisa Dettori
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Alessandro Ferragina
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, D15 KN3K Dublin, Ireland
| | | |
Collapse
|
15
|
Ho PN, Pryce JE. Predicting the likelihood of conception to first insemination of dairy cows using milk mid-infrared spectroscopy. J Dairy Sci 2020; 103:11535-11544. [PMID: 32981732 DOI: 10.3168/jds.2020-18589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022]
Abstract
The objective of this study was to examine the ability of milk mid-infrared (MIR) spectroscopy and other on-farm data, such as milk yield, milk composition, stage of lactation, calving age, days in milk at insemination, and somatic cell count, to identify cows that were most or least likely to conceive to first insemination. A total of 16,628 spectral and milk production records of 7,040 cows from 29 commercial dairy herds across 3 Australian states were used. Three models, comprising different explanatory variables, were tested. Model 1 included features that are readily available on farms participating in milk recording, such as milk yield, milk composition, somatic cell count, days from calving to insemination, and calving season. Days in milk and age at calving were incorporated into model 1 to form model 2. In model 3, MIR was added to model 2, but to avoid double counting, milk composition traits of model 2 were removed. The models were first trained on extreme data [i.e., including cows that (1) conceived to first insemination and (2) cows with no conception event recorded and with only 1 insemination]. Then, the models were validated in a fresh data set with all cows regardless of conception outcomes present to test for their ability to identify cows that conceived or did not conceive to first insemination. To do this, we ranked the predicted probability of all cows in the validation set and then selected the top and bottom records in varying proportions from 5 to 40% (i.e., where the model predicted the highest versus lowest likelihood of conception to first insemination, respectively) and compared with the actual values. The model's performance was evaluated through herd-year by herd-year external validation and measured as the proportion of selected records being correct. The results show that when more cows are selected (i.e., descending confidence), the accuracy of the models was reduced, and selecting the 10% of cows with the highest confidence of predictions produces optimal accuracy. Irrespective of the proportions, none of the models could predict cows that conceived to first insemination, with an accuracy around 0.48. When attempting to predict the bottom 10% of cows, which had the least likelihood of conception to first insemination, model 1 had prediction accuracy around 0.64. Compared with model 1, the addition of days in milk and calving age (model 2) resulted in a negligible improvement in prediction accuracy (0.01 to 0.03). Model 3 had the highest prediction accuracy (0.76), which implies that in the models tested, MIR is of primary importance in the prediction of fertility of dairy cows. In conclusion, this study indicates that MIR and other milk recording data could be used to identify cows with potential difficulty in getting pregnant to first insemination with promising accuracy.
Collapse
Affiliation(s)
- P N Ho
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia.
| | - J E Pryce
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
16
|
Tiplady KM, Lopdell TJ, Littlejohn MD, Garrick DJ. The evolving role of Fourier-transform mid-infrared spectroscopy in genetic improvement of dairy cattle. J Anim Sci Biotechnol 2020; 11:39. [PMID: 32322393 PMCID: PMC7164258 DOI: 10.1186/s40104-020-00445-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 11/22/2022] Open
Abstract
Over the last 100 years, significant advances have been made in the characterisation of milk composition for dairy cattle improvement programs. Technological progress has enabled a shift from labour intensive, on-farm collection and processing of samples that assess yield and fat levels in milk, to large-scale processing of samples through centralised laboratories, with the scope extended to include quantification of other traits. Fourier-transform mid-infrared (FT-MIR) spectroscopy has had a significant role in the transformation of milk composition phenotyping, with spectral-based predictions of major milk components already being widely used in milk payment and animal evaluation systems globally. Increasingly, there is interest in analysing the individual FT-MIR wavenumbers, and in utilising the FT-MIR data to predict other novel traits of importance to breeding programs. This includes traits related to the nutritional value of milk, the processability of milk into products such as cheese, and traits relevant to animal health and the environment. The ability to successfully incorporate these traits into breeding programs is dependent on the heritability of the FT-MIR predicted traits, and the genetic correlations between the FT-MIR predicted and actual trait values. Linking FT-MIR predicted traits to the underlying mutations responsible for their variation can be difficult because the phenotypic expression of these traits are a function of a diverse range of molecular and biological mechanisms that can obscure their genetic basis. The individual FT-MIR wavenumbers give insights into the chemical composition of milk and provide an additional layer of granularity that may assist with establishing causal links between the genome and observed phenotypes. Additionally, there are other molecular phenotypes such as those related to the metabolome, chromatin accessibility, and RNA editing that could improve our understanding of the underlying biological systems controlling traits of interest. Here we review topics of importance to phenotyping and genetic applications of FT-MIR spectra datasets, and discuss opportunities for consolidating FT-MIR datasets with other genomic and molecular data sources to improve future dairy cattle breeding programs.
