1
|
Evelyn LLL, Abu Daud NH, Loh TC, Candyrine SCL. Replacing yellow maize with Illipe nut (Shorea stenoptera) improves growth performance and meat quality of porker pigs. Trop Anim Health Prod 2024; 57:8. [PMID: 39710747 DOI: 10.1007/s11250-024-04264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Abstract
The effects of incorporating Illipe nut into the diet of pigs, in replacement of yellow maize, on their growth performance and meat quality was investigated in a 60 days feeding trial. Twenty-four male pigs were divided into two treatments and fed diets with 0% (T1) or 15% (T2) Illipe nut inclusion. Feed intake, live weight (LW) and backfat thickness (BFT) were taken and used to calculate average daily feed intake (ADFI), average daily gain (ADG), feed conversion ratio (FCR) and increase in backfat (IBF). At the end of the trial, final LW and BFT were measured. Pigs were then slaughtered and hot carcass weight (HCW), pH45mins, pH24hrs and dressing percentage (DP) were determined. Other analysis, including total moisture, thawing loss (TL), cooking loss (CL) and water holding capacity (WHC), were conducted on pork samples. Nutritional content and fatty acid (FA) composition of pork samples were analyzed, and nutritional indices were calculated. Improvements (P < 0.05) in final LW, ADG, final BFT, IBF and FCR were seen in pigs fed the T2 diet. Additionally, the T2 pork was superior (P < 0.05) in HCW, DP, pH24hrs, TL, CL, total moisture and WHC than T1 pork. The FA composition of T2 pork was also improved, with a higher (P < 0.05) PUFA:SFA ratio, indicating lower SFA and higher PUFA levels than T1 pork. Along with this, T2 pork had lower (P < 0.05) index of atheroginicity (IA) and higher (health promoting index) HPI levels, indicating that the T2 pork is a healthier choice for consumption. These findings indicate that the inclusion of 15% Illipe nut into the diet of porker pigs improved their overall growth performance and meat quality.
Collapse
Affiliation(s)
- L L L Evelyn
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, 90509, Sandakan, Sabah, Malaysia
| | - N H Abu Daud
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, 90509, Sandakan, Sabah, Malaysia
| | - T C Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - S C L Candyrine
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, 90509, Sandakan, Sabah, Malaysia.
| |
Collapse
|
2
|
Anwar S, Khalique A, Hifzulrahman, NaeemTahir M, Azam BE, Tausif MA, Qamar S, Tahir H, Tipu MA, Haque MNU. Effects of prilled fat supplementation in diets with varying protein levels on production performance of early lactating Nili Ravi Buffaloes. Anim Biosci 2024; 37:1387-1397. [PMID: 38665070 PMCID: PMC11222859 DOI: 10.5713/ab.23.0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/24/2024] [Accepted: 04/01/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE The objective of the current study was to find out the independent and interactive effects of prilled fat supplementation with protein on the production performance of early lactating Nili Ravi buffaloes. METHODS Sixteen early lactating buffaloes (36.75±5.79 d in milk; mean±standard error) received 4 treatments in 4×4 Latin-square design according to 2×2 factorial arrangements. The dietary treatments were: i) low protein low fat, ii) low protein high fat, iii) high protein low fat, and iv) high protein high fat. The dietary treatments contained 2 protein (8.7% and 11.7% crude protein) and fat levels (2.6% and 4.6% ether extract) on a dry matter basis. RESULTS The yields of milk and fat increased with increasing protein and fat independently (p≤0.05). Energy-, protein-, and fat-corrected milk yields also increased with increasing protein and fat independently (p≤0.05). Increasing dietary protein increased the protein yield by 3.75% and lactose yield by 3.15% and increasing dietary fat supplies increased the fat contents by 3.93% (p≤0.05). Milk yield and fat-corrected milk to dry matter intake ratios were increased at high protein and high fat levels (p≤0.05). Milk nitrogen efficiency was unaffected by dietary fat (p>0.10), whereas it decreased with increasing protein supplies (p≤0.05). Plasma urea nitrogen and cholesterol were increased by increasing protein and fat levels, respectively (p≤0.05). The values of predicted methane production reduced with increasing dietary protein and fat. CONCLUSION It is concluded that prilled fat and protein supplies increased milk and fat yield along with increased ratios of milk yield and fat-corrected milk yields to dry matter intake. However, no interaction was observed between prilled fat and protein supplementation for production parameters, body weight, body condition score and blood metabolites. Predicted methane production decreased with increasing protein and fat levels.
