1
|
Zhao X, Liu Y, Li Y, Zhang Y, Yang C, Yao D. MiR-206 Suppresses Triacylglycerol Accumulation via Fatty Acid Elongase 6 in Dairy Cow Mammary Epithelial Cells. Animals (Basel) 2024; 14:2590. [PMID: 39272375 PMCID: PMC11394172 DOI: 10.3390/ani14172590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Cow milk possesses high nutritional value due to its rich array of beneficial fatty acids. It is important to understand the mechanisms involved in lipid metabolism in dairy cows. These mechanisms are driven by a complex molecular regulatory network. In addition, there are many regulatory factors involved in the process of fatty acid metabolism, including transcription factors and non-coding RNAs, amongst others. MicroRNAs (miRNAs) can regulate the expression of target genes and modulate various biological processes, including lipid metabolism. Specifically, miR-206 has been reported to impair lipid accumulation in nonruminant hepatocytes. However, the effects and regulatory mechanisms of miR-206 on lipid metabolism in bovine mammary cells remain unclear. In the present study, we investigated the effects of miR-206 on lipid-related genes and TAG accumulation. The direct downstream gene of miR-206 was subsequently determined via a dual-luciferase assay. Finally, the fatty acid content of bovine mammary epithelial cells (BMECs) upon ELOVL6 inhibition was examined. The results revealed that miR-206 overexpression significantly decreased triacylglycerol (TAG) concentration and abundances of the following: acetyl-coenzyme A carboxylase alpha (ACACA); fatty acid synthase (FASN); sterol regulatory element binding transcription factor 1 (SREBF1); diacylglycerol acyltransferase 1 (DGAT1); 1-acylglycerol-3-phosphate O-acyltransferase 6 (AGPAT6); lipin 1 (LPIN1); and fatty acid elongase 6 (ELOVL6). Overexpression of miR-206 was also associated with an increase in patatin-like phospholipase domain-containing 2 (PNPLA2), while inhibition of miR-206 promoted milk fat metabolism in vitro. In addition, we found that ELOVL6 is a direct target gene of miR-206 through mutation of the binding site. Furthermore, ELOVL6 intervention significantly decreased the TAG levels and elongation indexes of C16:0 and C16:1n-7 in BMECs. Finally, ELOVL6 siRNA partially alleviated the increased TAG accumulation caused by miR-206 inhibition. In summary, we found that miR-206 inhibits milk fatty acid synthesis and lipid accumulation by targeting ELOVL6 in BMECs. The results presented in this paper may contribute to the development of strategies for enhancing the quality of cow milk and its beneficial fatty acids, from the perspective of miRNA-mRNA networks.
Collapse
Affiliation(s)
- Xin Zhao
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yu Liu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yupeng Li
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yuxin Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Chunlei Yang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Dawei Yao
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| |
Collapse
|
2
|
Timlin M, Brodkorb A, O'Callaghan TF, Harbourne N, Drouin G, Pacheco-Pappenheim S, Murphy JP, O'Donovan M, Hennessy D, Pierce KM, Fitzpatrick E, McCarthy K, Hogan SA. Pasture feeding improves the nutritional, textural, and techno-functional characteristics of butter. J Dairy Sci 2024; 107:5376-5392. [PMID: 38580153 DOI: 10.3168/jds.2023-24092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/28/2024] [Indexed: 04/07/2024]
Abstract
There is an increasing consumer desire for pasture-derived dairy products, as outdoor pasture-based feeding systems are perceived as a natural environment for animals. Despite this, the number of grazing animals globally has declined as a result of the higher milk yields achieved by indoor TMR feeding systems, in addition to the changing climatic conditions and lower grazing knowledge and infrastructure. This has led to the development of pasture-fed standards, stipulating the necessity of pasture and its minimum requirements as the primary feed source for products advertising such claims, with various requirements depending on the region for which it was produced. This work investigates the differences in the composition and techno-functional properties of butters produced from high, medium and no pasture allowance diets during early, mid, and late lactation. Butters were produced using milks collected from 3 feeding systems: outdoor pasture grazing (high pasture allowance); indoor TMR (no pasture allowance); and a partial mixed ration (medium pasture allowance) system, which involved outdoor pasture grazing during the day and indoor TMR feeding at night. Butters were manufactured during early, mid, and late lactation. Creams derived from TMR feeding systems exhibited the highest milk fat globule size. The fatty acid profiles of butters also differed significantly as a function of diet