1
|
Edres HA, Elmassry IH, Lebda MA, Othman SI, El-Karim DRSG, Rudayni HA, Ebied SKM, Allam AA, Hashem AE. Berberine and Cyperus rotundus extract nanoformulations protect the rats against Staphylococcus-induced mastitis via antioxidant and anti-inflammatory activities: role of MAPK signaling. Cell Biochem Biophys 2024:10.1007/s12013-024-01628-8. [PMID: 39707026 DOI: 10.1007/s12013-024-01628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/23/2024]
Abstract
Berberine (BER) and Cyperus rotundus rhizomes extract (CRE) are phytochemicals characterized by broad-spectrum pharmacological activity that could tackle the side effects of conventional mastitis therapies, however, they undergo a modest bioavailability. In the current study, nanoformulations of BER and CRE chitosan hydrogel (BER/CH-NPs, CRE/CH-NPs) were investigated for their antibacterial, antioxidant, anti-inflammatory and anti-apoptotic effects against S. aureus-induced mastitis in a rat model. The experiment was conducted on 80 early lactating female albino rats allocated into 6 groups; control, mastitis, BER/CH-NPs (1 and 0.5 mg), CRE/CH-NPs (0.5 and 0.25 mg), BER/CH-NPs + CRE/CH-NPs (0.5 + 0.25 and 0.25 + 0.125 mg). The nanoparticles were given by oral gavage once every other day from day 2 to day 12 after parturition. On the 13th day, intra-mammary inoculation with 100 µl of S. aureus suspension containing 2.1 × 108 CFU/ml in all groups except the control group. The results expressed the effect of BER/CH-NPs and CRE/CH-NPs on mammary gland tissue including significantly diminished viable bacterial load as well as attenuated the levels of MPO, MDA, caspase-3 with elevating Nrf2 level, and modulating glutathione redox. Also, the nanoformulations resulted in attenuation of the mRNA expression of TLR2, NOD2, Keap-1 and MAPK signaling pathway additional to the immune reactivity of NF-κB P65 and p-ERK as well as the preservation of the regular alveolar architecture. The supplementation of the berberine and Cyperus rotundus extract nanoformulations could be a prospective protective approach against Staphylococcal mastitis via their antibacterial, antioxidant, antiapoptotic, anti-inflammatory and modulation of MAPK signaling pathway.
Collapse
Affiliation(s)
- Hanan A Edres
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Ingi H Elmassry
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt.
| | - Sarah I Othman
- Department of Biology, college of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Dina R S Gad El-Karim
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia
| | - Sawsan Kh M Ebied
- Bacteriology Unit, Animal Health Research Institute, Alexandria Province, Alexandria, 21944, Egypt
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, 65211, Egypt
| | - Aml E Hashem
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| |
Collapse
|
2
|
Xia X, Ren P, Bai Y, Li J, Zhang H, Wang L, Hu J, Li X, Ding K. Modulatory Effects of Regulated Cell Death: An Innovative Preventive Approach for the Control of Mastitis. Cells 2024; 13:1699. [PMID: 39451217 PMCID: PMC11506078 DOI: 10.3390/cells13201699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Mastitis is a common disease worldwide that affects the development of the dairy industry due to its high incidence and complex etiology. Precise regulation of cell death and survival plays a critical role in maintaining internal homeostasis, organ development, and immune function in organisms, and regulatory abnormalities are a common mechanism of various pathological changes. Recent research has shown that regulated cell death (RCD) plays a crucial role in mastitis. The development of drugs to treat cell death and survival abnormalities that can be widely used in mastitis treatment has important clinical significance. This paper will review the molecular mechanisms of apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis and their regulatory roles in mastitis to provide a new perspective for the targeted treatment of mastitis.