Collapse
Affiliation(s)
- Saba Anwar
- Buffalo Research Institute, Pattoki District Kasur, 53000,
Pakistan
| | - Anjum Khalique
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000,
Pakistan
| | - Hifzulrahman
- Department of Livestock Production, University of Veterinary and Animal Sciences, Lahore 54000,
Pakistan
| | - Muhammad NaeemTahir
- Department of Livestock Management, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100,
Pakistan
| | - Burhan E Azam
- Livestock Experiment Station, Bhunikey, Pattoki, District Kasur, 53000,
Pakistan
| | - Muhammad Asim Tausif
- Livestock Experiment Station, Bhunikey, Pattoki, District Kasur, 53000,
Pakistan
| | - Sundas Qamar
- Buffalo Research Institute, Pattoki District Kasur, 53000,
Pakistan
| | - Hina Tahir
- Buffalo Research Institute, Pattoki District Kasur, 53000,
Pakistan
| | - Murtaza Ali Tipu
- Department of Livestock and Dairy Development, Lahore 54000,
Pakistan
| | - Muhammad Naveed ul Haque
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000,
Pakistan
| |
Collapse
|
3
|
Anger JC, Loncke C, Omphalius C, Boutinaud M, Guinard-Flament J, Lapierre H, Lemosquet S. Synthesis of milk components involves different mammary metabolism adaptations in response to net energy and protein supplies in dairy cows. J Dairy Sci 2024; 107:2883-2899. [PMID: 38101733 DOI: 10.3168/jds.2023-23826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
Net energy for lactation (NEL) and metabolizable protein (MP) are the 2 main nutritional forces that drive synthesis of milk components. This study investigated mammary-gland metabolism in dairy cows in response to variations in the supply of NEL and MP. Four Holstein dairy cows were randomly assigned to a 4 × 4 Latin square design, in which each experimental period consisted of 14 d of dietary treatment. The diets provided 2 levels of NEL (low energy, 25.0 Mcal/d vs. high energy, 32.5 Mcal/d) and 2 levels of MP (low protein, 1,266 g/d vs. high protein, 2,254 g/d of protein digestible in the intestine) in a 2 × 2 factorial arrangement. Performance and dry matter intake (DMI) were measured during the last 5 d of each period, and the mammary net balance was measured on d 13 by collecting 6 sets of blood samples from the left carotid artery and left mammary vein. Mammary plasma flow was measured according to the Fick principle for Phe and Tyr. The mammary net balance of carbon equaled the uptake of nutrients expressed as carbon minus the output of lactose, fatty acids (FA) synthesized in the mammary gland, AA of milk protein, and glycerol-3P from triglyceride on d 13. Milk, lactose, fat, and protein yields increased when NEL and MP supplies increased. However, increasing the NEL supply increased FA synthesis more than increasing the protein supply did. In addition, FA secretion increased more than lactose secretion when the NEL supply increased. Increasing the NEL supply increased the left half-udder uptake of all major energy-yielding nutrients by increasing mammary plasma flow. However, nutrient uptake increased more than milk output did, which in turn increased carbon dioxide output. This increase in nutrient oxidation by the mammary gland decreased the mammary efficiency of nutrients utilization when the NEL supply increased. Increasing MP supply tended to increase glucose uptake through mammary clearance and increased mammary AA uptake with no change in mammary plasma flow. In addition, the protein supply did not change the mammary uptake of acetate or β-hydroxybutyrate. The increase in milk-component secretions in response to either NEL or MP supplies occurred through different metabolic adaptations (increase in mammary plasma flow vs. clearances, respectively). These results suggest that the nutrient use by the mammary gland is highly flexible, which helps in maintaining milk and milk-component yields even with limiting nutrient supplies.
Collapse
Affiliation(s)
- J C Anger
- PEGASE, INRAE, Institut Agro, 35590 Saint Gilles, France; Provimi France, Cargill Animal Nutrition & Health, 35320 Crevin, France
| | - C Loncke
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France
| | - C Omphalius
- PEGASE, INRAE, Institut Agro, 35590 Saint Gilles, France
| | - M Boutinaud
- PEGASE, INRAE, Institut Agro, 35590 Saint Gilles, France
| | | | - H Lapierre
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, J1M 0C8, Canada
| | - S Lemosquet
- PEGASE, INRAE, Institut Agro, 35590 Saint Gilles, France.
| |
Collapse
|
4
|
Rebelo LR, Lee C. Measuring bioavailability, utilization, and excretion of rumen-protected lysine in lactating cows using an isotope technique. Animal 2024; 18:101127. [PMID: 38574452 DOI: 10.1016/j.animal.2024.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Supplementing a diet with rumen-protected amino acids (AAs) is a common feeding strategy for efficient production. For a cost-effective use of rumen-protected AA, the accurate bioavailability of rumen-protected amino acids should be known and their metabolism after absorption needs to be well understood. The current study determined the bioavailability, absorption, utilization, and excretion of rumen-protected Lys (RP-Lys). Four ruminally cannulated cows in a 4 × 4 Latin square design (12 d for diet adaptation; 5 or 6 d for total collections) received the following treatments: L0, a basal diet; L25, the basal diet and L-Lys infused into the abomasum to provide 25.9 g/d L-Lys; L50, the basal diet and L-Lys infused into the abomasum to provide 51.8 g/d L-Lys; and RPL, the basal diet supplemented with 105 g/d (as-is) of RP-Lys to provide 26.7 g of digestible Lys. During the last 5 or 6 d in each period, 15N-Lys (0.38 g/d) was infused into the abomasum for all cows to label the pool of AA, and the total collection of milk, urine, and feces were conducted. 15N enrichment of samples on d 4 and 5 were used to calculate the bioavailability and Lys metabolism. We used a model containing a fast AA turnover (≤ 5 d) and slow AA turnover pool (> 5 d) to calculate fluxes of Lys. The Lys flux to the fast AA turnover pool (absorbed Lys + Lys from the slow AA turnover pool to fast AA turnover pool) was calculated using 15N enrichment of milk Lys. The flux of Lys from the fast AA turnover pool to milk and urine was calculated using 15N transfer into milk and urine. Then, absorbed Lys was estimated by the sum of Lys flux to milk and urine assuming no net utilization of Lys by body tissues. Duodenal Lys flow was estimated by 15N enrichment of fecal Lys. The bioavailability of RP-Lys was calculated from duodenal Lys flows and Lys absorption for RPL. Increasing Lys supply from L25 to L50 increased Lys utilization for milk by 9 g/d but also increased urinary excretion by 10 g/d. For RPL, absorbed Lys was estimated to be 136 g/d where 28 g of absorbed Lys originated from RP-Lys. In conclusion, 68% of bioavailability was obtained for RP-Lys. The Lys provided from RP-Lys was not only utilized for milk protein (48%) but also excreted in urine (20%) after oxidation.
