1
|
Harahap MA, Widodo S, Handayani UF, Altandjung RI, Wulandari, Sakti AA, Atmoko BA, Negara W, Dewi YL, Julendra H, Sofyan A, Wahyono T, Ujilestari T, Ahmed B, Qomariyah N, Sholikin MM, Baihaqi ZA. Examining performance, milk, and meat in ruminants fed with macroalgae and microalgae: A meta-analysis perspective. Trop Anim Health Prod 2024; 56:243. [PMID: 39172278 DOI: 10.1007/s11250-024-04080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
This meta-analysis consolidates various related studies to identify patterns in the impact of feeding algae on performance aspects, including milk fat, milk protein, and carcass yield in several ruminant species, such as cattle, sheep, and goats. The data were collected from 67 articles that examined factors such as the type of algae (macro- and microalgae), algal species, and animal breed. Barki sheep, Moghani sheep, and Zaraibi goats demonstrated an increased average daily gain (P < 0.05) when fed with both macro- and microalgae. Conversely, sheep such as Canadian Arcott and Ile-de-France showed adverse effects on the feed conversion ratio (FCR) (P < 0.05). Elevated FCR values were observed across castrated and young animals (P < 0.05). Algae extract notably increased the hot carcass weight (P < 0.001), particularly among Moghani sheep (P < 0.001). Raw algae significantly reduced the milk fat content (P < 0.001), particularly in cattle and sheep (P < 0.001). A decrease in milk fat was particularly noticeable in lactating females of Assaf sheep, Damascus goats, and Holstein cows (P < 0.001). Overall, algae inclusion tended to decrease the milk protein content (P < 0.05), leading to reduced milk production (P < 0.001) with cumulative algae feeding in Assaf sheep. However, conjugated linoleic acid (CLA; C18:2 c9,t11-CLA and C18:2 c12,t10-CLA) and docosahexaenoic acid (DHA; C22:6n-3) mostly increased in meat and milk from Holstein cow, Assaf sheep, Dorset sheep, and Ile-de-France sheep (P < 0.01). This meta-analysis highlights the necessity for additional research aimed at optimizing the sustainable use of algae in feed for ruminants, despite the demonstrated improvements in performance and the levels of CLA and DHA found in meat and milk.
Collapse
Affiliation(s)
- Muhammad Ainsyar Harahap
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
| | - Slamet Widodo
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
| | - Ulvi Fitri Handayani
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
| | | | - Wulandari
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
| | - Awistaros Angger Sakti
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
| | - Bayu Andri Atmoko
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
| | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
| | - Yelsi Listiana Dewi
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
| | - Hardi Julendra
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
| | - Ahmad Sofyan
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
| | - Tegoh Wahyono
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, 55861, Indonesia
| | - Tri Ujilestari
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, 55861, Indonesia
| | - Bilal Ahmed
- Undergraduate Student from Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Novia Qomariyah
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
| | - Mohammad Miftakhus Sholikin
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
| | - Zein Ahmad Baihaqi
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia.
| |
Collapse
|
2
|
Yang X, Lu X, Wang L, Bai L, Yao R, Jia Z, Ma Y, Chen Y, Hao H, Wu X, Wang Z, Wang Y. Stearic acid promotes lipid synthesis through CD36/Fyn/FAK/mTORC1 axis in bovine mammary epithelial cells. Int J Biol Macromol 2023; 253:127324. [PMID: 37838116 DOI: 10.1016/j.ijbiomac.2023.127324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Stearic acid (C18:0, SA) is a saturated long-chain fatty acid (LCFA) that has a prominent function in lactating dairy cows. It is obtained primarily from the diet and is stored in the form of triacylglycerol (TAG) molecules. The transmembrane glycoprotein cluster of differentiation 36 (CD36) is also known as fatty acid translocase, but whether SA promotes lipid synthesis through CD36 and FAK/mTORC1 signaling is unknown. In this study, we examined the function and mechanism of CD36-mediated SA-induced lipid synthesis in bovine mammary epithelial cells (BMECs). SA-enriched supplements enhanced lipid synthesis and the FAK/mTORC1 pathway in BMECs. SA-induced lipid synthesis, FAK/mTORC1 signaling, and the expression of lipogenic genes were impaired by anti-CD36 and the CD36-specific inhibitor SSO, whereas overexpression of CD36 effected the opposite results. Inhibition of FAK/mTORC1 by TAE226/Rapamycin attenuated SA-induced TAG synthesis, inactivated FAK/mTORC1 signaling, and downregulated the lipogenic genes PPARG, CD36, ACSL1, SCD, GPAT4, LIPIN1, and DGAT1 at the mRNA and protein levels in BMECs. By coimmunoprecipitation and yeast two-hybrid screen, CD36 interacted directly with Fyn but not Lyn, and Fyn bound directly to FAK; FAK also interacted directly with TSC2. CD36 linked FAK through Fyn, and FAK coupled mTORC1 through TSC2 to form the CD36/Fyn/FAK/mTORC1 signaling axis. Thus, stearic acid promotes lipogenesis through CD36 and Fyn/FAK/mTORC1 signaling in BMECs. Our findings provide novel insights into the underlying molecular mechanisms by which LCFA supplements promote lipid synthesis in BMECs.
Collapse
Affiliation(s)
- Xiaoru Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Xinyue Lu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Liping Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Linfeng Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Ruiyuan Yao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Zhibo Jia
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yuze Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yuhao Chen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; School of Life Sciences, Jining Normal University, Jining 012000, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Xiaotong Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
3
|
Neofytou MC, Hager-Theodorides AL, Sfakianaki E, Simitzis P, Symeou S, Sparaggis D, Tzamaloukas O, Miltiadou D. The Dietary Inclusion of Ensiled Olive Cake Increases Unsaturated Lipids in Milk and Alters the Expression of Lipogenic Genes in Mammary and Adipose Tissue in Goats. Animals (Basel) 2023; 13:3418. [PMID: 37958173 PMCID: PMC10650401 DOI: 10.3390/ani13213418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
This study aimed to evaluate the effect of the dietary inclusion of ensiled OC on milk yield, composition, fatty acid (FA) profile, and the expression of selected genes involved in lipid metabolism in the udder and adipose tissue of goats. Seventy-two Damascus dairy goats in mid-lactation were assigned randomly to three iso-nitrogenous and iso-energetic diets containing 0, 10, and 20% of ensiled OC as a replacement of forage (OC0, OC10, and OC20, respectively) for 42 days. During weeks 5 and 6 of the trial, dry matter intake, milk yield, milk composition, and FA profiles were recorded, while mammary and perirenal adipose tissue samples were also collected from six animals per treatment from the OC0 and OC20 groups for gene expression analysis. No significant differences were observed among groups concerning milk yield, 4% fat-corrected milk, fat, or protein yield (kg/d). In contrast, the milk fat percentage was gradually increased with increasing OC inclusion rates in the diets, while milk protein percentages were elevated in both OC groups but significantly only in the milk of the OC20 group. The content of FA between C4:0 to C16:0 was reduced, while mono-unsaturated FA (MUFA) concentration was enhanced in the goat milk of OC groups. The OC feeding treatment was associated with the increased mammary expression of SLC2A1 (p < 0.05), VLDLR (p < 0.01), FABP3 (p < 0.01), and elevated SLC2A1 (p < 0.05) and FASN (p < 0.01) gene expression in the adipose tissue of goats fed the OC20 diet. Overall, OC can be used in goats' diets as a forage replacement, at least in the inclusion rate of 20% DM, since this could increase the milk protein and fat percentage and enrich its content with beneficial for human health lipids without adversely affecting milk production traits.