Collapse
Affiliation(s)
- Xiaojing Xia
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Pengfei Ren
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Yilin Bai
- Laboratory of Indigenous Cattle Germplasm Innovation, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jingjing Li
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Huihui Zhang
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Lei Wang
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Jianhe Hu
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Xinwei Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ke Ding
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| |
Collapse
|
3
|
Nelson VK, Nuli MV, Ausali S, Gupta S, Sanga V, Mishra R, Jaini PK, Madhuri Kallam SD, Sudhan HH, Mayasa V, Abomughaid MM, Almutary AG, Pullaiah CP, Mitta R, Jha NK. Dietary anti-inflammatory and anti-bacterial medicinal plants and its compounds in bovine mastitis associated impact on human life. Microb Pathog 2024; 192:106687. [PMID: 38750773 DOI: 10.1016/j.micpath.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Center for global health research, saveetha medical college, saveetha institute of medical and technical sciences, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saijyothi Ausali
- College of Pharmacy, MNR higher education and research academy campus, MNR Nagar, Sangareddy, 502294, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vaishnavi Sanga
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Vadodara, 391760, Gujrat, India
| | - Pavan Kumar Jaini
- Department of Pharmaceutics, Raffles University, Neemrana, Rajasthan, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Vadlamudi, Andhra Pradesh, 522213, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box, 59911, United Arab Emirates
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Chennai, Tamil Nadu, 60016, India
| | - Raghavendra Mitta
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering & Technology (SSET), Sharda University, Greater Noida, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| |
Collapse
|
4
|
Fu S, Yang B, Gao Y, Qiu Y, Sun N, Li Z, Feng S, Xu Y, Zhang J, Luo Z, Han X, Miao J. A critical role for host-derived cystathionine-β-synthase in Staphylococcus aureus-induced udder infection. Free Radic Biol Med 2024; 210:13-24. [PMID: 37951283 DOI: 10.1016/j.freeradbiomed.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
Cystathionine-β-synthase (CBS) catalyzes the first step of the transsulfuration pathway. The role of host-derived CBS in Staphylococcus aureus (S. aureus)-induced udder infection remains elusive. Herein, we report that S. aureus infection enhances the expression of CBS in mammary epithelial cells in vitro and in vivo. A negative correlation is present between the expression of CBS and inflammation after employing a pharmacological inhibitor/agonist of CBS. In addition, CBS achieves a fine balance between eliciting sufficient protective innate immunity and preventing excessive damage to cells and tissues preserving the integrity of the blood-milk barrier (BMB). CBS/H2S reduces bacterial load by promoting the generation of antibacterial substances (ROS, RNS) and inhibiting apoptosis, as opposed to relying solely on intense inflammatory reactions. Conversely, H2S donor alleviate inflammation via S-sulfhydrating HuR. Finally, CBS/H2S promotes the expression of Abcb1b, which in turn strengthens the integrity of the BMB. The study described herein demonstrates the importance of CBS in regulating the mammary immune response to S. aureus. Increased CBS in udder tissue modulates excessive inflammation, which suggests a novel target for drug development in the battle against S. aureus and other infections.
Collapse
Affiliation(s)
- Shaodong Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yabin Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yawei Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Naiyan Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiyuan Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinqiu Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhenhua Luo
- School of Water, Energy & Environment, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, United Kingdom
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Miao Y, Ding T, Liu Y, Zhou X, Du J. The Yeast and Hypha Phases of Candida krusei Induce the Apoptosis of Bovine Mammary Epithelial Cells via Distinct Signaling Pathways. Animals (Basel) 2023; 13:3222. [PMID: 37893947 PMCID: PMC10603689 DOI: 10.3390/ani13203222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Infection with Candida spp. is a significant cause of bovine mastitis globally. We previously found that C. krusei was the main pathogen causing mycotic mastitis in dairy cows in Yinchuan, Ningxia, China. However, whether the infection of this pathogen could induce apoptosis in BMECs remained unclear. In this report, we explored the apoptosis and underlying mechanism of BMECs induced by C. krusei yeast and hypha phases using a pathogen/host cell co-culture model. Our results revealed that both the yeast and hypha phases of C. krusei could induce BMEC apoptosis; however, the yeast phase induced more cell apoptosis than the hypha phase, as assessed via electronic microscopy and flow cytometry assays. This finding was further corroborated via the measurement of the mitochondrial membrane potential (MMP) and the TUNEL test. Infection by both the yeast and hypha phases of C. krusei greatly induced the expression of proteins associated with cell death pathways and important components of toll-like receptor (TLR) signaling, including TLR2 and TLR4 receptors, as determined via a Western blotting assay. BMECs mainly underwent apoptosis after infection by the C. krusei yeast phase through a mitochondrial pathway. Meanwhile, BMEC apoptosis induced by the C. krusei hypha phase was regulated by a death ligand/receptor pathway. In addition, C. krusei-induced BMEC apoptosis was regulated by both the TLR2/ERK and JNK/ERK signaling pathways. These data suggest that the yeast phase and hypha phase of C. krusei induce BMEC apoptosis through distinct cell signaling pathways. This study represents a unique perspective on the molecular processes underlying BMEC apoptosis in response to C. krusei infection.