Collapse
Affiliation(s)
- K M Tiplady
- 1Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand.,2School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| | - T J Lopdell
- 1Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - M D Littlejohn
- 1Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand.,2School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| | - D J Garrick
- 2School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| |
Collapse
|
17
|
Lu H, Wang Y, Bovenhuis H. Genome-wide association study for genotype by lactation stage interaction of milk production traits in dairy cattle. J Dairy Sci 2020; 103:5234-5245. [PMID: 32229127 DOI: 10.3168/jds.2019-17257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 01/28/2020] [Indexed: 01/14/2023]
Abstract
Substantial evidence demonstrates that the genetic background of milk production traits changes during lactation. However, most GWAS for milk production traits assume that genetic effects are constant during lactation and therefore might miss those quantitative trait loci (QTL) whose effects change during lactation. The GWAS for genotype by lactation stage interaction are aimed at explicitly detecting the QTL whose effects change during lactation. The purpose of this study was to perform GWAS for genotype by lactation stage interaction for milk yield, lactose yield, lactose content, fat yield, fat content, protein yield, and somatic cell score to detect QTL with changing effects during lactation. For this study, 19,286 test-day records of 1,800 first-parity Dutch Holstein cows were available and cows were genotyped using a 50K SNP panel. A total of 7 genomic regions with effects that change during lactation were detected in the GWAS for genotype by lactation stage interaction. Two regions on Bos taurus autosome (BTA)14 and BTA19 were also significant based on a GWAS that assumed constant genetic effects during lactation. Five regions on BTA4, BTA10, BTA11, BTA16, and BTA23 were only significant in the GWAS for genotype by lactation stage interaction. The biological mechanisms that cause these changes in genetic effects are still unknown, but negative energy balance and effects of pregnancy may play a role. These findings increase our understanding of the genetic background of lactation and may contribute to the development of better management indicators based on milk composition.
Collapse
Affiliation(s)
- Haibo Lu
- Animal Breeding and Genomics, Wageningen University and Research, PO Box 338, 6700AH, Wageningen, the Netherlands
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, P. R. China
| | - Henk Bovenhuis
- Animal Breeding and Genomics, Wageningen University and Research, PO Box 338, 6700AH, Wageningen, the Netherlands.
| |
Collapse
|
18
|
Zaalberg RM, Buitenhuis AJ, Sundekilde UK, Poulsen NA, Bovenhuis H. Genetic analysis of orotic acid predicted with Fourier transform infrared milk spectra. J Dairy Sci 2020; 103:3334-3348. [PMID: 32008779 DOI: 10.3168/jds.2018-16057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/03/2019] [Indexed: 01/08/2023]
Abstract
Fourier transform infrared spectral analysis is a cheap and fast method to predict milk composition. A not very well studied milk component is orotic acid. Orotic acid is an intermediate in the biosynthesis pathway of pyrimidine nucleotides and is an indicator for the metabolic cattle disorder deficiency of uridine monophosphate synthase. The function of orotic acid in milk and its effect on calf health, health of humans consuming milk or milk products, manufacturing properties of milk, and its potential as an indicator trait are largely unknown. The aims of this study were to determine if milk orotic acid can be predicted from infrared milk spectra and to perform a large-scale phenotypic and genetic analysis of infrared-predicted milk orotic acid. An infrared prediction model for orotic acid was built using a training population of 292 Danish Holstein and 299 Danish Jersey cows, and a validation population of 381 Danish Holstein cows. Milk orotic acid concentration was determined with nuclear magnetic resonance spectroscopy. For genetic analysis of infrared orotic acid, 3 study populations were used: 3,210 Danish Holstein cows, 3,360 Danish Jersey cows, and 1,349 Dutch Holstein Friesian cows. Using partial least square regression, a prediction model for orotic acid was built with 18 latent variables. The error of the prediction for the infrared model varied from 1.0 to 3.2 mg/L, and the accuracy varied from 0.68 to 0.86. Heritability of infrared orotic acid predicted with the standardized prediction model was 0.18 for Danish Holstein, 0.09 for Danish Jersey, and 0.37 for Dutch Holstein Friesian. We conclude that milk orotic acid can be predicted with moderate to good accuracy based on infrared milk spectra and that infrared-predicted orotic acid is heritable. The availability of a cheap and fast method to predict milk orotic acid opens up possibilities to study the largely unknown functions of milk orotic acid.