Collapse
Affiliation(s)
- L R Rebelo
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - C Lee
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
5
|
Räisänen SE, Lapierre H, Price WJ, Hristov AN. Lactational performance effects of supplemental histidine in dairy cows: A meta-analysis. J Dairy Sci 2023; 106:6216-6231. [PMID: 37500429 DOI: 10.3168/jds.2022-22966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/26/2023] [Indexed: 07/29/2023]
Abstract
The objective of this meta-analysis was to examine the effects of supplemental His on lactational performance, plasma His concentration and efficiency of utilization of digestible His (EffHis) in dairy cows. The meta-analysis was performed on data from 17 studies published in peer-reviewed journals between 1999 and 2022. Five publications reported data from 2 separate experiments, which were included in the analyses as separate studies, therefore resulting in a total of 22 studies. In 10 studies, His was supplemented as rumen-protected (RP) His; in 1 study, 2 basal diets with different dHis levels were fed; and in the remaining experiments, free His was infused into the abomasum (4 studies), the jugular vein (3 studies) or deleted from a mixture of postruminally infused AA (4 studies). The main forages in the diets were corn silage in 14 and grass silage in 8 studies. If not reported in the publications, the supplies of dietary CP, metabolizable protein (MP), net energy of lactation, and digestible His (dHis) were estimated using NRC (2001). An initial meta-analysis was performed to test the standard mean difference (SMD; raw mean difference of treatment and control means divided by the pooled standard deviation of the means), that is, effect size, and the corresponding 95% confidence interval (CI) in production parameters between His-supplemented groups versus control. Further, regression analyses were also conducted to examine and compare the relationships between several response variables and dHis supply. Across studies, His supplementation increased plasma His concentration (SMD = 1.39; 95% CI: 1.17-1.61), as well as DMI (SMD = 0.240; 95% CI: 0.051-0.429) and milk yield (MY; SMD = 0.667; 95% CI: 0.468-0.866), respectively. Further, milk true protein concentration (MTP; SMD = 0.236; 95% CI: 0.046-0.425) and milk true protein yield (MTPY; SMD = 0.581; 95% CI: 0.387-0.776) were increased by His supplementation. Notably, the increase in MTP concentration and MTPY were 3.9 and 1.3 times greater for studies with MP-deficient (according to NRC 2001) diets compared with studies with MP-adequate diets. The regression analyses revealed that production parameters (DMI, MY, and MTPY) responded in a nonlinear manner to increasing His supply. Further, we detected a difference in the magnitude of change in MTPY and plasma His concentration with the level of His supply and between His supplementation methods, being greater for infused His compared with RPHis. Lastly, a linear and negative relationship between EffHis and the ratio of total digestible His to net energy for lactation supply was observed, indicating an important interaction between dHis and energy supply and EffHis (i.e., utilization of dHis to support protein export). Overall, these analyses confirm His as an important AA in dairy cattle nutrition.
Collapse
Affiliation(s)
- S E Räisänen
- Department of Animal Science, The Pennsylvania State University, State College, PA 16802; ETH Zürich, Department of Environmental Science, Institute of Agricultural Sciences, Zürich 8092, Switzerland
| | - H Lapierre
- Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - W J Price
- Statistical Programs, University of Idaho, Moscow, ID 83844
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, State College, PA 16802.
| |
Collapse
|
6
|
Zang Y, Silva LHP, Geng YC, Lange MJ, Zambom MA, Brito AF. Replacing ground corn with soyhulls plus palmitic acid in low metabolizable protein diets with or without rumen-protected amino acids: Effects on production and nutrient utilization in dairy cows. J Dairy Sci 2023; 106:4002-4017. [PMID: 37105871 DOI: 10.3168/jds.2022-22270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/28/2022] [Indexed: 04/29/2023]
Abstract
We previously observed that diets with reduced starch concentration decreased yields of milk and milk protein in dairy cows fed low metabolizable protein diets. Supplementation of reduced-starch diets with a lipid source may attenuate or eliminate production losses. Our objective was to investigate the effects of partially replacing ground corn with soyhulls plus a palmitic acid-enriched supplement on dry matter (DM) intake, milk yield and composition, plasma AA concentration, and N and energy utilization in cows fed low metabolizable protein diets (mean = -68 g/d balance) with or without rumen-protected Met, Lys, and His (RP-MLH). Sixteen multiparous Holstein cows averaging (mean ± standard deviation) 112 ± 28 d in milk, 724 ± 44 kg of body weight, and 46 ± 5 kg/d of milk in the beginning of the study were used in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Each period lasted 21 d, consisting of 14 d for diet adaptation and 7 d for data and sample collection. Diets were fed as follows: (1) high starch (HS), (2) HS plus RP-MLH (HS+AA), (3) reduced starch plus a palmitic acid-enriched supplement (RSPA), and (4) RSPA plus RP-MLH (RSPA+AA). The HS diet contained (DM basis) 26% ground corn and 7% soyhulls, and the RSPA diet had 10% ground corn, 22% soyhulls, and 1.5% palmitic acid. The HS diet averaged (DM basis) 32.6% starch and 4% ether extract, while starch and ether extract concentrations of the RSPA diet were 21.7 and 5.9%, respectively. All 4 diets had (DM basis) 40% corn silage, 5% mixed-mostly grass haylage, 5% grass hay, and 50% concentrate. Diets did not affect DM intake and milk yield. Contrarily, feeding RSPA and RSPA+AA increased yields of energy-corrected milk (47.0 vs. 44.8 kg/d) and milk fat (1.65 vs. 1.50 kg/d) compared with HS and HS+AA. Milk fat concentration tended to decrease when RP-MLH was supplemented to HS, but no change was seen when added to RS (starch level × RP-MLH interaction). Milk and plasma urea N increased, and milk N efficiency decreased in cows fed RSPA and RSPA+AA versus HS and HS+AA. Apparent total-tract digestibilites of crude protein and neutral detergent fiber, as well as urinary urea N and total N excretion, were greater in cows offered RSPA and RSPA+AA than HS and HS+AA. Plasma Met and His concentrations increased with supplemental RP-MLH. Intake of gross energy and digestible energy and the output of urinary and milk energy were all greater with feeding RSPA and RSPA+AA versus HS and HS+AA. In summary, partially replacing ground corn with soyhulls plus palmitic acid in diets supplemented or not with RP-MLH increased milk fat yield and fiber digestibility and maintained DM intake and milk yield, but with decreased milk N efficiency and elevated urinary N excretion.