Collapse
Affiliation(s)
- Yuhang Miao
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Tao Ding
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Yang Liu
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Xuezhang Zhou
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Jun Du
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
6
|
Zou X, Cai S, Wang T, Zheng S, Cui X, Hao J, Chen X, Liu Y, Zhang Z, Li Y. Natural antibacterial agent-based nanoparticles for effective treatment of intracellular MRSA infection. Acta Biomater 2023; 169:410-421. [PMID: 37557944 DOI: 10.1016/j.actbio.2023.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Intracellular MRSA is extremely difficult to eradicate by traditional antibiotics, leading to infection dissemination and drug resistance. A general lack of facile and long-term strategies to effectively eliminate intracellular MRSA. In this study, glabridin (GLA)-loaded pH-responsive nanoparticles (NPs) were constructed using cinnamaldehyde (CA)-dextran conjugates as carriers. These NPs targeted infected macrophages/MRSA via dextran mediation and effectively accumulated at the MRSA infection site. The NPs were then destabilized in response to the low pH of the lysosomes, which triggered the release of CA and GLA. The released CA downregulated the expression of cytotoxic pore-forming toxins, thereby decreasing the damage of macrophage and risk of the intracellular bacterial dissemination. Meanwhile, GLA could rapidly kill intracellularly entrapped MRSA with a low possibility of developing resistance. Using a specific combination of the natural antibacterial agents CA and GLA, NPs effectively eradicated intracellular MRSA with low toxicity to normal tissues in a MRSA-induced peritonitis model. This strategy presents a potential alternative for enhancing intracellular MRSA therapy, particularly for repeated and long-term clinical applications. STATEMENT OF SIGNIFICANCE: Intracellular MRSA infections are a growing threat to public health, and there is a general lack of a facile strategy for efficiently eliminating intracellular MRSA while reducing the ever-increasing drug resistance. In this study, pH-responsive and macrophage/MRSA-targeting nanoparticles were prepared by conjugating the phytochemical cinnamaldehyde to dextran to encapsulate the natural antibacterial agent glabridin. Using a combination of traditional Chinese medicine, the NPs significantly increased drug accumulation in MRSA and showed superior intracellular and extracellular bactericidal activity. Importantly, the NPs can inhibit potential intracellular bacteria dissemination and reduce the development of drug resistance, thus allowing for repeated treatment. Natural antibacterial agent-based drug delivery systems are an attractive alternative for facilitating the clinical treatment of intracellular MRSA infections.
Collapse
Affiliation(s)
- Xinshu Zou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, PR China
| | - Shuang Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, PR China
| | - Tingting Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, PR China
| | - Sidi Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, PR China
| | - Xilong Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, PR China
| | - Jingyou Hao
- Harbin Lvdasheng Animal Medicine Manufacture Co., Ltd., Harbin 150000, PR China
| | - Xueying Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, PR China
| | - Yanyan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, PR China
| | - Zhiyun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, PR China.