Collapse
Affiliation(s)
- Marina C. Neofytou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, P.O. Box 50329 Limassol, Cyprus; (M.C.N.); (S.S.); (O.T.); (D.M.)
| | - Ariadne-Loukia Hager-Theodorides
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.-L.H.-T.); (E.S.)
| | - Eleni Sfakianaki
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.-L.H.-T.); (E.S.)
| | - Panagiotis Simitzis
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.-L.H.-T.); (E.S.)
| | - Simoni Symeou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, P.O. Box 50329 Limassol, Cyprus; (M.C.N.); (S.S.); (O.T.); (D.M.)
| | | | - Ouranios Tzamaloukas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, P.O. Box 50329 Limassol, Cyprus; (M.C.N.); (S.S.); (O.T.); (D.M.)
| | - Despoina Miltiadou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, P.O. Box 50329 Limassol, Cyprus; (M.C.N.); (S.S.); (O.T.); (D.M.)
| |
Collapse
|
4
|
Andersen TO, Altshuler I, Vera-Ponce de León A, Walter JM, McGovern E, Keogh K, Martin C, Bernard L, Morgavi DP, Park T, Li Z, Jiang Y, Firkins JL, Yu Z, Hvidsten TR, Waters SM, Popova M, Arntzen MØ, Hagen LH, Pope PB. Metabolic influence of core ciliates within the rumen microbiome. THE ISME JOURNAL 2023:10.1038/s41396-023-01407-y. [PMID: 37169869 DOI: 10.1038/s41396-023-01407-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome-centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants. Initial proteome estimations via total protein counts and label-free quantification highlight that entodiniomorph species Entodinium and Epidinium as well as the holotrichs Dasytricha and Isotricha comprise an extensive fraction of the total rumen metaproteome. Proteomic detection of protozoal metabolism such as hydrogenases (Dasytricha, Isotricha, Epidinium, Enoploplastron), carbohydrate-active enzymes (Epidinium, Diplodinium, Enoploplastron, Polyplastron), microbial predation (Entodinium) and volatile fatty acid production (Entodinium and Epidinium) was observed at increased levels in high methane-emitting animals. Despite certain protozoal species having well-established reputations for digesting starch, they were unexpectedly less detectable in low methane emitting-animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation irrespective of host. Finally, we reaffirmed our abovementioned observations in geographically independent datasets, thus illuminating the substantial metabolic influence that under-explored eukaryotic populations have in the rumen, with greater implications for both digestion and methane metabolism.
Collapse
Affiliation(s)
- Thea O Andersen
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ianina Altshuler
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Arturo Vera-Ponce de León
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Juline M Walter
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Emily McGovern
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County, Meath, Ireland
| | - Kate Keogh
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County, Meath, Ireland
| | - Cécile Martin
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Laurence Bernard
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Diego P Morgavi
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Zongjun Li
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Yu Jiang
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Jeffrey L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sinead M Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County, Meath, Ireland
| | - Milka Popova
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Live H Hagen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B Pope
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
5
|
Delosière M, Bernard L, Viala D, Fougère H, Bonnet M. Milk and plasma proteomes from cows facing diet-induced milk fat depression are related to immunity, lipid metabolism and inflammation. Animal 2023; 17:100822. [PMID: 37196580 DOI: 10.1016/j.animal.2023.100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/19/2023] Open
Abstract
Milk proteins are a source of bioactive molecules for calves and humans that may also reflect the physiology and metabolism of dairy cows. Dietary lipid supplements are classically used to modulate the lipid content and composition of bovine milk, with potential impacts on the nutrient's homeostasis and the systemic inflammation of cows that remains to be more explored. This study aimed at identifying discriminant proteins and their associated pathways in twelve Holstein cows (87 ± 7 days in milk), multiparous and non-pregnant, fed for 28 d a diet either, supplemented with 5% DM intake of corn oil and with 50% additional starch from wheat in the concentrate (COS, n = 6) chosen to induce a milk fat depression, or with 3% DM intake of hydrogenated palm oil (HPO, n = 6) known to increase milk fat content. Intake, milk yield and milk composition were measured. On d 27 of the experimental periods, milk and blood samples were collected and label-free quantitative proteomics was performed on proteins extracted from plasma, milk fat globule membrane (MFGM) and skimmed milk (SM). The proteomes from COS and HPO samples were composed of 98, 158 and 70 unique proteins, respectively, in plasma, MFGM and SM. Of these, the combination of a univariate and a multivariate partial least square discriminant analyses reveals that 15 proteins in plasma, 24 in MFGM and 14 in SM signed the differences between COS and HPO diets. The 15 plasma proteins were related to the immune system, acute-phase response, regulation of lipid transport and insulin sensitivity. The 24 MFGM proteins were related to the lipid biosynthetic process and secretion. The 14 SM proteins were linked mainly to immune response, inflammation and lipid transport. This study proposes discriminant milk and plasma proteomes, depending on diet-induced divergence in milk fat secretion, that are related to nutrient homeostasis, inflammation, immunity and lipid metabolism. The present results also suggest a higher state of inflammation with the COS diet.
