1
|
Zhao J, Mu Y, Gong P, Liu B, Zhang F, Zhu L, Shi C, Lv X, Luo J. Whole-genome resequencing of native and imported dairy goat identifies genes associated with productivity and immunity. Front Vet Sci 2024; 11:1409282. [PMID: 39040818 PMCID: PMC11260678 DOI: 10.3389/fvets.2024.1409282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 07/24/2024] Open
Abstract
Understanding the differences in genetic variation between local Chinese dairy goat breeds and imported breeds can help germplasm innovation and molecular breeding. However, the research is limited in this area. In this study, whole-genome resequencing data from 134 individuals of both local and imported dairy goat breeds were analyzed, and their differences in genomic genetic variation, genetic diversity, and population structure were subsequently identified. We also screened candidate genes associated with important traits of dairy goats such as milk production (STK3, GHR, PRELID3B), reproduction (ATP5E), growth and development (CTSZ, GHR), and immune function (CTSZ, NELFCD). Furthermore, we examined allele frequency distributions for the genes of interest and found significant differences between the two populations. This study provides valuable resources for the study of genetic diversity in dairy goats and lays the foundation for the selective breeding of dairy goats in the future.
Collapse
Affiliation(s)
- Jianqing Zhao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yuanpan Mu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Baolong Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Fuhong Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lu Zhu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chenbo Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xuefeng Lv
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
2
|
Zhang M, Zha X, Ma X, La Y, Guo X, Chu M, Bao P, Yan P, Wu X, Liang C. Polymorphisms of ITGA9 Gene and Their Correlation with Milk Quality Traits in Yak ( Bos grunniens). Foods 2024; 13:1613. [PMID: 38890842 PMCID: PMC11172211 DOI: 10.3390/foods13111613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
A single-nucleotide polymorphism (SNP) is a genome-level trait that arises from a variation in a single nucleotide, leading to diversity in DNA sequences. SNP screening is commonly used to provide candidate genes for yak breeding efforts. Integrin Subunit Alpha 9 (ITGA9) is an integrin protein. It plays an important role in cell adhesion, signalling, and other processes. The aim of this study was to discuss the association between genetic polymorphisms in the ITGA9 gene and milk quality traits and to identify potential molecular marker loci for yak breeding quality. We genotyped 162 yaks using an Illumina Yak cGPS 7K liquid chip and identified the presence of polymorphisms at nine SNP loci in the ITGA9 gene of yaks. The results showed that the mutant genotypes in the loci g.285,808T>A, g.306,600T>C, and g.315,413C>T were positively correlated with the contents of casein, protein, total solids (TS), and solid nonfat (SNF) in yak milk. In other loci, heterozygous genotypes had a positive correlation with nutrient content in yak milk. Then, two ITGA9 haplotype blocks were constructed based on linkage disequilibrium, which facilitated a more accurate screening of ITGA9 as a candidate gene for yak milk quality improvement. In conclusion, we identified SNPs and haplotype blocks related to yak milk quality traits and provided genetic resources for marker-assisted selection in yak breeding.
Collapse
Affiliation(s)
- Mengfan Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xita Zha
- Qinghai Province Qilian County Animal Husbandry and Veterinary Workstation, Qilian 810400, China;
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
3
|
Cheng J, Wang W, Zhang D, Zhang Y, Li X, Zhao Y, Xu D, Zhao L, Li W, Wang J, Zhou B, Lin C, Yang X, Zhang X. Identification of polymorphic loci in OSMR and GHR genes and analysis of their association with growth traits in sheep. Anim Biotechnol 2023; 34:2546-2553. [PMID: 35913774 DOI: 10.1080/10495398.2022.2105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The aim of this study was to analyze the effect of OSMR and GHR genes polymorphisms on growth traits in sheep. The single nucleotide polymorphisms of sheep OSMR and GHR genes were identified by DNA sequencing technology. A total of two intronic mutations g.2443 T > C and g.170196 A > G were identified in OSMR and GHR, respectively. Correlation analysis was carried out between the obtained genotypes and the growth traits of sheep. The results showed that at the OSMR g.2443 T > C locus, the body weight, chest circumference and cannon circumference of the TT genotype sheep were significantly higher than those of the CC genotype sheep (p < .05). At the GHR g.170196 A > G locus, the body weight, body length, chest circumference and cannon circumference of the AA genotype sheep were significantly higher than those of the AG genotype and GG genotype sheep (p < .05). Moreover, the body weight of sheep of combination TTOSMR/AAGHR genotype was significantly higher than that of other combination genotypes (p < .05). Therefore, we believe that the polymorphic sites identified in the OSMR and GHR genes can be used as candidate molecular markers for breeding good traits in sheep.