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, PR China.
| |
Collapse
|
7
|
Yang J, Hai Z, Hou L, Liu Y, Zhang D, Zhou X. Baicalin Attenuates Panton-Valentine Leukocidin (PVL)-Induced Cytoskeleton Rearrangement via Regulating the RhoA/ROCK/LIMK and PI3K/AKT/GSK-3β Pathways in Bovine Mammary Epithelial Cells. Int J Mol Sci 2023; 24:14520. [PMID: 37833969 PMCID: PMC10572466 DOI: 10.3390/ijms241914520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Pore-forming toxins (PFTs) exert physiological effects by rearrangement of the host cell cytoskeleton. Staphylococcus aureus-secreted PFTs play an important role in bovine mastitis. In the study, we examined the effects of recombinant Panton-Valentine leukocidin (rPVL) on cytoskeleton rearrangement, and identified the signaling pathways involved in regulating the process in bovine mammary epithelial cells (BMECs) in vitro. Meanwhile, the underlying regulatory mechanism of baicalin for this process was investigated. The results showed that S. aureus induced cytoskeleton rearrangement in BMECs mainly through PVL. S. aureus and rPVL caused alterations in the cell morphology and layer integrity due to microfilament and microtubule rearrangement and focal contact inability. rPVL strongly induced the phosphorylation of cofilin at Ser3 mediating by the activation of the RhoA/ROCK/LIMK pathway, and resulted in the activation of loss of actin stress fibers, or the hyperphosphorylation of Tau at Ser396 inducing by the inhibition of the PI3K/AKT/GSK-3β pathways, and decreased the microtubule assembly. Baicalin significantly attenuated rPVL-stimulated cytoskeleton rearrangement in BMECs. Baicalin inhibited cofilin phosphorylation or Tau hyperphosphorylation via regulating the activation of RhoA/ROCK/LIMK and PI3K/AKT/GSK-3β signaling pathways. These findings provide new insights into the pathogenesis and potential treatment in S. aureus causing bovine mastitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuezhang Zhou
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China; (J.Y.); (Z.H.)
| |
Collapse
|
8
|
Zhang Z, Yang Y, Yan L, Wan X, Sun K, Gou H, Ding J, Peng J, Liu G, Wang C. Effect of matrine in MAC-T cells and their transcriptome analysis: A basic study. PLoS One 2023; 18:e0280905. [PMID: 36706149 PMCID: PMC9882957 DOI: 10.1371/journal.pone.0280905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Matrine, an alkaloid derived from herbal medicine, has a wide range of biological activities, including antibacterial. Matrine was toxic to multiple cells at high concentrations. Bovine mammary epithelial cells (MAC-T) could be used as model cells for cow breast. Matrine was a feasible option to replace antibiotics in the prevention or treatment of mastitis against the background of prohibiting antibiotics, but the safe concentration of matrine on MAC-T cells and the mechanism of action for matrine at different concentrations were still unclear. In this study, different concentrations of matrine (0.5, 1, 1.5, 2, 2.5 and 3 mg/mL) were used to treat MAC-T cells for various time periods (4, 8, 12, 16 and 24 h) and measure their lactic dehydrogenase (LDH). And then the optimal doses (2 mg/mL) were chosen to detect the apoptosis at various time periods by flow cytometry and transcriptome analysis was performed between the control and 2 mg/mL matrine-treated MAC-T cells for 8 hours. The results showed that matrine was not cytotoxic at 0.5 mg/mL, but it was cytotoxic at 1~3 mg/mL. In addition, matrine induced apoptosis in MAC-T cells at 2 mg/mL and the proportion of apoptosis cells increases with time by flow cytometry. RNA-seq analysis identified 1645 DEGs, 676 of which were expressed up-regulated and 969 were expressed down-regulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated the following pathways were linked to matrine-induced toxicity and apoptosis, including cytokine-cytokine receptor interaction pathway, viral protein interaction with cytokine and cytokine receptor, P53 and PPAR pathway. We found 7 DEGs associated with matrine toxicity and apoptosis. This study would provide a basis for the safety of matrine in the prevention or treatment of mastitis.