Collapse
Affiliation(s)
- R M Zaalberg
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, DK-8830 Tjele, Denmark.
| | - A J Buitenhuis
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, DK-8830 Tjele, Denmark
| | - U K Sundekilde
- Department of Food Science, Aarhus University, Kirstinebjergvej 10, DK-5792 Årslev, Denmark
| | - N A Poulsen
- Department of Food Science, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - H Bovenhuis
- Animal Breeding and Genomics, Wageningen University and Research, PO Box 338, 6700AH, Wageningen, the Netherlands
| |
Collapse
|
19
|
Zaalberg RM, Janss L, Buitenhuis AJ. Genome-wide association study on Fourier transform infrared milk spectra for two Danish dairy cattle breeds. BMC Genet 2020; 21:9. [PMID: 32005101 PMCID: PMC6993354 DOI: 10.1186/s12863-020-0810-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background Infrared spectral analysis of milk is cheap, fast, and accurate. Infrared light interacts with chemical bonds present inside the milk, which means that Fourier transform infrared milk spectra are a reflection of the chemical composition of milk. Heritability of Fourier transform infrared milk spectra has been analysed previously. Further genetic analysis of Fourier transform infrared milk spectra could give us a better insight in the genes underlying milk composition. Breed influences milk composition, yet not much is known about the effect of breed on Fourier transform infrared milk spectra. Improved understanding of the effect of breed on Fourier transform infrared milk spectra could enhance efficient application of Fourier transform infrared milk spectra. The aim of this study is to perform a genome wide association study on a selection of wavenumbers for Danish Holstein and Danish Jersey. This will improve our understanding of the genetics underlying milk composition in these two dairy cattle breeds. Results For each breed separately, fifteen wavenumbers were analysed. Overall, more quantitative trait loci were observed for Danish Jersey compared to Danish Holstein. For both breeds, the majority of the wavenumbers was most strongly associated to a genomic region on BTA 14 harbouring DGAT1. Furthermore, for both breeds most quantitative trait loci were observed for wavenumbers that interact with the chemical bond C-O. For Danish Jersey, wavenumbers that interact with C-H were associated to genes that are involved in fatty acid synthesis, such as AGPAT3, AGPAT6, PPARGC1A, SREBF1, and FADS1. For wavenumbers which interact with –OH, associations were observed to genomic regions that have been linked to alpha-lactalbumin. Conclusions The current study identified many quantitative trait loci that underlie Fourier transform infrared milk spectra, and thus milk composition. Differences were observed between groups of wavenumbers that interact with different chemical bonds. Both overlapping and different QTL were observed for Danish Holstein and Danish Jersey.
Collapse
Affiliation(s)
- R M Zaalberg
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, DK-8830, Tjele, Denmark.