Collapse
Affiliation(s)
- Mylène Delosière
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France.
| | - Laurence Bernard
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France
| | - Didier Viala
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France; INRAE, Université Clermont Auvergne, Vetagro Sup, PFEM, 63122 Saint-Genès-Champanelle, France
| | - Hélène Fougère
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France
| | - Muriel Bonnet
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France
| |
Collapse
|
6
|
Suárez-Vega A, Gutiérrez-Gil B, Toral PG, Frutos P, Loor JJ, Arranz JJ, Hervás G. Elucidating genes and gene networks linked to individual susceptibility to milk fat depression in dairy goats. Front Vet Sci 2022; 9:1037764. [PMID: 36590804 PMCID: PMC9798324 DOI: 10.3389/fvets.2022.1037764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Dietary supplementation with marine lipids modulates ruminant milk composition toward a healthier fatty acid profile for consumers, but it also causes milk fat depression (MFD). Because the dairy goat industry is mainly oriented toward cheese manufacturing, MFD can elicit economic losses. There is large individual variation in animal susceptibility with goats more (RESPO+) or less (RESPO-) responsive to diet-induced MFD. Thus, we used RNA-Seq to examine gene expression profiles in mammary cells to elucidate mechanisms underlying MFD in goats and individual variation in the extent of diet-induced MFD. Differentially expression analyses (DEA) and weighted gene co-expression network analysis (WGCNA) of RNA-Seq data were used to study milk somatic cell transcriptome changes in goats consuming a diet supplemented with marine lipids. There were 45 differentially expressed genes (DEGs) between control (no-MFD, before diet-induced MFD) and MFD, and 18 between RESPO+ and RESPO-. Biological processes and pathways such as "RNA transcription" and "Chromatin modifying enzymes" were downregulated in MFD compared with controls. Regarding susceptibility to diet-induced MFD, we identified the "Triglyceride Biosynthesis" pathway upregulated in RESPO- goats. The WGCNA approach identified 9 significant functional modules related to milk fat production and one module to the fat yield decrease in diet-induced MFD. The onset of MFD in dairy goats is influenced by the downregulation of SREBF1, other transcription factors and chromatin-modifying enzymes. A list of DEGs between RESPO+ and RESPO- goats (e.g., DBI and GPD1), and a co-related gene network linked to the decrease in milk fat (ABCD3, FABP3, and PLIN2) was uncovered. Results suggest that alterations in fatty acid transport may play an important role in determining individual variation. These candidate genes should be further investigated.
Collapse
Affiliation(s)
- Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Pablo G. Toral
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain
| | - Pilar Frutos
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Juan-José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain,*Correspondence: Juan-José Arranz
| | - Gonzalo Hervás
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain
| |
Collapse
|
7
|
Delavaud C, Fougère H, Bertrand-Michel J, Bernard L. Milk fat depression and plasma lipids in dairy cows and goats. Animal 2022; 16:100635. [PMID: 36459859 DOI: 10.1016/j.animal.2022.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/05/2022] Open
Abstract
This study examines the effects of diets supplemented with various lipids selected to induce divergent milk fat content responses (including a milk fat depression) between dairy cows and goats on plasma lipid composition. The objective was to better understand the mechanisms behind the regulation of milk fat secretion in these two ruminant species. Twelve Holstein cows and 12 Alpine goats were fed a basal diet not supplemented (CTL) or supplemented with corn oil plus wheat starch (COS, 5% DM intake (DMI)), marine algae powder of Schizochytrium sp. (MAP, 1.5% DMI), or hydrogenated palm oil (HPO, 3% DMI), in a replicated 4 × 4 Latin square design, during 28 days. On day 27, blood samples were collected for lipid analysis. Plasma lipid classes were quantified by high-performance thin-layer chromatography, with triacylglycerol (TAG) and free fatty acid (FFA) fractions analysed for FA composition by GLC. Plasma molecular species of TAG and ceramides were determined by HPLC-high-resolution MS and by liquid chromatography-triple quadrupole, respectively. Irrespective of diet, plasma total lipid content was higher in cows than goats (+61%), and TAG concentration was higher in goats than cows (+157%). In cows, conversely to goats, COS increased the trans-10 C18:1 proportion in the free FA (+248%) and the TAG (+195%) fractions. In cows and goats, MAP induced increases in cholesterol esters, cholesterol and phospholipids compared to CTL and changes in the plasma free FA and FA of TAG profiles. In both ruminant species, the concentrations of the lipid fractions were unchanged by HPO compared to CTL. Our results point to species specificities and different diet effects in plasma concentrations and compositions of lipid fractions in cows and goats. These new data highlight how diets, that induce large variations in milk fat secretions, affect the plasma lipid classes available for milk fat synthesis.
Collapse
Affiliation(s)
- C Delavaud
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - H Fougère
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - J Bertrand-Michel
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Inserm/Université Paul Sabatier UMR1048, Toulouse, France
| | - L Bernard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France.
| |
Collapse
|
8
|
Bernard L, Chilliard Y, Hove K, Volden H, Inglingstad RA, Eknæs M. Feeding of palm oil fatty acids or rapeseed oil throughout lactation: Effects on mammary gene expression and milk production in Norwegian dairy goats. J Dairy Sci 2022; 105:8792-8805. [PMID: 36175242 DOI: 10.3168/jds.2021-21372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/26/2022] [Indexed: 11/19/2022]
Abstract
Lipid added as rapeseed or palm oil to the diet of dairy goats over 8 mo of one lactation alters fat secretion and milk fatty acid (FA) and protein composition. In this study, we examined the contribution of mammary gene expression to these changes and included 30 multiparous goats of Norwegian dairy goat breed for a 230-d experimental period, with indoor feeding from 1 to 120 d in milk (DIM), mountain grazing from 120 to 200 DIM, and indoor feeding from 200 to 230 DIM. After an initial period (1-60 DIM) when the control diet was given to all goats, the animals were subdivided into 3 groups of 10 goats. Treatments (60-230 DIM) were basal concentrate (control) alone or supplemented with either 8% (by weight) hydrogenated palm oil enriched with palmitic acid (POFA) or 8% (by weight) rapeseed oil (RSO). Milk was sampled individually from all animals throughout lactation, at 60, 120, 190, and 230 DIM for milk yield and composition. On d 60, 120, 190, and 230, mammary tissue was collected by biopsy to measure mRNA abundance of 19 key genes. None of the 19 genes involved in milk protein, apoptosis, lipid metabolism, transcription factors, and protein of the milk fat globule membrane, as measured by mRNA abundance, were affected by the lipid supplements, although POFA increased milk fat content, and POFA and RSO affected milk FA composition. Over the experimental period (120-230 DIM), the mRNA abundance of 13 of the 19 studied genes was affected by lactation stage. For some genes, expression either gradually increased from 120 to 230 DIM (CSN2,CASP8,CD36,GLUT4) or increased from 120 to 200 and then remained stable (XDH), or decreased (CSN3,G6PD,SREBF1,PPARG1) or increased only at 230 DIM (SCD1,SCD5,ELF3). For a second group of genes (CSN1, LALBA, FABP3, FASN, LPL, MFGE8), expression was stable over the lactation period. Our results suggest that factors other than gene expression, such as substrate availability or posttranscriptional regulation of these genes, could play an important role in the milk fat and FA responses to dietary fat composition in the goat. In conclusion, mammary gene expression in goats was more regulated by stage of lactation than by the dietary treatments applied.