and could be readily discriminated by partial least squares analysis. The most important fatty acids in such an analysis, as indicated by their highest variable importance projection scores, were CLA C18:2 cis-9,trans-11 (rumenic acid), C16:1n-7 trans (trans-palmitoleic acid), C18:1 trans (elaidic acid), C18:3n-3 (α-linolenic acid), and C18:2n-6 (linoleic acid). Increasing pasture allowances resulted in reduced crystallization temperatures and hardness of butters and concurrently increasing the "yellow" color. Yellow color was strongly correlated with Raman peaks commonly associated with carotenoids. The milk fat globule size of cream decreased with advancing stage of lactation and churning time of cream was lowest in early lactation. Differences in the fatty acid and triglyceride contents of butter as a result of lactation and dietary effects demonstrated significant correlations with the hardness, rheological, melting, and crystallization profiles of the butters. This work highlighted the improved nutritional profile and functional properties of butter with increasing dietary pasture allowance, primarily as a result of increasing proportions of unsaturated fatty acids. Biomarkers of pasture feeding (response in milk proportionate to the pasture allowance) associated with the pasture-fed status of butters were also identified as a result of the significant changes in the fatty acid profile with increasing pasture allowance. This was achieved through the use of 3 authentic feeding systems with varying pasture allowances, commonly operated by farmers around the world and conducted across 3 stages of lactation.
Collapse
Affiliation(s)
- Mark Timlin
- Teagasc, Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland; School of Agriculture and Food Science, University College Dublin, Belfield D04 V1W8 Dublin 4, Ireland; Food for Health Ireland, University College Dublin, D04 V1W8 Dublin 4, Ireland
| | - André Brodkorb
- Teagasc, Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland; Food for Health Ireland, University College Dublin, D04 V1W8 Dublin 4, Ireland
| | - Tom F O'Callaghan
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland
| | - Niamh Harbourne
- School of Agriculture and Food Science, University College Dublin, Belfield D04 V1W8 Dublin 4, Ireland
| | - Gaetan Drouin
- Teagasc, Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Sara Pacheco-Pappenheim
- Teagasc, Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland; Dairy Processing Technology Centre, University of Limerick, Sreelane V94 T9PX Limerick, Ireland
| | - John P Murphy
- Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy P61 P302 Co. Cork, Ireland
| | - Michael O'Donovan
- Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy P61 P302 Co. Cork, Ireland
| | - Deirdre Hennessy
- Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy P61 P302 Co. Cork, Ireland; School of Biological, Earth and Environmental Sciences, University College Cork, T23 N73K Cork, Ireland
| | - Karina M Pierce
- School of Agriculture and Food Science, University College Dublin, Belfield D04 V1W8 Dublin 4, Ireland; Food for Health Ireland, University College Dublin, D04 V1W8 Dublin 4, Ireland
| | - Ellen Fitzpatrick
- Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy P61 P302 Co. Cork, Ireland; Teagasc, Environmental Research Centre, Johnstown Castle, Y35 Y521 Wexford, Ireland
| | - Kieran McCarthy
- Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy P61 P302 Co. Cork, Ireland
| | - Sean A Hogan
- Teagasc, Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland.
| |
Collapse
|
3
|
Linseed oil supplementation and DGAT1 K232A polymorphism affect the triacylglycerol composition and crystallization of milk fat. Food Chem 2023; 407:135112. [PMID: 36493479 DOI: 10.1016/j.foodchem.2022.135112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
We studied the effect of dietary linseed oil (LSO) supplementation and DGAT1 K232A (DGAT1) polymorphism on the triacylglycerol composition and crystallization of bovine milk fat. LSO supplementation increased unsaturated triacylglycerols, notably in the C52-C54 carbon range, while reducing the saturated C29-C49 triacylglycerols. These changes were associated with an increase in the low-melting fraction and the crystal lamellar thickness, as well as a reduction in the medium and high-melting fractions and the formation of the most abundant crystal type at 20 °C (β'-2 polymorph). Furthermore, DGAT1 KK was associated with higher levels of odd-chain saturated triacylglycerols than DGAT1 AA, and it was also associated with an increase in the high-melting fraction and the endset melting temperature. An interaction between diet and DGAT1 for the unsaturated C54 triacylglycerols accentuated the effects of LSO supplementation with DGAT1 AA. These findings show that genetic polymorphism and cows' diet can have considerable effects on milk fat properties.