Collapse
Affiliation(s)
- Y Zang
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824; Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China 225009
| | - L H P Silva
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824
| | - Y C Geng
- Key Laboratory of Nonpoint Source Pollution Control, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China 100081
| | - M J Lange
- Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, Brazil 85960-000
| | - M A Zambom
- Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, Brazil 85960-000
| | - A F Brito
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824.
| |
Collapse
|
7
|
Bae H, Lam K, Jang C. Metabolic flux between organs measured by arteriovenous metabolite gradients. Exp Mol Med 2022; 54:1354-1366. [PMID: 36075951 PMCID: PMC9534916 DOI: 10.1038/s12276-022-00803-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
Mammalian organs convert dietary nutrients into circulating metabolites and share them to maintain whole-body metabolic homeostasis. While the concentrations of circulating metabolites have been frequently measured in a variety of pathophysiological conditions, the exchange flux of circulating metabolites between organs is not easily measurable due to technical difficulties. Isotope tracing is useful for measuring such fluxes for a metabolite of interest, but the shuffling of isotopic atoms between metabolites requires mathematical modeling. Arteriovenous metabolite gradient measurements can complement isotope tracing to infer organ-specific net fluxes of many metabolites simultaneously. Here, we review the historical development of arteriovenous measurements and discuss their advantages and limitations with key example studies that have revealed metabolite exchange flux between organs in diverse pathophysiological contexts.
Collapse
Affiliation(s)
- Hosung Bae
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Katie Lam
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
8
|
Nichols K, Dijkstra J, Breuer MJH, Lemosquet S, Gerrits WJJ, Bannink A. Essential amino acid profile of supplemental metabolizable protein affects mammary gland metabolism and whole-body glucose kinetics in dairy cattle. J Dairy Sci 2022; 105:7354-7372. [PMID: 35863921 DOI: 10.3168/jds.2021-21576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/26/2022] [Indexed: 11/19/2022]
Abstract
This study investigated mammary gland metabolism and whole-body (WB) rate of appearance (Ra) of glucose in dairy cattle in response to a constant supplemental level of metabolizable protein (MP) composed of different essential AA (EAA) profiles. Five multiparous rumen-fistulated Holstein-Friesian dairy cows (2.8 ± 0.4 lactations; 81 ± 11 d in milk; mean ± standard deviation) were abomasally infused according to a 5 × 5 Latin square design with saline (SAL) or 562 g/d of EAA delivered in different profiles where individual AA content corresponded to their relative content in casein. The profiles consisted of (1) a complete EAA mixture (EAAC), (2) Ile, Leu, and Val (ILV), (3) His, Ile, Leu, Met, Phe, Trp, Val (GR1+ILV), and (4) Arg, His, Lys, Met, Phe, Thr, Trp (GR1+ALT). A total mixed ration (58% corn silage, 16% alfalfa hay, and 26% concentrate on a dry matter basis) was formulated to meet 100 and 83% of net energy and MP requirements, respectively, and was fed at 90% of ad libitum intake on an individual cow basis. Each experimental period consisted of 5 d of continuous abomasal infusion followed by 2 d of no infusion. Arterial and venous blood samples were collected on d 4 of each period for determination of mammary gland AA and glucose metabolism. On d 5 of each period, D-[U-13C]glucose (13 mmol priming dose; continuous 3.5 mmol/h for 520 min) was infused into a jugular vein and arterial blood samples were collected before and during infusion to determine WB Ra of glucose. Milk protein yield did not differ between EAAC, GR1+ILV, and GR1+ALT, or between SAL and ILV, and increased over SAL and ILV with EAAC and GR1+ILV. Mammary plasma flow increased with ILV infusion compared with EAAC and GR1+ILV. Infusion of EAAC tended to increase mammary gland net uptake of total EAA and decreased the mammary uptake to milk protein output ratio (U:O) of non-EAA compared with SAL. Infusion of ILV increased mammary net uptake and U:O of Ile, Leu, and Val markedly over all treatments. The U:O of total Ile, Leu, and Val increased numerically (25%) with GR1+ILV infusion compared with EAAC, and the U:O of total Arg, Lys, and Thr tended to decrease, primarily from decreased U:O of Lys. During GR1+ALT infusion, U:O of total Arg, Lys, and Thr was greater than that during EAAC infusion, whereas U:O of Ile, Leu, and Val did not differ from EAAC. Glucose WB Ra increased 16% with GR1+ALT over SAL, and increased numerically 8 and 12% over SAL with EAAC and GR1+ILV, respectively. The average proportion of lactose yield relative to glucose WB Ra did not differ across treatments and averaged 0.53. On average, 28% of milk galactose arose from nonglucose precursors, regardless of treatment. In conclusion, intramammary catabolism of group 2 AA increased to support milk component synthesis when the EAA profile of MP was incomplete with respect to casein. Further, WB and mammary gland glucose metabolism was flexible in support of milk component synthesis, regardless of absorptive EAA profile.
Collapse
Affiliation(s)
- K Nichols
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands.