Collapse
Affiliation(s)
- Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Li R, Zhao Y, Liang B, Pu Y, Jiang L, Ma Y. Genome-Wide Signal Selection Analysis Revealing Genes Potentially Related to Sheep-Milk-Production Traits. Animals (Basel) 2023; 13:ani13101654. [PMID: 37238084 DOI: 10.3390/ani13101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Natural selection and domestication have shaped modern sheep populations into a vast range of phenotypically diverse breeds. Among these breeds, dairy sheep have a smaller population than meat sheep and wool sheep, and less research is performed on them, but the lactation mechanism in dairy sheep is critically important for improving animal-production methods. In this study, whole-genome sequences were generated from 10 sheep breeds, including 57 high-milk-yield sheep and 44 low-milk-yield sheep, to investigate the genetic signatures of milk production in dairy sheep, and 59,864,820 valid SNPs (Single Nucleotide Polymorphisms) were kept after quality control to perform population-genetic-structure analyses, gene-detection analyses, and gene-function-validation analyses. For the population-genetic-structure analyses, we carried out PCA (Principal Component Analysis), as well as neighbor-joining tree and structure analyses to classify different sheep populations. The sheep used in our study were well distributed in ten groups, with the high-milk-yield-group populations close to each other and the low-milk-yield-group populations showing similar classifications. To perform an exact signal-selection analysis, we used three different methods to find SNPs to perform gene-annotation analyses within the 995 common regions derived from the fixation index (FST), nucleotide diversity (Ɵπ), and heterozygosity rate (ZHp) results. In total, we found 553 genes that were located in these regions. These genes mainly participate in the protein-binding pathway and the nucleoplasm-interaction pathway, as revealed by the GO- and KEGG-function-enrichment analyses. After the gene selection and function analyses, we found that FCGR3A, CTSK, CTSS, ARNT, GHR, SLC29A4, ROR1, and TNRC18 were potentially related to sheep-milk-production traits. We chose the strongly selected genes, FCGR3A, CTSK, CTSS, and ARNT during the signal-selection analysis to perform a RT-qPCR (Reale time Quantitative Polymerase Chain Reaction) experiment to validate their expression-level relationship with milk production, and the results showed that FCGR3A has a significant negative relationship with sheep-milk production, while other three genes did not show any positive or negative relations. In this study, it was discovered and proven that the candidate gene FCGR3A potentially contributes to the milk production of dairy sheep and a basis was laid for the further study of the genetic mechanism underlying the strong milk-production traits of sheep.
Collapse
Affiliation(s)
- Ruonan Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Yuhetian Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Benmeng Liang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yabin Pu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Lin Jiang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yuehui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
5
|
Xiong J, Bao J, Hu W, Shang M, Zhang L. Whole-genome resequencing reveals genetic diversity and selection characteristics of dairy goat. Front Genet 2023; 13:1044017. [PMID: 36685859 PMCID: PMC9852865 DOI: 10.3389/fgene.2022.1044017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
The dairy goat is one of the earliest dairy livestock species, which plays an important role in the economic development, especially for developing countries. With the development of agricultural civilization, dairy goats have been widely distributed across the world. However, few studies have been conducted on the specific characteristics of dairy goat. In this study, we collected the whole-genome data of 89 goat individuals by sequencing 48 goats and employing 41 publicly available goats, including five dairy goat breeds (Saanen, Nubian, Alpine, Toggenburg, and Guanzhong dairy goat; n = 24, 15, 11, 6, 6), and three goat breeds (Guishan goat, Longlin goat, Yunshang Black goat; n = 6, 15, 6). Through compared the genomes of dairy goat and non-dairy goat to analyze genetic diversity and selection characteristics of dairy goat. The results show that the eight goats could be divided into three subgroups of European, African, and Chinese indigenous goat populations, and we also found that Australian Nubian, Toggenburg, and Australian Alpine had the highest linkage disequilibrium, the lowest level of nucleotide diversity, and a higher inbreeding coefficient, indicating that they were strongly artificially selected. In addition, we identified several candidate genes related to the specificity of dairy goat, particularly genes associated with milk production traits (GHR, DGAT2, ELF5, GLYCAM1, ACSBG2, ACSS2), reproduction traits (TSHR, TSHB, PTGS2, ESR2), immunity traits (JAK1, POU2F2, LRRC66). Our results provide not only insights into the evolutionary history and breed characteristics of dairy goat, but also valuable information for the implementation and improvement of dairy goat cross breeding program.
Collapse
|
6
|
Genetic Polymorphisms of IGF1 and IGF1R Genes and Their Effects on Growth Traits in Hulun Buir Sheep. Genes (Basel) 2022; 13:genes13040666. [PMID: 35456472 PMCID: PMC9031115 DOI: 10.3390/genes13040666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 01/08/2023] Open
Abstract
The identification of candidate genes and genetic variations associated with growth traits is important for sheep breeding. Insulin like growth factor 1 (IGF1) and insulin like growth factor 1 receptor (IGF1R) are well-accepted candidate genes that affect animal growth and development. The current study attempted to assess the association between IGF1 and IGF1R genetic polymorphisms and growth traits in Hulun Buir sheep. To achieve this goal, we first identified three and ten single nucleotide polymorphisms (SNPs) in exons of IGF1 and IGF1R in Hulun Buir sheep and then constructed six haplotypes of IGF1R based on linkage disequilibrium, respectively. Association studies were performed between SNPs and haplotypes of IGF1 and IGF1R with twelve growth traits in a population encompassing 229 Hulun Buir sheep using a general linear model. Our result indicated three SNPs in IGF1 were significantly associated with four growth traits (p < 0.05). In IGF1R, three SNPs and two haplotype blocks were significantly associated with twelve growth traits (p < 0.05). The combined haplotype H5H5 and H5H6 in IGF1R showed the strong association with 12 superior growth traits in Hulun Buir sheep (p < 0.05). In conclusion, we identified SNPs and haplotype combinations associated with the growth traits, which provided genetic resources for marker-assisted selection (MAS) in Hulun Buir sheep breeding.