| | - L Janss
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, DK-8830, Tjele, Denmark
| | - A J Buitenhuis
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, DK-8830, Tjele, Denmark
| |
Collapse
|
20
|
Costa A, Schwarzenbacher H, Mészáros G, Fuerst-Waltl B, Fuerst C, Sölkner J, Penasa M. On the genomic regions associated with milk lactose in Fleckvieh cattle. J Dairy Sci 2019; 102:10088-10099. [PMID: 31447150 DOI: 10.3168/jds.2019-16663] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022]
Abstract
Lactose is a sugar uniquely found in mammals' milk and it is the major milk solid in bovines. Lactose yield (LY, kg/d) is responsible for milk volume, whereas lactose percentage (LP) is thought to be more related to epithelial integrity and thus to udder health. There is a paucity of studies that have investigated lactose at the genomic level in dairy cows. This paper aimed to improve our knowledge on LP and LY, providing new insights into the significant genomic regions affecting these traits. A genome-wide association study for LP and LY was carried out in Fleckvieh cattle by using bulls' deregressed estimated breeding values of first lactation as pseudo-phenotypes. Heritabilities of first-lactation test-day LP and LY estimated using linear animal models were 0.38 and 0.25, respectively. A total of 2,854 bulls genotyped with a 54K SNP chip were available for the genome-wide association study; a linear mixed model approach was adopted for the analysis. The significant SNP of LP were scattered across the whole genome, with signals on chromosomes 1, 2, 3, 7, 12, 16, 18, 19, 20, 28, and 29; the top 4 significant SNP explained 4.90% of the LP genetic variance. The signals were mostly in regions or genes with involvement in molecular intra- or extracellular transport; for example, CDH5, RASGEF1C, ABCA6, and SLC35F3. A significant region within chromosome 20 was previously shown to affect mastitis or somatic cell score in cattle. As regards LY, the significant SNP were concentrated in fewer regions (chromosomes 6 and 14), related to mastitis/somatic cell score, immune response, and transport mechanisms. The 5 most significant SNP for LY explained 8.45% of genetic variance and more than one-quarter of this value has to be attributed to the variant within ADGRB1. Significant peaks in target regions remained even after adjustment for the 2 most significant variants previously detected on BTA6 and BTA14. The present study is a prelude for deeper investigations into the biological role of lactose for milk secretion and volume determination, stressing the connection with genes regulating intra- or extracellular trafficking and immune and inflammatory responses in dairy cows. Also, these results improve the knowledge on the relationship between lactose and udder health; they support the idea that LP and its derived traits are potential candidates as indicators of udder health in breeding programs aimed to enhance cows' resistance to mastitis.
Collapse
Affiliation(s)
- Angela Costa
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | | | - Gábor Mészáros
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Sustainable Agricultural Systems, Division of Livestock Sciences, Gregor Mendel-Strasse 33, A-1180 Vienna, Austria.
| | - Birgit Fuerst-Waltl
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Sustainable Agricultural Systems, Division of Livestock Sciences, Gregor Mendel-Strasse 33, A-1180 Vienna, Austria
| | - Christian Fuerst
- ZuchtData EDV-Dienstleistungen GmbH, Dresdner Strasse 89/19, A-1200 Vienna, Austria
| | - Johann Sölkner
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Sustainable Agricultural Systems, Division of Livestock Sciences, Gregor Mendel-Strasse 33, A-1180 Vienna, Austria
| | - Mauro Penasa
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
21
|
Benedet A, Ho PN, Xiang R, Bolormaa S, De Marchi M, Goddard ME, Pryce JE. The use of mid-infrared spectra to map genes affecting milk composition. J Dairy Sci 2019; 102:7189-7203. [PMID: 31178181 DOI: 10.3168/jds.2018-15890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
The aim of this study was to investigate the feasibility of using mid-infrared (MIR) spectroscopy analysis of milk samples to increase the power and precision of genome-wide association studies (GWAS) for milk composition and to better distinguish linked quantitative trait loci (QTL). To achieve this goal, we analyzed phenotypic data of milk composition traits, related MIR spectra, and genotypic data comprising 626,777 SNP on 5,202 Holstein, Jersey, and crossbred cows. We performed a conventional GWAS on protein, lactose, fat, and fatty acid concentrations in milk, a GWAS on individual MIR wavenumbers, and a partial least squares regression (PLS), which is equivalent to a multi-trait GWAS, exploiting MIR data simultaneously to predict SNP genotypes. The PLS detected most of the QTL identified using single-trait GWAS, usually with a higher significance value, as well as previously undetected QTL for milk composition. Each QTL tends to have a different pattern of effects across the MIR spectrum and this explains the increased power. Because SNP tracking different QTL tend to have different patterns of effect, it was possible to distinguish closely linked QTL. Overall, the results of this study suggest that using MIR data through either GWAS or PLS analysis applied to genomic data can provide a powerful tool to distinguish milk composition QTL.