Collapse
|
4
|
Jayawardana JMDR, Lopez-Villalobos N, McNaughton LR, Hickson RE. Genomic Regions Associated with Milk Composition and Fertility Traits in Spring-Calved Dairy Cows in New Zealand. Genes (Basel) 2023; 14:genes14040860. [PMID: 37107618 PMCID: PMC10137527 DOI: 10.3390/genes14040860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The objective of this study was to identify genomic regions and genes that are associated with the milk composition and fertility traits of spring-calved dairy cows in New Zealand. Phenotypic data from the 2014–2015 and 2021–2022 calving seasons in two Massey University dairy herds were used. We identified 73 SNPs that were significantly associated with 58 potential candidate genes for milk composition and fertility traits. Four SNPs on chromosome 14 were highly significant for both fat and protein percentages, and the associated genes were DGAT1, SLC52A2, CPSF1, and MROH1. For fertility traits, significant associations were detected for intervals from the start of mating to first service, the start of mating to conception, first service to conception, calving to first service, and 6-wk submission, 6-wk in-calf, conception to first service in the first 3 weeks of the breeding season, and not in calf and 6-wk calving rates. Gene Ontology revealed 10 candidate genes (KCNH5, HS6ST3, GLS, ENSBTAG00000051479, STAT1, STAT4, GPD2, SH3PXD2A, EVA1C, and ARMH3) that were significantly associated with fertility traits. The biological functions of these genes are related to reducing the metabolic stress of cows and increasing insulin secretion during the mating period, early embryonic development, foetal growth, and maternal lipid metabolism during the pregnancy period.
Collapse
Affiliation(s)
- J. M. D. R. Jayawardana
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | | | - Lorna R. McNaughton
- Livestock Improvement Corporation, Private Bag 3016, Hamilton 3240, New Zealand
| | | |
Collapse
|
5
|
Bovine milk fatty acid and triacylglycerol composition and structure differ between early and late lactation influencing milk fat solid fat content. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Pacheco-Pappenheim S, Yener S, Nichols K, Dijkstra J, Hettinga K, van Valenberg HJF. Feeding hydrogenated palm fatty acids and rumen-protected protein to lactating Holstein-Friesian dairy cows modifies milk fat triacylglycerol composition and structure, and solid fat content. J Dairy Sci 2022; 105:2828-2839. [PMID: 35181128 DOI: 10.3168/jds.2021-21083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/06/2022] [Indexed: 11/19/2022]
Abstract
The aim of this study was to analyze the effect of fat and protein supplementation to dairy cattle rations on milk fat triacylglycerol (TAG) composition, fatty acid (FA) positional distribution in the TAG structure, and milk solid fat content (SFC). Fifty-six lactating Holstein-Friesian cows were blocked into 14 groups of 4 cows and randomly assigned 1 of 4 dietary treatments fed for 28 d: (1) low protein, low fat, (2) high protein, low fat, (3) low protein, high fat, and (4) high protein, high fat. The high protein and high fat diets were obtained by isoenergetically supplementing the basal ration (low protein, low fat) with rumen-protected soybean meal and rumen-protected rapeseed meal, and hydrogenated palm FA (mainly C16:0 and C18:0), respectively. Fat supplementation modified milk TAG composition more extensively compared with protein supplementation. Fat supplementation resulted in decreased concentrations of the low molecular weight TAG carbon number (CN) 26 to CN34 and medium molecular weight TAG CN40, CN44, and CN46, and increased concentrations of CN38 and the high molecular weight TAG CN50 and CN52. Increased contents of C16:0, C18:0, and C18:1cis-9 in TAG in response to fat supplementation were related to increases in the relative concentrations of C16:0 and C18:0 at the sn-2 position and C18:0 and C18:1cis-9 at the sn-1(3) positions of the TAG structure. Increased concentrations of high molecular weight TAG species CN50 and CN52 in response to fat supplementation was associated with increased milk SFC at 20, 25, and 30°C. Our study shows that important alterations in milk TAG composition and structure occur when feeding hydrogenated palm FA to lactating dairy cattle, and that these alterations result in an increased SFC of milk fat. These changes in milk SFC and TAG composition and structure may improve absorption of both fat and minerals in milk-based products for infants and may affect processing of milk fat.