Collapse
Affiliation(s)
- L Bernard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Y Chilliard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - K Hove
- Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), N-1432 Ås, Norway
| | - H Volden
- Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), N-1432 Ås, Norway
| | - R A Inglingstad
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences (NMBU), N-1432 Ås, Norway
| | - M Eknæs
- Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), N-1432 Ås, Norway.
| |
Collapse
|
9
|
Implementation of Sustainable Development Goals in the dairy sector: Perspectives on the use of agro-industrial side-streams to design functional foods. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Toral PG, Hervás G, Frutos P. Effect of lipid supplementation on the endogenous synthesis of milk cis-9,trans-11 conjugated linoleic acid in dairy sheep and goats: A tracer assay with 13C-vaccenic acid. J Dairy Sci 2021; 105:255-268. [PMID: 34763909 DOI: 10.3168/jds.2021-20728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
A major proportion of milk rumenic acid (RA; cis-9,trans-11 CLA) is synthesized through mammary Δ9-desaturation of vaccenic acid (VA; trans-11 18:1). Diet composition may determine the relative contribution of this endogenous synthesis to milk RA content, with effects that might differ between ruminant species. However, this hypothesis is mostly based on estimated values, proxies of stearoyl-CoA desaturase (SCD) activity, and indirect comparisons between publications in the literature. With the aim of providing new insights into this issue, in vivo Δ9-desaturation of 13C-labeled VA (measured via milk 13C-VA and -RA secretion) was directly compared in sheep and goats fed a diet without lipid supplementation or including 2% of linseed oil. Four Assaf sheep and 4 Murciano-Granadina goats were used in a replicated 2 × 2 crossover design to test the effects of the 2 dietary treatments during 2 consecutive 25-d periods. On d 22 of each period, 500 mg of 13C-VA were i.v. injected to each animal. Dairy performance, milk fatty acid profile, including isotope analysis, and mammary mRNA abundance of genes coding for SCD were examined on d 21 to 25 of each period. Supplementation with linseed oil improved milk fat concentration and increased the content of milk VA and RA. However, the isotopic tracer assay suggested no variation in the relative proportion of VA desaturated to milk RA, and the percentage of this CLA isomer deriving from SCD activity would remain constant regardless of dietary treatment. These results put into question a major effect of lipid supplementation on the endogenous synthesis of milk RA and support that mammary Δ9-desaturation capacity would not represent a limiting factor when designing feeding strategies to increase milk RA content. The lack of diet-induced effects was common to caprines and ovines, but inherent interspecies differences in mammary lipogenesis were found. Thus, the higher proportions of VA desaturation and endogenous synthesis of milk RA in sheep supported a greater SCD activity compared with goats, a finding that was not associated with the similar mRNA abundance of SCD1 in the 2 species. On the other hand, transfer efficiency of the isotopic tracer to milk was 37% higher in caprine than in ovine, suggesting a greater efficiency in mammary fatty acid uptake from plasma in caprine.
Collapse
Affiliation(s)
- P G Toral
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - G Hervás
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - P Frutos
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| |
Collapse
|
11
|
Fougère H, Delavaud C, Le Faouder P, Bertrand‐Michel J, Bernard L. Triacylglycerols and Polar Lipids in Cow and Goat Milk are Differentially Affected by Various Lipid Supplemented Diets. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hélène Fougère
- Université Clermont Auvergne INRAE VetAgro Sup UMR Herbivores 63122 Saint‐Genès‐Champanelle France
- Département de Pédiatrie Centre Hospitalier Universitaire de Québec‐Université Laval Québec QC G1V 0A6 Canada
| | - Carole Delavaud
- Université Clermont Auvergne INRAE VetAgro Sup UMR Herbivores 63122 Saint‐Genès‐Champanelle France
| | - Pauline Le Faouder
- MetaToul‐Lipidomic Facility MetaboHUB Institut des Maladies Métaboliques et Cardiovasculaires (I2MC) Inserm/Université Paul Sabatier UMR1048 1 Avenue Jean Poulhes Toulouse 31432 France
| | - Justine Bertrand‐Michel
- MetaToul‐Lipidomic Facility MetaboHUB Institut des Maladies Métaboliques et Cardiovasculaires (I2MC) Inserm/Université Paul Sabatier UMR1048 1 Avenue Jean Poulhes Toulouse 31432 France
| | - Laurence Bernard
- Université Clermont Auvergne INRAE VetAgro Sup UMR Herbivores 63122 Saint‐Genès‐Champanelle France
| |
Collapse
|
12
|
Bernard L, Pomiès D, Aronen I, Ferlay A. Effect of concentrate enriched with palmitic acid versus rapeseed oil on dairy performance, milk fatty acid composition, and mammary lipogenic gene expression in mid-lactation Holstein cows. J Dairy Sci 2021; 104:11621-11633. [PMID: 34364640 DOI: 10.3168/jds.2020-20023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/26/2021] [Indexed: 11/19/2022]
Abstract
This study was performed to characterize the effect of a concentrate supplemented with free palmitic acid (4% on a DM basis; PA) or rapeseed oil (4% on a DM basis; RO) compared with a no-added-lipid control concentrate (CT) on the performance of dairy cows fed a corn silage-based diet over a 9-wk period. After a 3-wk pre-experimental period, 54 Holstein cows were randomly allocated to 3 experimental treatments to receive forage ad libitum with a fixed amount of CT, RO, or PA (8 kg/d for 2-yr-old primiparous; 10 kg/d for older cows). During the experiment, dry matter intake, milk yield and composition, fatty acid (FA) yields and FA profile, and feed efficiency were determined. At wk 9 of the experimental period, the mRNA levels of 10 genes involved in lipid metabolism in mammary tissue biopsy samples were measured. Compared with CT, RO and PA increased forage intake. Compared with CT, RO increased concentrate intake, the value being intermediate for PA. Compared with CT, RO increased milk yield (+2.0 kg/d) and decreased milk fat and protein content (-3.8 and -1.2 g/kg, respectively), whereas PA increased milk fat content (+4.1 g/kg). Compared with CT and RO treatments, PA increased milk fat yield (+179 g/d) and 3.5% fat-corrected milk and energy-corrected milk output (+2.8 and +2.3 kg/d, respectively), and thus improved feed efficiency (+7.3%). Compared with CT treatment, RO increased milk contents of the sum of >C16 FA, monounsaturated FA, polyunsaturated FA, trans FA, and n-3 FA, whereas PA decreased these FA contents (except n-3 FA) and also decreased n-6 FA. The variations in milk fat yield and content and FA secretion at wk 9 were not associated with modifications in mammary expression of 10 genes involved in major lipid pathways, except for the transcription factor PPARG1, which tended to be higher in PA versus RO treatment. This study demonstrated that PA improved milk fat yield and feed efficiency compared with RO and suggests that factors other than gene expression, such as substrate availability for mammary metabolism or other levels of regulation (transcriptional, posttranscriptional, translational or posttranslational), could play a key role in milk fat and FA responses to changes in diet composition in cows.