Collapse
Affiliation(s)
- A Benedet
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro 35020, Padova, Italy
| | - P N Ho
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| | - R Xiang
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Victoria 3010, Australia
| | - S Bolormaa
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| | - M De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro 35020, Padova, Italy
| | - M E Goddard
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; Faculty of Veterinary & Agricultural Science, University of Melbourne, Victoria 3010, Australia
| | - J E Pryce
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
22
|
Costa A, Lopez-Villalobos N, Sneddon NW, Shalloo L, Franzoi M, De Marchi M, Penasa M. Invited review: Milk lactose-Current status and future challenges in dairy cattle. J Dairy Sci 2019; 102:5883-5898. [PMID: 31079905 DOI: 10.3168/jds.2018-15955] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022]
Abstract
Lactose is the main carbohydrate in mammals' milk, and it is responsible for the osmotic equilibrium between blood and alveolar lumen in the mammary gland. It is the major bovine milk solid, and its synthesis and concentration in milk are affected mainly by udder health and the cow's energy balance and metabolism. Because this milk compound is related to several biological and physiological factors, information on milk lactose in the literature varies from chemical properties to heritability and genetic associations with health traits that may be exploited for breeding purposes. Moreover, lactose contributes to the energy value of milk and is an important ingredient for the food and pharmaceutical industries. Despite this, lactose has seldom been included in milk payment systems, and it has never been used as an indicator trait in selection indices. The interest in lactose has increased in recent years, and a summary of existing information about lactose in the dairy sector would be beneficial for the scientific community and the dairy industry. The present review collects and summarizes knowledge about lactose by covering and linking several aspects of this trait in bovine milk. Finally, perspectives on the use of milk lactose in dairy cattle, especially for selection purposes, are outlined.
Collapse
Affiliation(s)
- A Costa
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - N Lopez-Villalobos
- School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - N W Sneddon
- School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - L Shalloo
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 C997, Ireland
| | - M Franzoi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - M De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - M Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy.
| |
Collapse
|
23
|
Tiplady KM, Sherlock RG, Littlejohn MD, Pryce JE, Davis SR, Garrick DJ, Spelman RJ, Harris BL. Strategies for noise reduction and standardization of milk mid-infrared spectra from dairy cattle. J Dairy Sci 2019; 102:6357-6372. [PMID: 31030929 DOI: 10.3168/jds.2018-16144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/04/2019] [Indexed: 01/02/2023]
Abstract
The use of Fourier-transform mid-infrared (FTIR) spectroscopy is of interest to the dairy industry worldwide for predicting milk composition and other novel traits that are difficult or expensive to measure directly. Although there are many valuable applications for FTIR spectra, noise from differences in spectral responses between instruments is problematic because it reduces prediction accuracy if ignored. The purpose of this study was to develop strategies to reduce the impact of noise and to compare methods for standardizing FTIR spectra in order to reduce between-instrument variability in multiple-instrument networks. Noise levels in bands of the infrared spectrum caused by the water content of milk were characterized, and a method for identifying and removing outliers was developed. Two standardization methods were assessed and compared: piecewise direct standardization (PDS), which related spectra on a primary instrument to spectra on 5 other (secondary) instruments using identical milk-based reference samples (n = 918) analyzed across the 6 instruments; and retroactive percentile standardization (RPS), whereby percentiles of observed spectra from routine milk test samples (n = 2,044,094) were used to map and exploit primary- and secondary-instrument relationships. Different applications of each method were studied to determine the optimal way to implement each method across time. Industry-standard predictions of milk components from 2,044,094 spectra records were regressed against predictions from spectra before and after standardization using PDS or RPS. The PDS approach resulted in an overall decrease in root mean square error between industry-standard predictions and predictions from spectra from 0.190 to 0.071 g/100 mL for fat, from 0.129 to 0.055 g/100 mL for protein, and from 0.143 to 0.088 g/100 mL for lactose. Reductions in prediction error for RPS were similar but less consistent than those for PDS across time, but similar reductions were achieved when PDS coefficients were updated monthly and separate primary instruments were assigned for the North and South Islands of New Zealand. We demonstrated that the PDS approach is the most consistent method to reduce prediction errors across time. We also showed that the RPS approach is sensitive to shifts in milk composition but can be used to reduce prediction errors, provided that secondary-instrument spectra are standardized to a primary instrument with samples of broadly equivalent milk composition. Appropriate implementation of either of these approaches will improve the quality of predictions based on FTIR spectra for various downstream applications.