Collapse
|
7
|
Shahsavari M, Mohammadabadi M, Khezri A, Asadi Fozi M, Babenko O, Kalashnyk O, Oleshko V, Tkachenko S. Correlation between insulin-like growth factor 1 gene expression and fennel ( Foeniculum vulgare) seed powder consumption in muscle of sheep. Anim Biotechnol 2021:1-11. [PMID: 34783639 DOI: 10.1080/10495398.2021.2000997] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
It has been shown that addition of fennel in the diets of domestic animals has positive and beneficial effects on growth and meat production traits. Thus, the purpose of current study was to investigate the effect of adding fennel in the ration on growth characteristics and on insulin-like growth factor 1 (IGF1) gene expression in muscle tissue of Kermani lamb. Feeding of animals were performed with three levels of fennel including zero, 10 and 20 g/kg dry matter (DM) for 90 days. After slaughter, small pieces of tissues were removed and rapidly transferred to a nitrogen tank. Then, total RNA extracting and the Real-Time PCR reaction was performed. Results showed that as the level of fennel in the diet increases the amount of IGF1 gene expression also increases significantly in humeral muscle and femur (leg) muscle tissues (p < 0.05). In animals fed with fennel, femur muscle weight, back muscle weight, lean meat weight, final weight, warm carcass weight and live daily gain were greater than in animals fed with diet without fennel (p < 0.05). According to the findings of this investigation, it can be concluded that fennel, by creating positive effects on IGF1 gene expression can be used to improve muscle structure.
Collapse
Affiliation(s)
- Mojtaba Shahsavari
- Faculty of Agriculture, Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Amin Khezri
- Faculty of Agriculture, Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoud Asadi Fozi
- Faculty of Agriculture, Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Olena Babenko
- Department of Animal Science, Bila Tserkva National Agrarian University, Bila Tserkva, Ukraine
| | - Oleksandr Kalashnyk
- Department of Animal Science, Sumy National Agrarian University, Sumy, Ukraine
| | - Valentyna Oleshko
- Department of Animal Science, Bila Tserkva National Agrarian University, Bila Tserkva, Ukraine
| | - Serhii Tkachenko
- Department of Animal Science, Bila Tserkva National Agrarian University, Bila Tserkva, Ukraine
| |
Collapse
|
8
|
Zhao X, Nie C, Zhang J, Li X, Zhu T, Guan Z, Chen Y, Wang L, Lv XZ, Yang W, Jia Y, Ning Z, Li H, Qu C, Wang H, Qu L. Identification of candidate genomic regions for chicken egg number traits based on genome-wide association study. BMC Genomics 2021; 22:610. [PMID: 34376144 PMCID: PMC8356427 DOI: 10.1186/s12864-021-07755-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Background Since the domestication of chicken, various breeds have been developed for food production, entertainment, and so on. Compared to indigenous chicken breeds which generally do not show elite production performance, commercial breeds or lines are selected intensely for meat or egg production. In the present study, in order to understand the molecular mechanisms underlying the dramatic differences of egg number between commercial egg-type chickens and indigenous chickens, we performed a genome-wide association study (GWAS) in a mixed linear model. Results We obtained 148 single nucleotide polymorphisms (SNPs) associated with egg number traits (57 significantly, 91 suggestively). Among them, 4 SNPs overlapped with previously reported quantitative trait loci (QTL), including 2 for egg production and 2 for reproductive traits. Furthermore, we identified 32 candidate genes based on the function of the screened genes. These genes were found to be mainly involved in regulating hormones, playing a role in the formation, growth, and development of follicles, and in the development of the reproductive system. Some genes such as NELL2 (neural EGFL like 2), KITLG (KIT ligand), GHRHR (Growth hormone releasing hormone receptor), NCOA1 (Nuclear receptor coactivator 1), ITPR1 (inositol 1, 4, 5-trisphosphate receptor type 1), GAMT (guanidinoacetate N-methyltransferase), and CAMK4 (calcium/calmodulin-dependent protein kinase IV) deserve our attention and further study since they have been reported to be closely related to egg production, egg number and reproductive traits. In addition, the most significant genomic region obtained in this study was located at 48.61–48.84 Mb on GGA5. In this region, we have repeatedly identified four genes, in which YY1 (YY1 transcription factor) and WDR25 (WD repeat domain 25) have been shown to be related to oocytes and reproductive tissues, respectively, which implies that this region may be a candidate region underlying egg number traits. Conclusion Our study utilized the genomic information from various chicken breeds or populations differed in the average annual egg number to understand the molecular genetic mechanisms involved in egg number traits. We identified a series of SNPs, candidate genes, or genomic regions that associated with egg number, which could help us in developing the egg production trait in chickens. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07755-3.