Collapse
Affiliation(s)
- Zhao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yuze Yang
- Beijing Animal Husbandry Station, Beijing, China
| | - Lijiao Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xuerui Wan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Kangyongjie Sun
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Huitian Gou
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jucai Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jie Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Guo Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Chuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
9
|
Ming X, Yin M, Liyan W. Antibacterial and Anti-Inflammatory Potential of Chinese Medicinal Herbs: Lonicerae flos, Lonicerae japonicae flos, Scutellaria baicalensis Georgi, and Forsythia suspensa. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221136673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chinese herbal medicine (CHM) represents a potent, safe, and efficacious reservoir of treatment options against an array of microbial infections and inflammatory diseases. It has a long history of positive clinical outcomes with minimal or no side effects while enhancing and bolstering the host's protection against infections. With its unique ability to prevent, treat, and manage a wide range of diseased conditions, CHM has been successfully practiced in China for thousands of years. In the modern medical era, where harsh therapeutic drugs and antimicrobial resistance (AMR) present a significant challenge, CHM warrants further exploration. The present review highlights and focuses on 4 major CHM-based herbs, that is, ( Lonicerae flos [ LF] , Lonicerae japonicae flos [ LJF] , Scutellaria baicalensis Georgi [ SBG] , and Forsythia suspensa [ FS]) in terms of their antibacterial and anti-inflammatory efficacies. A detailed literature survey was done by the team using a systematic electronic search from PubMed, Science Direct, Google Scholar, Research Gate, books, etc. This was followed by data collecting, pertinent data extraction, in-depth analysis, and composing the final review. Each herb has been discussed in detail describing its mechanism adopted and the bioactive components involved in alleviating bacterial infections and inflammatory damage. Further, proof of efficacy by detailing the major past studies and major findings has been discussed for each of the 4 herbs. This review will give the scientific community the opportunity to update their knowledge on the subject, which is crucial for heralding the process of bringing CHM-based medicines closer to clinical development given the area of alternative medicine's rapid advancements.
Collapse
Affiliation(s)
- Xu Ming
- Pharmaceutical Department, The First Hospital of Tsinghua University, Beijing, China
| | - Ma Yin
- Pharmaceutical Department, Wang Jing Hospital of CACMS, Beijing, China
| | - Wan Liyan
- Pharmaceutical Department, The First Hospital of Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Bao M, Ma Y, Liang M, Sun X, Ju X, Yong Y, Liu X. Research progress on pharmacological effects and new dosage forms of baicalin. Vet Med Sci 2022; 8:2773-2784. [DOI: 10.1002/vms3.960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Minglong Bao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Yunfei Ma
- College of Veterinary Medicine, China Agricultural University Beijing P. R. China
| | - Mei Liang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xinyi Sun
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| |
Collapse
|
11
|
Li L, Niu H, Zhan J, Tu Y, Jiang L, Zhao Y. Matrine attenuates bovine mammary epithelial cells inflammatory responses induced by Streptococcus agalactiae through inhibiting NF-κB and MAPK signaling pathways. Int Immunopharmacol 2022; 112:109206. [PMID: 36058035 DOI: 10.1016/j.intimp.2022.109206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022]
Abstract
Streptococcus agalactiae is one of the main pathogens associated with bovine mastitis. The invasion of S. agalactiae in bovine mammary epithelial cells (BMECs) has been implicated as a key event in the pathogenesis of mastitis. Matrine is known for its various pharmacological activities, such as immune response regulation and anti-inflammation. The primary aim of the research was to investigate the preventive effect of matrine on S. agalactiae-induced inflammation in BMECs along with underlying molecular mechanisms. Our data showed matrine at the concentrations of 50-100 μg/mL promoted BMECs proliferation without infection, and decreased cytotoxicity induced by S. agalactiae. Subsequently, BMECs were pre-treated with matrine (50, 75, or 100 μg/mL) for 24 h, followed by the infection with S. agalactiae for an additional 6 h. Pretreatment with matrine followed by S. agalactiae treatment decreased cell apoptosis of BMECs. Also, pretreatment of matrine to BMECs prevented the invasion of S. agalactiae. The mRNA abundances of IL-1β, IL-6, IL-8, and TNF-α were down-regulated in S. agalactiae-infected cells pretreated with matrine. In addition, the greater ratios of protein NF-κB p-p65/p65, p-IκBα/IκBα, p-38/38, and p-ERK/ERK induced by S. agalactiae were attenuated due to matrine treatment. Furthermore, pretreatment of BMECs with matrine impeded the degradation of TAK1 induced by S. agalactiae infection. These results suggest matrine could be a potential modulator in immune response of the mammary gland. In conclusion, matrine prevents cellular damage due to S. agalactiae infection by the modulation of NF-κB and MAPK signaling pathways and pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Hui Niu
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Jingwei Zhan
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yan Tu
- Beijing Key Laboratory of Dairy Cow Nutrition, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; Beijing Beinong Enterprise Management Co., Ltd., Beijing 102206, China.