Collapse
Affiliation(s)
- Sara Pacheco-Pappenheim
- Dairy Science and Technology Group of Food Quality and Design (FQD), Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, the Netherlands
| | - Sine Yener
- Dairy Science and Technology Group of Food Quality and Design (FQD), Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, the Netherlands
| | - Kelly Nichols
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Jan Dijkstra
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Kasper Hettinga
- Dairy Science and Technology Group of Food Quality and Design (FQD), Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, the Netherlands.
| | - Hein J F van Valenberg
- Dairy Science and Technology Group of Food Quality and Design (FQD), Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
7
|
Yener S, Pacheco-Pappenheim S, Heck JML, van Valenberg HJF. Seasonal variation in the positional distribution of fatty acids in bovine milk fat. J Dairy Sci 2021; 104:12274-12285. [PMID: 34600707 DOI: 10.3168/jds.2021-20570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022]
Abstract
The aim of this study was to determine the seasonal variation in the positional distribution of fatty acids (FA) in bovine milk fat. Bovine milk samples were collected from May 2017 to April 2018 in the Netherlands, and the FA composition in the sn-2 position was determined by using sn-1(3)-selective transesterification of Candida antarctica lipase B. The majority of the FA showed significant variation at sn-2 and sn-1(3) positions between different seasons. The seasonal variation in sn-2 position was higher than the sn-1(3) positions. Parallel to the changes in the diet of the cows throughout a year, we observed an increase in blood-derived FA (i.e. C18:0, C18:1 cis-9) concentrations and a decrease in de novo-synthesized FA during summer. In winter, more saturated FA were esterified in sn-2 position of milk fat. Highest concentrations of palmitic acid, C16:0, was observed in sn-2 position in winter, whereas the amount of unsaturated FA at this position was highest in summer. These results showed that the FA compositions in different regiospecific positions changed due to season; however, the proportions of a specific FA within the 3 positions of the triacylglycerols in milk fat did not change upon seasonal variation.
Collapse
Affiliation(s)
- Sine Yener
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
| | - Sara Pacheco-Pappenheim
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands
| | - Jeroen M L Heck
- FrieslandCampina, PO Box 1551, 3800 BN Amersfoort, the Netherlands
| | - Hein J F van Valenberg
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
8
|
Khan MZ, Ma Y, Ma J, Xiao J, Liu Y, Liu S, Khan A, Khan IM, Cao Z. Association of DGAT1 With Cattle, Buffalo, Goat, and Sheep Milk and Meat Production Traits. Front Vet Sci 2021; 8:712470. [PMID: 34485439 PMCID: PMC8415568 DOI: 10.3389/fvets.2021.712470] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Milk fatty acids are essential for many dairy product productions, while intramuscular fat (IMF) is associated with the quality of meat. The triacylglycerols (TAGs) are the major components of IMF and milk fat. Therefore, understanding the polymorphisms and genes linked to fat synthesis is important for animal production. Identifying quantitative trait loci (QTLs) and genes associated with milk and meat production traits has been the objective of various mapping studies in the last decade. Consistently, the QTLs on chromosomes 14, 15, and 9 have been found to be associated with milk and meat production traits in cattle, goat, and buffalo and sheep, respectively. Diacylglycerol O-acyltransferase 1 (DGAT1) gene has been reported on chromosomes 14, 15, and 9 in cattle, goat, and buffalo and sheep, respectively. Being a key role in fat metabolism and TAG synthesis, the DGAT1 has obtained considerable attention especially in animal milk production. In addition to milk production, DGAT1 has also been a subject of interest in animal meat production. Several polymorphisms have been documented in DGAT1 in various animal species including cattle, buffalo, goat, and sheep for their association with milk production traits. In addition, the DGAT1 has also been studied for their role in meat production traits in cattle, sheep, and goat. However, very limited studies have been conducted in cattle for association of DGAT1 with meat production traits in cattle. Moreover, not a single study reported the association of DGAT1 with meat production traits in buffalo; thus, further studies are warranted to fulfill this huge gap. Keeping in view the important role of DGAT1 in animal production, the current review article was designed to highlight the major development and new insights on DGAT1 effect on milk and meat production traits in cattle, buffalo, sheep, and goat. Moreover, we have also highlighted the possible future contributions of DGAT1 for the studied species.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ibrar Muhammad Khan