Collapse
Affiliation(s)
- Xiurong Zhao
- Department of Animal Genetics and Breeding, State Key Laboratory of Animal Nutrition, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Changsheng Nie
- Department of Animal Genetics and Breeding, State Key Laboratory of Animal Nutrition, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinxin Zhang
- Department of Animal Genetics and Breeding, State Key Laboratory of Animal Nutrition, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xinghua Li
- Department of Animal Genetics and Breeding, State Key Laboratory of Animal Nutrition, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tao Zhu
- Department of Animal Genetics and Breeding, State Key Laboratory of Animal Nutrition, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zi Guan
- Department of Animal Genetics and Breeding, State Key Laboratory of Animal Nutrition, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yu Chen
- Beijing Municipal General Station of Animal Science, Beijing, 100107, China
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing, 100107, China
| | - Xue Ze Lv
- Beijing Municipal General Station of Animal Science, Beijing, 100107, China
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing, 100107, China
| | - Yaxiong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhonghua Ning
- Department of Animal Genetics and Breeding, State Key Laboratory of Animal Nutrition, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Changqing Qu
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang Normal University, Fuyang, 236037, Anhui, China
| | - Huie Wang
- College of Animal Science, Tarim University, Alar, 843300, Xingjiang, China.,Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & amp; Construction Corps, Alar, 843300, Xingjiang, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, State Key Laboratory of Animal Nutrition, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Natural content of animal and plant sterols, alpha-tocopherol and fatty acid profile in sheep milk and cheese from mountain farming. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Pazzola M, Vacca GM, Paschino P, Bittante G, Dettori ML. Novel Genes Associated with Dairy Traits in Sarda Sheep. Animals (Basel) 2021; 11:ani11082207. [PMID: 34438665 PMCID: PMC8388407 DOI: 10.3390/ani11082207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the present research was to analyze the variability of 45 SNPs from different genes involved in metabolism and innate immunity to perform an association analysis with the milk yield, composition and milk coagulation traits. A population of 1112 Sarda breed sheep was sampled. Genotyping was generated by a TaqMan Open ArrayTM. Thirty out of the 45 SNPs were polymorphic, and 12 displayed a minor allele frequency higher than 0.05. An association analysis showed that the variability at genes PRKAG3 and CD14 was significantly associated with the daily milk yield. The variability at PRKAG3 was also associated with the protein and casein content, somatic cell score and bacterial score. The variation at the PRKAA2 gene was associated with the milk lactose concentration. The SNPs at CD14 were also associated with the traditional milk coagulation properties, while the SNPs at GHR and GHRHR were associated with kSR, a derived coagulation parameter related to the rate of syneresis. The information provided here is new and increases our knowledge of genotype-phenotype interactions in sheep. Our findings might be useful in appropriate breeding schemes to be set up for the Sarda sheep breed, but these should be confirmed by further studies, possibly performed on independent populations.
Collapse
Affiliation(s)
- Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, SS, Italy; (M.P.); (P.P.); (M.L.D.)
| | - Giuseppe Massimo Vacca
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, SS, Italy; (M.P.); (P.P.); (M.L.D.)
- Correspondence: ; Tel.: +39-079229442
| | - Pietro Paschino
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, SS, Italy; (M.P.); (P.P.); (M.L.D.)
| | - Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy;
| | - Maria Luisa Dettori
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, SS, Italy; (M.P.); (P.P.); (M.L.D.)
| |
Collapse
|
11
|
SINE Insertion in the Intron of Pig GHR May Decrease Its Expression by Acting as a Repressor. Animals (Basel) 2021; 11:ani11071871. [PMID: 34201672 PMCID: PMC8300111 DOI: 10.3390/ani11071871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary GH/IGF axis genes play a central role in the regulation of skeletal accretion during development and growth, and thus represent candidate genes for growth traits. Retrotransposon insertion polymorphisms are major contributors to structural variations. They tend to generate large effect mutations resulting in variations in target gene activity and phenotype due to the fact that they carry functional elements, such as enhancers, insulators, or promoters. In the present study, RIPs in four GH/IGF axis genes (GH, GHR, IGF1, and IGF1R) were investigated by comparative genomics and PCR. Four RIPs in the GHR gene and one RIP in the IGF1 gene were identified. Further analysis revealed that one RIP in the first intron of GHR might play a role in the regulation of GHR expression by acting as a repressor. These findings contribute to the understanding of the role of RIPs in the genetic variation of GH/IGF axis genes and phenotypic variation in pigs. Abstract The genetic diversity of the GH/IGF axis genes and their association with the variation of gene expression and phenotypic traits, principally represented by SNPs, have been extensively reported. Nevertheless, the impact of retrotransposon insertion polymorphisms (RIPs) on the GH/IGF axis gene activity has not been reported. In the present study, bioinformatic prediction and PCR verification were performed to screen RIPs in four GH/IGF axis genes (GH, GHR, IGF1 and IGF1R). In total, five RIPs, including one SINE RIP in intron 3 of IGF1, one L1 RIP in intron 7 of GHR, and three SINE RIPs in intron 1, intron 5 and intron 9 of GHR, were confirmed by PCR, displaying polymorphisms in diverse breeds. Dual luciferase reporter assay revealed that the SINE insertion in intron 1 of GHR significantly repressed the GHR promoter activity in PK15, Hela, C2C12 and 3T3-L1 cells. Furthermore, qPCR results confirmed that this SINE insertion was associated with a decreased expression of GHR in the leg muscle and longissimus dorsi, indicating that it may act as a repressor involved in the regulation of GHR expression. In summary, our data revealed that RIPs contribute to the genetic variation of GH/IGF axis genes, whereby one SINE RIP in the intron 1 of GHR may decrease the expression of GHR by acting as a repressor.