Collapse
Affiliation(s)
- K M Tiplady
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton 3240, New Zealand; School of Agriculture, Massey University, Ruakura, Hamilton 3240, New Zealand.
| | - R G Sherlock
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton 3240, New Zealand
| | - M D Littlejohn
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton 3240, New Zealand; School of Agriculture, Massey University, Ruakura, Hamilton 3240, New Zealand
| | - J E Pryce
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - S R Davis
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton 3240, New Zealand
| | - D J Garrick
- School of Agriculture, Massey University, Ruakura, Hamilton 3240, New Zealand
| | - R J Spelman
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton 3240, New Zealand
| | - B L Harris
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton 3240, New Zealand
| |
Collapse
|
24
|
Rovere G, de Los Campos G, Tempelman RJ, Vazquez AI, Miglior F, Schenkel F, Cecchinato A, Bittante G, Toledo-Alvarado H, Fleming A. A landscape of the heritability of Fourier-transform infrared spectral wavelengths of milk samples by parity and lactation stage in Holstein cows. J Dairy Sci 2018; 102:1354-1363. [PMID: 30580946 DOI: 10.3168/jds.2018-15109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/28/2018] [Indexed: 11/19/2022]
Abstract
Fourier-transform near- and mid-infrared (FTIR) milk spectral data are routinely collected in many countries worldwide. Establishing an optimal strategy to use spectral data in genetic evaluations requires knowledge of the heritabilities of individual FTIR wavelength absorbances. Previous FTIR heritability estimates have been based on relatively small sample sizes and have not considered the possibility that heritability may vary across parities and stages of the lactation. We used data from ∼370,000 test-day records of Canadian Holstein cows to produce a landscape of the heritability of FTIR spectra, 1,060 wavelengths in the near- and mid-infrared spectrum (5,011-925 cm-1), by parity and month of the lactation (mo 1 to 3 and mo 1 to 6, respectively). The 2 regions of the spectrum associated with absorption of electromagnetic energy by water molecules were estimated to have very high phenotypic variances, very low heritabilities, and very low proportion of variance explained by herd-year-season (HYS) subclasses. The near- or short-wavelength infrared (SWIR: 5,066-3,672 cm-1) region was also characterized by low heritability estimates, whereas the estimated proportion of the variance explained by HYS was high. The mid-wavelength infrared region (MWIR: 3,000-2,500 cm-1) and the transition between mid and long-wavelength infrared region (MWIR-LWIR: 1,500-925 cm-1) harbor several waves characterized by moderately high (≥0.4) heritabilities. Most of the high-heritability regions contained wavelengths that are reported to be associated with important milk metabolites and components. Interestingly, these 2 same regions tended to show more variability in heritabilities between parity and lactation stage. Second parity showed heritability patterns that were distinctly different from those of the first and third parities, whereas the first 2 mo of the lactation had clearly distinct heritability patterns compared with mo 3 to 6.
Collapse
Affiliation(s)
- G Rovere
- Department of Animal Science, Michigan State University, East Lansing 48824; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing 48824; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing 48824.
| | - G de Los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing 48824; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing 48824; Department of Statistics and Probability, Michigan State University, East Lansing 48824
| | - R J Tempelman
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - A I Vazquez
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing 48824; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing 48824
| | - F Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1; Canadian Dairy Network, Guelph, Ontario, Canada N1K 1E5
| | - F Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - A Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Italy
| | - G Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Italy
| | - H Toledo-Alvarado
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Italy
| | - A Fleming
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1; Canadian Dairy Network, Guelph, Ontario, Canada N1K 1E5
| |
Collapse
|