Collapse
Affiliation(s)
- L Bernard
- VetAgroSup, UMR Herbivores, Université Clermont Auvergne, INRAE, 63122 Saint-Genès-Champanelle, France
| | - D Pomiès
- VetAgroSup, UMR Herbivores, Université Clermont Auvergne, INRAE, 63122 Saint-Genès-Champanelle, France
| | - I Aronen
- Raisio Plc, PO Box 101, Raisionkaari 55, FIN-21201 Raisio, Finland
| | - A Ferlay
- VetAgroSup, UMR Herbivores, Université Clermont Auvergne, INRAE, 63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
13
|
Sequence-based GWAS and post-GWAS analyses reveal a key role of SLC37A1, ANKH, and regulatory regions on bovine milk mineral content. Sci Rep 2021; 11:7537. [PMID: 33824377 PMCID: PMC8024349 DOI: 10.1038/s41598-021-87078-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
The mineral composition of bovine milk plays an important role in determining its nutritional and cheese-making value. Concentrations of the main minerals predicted from mid-infrared spectra produced during milk recording, combined with cow genotypes, provide a unique opportunity to decipher the genetic determinism of these traits. The present study included 1 million test-day predictions of Ca, Mg, P, K, Na, and citrate content from 126,876 Montbéliarde cows, of which 19,586 had genotype data available. All investigated traits were highly heritable (0.50-0.58), with the exception of Na (0.32). A sequence-based genome-wide association study (GWAS) detected 50 QTL (18 affecting two to five traits) and positional candidate genes and variants, mostly located in non-coding sequences. In silico post-GWAS analyses highlighted 877 variants that could be regulatory SNPs altering transcription factor (TF) binding sites or located in non-coding RNA (mainly lncRNA). Furthermore, we found 47 positional candidate genes and 45 TFs highly expressed in mammary gland compared to 90 other bovine tissues. Among the mammary-specific genes, SLC37A1 and ANKH, encoding proteins involved in ion transport were located in the most significant QTL. This study therefore highlights a comprehensive set of functional candidate genes and variants that affect milk mineral content.
Collapse
|
14
|
Hue-Beauvais C, Faulconnier Y, Charlier M, Leroux C. Nutritional Regulation of Mammary Gland Development and Milk Synthesis in Animal Models and Dairy Species. Genes (Basel) 2021; 12:genes12040523. [PMID: 33916721 PMCID: PMC8067096 DOI: 10.3390/genes12040523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
In mammals, milk is essential for the growth, development, and health. Milk quantity and quality are dependent on mammary development, strongly influenced by nutrition. This review provides an overview of the data on nutritional regulations of mammary development and gene expression involved in milk component synthesis. Mammary development is described related to rodents, rabbits, and pigs, common models in mammary biology. Molecular mechanisms of the nutritional regulation of milk synthesis are reported in ruminants regarding the importance of ruminant milk in human health. The effects of dietary quantitative and qualitative alterations are described considering the dietary composition and in regard to the periods of nutritional susceptibly. During lactation, the effects of lipid supplementation and feed restriction or deprivation are discussed regarding gene expression involved in milk biosynthesis, in ruminants. Moreover, nutrigenomic studies underline the role of the mammary structure and the potential influence of microRNAs. Knowledge from three lactating and three dairy livestock species contribute to understanding the variety of phenotypes reported in this review and highlight (1) the importance of critical physiological stages, such as puberty gestation and early lactation and (2) the relative importance of the various nutrients besides the total energetic value and their interaction.
Collapse
Affiliation(s)
- Cathy Hue-Beauvais
- INRAE, AgroParisTech, GABI, University of Paris-Saclay, F-78350 Jouy-en-Josas, France;
- Correspondence:
| | - Yannick Faulconnier
- INRAE, VetAgro Sup, UMR Herbivores, University of Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France; (Y.F.); (C.L.)
| | - Madia Charlier
- INRAE, AgroParisTech, GABI, University of Paris-Saclay, F-78350 Jouy-en-Josas, France;
| | - Christine Leroux
- INRAE, VetAgro Sup, UMR Herbivores, University of Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France; (Y.F.); (C.L.)
| |
Collapse
|
15
|
Diets supplemented with corn oil and wheat starch, marine algae, or hydrogenated palm oil modulate methane emissions similarly in dairy goats and cows, but not feeding behavior. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Bionaz M, Vargas-Bello-Pérez E, Busato S. Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. J Anim Sci Biotechnol 2020; 11:110. [PMID: 33292523 PMCID: PMC7667790 DOI: 10.1186/s40104-020-00512-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
High producing dairy cows generally receive in the diet up to 5-6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics; however, dietary fat is important for dairy cows as demonstrated by the benefits of supplementing cows with various fatty acids (FA). Several FA are highly bioactive, especially by affecting the transcriptome; thus, they have nutrigenomic effects. In the present review, we provide an up-to-date understanding of the utilization of FA by dairy cows including the main processes affecting FA in the rumen, molecular aspects of the absorption of FA by the gut, synthesis, secretion, and utilization of chylomicrons; uptake and metabolism of FA by peripheral tissues, with a main emphasis on the liver, and main transcription factors regulated by FA. Most of the advances in FA utilization by rumen microorganisms and intestinal absorption of FA in dairy cows were made before the end of the last century with little information generated afterwards. However, large advances on the molecular aspects of intestinal absorption and cellular uptake of FA were made on monogastric species in the last 20 years. We provide a model of FA utilization in dairy cows by using information generated in monogastrics and enriching it with data produced in dairy cows. We also reviewed the latest studies on the effects of dietary FA on milk yield, milk fatty acid composition, reproduction, and health in dairy cows. The reviewed data revealed a complex picture with the FA being active in each step of the way, starting from influencing rumen microbiota, regulating intestinal absorption, and affecting cellular uptake and utilization by peripheral tissues, making prediction on in vivo nutrigenomic effects of FA challenging.