Collapse
|
12
|
Sadovnikova A, Garcia SC, Hovey RC. A Comparative Review of the Extrinsic and Intrinsic Factors Regulating Lactose Synthesis. J Mammary Gland Biol Neoplasia 2021; 26:197-215. [PMID: 34125363 PMCID: PMC8236052 DOI: 10.1007/s10911-021-09491-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
Milk is critical for the survival of all mammalian offspring, where its production by a mammary gland is also positively associated with its lactose concentration. A clearer understanding of the factors that regulate lactose synthesis stands to direct strategies for improving neonatal health while also highlighting opportunities to manipulate and improve milk production and composition. In this review we draw a cross-species comparison of the extra- and intramammary factors that regulate lactose synthesis, with a special focus on humans, dairy animals, and rodents. We outline the various factors known to influence lactose synthesis including diet, hormones, and substrate supply, as well as the intracellular molecular and genetic mechanisms. We also discuss the strengths and limitations of various in vivo and in vitro systems for the study of lactose synthesis, which remains an important research gap.
Collapse
Affiliation(s)
- Anna Sadovnikova
- Graduate Group in Nutritional Biology, Physician Scientist Training Program, University of California, Davis, CA, United States.
- Department of Animal Science, University of California, Davis, CA, United States.
| | - Sergio C Garcia
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, CA, United States
| |
Collapse
|
13
|
Flores-Encinas LA, Rodríguez-Almeida FA, Felix-Portillo M, Jahuey-Martínez FJ, Martínez-Quintana JA. A variant associated to IGF-1 mRNA and protein expression in sheep. Anim Biotechnol 2021; 33:1086-1094. [PMID: 33428515 DOI: 10.1080/10495398.2020.1869561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The insulin-like growth factor-1 (IGF-1), a key hormone in muscle development was investigated for single-nucleotide polymorphisms (SNPs) upstream of the IGF-1 gene and their effects upon its cognate mRNA and hormone levels in sheep. A 70 d feeding trial was conducted with 22 F1 (Dorper × Pelibuey) lambs, individually allocated and fed a diet with a forage-to-concentrate ratio of 36:64 and 17% crude protein. Sequence analyses of 265 bp upstream the IGF-1 gene revealed the variant NC_040254.1:g.[184028491G > C;184028493G > A]. These SNPs generate alleles A and B, with frequencies of 0.66 and 0.34 in F1 lambs and of 0.73 and 0.27 in 81 pure Dorper lambs, respectively. Females were grouped by genotype AA, AB and BB (n = 3). IGF-1 hormone concentrations at 14, 42 and 70 d were higher (p < 0.05) in AA lambs compared to AB + BB lambs. The IGF-1 mRNA level was 2.6-fold higher in AA animals (n = 5, p < 0.05) than in AB + BB lambs (n = 7). A DNA binding site for the Inhibitor of Growth family member 4 (ING4) was found in allele B but not in allele A, which could explain the lower mRNA and hormone expression levels for AB + BB animals. The variant reported here appears to function as an eQTL with a negative effect on the level of IGF-1.
Collapse
Affiliation(s)
- Luis A Flores-Encinas
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | | | | | | | | |
Collapse
|
14
|
Tao L, He X, Wang F, Zhong Y, Pan L, Wang X, Gan S, Di R, Chu M. Luzhong mutton sheep: inbreeding and selection signatures. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:777-789. [PMID: 33987559 PMCID: PMC7721573 DOI: 10.5187/jast.2020.62.6.777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/11/2020] [Accepted: 10/02/2020] [Indexed: 01/13/2023]
Abstract
Intense artificial selection has been imposed to Luzhong mutton sheep population
in the past years. Improvements on growth and reproductive performance are two
breeding goals in the present herd. Although some progresses were phenotypically
observed possibly due to inbreeding induced by strong selection in terms of
these traits, the genomic evaluation was poorly understood. Therefore, a
high-density SNP array was used to characterize the pattern of runs of
homozygosity (ROH), estimate inbreeding and inbreeding depressions on early
growth performance and litter size based upon ROH, and scan positive selection
signatures of recent population. Consequently, a low inbreeding level was
observed which had negative effects on litter size, but not on early growth
performance. And 160 genes were under selection, of which some were reported to
be linked to several traits of sheep including body weight, litter size, carcass
and meat quality, milk yield and composition, fiber quality and health, and the
top genes were associated with growth (growth hormone [GH]- growth hormone
receptor [GHR]- Insulin-like growth factor 1 [IGF1] axis) and litter size (bone
morphogenic proteins [BMPs]-associated). The effectiveness of previous breeding
measures was highlighted, but purging selection was proposed to alleviate the
inbreeding depression on litter size, providing some genomic insights to
breeding management of Luzhong mutton sheep.
Collapse
Affiliation(s)
- Lin Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengyan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingjie Zhong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linxiang Pan
- Ji'nan Laiwu Yingtai Agriculture and Animal Husbandry Technology, Ji'nan, Shandong 271114, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
15
|
Novel InDels of GHR, GHRH, GHRHR and Their Association with Growth Traits in Seven Chinese Sheep Breeds. Animals (Basel) 2020; 10:ani10101883. [PMID: 33076416 PMCID: PMC7602648 DOI: 10.3390/ani10101883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
The GH growth axis plays an important role in the growth and development of animals and runs through the whole life of animals. Many studies have shown that molecular mutations in key genes of the GH axis will affect the growth and development of animals. The purpose of this study was to explore the distribution characteristics of InDels of GHR, GHRH, and GHRHR in seven Chinese sheep populations, and to further explore the relationship between InDels and sheep growth traits. GHR showed high variation in Chinese sheep, and GHR-53 showed the highest minimum allele frequency (MAF). There was only one InDel mutation site in both GHRH and GHRHR. The genotype frequencies of Hu sheep (HS), Tong sheep (TS), and Lanzhou fat-tail sheep (LFTS) were quite different from other breeds. The association between GHR, GHRH, and GHRHR InDels and body size traits in seven varieties were analyzed. The results showed that there was no significant relationship between GHRH and body size traits in the seven sheep populations. There was a positive association between GHR-21 and hip height of LFSH (p < 0.05). GHR-43 reduced body height and chest depth of Small tail han sheep (STHS) and hip width of TS. GHR-44 significantly affected the body weight of HS, the body height of STHS and the head depth of TS. GHR-53 significantly reduced cannon girth of HS, chest of STHS and forehead width of TS. GHRHR-2 significantly reduced the body weight of LFHS. To sum up, this study revealed the effects of GHR, GHRH, and GHRHR InDels on sheep phenotypic traits, which indicated their potential application prospects in the genetic improvement of mutton sheep.