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - M J H Breuer
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - S Lemosquet
- PEGASE, INRAE, Institut Agro, 35590 Saint Gilles, France
| | - W J J Gerrits
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - A Bannink
- Wageningen Livestock Research, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
9
|
Pacheco-Pappenheim S, Yener S, Nichols K, Dijkstra J, Hettinga K, van Valenberg HJF. Feeding hydrogenated palm fatty acids and rumen-protected protein to lactating Holstein-Friesian dairy cows modifies milk fat triacylglycerol composition and structure, and solid fat content. J Dairy Sci 2022; 105:2828-2839. [PMID: 35181128 DOI: 10.3168/jds.2021-21083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/06/2022] [Indexed: 11/19/2022]
Abstract
The aim of this study was to analyze the effect of fat and protein supplementation to dairy cattle rations on milk fat triacylglycerol (TAG) composition, fatty acid (FA) positional distribution in the TAG structure, and milk solid fat content (SFC). Fifty-six lactating Holstein-Friesian cows were blocked into 14 groups of 4 cows and randomly assigned 1 of 4 dietary treatments fed for 28 d: (1) low protein, low fat, (2) high protein, low fat, (3) low protein, high fat, and (4) high protein, high fat. The high protein and high fat diets were obtained by isoenergetically supplementing the basal ration (low protein, low fat) with rumen-protected soybean meal and rumen-protected rapeseed meal, and hydrogenated palm FA (mainly C16:0 and C18:0), respectively. Fat supplementation modified milk TAG composition more extensively compared with protein supplementation. Fat supplementation resulted in decreased concentrations of the low molecular weight TAG carbon number (CN) 26 to CN34 and medium molecular weight TAG CN40, CN44, and CN46, and increased concentrations of CN38 and the high molecular weight TAG CN50 and CN52. Increased contents of C16:0, C18:0, and C18:1cis-9 in TAG in response to fat supplementation were related to increases in the relative concentrations of C16:0 and C18:0 at the sn-2 position and C18:0 and C18:1cis-9 at the sn-1(3) positions of the TAG structure. Increased concentrations of high molecular weight TAG species CN50 and CN52 in response to fat supplementation was associated with increased milk SFC at 20, 25, and 30°C. Our study shows that important alterations in milk TAG composition and structure occur when feeding hydrogenated palm FA to lactating dairy cattle, and that these alterations result in an increased SFC of milk fat. These changes in milk SFC and TAG composition and structure may improve absorption of both fat and minerals in milk-based products for infants and may affect processing of milk fat.
Collapse
Affiliation(s)
- Sara Pacheco-Pappenheim
- Dairy Science and Technology Group of Food Quality and Design (FQD), Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, the Netherlands
| | - Sine Yener
- Dairy Science and Technology Group of Food Quality and Design (FQD), Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, the Netherlands
| | - Kelly Nichols
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Jan Dijkstra
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Kasper Hettinga
- Dairy Science and Technology Group of Food Quality and Design (FQD), Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, the Netherlands.
| | - Hein J F van Valenberg
- Dairy Science and Technology Group of Food Quality and Design (FQD), Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
10
|
Effects of Essential Amino Acid Deficiency on General Control Nonderepressible 2/Eukaryotic Initiation Factor 2 Signaling and Proteomic Changes in Primary Bovine Mammary Epithelial Cells. Curr Issues Mol Biol 2022; 44:1075-1086. [PMID: 35723294 PMCID: PMC8947524 DOI: 10.3390/cimb44030071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
We hypothesized that the general control nonderepressible 2 (GCN2)/eukaryotic initiation factor 2 (eIF2) signaling pathway and intracellular protein synthesis (PS) are regulated to maintain milk PS in primary bovine mammary epithelial cells (MECs) under essential amino acid (EAA) starvation conditions. We cultured MECs with 0%, 2% (depletion), and 100% (control) EAA for two exposure times (8 and 24 h), followed by three refeeding (RF) times with 100% EAA (0, 8, and 24 h). Subsequently, we measured cell viability, total protein concentration, and proliferation. Western blotting was used to quantify the levels of casein and the expression of total GCN2 and eIF2, as well as phosphorylated GCN2 (GCN2P) and eIF2 (eIF2P). The ISOQuant method was used to assess MEC proteomes, and the resultant data were analyzed using the Kruskal−Wallis test, nonpaired Wilcoxon rank post-hoc test, and ANOVA−Tukey test, as well as principal component analyses and multiple regressions models. Differences in cell viability were observed between the control versus the depleted and repleted MECs, respectively, where 97.2−99.8% viability indicated low cell death rates. Proliferation (range, 1.02−1.55 arbitrary units (AU)) was affected by starvation for 12 and 24 h and repletion for 24 h, but it was not increased compared with the control. Total protein expression was unaffected by both depletion and repletion treatments (median 3158 µg/mL). eIF2P expression was significantly increased (p < 0.05) after treatment with 2% EAA for 8 and 24 h compared with 2% EAA with 8 h + 24 h RF and 2% EAA with 24 h + 8 h RF. GCN2P also showed significantly increased expression (p < 0.05) after treatment with 2% EAA for 24 h compared with the control and 2% EAA with 24 h + 8 h RF. Intracellular casein/α-tubulin expression was unaffected by 2% EAA compared with control (0.073 ± 0.01 AU versus 0.086 ± 0.02 AU, respectively). We studied 30 of the detected 1180 proteins, 16 of which were differentially expressed in starved and refed MECs. Cells faced with EAA deficiency activated the GCN2P/eIF2P pathway, and the lack of change in the levels of casein and other milk proteins suggested that the EAA deficit was mitigated by metabolic flexibility to maintain homeostasis.