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Feeding System Resizes the Effects of DGAT1 Polymorphism on Milk Traits and Fatty Acids Composition in Modicana Cows. Animals (Basel) 2021; 11:ani11061616. [PMID: 34072555 PMCID: PMC8227090 DOI: 10.3390/ani11061616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Genetic selection for single-locus polymorphisms could offer suitable opportunities to rapidly improve milk traits in local unselected cattle breeds characterized by low production levels. Since these hardy breeds are generally raised in traditional extensive and semi-intensive systems, which make wide use of grazing resources, the interactive effect between genotype and feeding system is worthy of investigation. In Modicana cattle breed, milk composition and fatty acid profile were influenced by both genetic polymorphisms at the DGAT1 K232A locus and feeding systems. The milk from homozygous AA cows was associated with a more favorable fatty acid composition due to a lower percentage of total saturated fatty acids, saturated to unsaturated ratio, atherogenic index, and a greater presence of oleic acid and total unsaturated fatty acids. Our finding confirmed the important role of pasture feeding on milk composition: the high nutritional and healthy value of milk obtained in extensive systems by pasture-fed cows. The interaction between the two experimental factors also appears to play a role: in our experimental condition, it seems that high pasture feeding can resize the effect of the DGAT1 genotype on milk traits and fatty acid composition in Modicana cows. Abstract The interaction between genetic polymorphism and feeding system on milk traits and fatty acid composition was investigated in Modicana cows. Two DGAT1 K232A genotypes (AK and AA) and two feeding regimes, extensive system (EX) with 8 h of grazing without concentrate (EX) and semi-intensive systems (SI) with 2 h of grazing with concentrate, were investigated. DGAT1 genotype did not influence milk yield and composition. The feeding system affected milk composition: protein was significantly higher in SI and lactose in the EX system. A significant genotype × feeding system interaction was observed: the protein and casein levels of AK cows were higher in the SI compared to the EX system. Milk fatty acids profile, total saturated to total unsaturated fatty acids, n-6 to n-3 ratios, and atherogenic index were affected by the feeding system, improving the healthy properties of milk from animals reared in the extensive system. DGAT1 genotype influenced the fatty acid composition: milk from AA cows had a more favorable fatty acid composition due to lower total saturated fatty acids, saturated to unsaturated ratio, atherogenic index, and higher levels of oleic acid and total unsaturated fatty acids. Furthermore, an interaction genotype x feeding system was observed: the AK milk was richer in short-chain FAs (C4:0–C8:0) and C10:0 only in the EX but not in the SI system. Our data suggest that a high amount of green forage in the diet of Modicana cows can resize the effect of the DGAT1 genotype on milk traits and fatty acids composition.
Collapse
|
10
|
Pacheco-Pappenheim S, Yener S, Heck JML, Dijkstra J, van Valenberg HJF. Seasonal variation in fatty acid and triacylglycerol composition of bovine milk fat. J Dairy Sci 2021; 104:8479-8492. [PMID: 34024603 DOI: 10.3168/jds.2020-19856] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
The aim of this study was to assess the effects of seasonal variation on the changes of the fatty acid (FA) and triacylglycerol (TAG) composition of bovine milk fat (MF) in a nonseasonal milking system. Weekly milk samples were collected from 14 dairy factories and pooled per week as representative samples of the average Dutch bovine milk. The sample collection started in May 2017 and finished in April 2018, resulting in a total of 52 samples, corresponding to each week of the year. The samples were analyzed for MF content (%) and FA and TAG composition using gas chromatography with flame-ionization detection. The increased intake of C18:3 cis-9,12,15 through grass feeding in spring and summer was associated with major changes in MF FA composition, including reduced proportions of de novo synthesized FA and presence of several rumen biohydrogenation products and conjugated linoleic acid isomers in MF. These changes in seasonal FA composition had an effect on TAG seasonal variation. The TAG seasonal variation showed that all TAG groups were significantly different between months. The low molecular weight and the medium molecular weight TAG groups increased in winter and decreased in summer, whereas the high molecular weight TAG groups increased in summer and decreased in winter. Based on pooled monthly samples, MALDI-TOF-mass spectrometry allowed the analysis of even- and odd-chain TAG species in MF based on their total carbon number and number of double bonds. These analyses indicated saturated TAG species to be greatest in winter, whereas monounsaturated, polyunsaturated, and odd-chain TAG species were greatest in summer. Our study showed that TAG seasonal variation in a nonseasonal milking system is influenced by the variation in FA composition throughout the seasons.