| |
Collapse
|
12
|
Fan J, Jia F, Liu Y, Zhou X. Astragalus polysaccharides and astragaloside IV alleviate inflammation in bovine mammary epithelial cells by regulating Wnt/β-catenin signaling pathway. PLoS One 2022; 17:e0271598. [PMID: 35877777 PMCID: PMC9312414 DOI: 10.1371/journal.pone.0271598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/03/2022] [Indexed: 11/18/2022] Open
Abstract
The Wnt/β-catenin signaling regulates cell renewal and repair and is closely associated with inflammation. Astragalus polysaccharides (APS) and astragaloside IV (AS-IV), which are the main active substances extracted from Radix Astragali, protect cells by regulating Wnt signaling in cells, exerting antiinflammatory, antioxidant, and antistress effects. However, the mechanisms by which APS and AS-IV interact with Wnt signaling to achieve their therapeutic effects in bovine mammary epithelial cells (BMECs) are not understood. In this study, we used lipopolysaccharide (LPS)-stimulated BMECs as an in vitro model of inflammation to investigate the effects of APS and AS-IV on Wnt signaling in inflamed BMECs. Drug concentrations were screened using the CCK-8 method, the effect on protein expression was analyzed using immunoblotting, the effect on inflammatory factors using enzyme-linked immunosorbent assay, and the effect on oxidative factors using enzyme labeling and flow cytometry. LPS activated the expression of inflammatory and oxidative factors in cells and inhibited Wnt/β-catenin signaling. APS and AS-IV antagonized the inhibitory effect of LPS, protecting BMECs. They inhibited the expression of the IL-6, IL-8, and TNF-α inflammatory factors, and that of the MDA oxidative factor, and activated Wnt signaling in LPS-stimulated BMECs. Silencing of β-catenin abolished the protective effect of APS and AS-IV against LPS-stimulated BMECs. Thus, APS and AS-IV mediate protective effects in inflammatory BMECs model through activation of the Wnt signaling pathway. Wnt signaling pathway is one of the targets of the inhibitory effects of APS and AS-IV on inflammation.
Collapse
Affiliation(s)
- Jiaqi Fan
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, Ningxia, China
| | - Fang Jia
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, Ningxia, China
| | - Yang Liu
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, Ningxia, China
| | - Xuezhang Zhou
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, Ningxia, China
- * E-mail:
| |
Collapse
|
13
|
Protective and therapeutic effects of Scutellaria baicalensis and its main active ingredients baicalin and baicalein against natural toxicities and physical hazards: a review of mechanisms. Daru 2022; 30:351-366. [PMID: 35870110 PMCID: PMC9715893 DOI: 10.1007/s40199-022-00443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/10/2022] [Indexed: 10/16/2022] Open
Abstract
OBJECTIVES Scutellaria baicalensis (SB) has been traditionally used to combat a variety of conditions ranging from ischemic heart disease to cancer. The protective effects of SB are due to the action of two main flavonoids baicalin (BA) and baicalein (BE). This paper aimed to provide a narrative review of the protective and antidotal effects of SB and its main constituents against natural toxicities and physical hazards. EVIDENCE ACQUISITION Scientific databases Medline, Scopus, and Web of Science were thoroughly searched, based on different keywords for in vivo, in vitro and clinical studies which reported protective or therapeutic effects of SB or its constituents in natural and physical toxicities. RESULTS Numerous studies have reported that treatment with BE, BA, or total SB extract prevents or counteracts the detrimental toxic effects of various natural compounds and physical hazards. The toxic agents include mycotoxins, lipopolysaccharide, multiple plants and animal-derived substances as well as physical factors which negatively affected vital organs such as CNS, liver, kidneys, lung and heart. Increasing the expression of radical scavenging enzymes and glutathione content as well as inhibition of pro-inflammatory cytokines and pro-apoptotic mediators were important mechanisms of action. CONCLUSION Different studies on the Chinese skullcap have exhibited that its total root extract, BA or BE can act as potential antidotes or protective agents against the damage induced by natural toxins and physical factors by alleviating oxidative stress and inflammation. However, the scarcity of high-quality clinical evidence means that further clinical studies are required to reach a more definitive conclusion.