Collapse
Affiliation(s)
- Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg C, Denmark
| | - Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
17
|
Neofytou MC, Miltiadou D, Sfakianaki E, Constantinou C, Symeou S, Sparaggis D, Hager-Theodorides AL, Tzamaloukas O. The use of ensiled olive cake in the diets of Friesian cows increases beneficial fatty acids in milk and Halloumi cheese and alters the expression of SREBF1 in adipose tissue. J Dairy Sci 2020; 103:8998-9011. [PMID: 32747111 DOI: 10.3168/jds.2020-18235] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022]
Abstract
This study aimed to evaluate the effect of dietary inclusion of ensiled olive cake, a by-product of olive oil production, on milk yield and composition and on fatty acid (FA) profile of milk and Halloumi cheese from cows. Furthermore, the effect of olive cake on the expression of selected genes involved in mammary and adipose lipid metabolism was assessed in a subset of animals. A total of 24 dairy cows in mid lactation were allocated into 2 isonitrogenous and isoenergetic feeding treatments, named the control (CON) diet and the olive cake (OC) diet, in which part of the forages (alfalfa, barley hay, and barley straw) were replaced with ensiled OC as 10% of dry matter according to a 2 × 2 crossover design with two 28-d experimental periods. At the end of the second experimental period, mammary and perirenal adipose tissue samples were collected from 3 animals per group for gene expression analysis by quantitative reverse-transcription PCR. The expression of 11 genes, involved in FA synthesis (ACACA, FASN, G6PDH), FA uptake or translocation (VLDLR, LPL, SLC2A1, CD36, FABP3), FA saturation (SCD1), and transcriptional regulation (SREBF1, PPARG), was evaluated. No significant differences were observed between groups concerning milk yield, fat percentage, protein percentage, and protein yield (kg/d), whereas milk fat yield (kg/d) increased in the OC group. Dietary supplementation with ensiled OC modified the FA profile of milk and Halloumi cheese produced. There was a significant decrease in the concentration of de novo synthesized FA, saturated FA, and the atherogenic index, whereas long-chain and monounsaturated FA concentration was increased in both milk and cheese. Among individual saturated FA, only stearic acid was elevated, whereas among individual monounsaturated FA, increments of oleic acid (C18:1 cis-9) and the sum of C18:1 trans-10 and trans-11 acids were demonstrated in milk and Halloumi cheese produced. Although no diet effect was reported on total polyunsaturated FA, the concentration of CLA cis-9,trans-11 was increased in both milk and Halloumi cheese fat of the OC group. The expression of the genes tested was unaffected apart from an observed upregulation of SREBF1 mRNA expression in perirenal fat from cows fed the OC diet. Milk FA differences observed were not associated with alterations in mammary expression of genes involved in FA synthesis, uptake, translocation, and regulation of lipogenesis. Overall, the inclusion of ensiled OC in cow diets for a 4-wk period improved, beneficially for human health, the lipid profile of bovine milk and Halloumi cheese produced without adversely affecting milk yield and composition or the expression of genes involved in lipid metabolism of mammary and adipose tissues in cows.
Collapse
Affiliation(s)
- M C Neofytou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, PO Box 50329, Cyprus 3036
| | - D Miltiadou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, PO Box 50329, Cyprus 3036
| | - E Sfakianaki
- Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| | - C Constantinou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, PO Box 50329, Cyprus 3036
| | - S Symeou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, PO Box 50329, Cyprus 3036
| | - D Sparaggis
- Agricultural Research Institute, Nicosia, PO Box 22016, Cyprus 1516
| | - A L Hager-Theodorides
- Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| | - O Tzamaloukas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, PO Box 50329, Cyprus 3036.
| |
Collapse
|
18
|
Nudda A, Cannas A, Correddu F, Atzori AS, Lunesu MF, Battacone G, Pulina G. Sheep and Goats Respond Differently to Feeding Strategies Directed to Improve the Fatty Acid Profile of Milk Fat. Animals (Basel) 2020; 10:ani10081290. [PMID: 32731516 PMCID: PMC7459846 DOI: 10.3390/ani10081290] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Sheep and goat milk, as well as dairy products, are considered good sources of high-quality nutrients, particularly proteins and fats. Many positive effects on human health have been attributed to the consumption of dairy containing specific fatty acids, including some compounds originating from the polyunsaturated FA (PUFA) biohydrogenation operated by rumen microbes. In this bibliographic review, several nutritional strategies able to improve the milk fatty acids (FA) profile, in terms of an increase in the concentration of fatty acids considered beneficial to human health, are presented and discussed, with special attention to the differences between the two species. Abstract This bibliographic review presents and discusses the nutritional strategies able to increase the concentration of beneficial fatty acids (FA) in sheep and goat milk, and dairy products, with a particular focus on the polyunsaturated FA (PUFA), and highlights differences between the two species. In fact, by adopting appropriate feeding strategies, it is possible to markedly vary the concentration of fat in milk and improve its FA composition. These strategies are based mostly on the utilization of herbage rich in PUFA, or on the inclusion of vegetable, marine, or essential oils in the diet of lactating animals. Sheep respond more effectively than goats to the utilization of fresh herbage and to nutritional approaches that improve the milk concentration of c9,t11-conjugated linoleic acid (c9,t11-CLA) and α-linolenic acid. Dietary polyphenols can influence milk FA profile, reducing or inhibiting the activity and growth of some strains of rumen microbes involved in the biohydrogenation of PUFA. Although the effectiveness of plant secondary compounds in improving milk FA composition is still controversial, an overall positive effect has been observed on the concentration of PUFA and RA, without marked differences between sheep and goats. On the other hand, the positive effect of dietary polyphenols on the oxidative stability of milk fat appears to be more consistent.