Collapse
|
11
|
Effects of rumen-protected methionine supplementation on the performance of high production dairy cows in the tropics. PLoS One 2021; 16:e0243953. [PMID: 33930018 PMCID: PMC8087032 DOI: 10.1371/journal.pone.0243953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/16/2021] [Indexed: 11/19/2022] Open
Abstract
Increasing methionine availability in dairy cow diets during the first third of lactation may enhance their performance and health. The aim of this study was to determine the effect of supplementing rumen-protected methionine (Smartamine® M, SM) in a lactation diet with protein and energy levels calculated according to the literature. Seventy-six multiparous Holstein cows (39.1 ± 6.8 kg of milk/d and 65 ± 28 DIM) were assigned to 1 of 2 dietary treatments (38/treatment) according to a randomized complete block design with a 2-wk (covariate) and 10-wk experimental period. Treatments were a basal diet (CON; 3.77 Lys:1Met); and CON + 23 g SM (2.97 Lys:1 Met). Individual milk samples were taken every 2 weeks to determine milk composition. Blood was collected from 24 cows on d+30 d to measure plasma AA levels. Body weight and body condition score (BCS) were measured at the beginning and the end of the experiment. The SM diet promoted higher milk yield (41.7 vs. 40.1 kg/d; P = 0.03). Energy-corrected milk yield (41.0 vs. 38.0 kg/d), milk protein yield (1.30 vs. 1.18 kg/d), milk protein (3.14% vs. 2.97%) and casein (2.39% vs. 2.28%) were also different (P < 0.01) as well as milk fat yield (1.42 vs. 1.29 kg/d; P = 0.02). A trend (P = 0.06) for higher milk fat % (3.41% vs. 3.21%) was observed. Both diets resulted in similar body weight, but CON-fed cows tended (P = 0.08) to have higher BCS. Higher plasma methionine levels were determined with SM compared with CON (29.6 vs. 18.4 μM; P < 0.01), but lysine and histidine were not different. Dietary supplementation of RPM improved productive performance by increasing milk yield and milk components yields, suggesting better dietary AA utilization when Met levels are adjusted in Lys-adequate lactation diets.
Collapse
|
12
|
Khiaosa-ard R, Kleefisch MT, Zebeli Q, Klevenhusen F. Milk fatty acid composition reflects metabolic adaptation of early lactation cows fed hay rich in water-soluble carbohydrates with or without concentrates. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Omphalius C, Lemosquet S, Ouellet DR, Bahloul L, Lapierre H. Postruminal infusions of amino acids or glucose affect metabolisms of splanchnic, mammary, and other peripheral tissues and drive amino acid use in dairy cows. J Dairy Sci 2020; 103:2233-2254. [PMID: 31954566 DOI: 10.3168/jds.2019-17249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/06/2019] [Indexed: 01/17/2023]
Abstract
Effects of AA and glucose infusions on efficiency of use of essential AA (EAA) were studied according to a 2 × 2 factorial using 5 multicatheterized cows in a 4 × 4 Latin square plus one cow, with 2-wk periods. The diet provided 87% of energy and 70% of metabolizable protein requirements, and the 4 treatments were abomasal infusions of (1) water, (2) an AA mixture with a casein profile (695 g/d), (3) glucose (1,454 g/d), or (4) a combination of AA and glucose infusions. Milk samples were collected on the last 6 milkings. On d 14, 6 blood samples were collected from arterial, and portal, hepatic, and mammary venous vessels. Splanchnic plasma flow was calculated by dilution of p-aminohippurate and mammary flow by the Fick principle using Phe + Tyr. The net flux of AA across tissues [splanchnic, i.e., portal-drained viscera (PDV) + liver, and mammary gland] was calculated as the efflux minus the influx across that tissue. The efficiency of EAA was calculated as the sum of exported true proteins [milk protein yield (MPY), scurf, and metabolic fecal protein] multiplied by their respective AA profile and divided by the predicted AA supply minus AA endogenous urinary loss. In addition, catabolism was estimated for each tissue: AA supply - (portal net flux + metabolic fecal protein) for the PDV; -hepatic net flux for the liver; splanchnic net flux - (-mammary net flux + scurf) for the other peripheral tissues; and -mammary net flux - milk for the mammary gland. The MIXED procedure (SAS Institute Inc., Cary, NC) was used with cow as a random effect. No AA × glucose interaction existed for most of the measured parameters. With infusions of AA and glucose, MPY increased by 17 and 14%, respectively. The decreased efficiency of EAA-N with AA infusion resulted from increased EAA-N in MPY smaller than the increased EAA-N supply and was accompanied by increased liver catabolism of His + Met + Phe (representing group 1 AA) and increased mammary and PDV catabolisms of group 2 AA-N (Ile, Leu, Lys, and Val). In contrast, the increased efficiency of EAA-N with glucose infusion, resulting from increased EAA-N in MPY with no change in EAA-N supply, was accompanied by decreased mammary catabolism of group 2 AA-N and hepatic catabolism of His + Met + Phe. No mammary catabolism of His, Met, and Phe existed in all treatments, as indicated by the mammary uptake to milk output ratio close to one for these EAA. Therefore, the mammary gland contributes significantly to variations of efficiency of group 2 AA-N through variations of AA catabolism, in response to both AA and glucose supplies, whereas additional PDV catabolism was observed with increased AA supply. Partition of AA use between tissues allows to delineate their anabolic or catabolic fate across tissues and better understand changes of efficiency of EAA in response to protein and energy supplies.
Collapse
Affiliation(s)
- C Omphalius
- PEGASE, INRA, Agrocampus Ouest, 35590 Saint Gilles, France; Adisseo France S.A.S., 10, Place du General de Gaulle, 92160 Antony, France
| | - S Lemosquet
- PEGASE, INRA, Agrocampus Ouest, 35590 Saint Gilles, France
| | - D R Ouellet
- Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - L Bahloul
- Adisseo France S.A.S., 10, Place du General de Gaulle, 92160 Antony, France
| | - H Lapierre
- Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8.