Collapse
|
16
|
Li H, Xu H, Akhatayeva Z, Liu H, Lin C, Han X, Lu X, Lan X, Zhang Q, Pan C. Novel indel variations of the sheep FecB gene and their effects on litter size. Gene 2020; 767:145176. [PMID: 33002573 DOI: 10.1016/j.gene.2020.145176] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
Various studies had shown that the FecB gene (also known as BMPRIB, BMPR1B or ALK-6) was the major gene influencing sheep litter size, for which its SNPs' variations were reportedly linked. Yet, surprisingly, there was no published information on the insertion/deletion (indel) variation of this gene. Herein, using a population of Chinese Australian White sheep (n = 932), we identified five novel indels in the different introns of the FecB gene. Among them, the 12-bp indel was distinguished as a splicing region variation that was completely linked to the 17-bp indel. Analysis of variance revealed that only the 10-bp indel was significantly associated with sheep litter size (P = 0.010), for which the deletion/deletion (DD) genotype was the harmful one for fecundity. Nevertheless, the combined genotypes of these five indels were significantly (P = 0.033) correlated with the litter size. These findings would provide fresh insight into developing a sounder basis to accelerate molecular breeding in sheep via DNA markers in a marker-assisted selection strategy.
Collapse
Affiliation(s)
- Haixia Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, China
| | - Zhanerke Akhatayeva
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongfei Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunjian Lin
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin 300000, China
| | - Xufei Han
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin 300000, China
| | - Xiaofang Lu
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin 300000, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin 300000, China.
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
17
|
Chen W, Lv X, Wang Y, Zhang X, Wang S, Hussain Z, Chen L, Su R, Sun W. Transcriptional Profiles of Long Non-coding RNA and mRNA in Sheep Mammary Gland During Lactation Period. Front Genet 2020; 11:946. [PMID: 33101361 PMCID: PMC7546800 DOI: 10.3389/fgene.2020.00946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Sheep milk and related products have been growing in popularity around the world in recent years. However, the sheep milk industry is limited by low milk yield, and the molecular regulators of ovine lactation remain largely unknown. To investigate the transcriptomic basis of sheep lactation, RNA-Sequencing was used to explore the expression profiles of lncRNA and mRNA of the mammary gland in Hu sheep at three key time points during the lactation stage: 5 days before the expected date of parturition perinatal period (PP), 6 days after parturition early lactation (EL), and 25 days after parturition peak lactation (PL). A total of 1111, 688, and 54 differentially expressed (DE) lncRNAs as well as 1360, 660, and 17 DE mRNAs were detected in the EL vs PP, PL vs PP, and PL vs EL comparisons, respectively. Several prominent mRNAs (e.g., CSN1S1, CSN1S2, PAEP, CSN2, CSN3, and COL3A1) and lncRNAs (e.g., LNC_018483, LNC_005678, LNC_012936, and LNC_004856) were identified. Functional enrichment analysis revealed that several DE mRNAs and target genes of DE lncRNAs were involved in lactation-related pathways, such as MAPK, PPAR, and ECM-receptor interaction. This study enhances our understanding of how transcriptomic profiles change during the lactation period and pave the way for future studies examining sheep lactation.
Collapse
Affiliation(s)
- Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinjun Zhang
- Animal Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zahid Hussain
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ling Chen
- Animal Science and Veterinary Medicine Bureau of Suzhou City, Suzhou, China
| | - Rui Su
- Suzhou Taihu Dongshang Sheep Industry Development Co., Ltd., Suzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Akhatayeva Z, Mao C, Jiang F, Pan C, Lin C, Hao K, Lan T, Chen H, Zhang Q, Lan X. Indel variants within the PRL and GHR genes associated with sheep litter size. Reprod Domest Anim 2020; 55:1470-1478. [PMID: 32762057 DOI: 10.1111/rda.13796] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022]
Abstract
Growth hormone and prolactin belong to the class of peptide hormones that have a wide range of regulatory functions. In this study, polymorphisms of growth hormone receptor (GHR) and prolactin (PRL) genes were analysed as candidate genes, which are responsible for the litter size in Australian White (AUW) sheep. According to the statistical analyses results, the polymorphism information content (PIC) values of the PRL-P1-ins-23 bp, GHR-P2-del-23 bp and GHR-P8-del-23 bp were 0.371, 0.366 and 0.375, respectively, which indicates the high genetic polymorphism in AUW sheep. Moreover, all indel loci are not conformed to the HWE (p < .05). Further, our findings revealed that the PRL-P1-ins-23 bp polymorphism in the ovine PRL gene was significantly related to the first parity litter size (p = .001) and the DD genotype displaying the highest genotypic mean. Meanwhile, the GHR-P2-del-23 bp and GHR-P8-23 bp indels in the ovine GHR gene were significantly correlated with first parity litter size (p < .05), and the individuals with the genotype II showed significantly higher litter size than others. Collectively, these results demonstrated that our findings could be useful for future sheep breeding strategies based on the molecular-assisted selection (MAS).