Collapse
|
19
|
Nichols K, Bannink A, van Baal J, Dijkstra J. Impact of post-ruminally infused macronutrients on bovine mammary gland expression of genes involved in fatty acid synthesis, energy metabolism, and protein synthesis measured in RNA isolated from milk fat. J Anim Sci Biotechnol 2020; 11:53. [PMID: 32477515 PMCID: PMC7238732 DOI: 10.1186/s40104-020-00456-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/01/2020] [Indexed: 11/10/2022] Open
Abstract
Background Characterising the regulation of milk component synthesis in response to macronutrient supply is critical for understanding the implications of nutritional interventions on milk production. Gene expression in mammary gland secretory cells was measured using RNA isolated from milk fat globules from 6 Holstein-Friesian cows receiving 5-d abomasal infusions of saline, essential amino acids (AA), or glucose (GG) or palm olein (LG) without (LAA) or with (HAA) essential AA, according to a 6 × 6 Latin square design. RNA was isolated from milk fat samples collected on d 5 of infusion and subjected to real-time quantitative PCR. We hypothesised that mRNA expression of genes involved in de novo milk fatty acid (FA) synthesis would be differently affected by GG and LG, and that expression of genes regulating transfer of tricarboxylic acid cycle intermediates would increase at the HAA level. We also hypothesised that the HAA level would affect genes regulating endoplasmic reticulum (ER) homeostasis but would not affect genes related to the mechanistic target of rapamycin complex 1 (mTORC1) or the integrated stress response (ISR) network. Results Infusion of GG did not affect de novo milk FA yield but decreased expression of FA synthase (FASN). Infusion of LG decreased de novo FA yield and tended to decrease expression of acetyl-CoA carboxylase 1 (ACC1). The HAA level increased both de novo FA yield and expression of ACC1, and tended to decrease expression of mitochondrial phosphoenolpyruvate carboxykinase (PCK2). mRNA expression of mTORC1 signaling participants was not affected by GG, LG, or AA level. Expression of the ε subunit of the ISR constituent eukaryotic translation initiation factor 2B (EIF2B5) tended to increase at the HAA level, but only in the presence of LG. X-box binding protein 1 (XBP1) mRNA was activated in response to LG and the HAA level. Conclusions Results show that expression of genes involved in de novo FA synthesis responded to glucogenic, lipogenic, and aminogenic substrates, whereas genes regulating intermediate flux through the tricarboxylic acid cycle were not majorly affected. Results also suggest that after 5 d of AA supplementation, milk protein synthesis is supported by enhanced ER biogenesis instead of signaling through the mTORC1 or ISR networks.
Collapse
Affiliation(s)
- Kelly Nichols
- 1Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - André Bannink
- 2Wageningen Livestock Research, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - Jurgen van Baal
- 1Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - Jan Dijkstra
- 1Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
20
|
Bernard L, Fougère H, Larsen T, Pires J. Short communication: Diets supplemented with starch and corn oil, marine algae, or hydrogenated palm oil differently affect selected metabolite concentrations in cow and goat milk. J Dairy Sci 2020; 103:5647-5653. [PMID: 32307179 DOI: 10.3168/jds.2019-18008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022]
Abstract
The objective was to investigate the effects of species (cow vs. goat) and of various dietary lipid supplements, known to modulate milk fat content, on selected metabolites and enzymes in milk and to explore their correlations with performance traits. Twelve Holstein cows and 12 Alpine goats, all multiparous and nonpregnant, and at 86 ± 24.9 and 61 ± 1.8 DIM, respectively, were fed a basal diet (45% forage + 55% concentrate) not supplemented (CTL) or supplemented with corn oil plus wheat starch [COS, 5% of diet dry matter (DM)], marine algae powder (MAP, 1.5% of diet DM), or hydrogenated palm oil (HPO, 3% of diet DM) in a replicated 4 × 4 Latin square design with 28-d experimental periods. Intake, milk production and composition, milk fatty acid profile, and plasma metabolite concentrations were previously reported. Concentrations of 9 milk metabolites [β-hydroxybutyrate (BHB), glucose, glucose-6-phosphate, isocitrate, choline, glutamate, urea, cholesterol, and free amino groups] and 2 milk enzyme activities (alkaline phosphatase and lactate dehydrogenase) were measured on d 24 of each experimental period. Dairy performance data showed marked species and diet effects on milk fat content. Irrespective of diet, cow milk was richer in alkaline phosphatase and glucose compared with goat milk (16 and 3 times more, respectively), whereas goat milk had greater urea and glucose-6-phosphate concentrations compared with cow milk (1.9 and 5.3 times more, respectively). In cows, COS decreased milk BHB and choline (-25 and -43%, respectively) compared with CTL, whereas no effects were observed in goats. The COS and MAP diets increased milk isocitrate compared with CTL in cows, but COS decreased isocitrate concentrations in goat milk. Milk choline was correlated with milk fat content in cows (Spearman r, rS = +0.73) and goats (rs = +0.58), and lactate dehydrogenase activity was correlated with milk somatic cell count (rs = +0.66) in cows but not in goats. We provide evidence of different milk metabolite responses according to species and diets. Metabolites and enzymes secreted in milk may be indicators of specificities of lipid metabolism among ruminant species and may contribute to a better understanding of mechanisms regulating milk fat secretion. Changes in the concentrations of some metabolites considered minor components of milk may be valuable diagnostic tools of mammary gland and animal metabolism as well as of milk processing characteristics.
Collapse
Affiliation(s)
- L Bernard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - H Fougère
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - T Larsen
- Department of Animal Science, Aarhus University, DK-8830 Tiele, Denmark
| | - J Pires
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| |
Collapse
|
21
|
Silva LSE, Fernandes Lima Cavalcanti JV, Rodrigues Magalhães AL, Santoro KR, Dias Gonçalves G, Vasconcelos Santana LP, Silva JKBD, Almeida OCD. Soybean oil modulates the fatty acid synthesis in the mammary gland, improving nutritional quality of the goat milk. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2019.106041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Veshkini A, Mohammadi-Sangcheshmeh A, Alamouti AA, Kouhkan F, Salehi A. Maternal supplementation with fish oil modulates inflammation-related MicroRNAs and genes in suckling lambs. Trop Anim Health Prod 2019; 52:1561-1572. [PMID: 31820306 DOI: 10.1007/s11250-019-02157-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
Dietary n-3 long-chain fatty acids (n-3 LCFA) have been shown to modify lipid metabolism and immune function. The objective of this study was to evaluate the effect of periparturient fish oil (FO) supplementation on the inflammation and metabolic health of ewes and their lambs at a molecular level. Prepartum ewes were fed control diet (CON, n = 12) or CON supplemented with 2% DM of calcium soap of FO (n = 12) from 28 days before until 21 days after parturition. The ewes were evaluated for plasma metabolites and milk composition. The experiment was followed by analyzing the relative transcript abundance of circulating microRNAs (miRNAs) in plasma and targeted miRNA/mRNA expression in peripheral blood mononuclear cells (PBMCs) in both ewes and lambs. FO treatment decreased prepartum feed intake (1812 ± 35 vs 1674 ± 33 g/day, P < 0.01), whereas the influence on plasma metabolites was negligible. Dietary FO supplementation decreased milk fat percentage (8.82 ± 0.49 vs 7.03 ± 0.45, P = 0.02) and reduced milk n-6/n-3 (P < 0.05). Also, it altered the expression of plasma-circulating miRNAs in both ewe and lamb (P < 0.05). Furthermore, maternal nutrition of FO downregulated the relative expression of miR-33a and miR-146b and transcript abundance of genes IL-1β (0.41-fold) and NF-κB (0.25-fold) in lambs' PBMC. In conclusion, results showed that FO supplementation starting antepartum affects milk composition and circulating miRNA in dams and the inflammatory markers in lambs delivered by the supplemented ewes. These may provide a strategy to maintain immune balance during gestation and develop the immune system in lambs.