| |
Collapse
|
14
|
Gorlov IF, Slozhenkina MI, Mosolova NI, Mishina OY, Vorontsova ES. Productivity and biological value of milk of cows of various eco-genetic types. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1755-1315/341/1/012043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Patel OV, Casey T, Plaut K. Profiling solute-carrier transporters in key metabolic tissues during the postpartum evolution of mammary epithelial cells from nonsecretory to secretory. Physiol Genomics 2019; 51:539-552. [PMID: 31545931 DOI: 10.1152/physiolgenomics.00058.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modifications in the abundance of solute-carrier (SLC) transcripts in tandem with adjustments in genes-associated with energy homeostasis during the postpartum transition of the mammary epithelial cells (MEC) from nonsecretory to secretory is pivotal for supporting milk synthesis. The goal of this study was to identify differentially expressed SLC genes across key metabolic tissues between late pregnancy and onset of lactation. Total RNA was isolated from the mammary, liver, and adipose tissues collected from rat dams on day 20 of pregnancy (P20) and day 1 of lactation (L1) and gene expression was measured with Rat 230 2.0 Affymetrix GeneChips. LIMMA was utilized to identify the differential gene expression patterns between P20 and L1 tissues. Transcripts engaged in conveying anions, cations, carboxylates, sugars, amino acids, metals, nucleosides, vitamins, and fatty acids were significantly increased (P < 0.05) in MEC during the P20 to L1 shift. Downregulated (P < 0.05) genes in the mammary during the physiological transition included GLUT8 and SLC45a3. In the liver, SLC genes encoding for anion, carbonyl, and nucleotide sugar transporters were upregulated (P < 0.05) at L1. while genes facilitating transportation of anions and hexose were increased (P < 0.05), from P20 to L1 in the adipose tissue. GLUT1 and GLUT4 in the liver, along with GLUT4 and SGLT2 in the adipose tissue, were repressed (P < 0.05) at L1. Our results illustrate that MEC exhibit dynamic molecular plasticity during the nonsecretory to secretory transition and increase biosynthetic capacity through a coordinated tissue specific SLC transcriptome modification to facilitate substrate transfer.
Collapse
Affiliation(s)
- Osman V Patel
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, Michigan
| | - Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
16
|
Vargas-Bello-Pérez E, Cancino-Padilla N, Geldsetzer-Mendoza C, Vyhmeister S, Morales MS, Leskinen H, Romero J, Garnsworthy PC, Ibáñez RA. Effect of Feeding Cows with Unsaturated Fatty Acid Sources on Milk Production, Milk Composition, Milk Fatty Acid Profile, and Physicochemical and Sensory Characteristics of Ice Cream. Animals (Basel) 2019; 9:ani9080568. [PMID: 31426475 PMCID: PMC6720294 DOI: 10.3390/ani9080568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 01/27/2023] Open
Abstract
Simple Summary The objective of this study was to evaluate the effects of supplementation of dairy cows’ diets with different fatty acid (FA) sources on milk production, milk composition, milk fatty acid profile, and physicochemical and sensory characteristics of ice cream. Supplementation (3% dry matter (DM)) of diets with soybean oil (SO) and fish oil (FO) did not have detrimental effects on milk production, milk composition, or ice cream physicochemical and sensory characteristics. From a human standpoint, SO and FO improved the FA profile of milk. Abstract The objective of this study was to evaluate the effects of supplementation of dairy cows with different fatty acid sources (soybean oil (SO) and fish oil (FO)) on milk production, milk composition, milk fatty acid profile, and physicochemical and sensory characteristics of ice cream. During 63 days, fifteen Holstein cows averaging 198 ± 35 days in milk were assigned to three groups: control diet with no added lipid (n = 5 cows); and supplemented diets with SO (n = 5 cows; unrefined SO; 30 g/kg DM) or FO (n = 5 cows; FO from unrefined salmon oil; 30 g/kg DM). Milk production, milk fat, and milk protein were not affected by treatments. Saturated fatty acids in milk fat were decreased with SO and FO compared with control. C18:2 cis-9, cis-12 was increased with SO whereas C18:2 cis-9, trans-11, C20:3n-3, C20:3n-6, C20:5n-3, and C22:6n-3 were the highest with FO. Draw temperature and firmness were higher in SO compared to control and FO ice creams. Melting resistance was higher in FO compared with control and SO ice creams. Supplementation of cow diets with SO and FO did not have detrimental effects on milk production, or ice cream physicochemical and sensory characteristics.
Collapse
Affiliation(s)
- Einar Vargas-Bello-Pérez
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla-306 Santiago, Chile.
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark.
| | - Nathaly Cancino-Padilla
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla-306 Santiago, Chile
| | - Carolina Geldsetzer-Mendoza
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla-306 Santiago, Chile
| | - Stefanie Vyhmeister
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla-306 Santiago, Chile
| | - María Sol Morales
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, Chile
| | - Heidi Leskinen
- Milk Production, Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - Jaime Romero
- Instituto de Nutrición y Tecnología de los Alimentos, El Líbano 5524, Santiago, Chile
| | - Philip C Garnsworthy
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Rodrigo A Ibáñez
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla-306 Santiago, Chile
| |
Collapse
|
17
|
Nichols K, Bannink A, Doelman J, Dijkstra J. Mammary gland metabolite utilization in response to exogenous glucose or long-chain fatty acids at low and high metabolizable protein levels. J Dairy Sci 2019; 102:7150-7167. [PMID: 31155242 DOI: 10.3168/jds.2019-16285] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/08/2019] [Indexed: 01/27/2023]
Abstract