Collapse
Affiliation(s)
- Zhanerke Akhatayeva
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Cui Mao
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin, China
| | - Fugui Jiang
- Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin, China.,Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chunjian Lin
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin, China
| | - Kunjie Hao
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin, China
| | - Tianxin Lan
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Dettori ML, Pazzola M, Petretto E, Vacca GM. Association Analysis between SPP1, POFUT1 and PRLR Gene Variation and Milk Yield, Composition and Coagulation Traits in Sarda Sheep. Animals (Basel) 2020; 10:E1216. [PMID: 32708940 PMCID: PMC7401589 DOI: 10.3390/ani10071216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/02/2023] Open
Abstract
Many studies focus on the identification of genomic regions that undergo selective processes, where evidence of selection is revealed and positional candidate genes are identified. The aim of the research was to evaluate the association between positional candidate genes, namely secreted phosphoprotein 1 (SPP1, sheep chromosome Ovis aries OAR6, 36.651-36.658 Mb), protein O-fucosyltransferase 1 (POFUT1, OAR13, 61.006-61.027 Mb) and prolactin receptor (PRLR, OAR16, 38.969-39.028 Mb) with milk yield, composition and coagulation traits. Eight single nucleotide polymorphisms (SNPs) mapping to the three genes were genotyped in 380 Sarda dairy sheep. Statistical analysis revealed an association between SNP rs161844011 at SPP1 (chromosome position Oar_v3 OAR6:36651870, gene region exon 7) and somatic cell score, while POFUT1 SNP rs424501869 (OAR13:61007495, intron 1) was associated with curd firmness both 45 and 60 min after rennet addition (p = 0.015 and p = 0.007, respectively). SNP rs400874750 at PRLR gene (OAR16:39004070, intron 2) had a significant association with lactose content (p = 0.020), somatic cell score (p = 0.038), rennet coagulation time (p = 0.018) and curd firming time (p = 0.047). The outcome of this research confirmed predictions based on genomic studies, producing new information regarding the SPP1, POFUT1 and PRLR genes, which may be useful for future breeding schemes.
Collapse
Affiliation(s)
| | - Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100 Sassari, Italy; (M.L.D.); (E.P.); (G.M.V.)
| | | | | |
Collapse
|
20
|
Akhatayeva Z, Li H, Mao C, Cheng H, Zhang G, Jiang F, Meng X, Yao Y, Lan X, Song E, Zhang D. Detecting novel Indel variants within the GHR gene and their associations with growth traits in Luxi Blackhead sheep. Anim Biotechnol 2020; 33:214-222. [PMID: 32615865 DOI: 10.1080/10495398.2020.1784184] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The growth hormone is important in the regulation of metabolism and energy homeostasis and acts through a growth hormone receptor (GHR). In this work, genetic variations within the ovine GHR gene were identified and tested for associations with body morphometric traits in Chinese Luxi Blackhead (LXBH) sheep. Novel deletion loci in the LXBH GHR gene included P2-del-23 bp and P8-del-23 bp indel variants. The polymorphic information content (PIC) was 0.329 in P2-del-23 bp and 0.257 in P8-del-23 bp. Moreover, both indel polymorphisms were not at Hardy-Weinberg equilibrium (p < 0.05) in the LXBH population. Statistical analyses revealed that the P2-del-23 bp and P8-del-23 bp indels were significantly associated (p < 0.05) with several growth traits in rams and ewes, including body weight, body height, chest depth, chest width, chest circumference, cannon circumference, paunch girth and hip width. Among the tested sheep, the body traits of those with genotype DD were superior to those with II and ID genotypes, suggesting that the 'D' allele was responsible for the positive effects on growth traits. Thus, these results indicate that the P2-del-23 bp and P8-del-23 bp indel sites and the DD genotype can be useful in marker-assisted selection in sheep.
Collapse
Affiliation(s)
- Zhanerke Akhatayeva
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haixia Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Cui Mao
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Haijian Cheng
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Guoping Zhang
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fugui Jiang
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xianfeng Meng
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuni Yao
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Enliang Song
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dongfu Zhang
- Shandong Liaocheng Luxi Blackhead Sheep Farm, Liaocheng, Shandong, China
| |
Collapse
|
21
|
Yang H, Ma J, Wang Z, Yao X, Zhao J, Zhao X, Wang F, Zhang Y. Genome-Wide Analysis and Function Prediction of Long Noncoding RNAs in Sheep Pituitary Gland Associated with Sexual Maturation. Genes (Basel) 2020; 11:E320. [PMID: 32192168 PMCID: PMC7140784 DOI: 10.3390/genes11030320] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNA (lncRNA) plays a crucial role in the hypothalamic-pituitary-testis (HPT) axis associated with sheep reproduction. The pituitary plays a connecting role in the HPT axis. However, little is known of their expression pattern and potential roles in the pituitary gland. To explore the potential lncRNAs that regulate the male sheep pituitary development and sexual maturation, we constructed immature and mature sheep pituitary cDNA libraries (three-month-old, TM, and nine-month-old, NM, respectively, n = 3) for lncRNA and mRNA high-throughput sequencing. Firstly, the expression of lncRNA and mRNA were comparatively analyzed. 2417 known lncRNAs and 1256 new lncRNAs were identified. Then, 193 differentially expressed (DE) lncRNAs and 1407 DE mRNAs were found in the pituitary between the two groups. Moreover, mRNA-lncRNA interaction network was constructed according to the target gene prediction of lncRNA and functional enrichment analysis. Five candidate lncRNAs and their targeted genes HSD17B12, DCBLD2, PDPK1, GPX3 and DLL1 that enriched in growth and reproduction related pathways were further filtered. Lastly, the interaction of candidate lncRNA TCONS_00066406 and its targeted gene HSD17B12 were validated in in vitro of sheep pituitary cells. Our study provided a systematic presentation of lncRNAs and mRNAs in male sheep pituitary, which revealed the potential role of lncRNA in male reproduction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (J.M.); (Z.W.); (X.Y.); (J.Z.); (X.Z.); (F.W.)