Collapse
Affiliation(s)
- Arash Veshkini
- Department of Animal and Poultry Science, Aburaihan Campus, University of Tehran, P.O. Box 3391653755, Pakdasht, Tehran, Iran
| | - Abdollah Mohammadi-Sangcheshmeh
- Department of Animal and Poultry Science, Aburaihan Campus, University of Tehran, P.O. Box 3391653755, Pakdasht, Tehran, Iran
| | - Ali A Alamouti
- Department of Animal and Poultry Science, Aburaihan Campus, University of Tehran, P.O. Box 3391653755, Pakdasht, Tehran, Iran.
| | - Fatemeh Kouhkan
- Stem Cell Biology Department, Stem Cell Technology Research Center, Tehran, Iran
| | - Abdolreza Salehi
- Department of Animal and Poultry Science, Aburaihan Campus, University of Tehran, P.O. Box 3391653755, Pakdasht, Tehran, Iran
| |
Collapse
|
23
|
Nowacka-Woszuk J. Nutrigenomics in livestock-recent advances. J Appl Genet 2019; 61:93-103. [PMID: 31673964 PMCID: PMC6968980 DOI: 10.1007/s13353-019-00522-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/13/2023]
Abstract
The study of the effects of nutrients on genome functioning, in terms of gene transcription, protein levels, and epigenetic mechanisms, is referred to as nutrigenomics. Nutrigenomic studies in farm animals, as distinct from rodents, are limited by the high cost of keeping livestock, their long generational distance, and ethical aspects. Yet farm animals, and particularly pigs, can serve as valuable animal models for human gastrological diseases, since they possess similar size, physiology, and nutritional habits and can develop similar pathological states. In livestock, the effects of dietary modifications have mostly been studied with reference to effective breeding and their influence on production traits and animal health. The majority of such studies have looked at the impact of various sources and quantities of fat and protein, supplementation with microelements, and plant-derived additives. The period of life of the animal—whether prenatal, neonatal, or mature—is typically considered when a modified diet is used. This review presents a summary of recent nutrigenomic studies in livestock.
Collapse
Affiliation(s)
- Joanna Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| |
Collapse
|
24
|
Stergiadis S, Nørskov NP, Purup S, Givens I, Lee MRF. Comparative Nutrient Profiling of Retail Goat and Cow Milk. Nutrients 2019; 11:E2282. [PMID: 31554167 PMCID: PMC6835441 DOI: 10.3390/nu11102282] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 02/01/2023] Open
Abstract
Goat milk is globally consumed but nutritional profiling at retail level is scarce. This study compared the nutrient composition of retail cow and goat milk (basic solids, fatty acids, minerals, and phytoestrogens) throughout the year and quantified the potential implications on the consumers' nutrient intakes. When compared to cow milk, goat milk demonstrated nutritionally desirable traits, such as lower concentrations of C12:0, C14:0, C16:0 and Na: K ratio, and the higher concentrations of cis polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), isoflavones, B, Cu, Mg, Mn, P and I, although the latter may be less desirable in cases of high milk intakes. However, in contrast with nutritional targets, it had lower concentrations of omega-3 PUFA, vaccenic acid, lignans, Ca, S and Zn. The extent of these differences was strongly influenced by season and may demonstrate a combination of differences on intrinsic species metabolism, and farm breeding/husbandry practices.
Collapse
Affiliation(s)
- Sokratis Stergiadis
- Department of Animal Sciences, University of Reading, Agriculture Building, P.O. Box 237, Earley Gate, Reading RG6 6AR, UK.
| | - Natalja P Nørskov
- Department of Animal Science, Aarhus University, AU-Foulum, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| | - Stig Purup
- Department of Animal Science, Aarhus University, AU-Foulum, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| | - Ian Givens
- Institute for Food Nutrition and Health, University of Reading, Agriculture Building, P.O. Box 237, Earley Gate, Reading RG6 6AR, UK.
| | - Michael R F Lee
- Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK.
- Bristol Veterinary School, University of Bristol, Langford, Somerset BS40 5DU, UK.
| |
Collapse
|
25
|
Vargas-Bello-Pérez E, Bionaz M, Sciarresi-Arechabala P, Cancino-Padilla N, Morales MS, Romero J, Leskinen H, Garnsworthy PC, Loor JJ. Long-Term Effects of Dietary Olive Oil and Hydrogenated Vegetable Oil on Expression of Lipogenic Genes in Subcutaneous Adipose Tissue of Dairy Cows. Vet Sci 2019; 6:vetsci6030074. [PMID: 31540163 PMCID: PMC6789855 DOI: 10.3390/vetsci6030074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022] Open
Abstract
The objective of this study was to characterize the long-term transcriptomic effects of lipogenic genes in subcutaneous adipose tissue (SAT) of dairy cows supplemented with unsaturated (olive oil; OO) and saturated (hydrogenated vegetable oil; HVO) lipids. Cows were fed a control diet with no added lipid, or diets containing OO or HVO (n = 5 cows/group) for 63 days. SAT was obtained from the tail-head area at the onset of the study and after 21, 42, and 63 days of supplementation. Treatments had minor effects on expression of measured genes. Both fat supplements reduced expression of PPARG, HVO decreased transcription of the desaturase FADS2 and lipid droplet formation PLIN2, and OO increased transcription of FABP3. Both lipid treatments decreased expression of the transcription regulator SREBF1 and its chaperone (SCAP) during the first 21 days of treatment. Our data indicated that long-term feeding of OO and HVO have a relatively mild effect on expression of lipogenic genes in SAT of mid-lactating cows.
Collapse
Affiliation(s)
- Einar Vargas-Bello-Pérez
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago Casilla-306, Chile.
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegardsvej 3, C DK-1870 Frederiksberg, Denmark.
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Pietro Sciarresi-Arechabala
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile. Av. Santa Rosa 11735, La Pintana, Santiago 8820808, Chile.
| | - Nathaly Cancino-Padilla
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago Casilla-306, Chile.
| | - María Sol Morales
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile. Av. Santa Rosa 11735, La Pintana, Santiago 8820808, Chile.
| | - Jaime Romero
- Instituto de Nutrición y Tecnología de los Alimentos, Santiago 7810000, Chile.
| | - Heidi Leskinen
- Milk Production, Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen FI, Finland.
| | - Philip C Garnsworthy
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, Mammalian NutriPhysioGenomics, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|