Collapse
Affiliation(s)
- Sara Pacheco-Pappenheim
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, the Netherlands.
| | - Sine Yener
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, the Netherlands
| | - Jeroen M L Heck
- FrieslandCampina, PO Box 1551, 3800 BN, Amersfoort, the Netherlands
| | - Jan Dijkstra
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Hein J F van Valenberg
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
11
|
The effect of triacylglycerol and fatty acid composition on the rheological properties of butter. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Golan Y, Assaraf YG. Genetic and Physiological Factors Affecting Human Milk Production and Composition. Nutrients 2020; 12:E1500. [PMID: 32455695 PMCID: PMC7284811 DOI: 10.3390/nu12051500] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Human milk is considered the optimal nutrition for infants as it provides additional attributes other than nutritional support for the infant and contributes to the mother's health as well. Although breastfeeding is the most natural modality to feed infants, nowadays, many mothers complain about breastfeeding difficulties. In addition to environmental factors that may influence lactation outcomes including maternal nutrition status, partner's support, stress, and latching ability of the infant, intrinsic factors such as maternal genetics may also affect the quantitative production and qualitative content of human milk. These genetic factors, which may largely affect the infant's growth and development, as well as the mother's breastfeeding experience, are the subject of the present review. We specifically describe genetic variations that were shown to affect quantitative human milk supply and/or its qualitative content. We further discuss possible implications and methods for diagnosis as well as treatment modalities. Although cases of nutrient-deficient human milk are considered rare, in some ethnic groups, genetic variations that affect human milk content are more abundant, and they should receive greater attention for diagnosis and treatment when necessary. From a future perspective, early genetic diagnosis should be directed to target and treat breastfeeding difficulties in real time.
Collapse
Affiliation(s)
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel;
| |
Collapse
|
13
|
Zhou F, Zhang Y, Teng X, Miao Y. Identification, molecular characteristics, and tissue differential expression of DGAT2 full-CDS cDNA sequence in Binglangjiang buffalo ( Bubalus bubalis). Arch Anim Breed 2020; 63:81-90. [PMID: 32232120 PMCID: PMC7096739 DOI: 10.5194/aab-63-81-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/06/2020] [Indexed: 11/21/2022] Open
Abstract
It has been found that diacylglycerol acyltransferase-2 (DGAT2)
plays a crucial role in the synthesis of triglycerides (TGs) in some mammals,
but its role in buffalo lactation is unclear. In the present study, the DGAT2
full-CDS cDNA sequence of Binglangjiang buffalo was isolated, and the
physicochemical characteristics and structure of its encoding protein were
characterized. Furthermore, the differential expressions of this gene in 10
tissues of lactating and non-lactating buffalo were analyzed by real-time
quantitative PCR (RT-qPCR). The results showed that the coding region (CDS)
of this gene was 1086 bp in length, encoding a peptide composed of 361 amino
acid residues. The deduced amino acid sequence shared more than 98.6 %
identity with that of cattle, zebu, yak, and bison in the Bovidae family. Buffalo
DGAT2 protein is a slightly hydrophobic protein with a transmembrane region,
which functions in membrane of endoplasmic reticulum. Besides, this protein
belongs to the LPLAT_MGAT-like family and contains a conserved
domain of DAGAT that has a function in the synthesis of TGs. The
multi-tissue differential expression analysis demonstrated that
DGAT2 was expressed in the heart, liver, mammary gland, and muscle in both non-lactating and lactating buffalo. And its expression level in the heart,
liver, and mammary gland during lactation was significantly higher than that during non-lactation.
The results indicate that buffalo DGAT2 may be involved in
milk fat synthesis. This study can establish a foundation for further
elucidating mechanisms of the buffalo DGAT2 gene in milk fat synthesis.
Collapse
Affiliation(s)
- Fangting Zhou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yongyun Zhang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.,Teaching Demonstration Center of the Basic Experiments of Agricultural Majors, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xiaohong Teng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yongwang Miao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| |
Collapse
|