We investigated mammary gland metabolism in lactating dairy cattle in response to energy from glucogenic (glucose; GG) or lipogenic (palm olein; LG) substrates at low (LMP) and high (HMP) metabolizable protein levels. According to a 6 × 6 Latin square design, 6 rumen-fistulated second-lactation Holstein-Friesian dairy cows (97 ± 13 d in milk) were abomasally infused with saline (LMP-C); isoenergetic infusions (digestible energy basis) of 1,319 g/d glucose (LMP-GG), 676 g/d palm olein (LMP-LG), or 844 g/d essential AA (EAA; HMP-C); or isoenergetic infusions of 1,319 g/d glucose + 844 g/d EAA (HMP-GG) or 676 g/d palm olein + 844 g/d EAA (HMP-LG). Each experimental period consisted of 5 d of continuous infusion followed by 2 d of rest. A total mixed ration (42% corn silage, 31% grass silage, and 27% concentrate on a dry matter basis) formulated to meet 100 and 83% of net energy and metabolizable protein requirements, respectively, was fed at 90% of ad libitum intake by individual cow. Arterial and venous blood samples were collected on d 5 of each period. Infusing GG or LG at the HMP level did not affect milk yield or composition differently than at the LMP level. Neither GG nor LG infusion stimulated milk protein or lactose yield, but fat yield tended to decrease with GG and tended to increase with LG. Infusion of GG increased arterial plasma concentrations of glucose and insulin and decreased concentrations of β-hydroxybutyrate (BHB), nonesterified fatty acids, long-chain fatty acids (LCFA), total AA, EAA, and group 2 AA. Infusion of LG increased arterial triacylglycerides (TAG) and LCFA but did not affect EAA concentrations. Compared with the LMP level, the HMP level increased arterial concentrations of BHB, urea, and all EAA groups and decreased the concentration of total non-EAA. Mammary plasma flow increased with GG and was not affected by LG or protein level. Uptake and clearance of total EAA and group 2 AA were affected or tended to be affected by GG × AA interactions, with their uptakes being lower and their clearances higher with GG, but only at the LMP level. Infusion of LG did not affect uptake or clearance of any AA group. The HMP level increased uptake and decreased clearance of all EAA groups and decreased non-EAA uptake. Infusion of GG tended to increase mammary glucose uptake, and tended to decrease BHB uptake only at the LMP level. Infusion of LG increased mammary uptake of TAG and LCFA and increased or tended to increase clearance of TAG and LCFA. We suspect GG increased mammary plasma flow to maintain intramammary energy and AA balance and stimulated lipogenesis in adipose, accounting for depressed arterial BHB and group 2 AA concentrations. Mammary glucose uptake did not cover estimated requirements for lactose and fat synthesis at the HMP level, except during HMP-GG infusion. Results of this study illustrate flexibility in mammary metabolite utilization when absorptive supply of glucogenic, lipogenic, and aminogenic substrate is increased.
Collapse
Affiliation(s)
- K Nichols
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands; Wageningen Livestock Research, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands.
| | - A Bannink
- Wageningen Livestock Research, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - J Doelman
- Trouw Nutrition R&D, PO Box 220, 5830 AE Boxmeer, the Netherlands
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
18
|
Nichols K, Dijkstra J, van Laar H, Kim JJM, Cant JP, Bannink A. Expression of genes related to energy metabolism and the unfolded protein response in dairy cow mammary cells is affected differently during dietary supplementation with energy from protein and fat. J Dairy Sci 2019; 102:6603-6613. [PMID: 31103304 DOI: 10.3168/jds.2018-15875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/27/2019] [Indexed: 12/12/2022]
Abstract
Secretory capacity of bovine mammary glands is enabled by a high number of secretory cells and their ability to use a range of metabolites to produce milk components. We isolated RNA from milk fat to measure expression of genes involved in energy-yielding pathways and the unfolded protein response in mammary glands of lactating cows given supplemental energy from protein (PT) and fat (FT) tested in a 2 × 2 factorial arrangement. We hypothesized that PT and FT would affect expression of genes in the branched-chain AA catabolic pathway and tricarboxylic acid (TCA) cycle based on the different energy types (aminogenic versus lipogenic) used to synthesize milk components. We also hypothesized that the response of genes related to endoplasmic reticulum (ER) homeostasis via the unfolded protein response would reflect the increase in milk production stimulated by PT and FT. Fifty-six multiparous Holstein-Friesian dairy cows were fed a basal total mixed ration (34% grass silage, 33% corn silage, 5% grass hay, and 28% concentrate on a dry matter basis) for a 28-d control period. Experimental rations were then fed for 28 d, consisting of (1) low protein, low fat (LP/LF); (2) high protein, low fat (HP/LF); (3) low protein, high fat (LP/HF); or (4) high protein and high fat (HP/HF). To obtain the high-protein (HP) and high-fat (HF) diets, intake of the basal ration was restricted and supplemented isoenergetically (net energy basis) with 2.0 kg/d rumen-protected protein (soybean + rapeseed, 50:50 mixture on dry matter basis) and 0.68 kg/d hydrogenated palm fatty acids on a dry matter basis. RNA from milk fat samples collected on d 27 of each period underwent real-time quantitative PCR. Energy from protein increased expression of BCAT1 (branched-chain amino acid transferase 1) mRNA, but only at the LF level, and tended to decrease expression of mRNA encoding the main subunit of the branched-chain keto-acid dehydrogenase complex. mRNA expression of malic enzyme, a proposed channeling route for AA though the TCA cycle, was decreased by PT, but only at the LF level. Expression of genes associated with de novo fatty acid synthesis was not affected by PT or FT. Energy from fat had no independent effect on genes related to ER homeostasis. At the LF level, PT activated XBP1 (X-box binding protein 1) mRNA. At the HF level, PT increased mRNA expression of the gene encoding GADD34 (growth arrest and DNA damage-inducible 34). These findings support our hypothesis that mammary cells use aminogenic and lipogenic precursors differently for milk component production when dietary intervention alters AA and fatty acid supply. They also suggest that mammary cells respond to increased AA supply through mechanisms of ER homeostasis, dependent on the presence of FT.
Collapse
Affiliation(s)
- K Nichols
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands; Wageningen Livestock Research, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands.
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - H van Laar
- Trouw Nutrition R&D, PO Box 220, 5830 AE Boxmeer, the Netherlands
| | - J J M Kim
- Department of Animal Biosciences, University of Guelph, Ontario N1G 2W1, Canada
| | - J P Cant
- Department of Animal Biosciences, University of Guelph, Ontario N1G 2W1, Canada
| | - A Bannink
- Wageningen Livestock Research, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|