| |
Collapse
|
22
|
Usai MG, Casu S, Sechi T, Salaris SL, Miari S, Sechi S, Carta P, Carta A. Mapping genomic regions affecting milk traits in Sarda sheep by using the OvineSNP50 Beadchip and principal components to perform combined linkage and linkage disequilibrium analysis. Genet Sel Evol 2019; 51:65. [PMID: 31744455 PMCID: PMC6862840 DOI: 10.1186/s12711-019-0508-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/05/2019] [Indexed: 02/01/2023] Open
Abstract
Background The detection of regions that affect quantitative traits (QTL), to implement selection assisted by molecular information, remains of particular interest in dairy sheep for which genetic gain is constrained by the high costs of large-scale phenotype and pedigree recording. QTL detection based on the combination of linkage disequilibrium and linkage analysis (LDLA) is the most suitable approach in family-structured populations. The main issue in performing LDLA mapping is the handling of the identity-by-descent (IBD) probability matrix. Here, we propose the use of principal component analysis (PCA) to perform LDLA mapping for milk traits in Sarda dairy sheep. Methods A resource population of 3731 ewes belonging to 161 sire families and genotyped with the OvineSNP50 Beadchip was used to map genomic regions that affect five milk traits. The paternally and maternally inherited gametes of genotyped individuals were reconstructed and IBD probabilities between them were defined both at each SNP position and at the genome level. A QTL detection model fitting fixed effects of principal components that summarize IBD probabilities was tested at each SNP position. Genome-wide (GW) significance thresholds were determined by within-trait permutations. Results PCA resulted in substantial dimensionality reduction, in fact 137 and 32 (on average) principal components were able to capture 99% of the IBD variation at the locus and genome levels, respectively. Overall, 2563 positions exceeded the 0.05 GW significance threshold for at least one trait, which clustered into 75 QTL regions most of which affected more than one trait. The strongest signal was obtained for protein content on Ovis aries (OAR) chromosome 6 and overlapped with the region that harbours the casein gene cluster. Additional interesting positions were identified on OAR4 for fat content and on OAR11 for the three yield traits. Conclusions PCA is a good strategy to summarize IBD probabilities. A large number of regions associated to milk traits were identified. The outputs provided by the proposed method are useful for the selection of candidate genes, which need to be further investigated to identify causative mutations or markers in strong LD with them for application in selection programs assisted by molecular information.
Collapse
Affiliation(s)
- Mario Graziano Usai
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| | - Sara Casu
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy.
| | - Tiziana Sechi
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| | - Sotero L Salaris
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| | - Sabrina Miari
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| | - Stefania Sechi
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| | - Patrizia Carta
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| | - Antonello Carta
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| |
Collapse
|
23
|
Association between the GHR, GHRHR and IGF1 gene polymorphisms and milk coagulation properties in Sarda sheep. J DAIRY RES 2019; 86:331-336. [PMID: 31288873 DOI: 10.1017/s0022029919000475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We investigated whether variation of the sheep Growth Hormone Receptor (GHR), Growth Hormone Releasing Hormone Receptor (GHRHR) and Insulin-Like Growth Factor 1 (IGF1) genes were associated with milk coagulation properties (MCP) in sheep. The GHR, GHRHR and IGF1 genes are part of the GH system, which is known to modulate metabolism, growth and reproduction as well as mammogenesis and galactopoiesis in dairy species. A total of 380 dairy Sarda sheep were genotyped for 36 SNPs mapping to these three genes. Traditional MCP were measured as rennet coagulation time (RCT), curd-firming time (k20) and curd firmness at 30 m (a30). Modeling of curd firming over time (CFt) was based on a 60 m lactodynamographic test, generating a total of 240 records of curd firmness (mm) for each milk sample. The model parameters obtained included: the rennet coagulation time as a result of modeling all data available (RCTeq, min); the asymptotic potential value of curd firmness (CFP, mm) at an infinite time; the CF instant rate constant (kCF, %/min); the syneresis instant rate constant (kSR, %/min); the maximum value of CF (CFmax, mm) and the time at achievement of CFmax (tmax, min). Statistical analysis revealed that variation of the GHR gene was significantly associated with RCT, kSR and CFP (P < 0.05). No other significant associations were detected. These findings may be useful for the dairy industry, as well as for selection programs.
Collapse
|