Collapse
|
14
|
Zhang X, Jia F, Ma W, Li X, Zhou X. DAD3 targets ACE2 to inhibit the MAPK and NF-κB signalling pathways and protect against LPS-induced inflammation in bovine mammary epithelial cells. Vet Res 2022; 53:104. [PMID: 36482404 PMCID: PMC9733329 DOI: 10.1186/s13567-022-01122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 10/21/2022] [Indexed: 12/13/2022] Open
Abstract
The protective arm of the renin-angiotensin system (RAS), the ACE 2/Ang-(1-7)/MasR axis, has become a new anti-inflammatory target. As a specific activator of ACE2, diminazene aceturate (DA) can promote anti-inflammatory effects by regulating the ACE2/Ang-(1-7)/MasR axis. However, due to the reported toxicity of DA, its application has been limited. In the current study, we synthesized a low toxicity DA derivative 3 (DAD3) and sought to determine whether DAD3 can also activate ACE2 in bovine mammary epithelial cells (BMEC) and regulate the RAS system to inhibit inflammation. We found that both DA and DAD3 can activate and promote ACE2 expression in BMEC. iRNA-mediated knockdown of ACE2 demonstrated that DAD3 activates the ACE2/Ang-(1-7)/MasR axis and plays an anti-inflammatory role in BMEC. Furthermore, the inhibitory effects of DA and DAD3 on the protein phosphorylation of MAPK and NF-κB pathways were reduced in ACE2-silenced BMEC. Our findings show that ACE2 is a target of DAD3, which leads to inhibition of the MAPK and NF-κB signalling pathways and protects against LPS-induced inflammation in BMEC. Thus, DAD3 may provide a new strategy to treat dairy cow mastitis.
Collapse
Affiliation(s)
- Xiangjun Zhang
- grid.260987.20000 0001 2181 583XKey Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, 750021 Ningxia China
| | - Fang Jia
- grid.260987.20000 0001 2181 583XKey Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, 750021 Ningxia China ,grid.410612.00000 0004 0604 6392Inner Mongolia Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, 010110 China
| | - Weiwu Ma
- grid.260987.20000 0001 2181 583XKey Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, 750021 Ningxia China
| | - Xueqiang Li
- grid.260987.20000 0001 2181 583XKey Laboratory of Energy Sources and Chemical Engineering, Development Center of Natural Products and Medication and School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021 China
| | - Xuezhang Zhou
- grid.260987.20000 0001 2181 583XKey Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, 750021 Ningxia China
| |
Collapse
|
15
|
Anti- Staphylococcus aureus Single-Chain Fragment Variables Play a Protective Anti-Inflammatory Role In Vitro and In Vivo. Vaccines (Basel) 2021; 9:vaccines9111300. [PMID: 34835231 PMCID: PMC8618225 DOI: 10.3390/vaccines9111300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a causative agent of bovine mastitis, capable of causing significant economic losses to the dairy industry worldwide. This study focuses on obtaining single-chain fragment variables (scFvs) against the virulence factors of S. aureus and evaluates the protective effect of scFvs on bovine mammary epithelial (MAC-T) cells and mice mammary gland tissues infected by S. aureus. After five rounds of bio-panning, four scFvs targeting four virulence factors of S. aureus were obtained. The complementarity-determining regions (CDRs) of these scFvs exhibited significant diversities, especially CDR3 of the VH domain. In vitro, each of scFvs was capable of inhibiting S. aureus growth and reducing the damage of MAC-T cells infected by S. aureus. Preincubation of MAC-T cells with scFvs could significantly attenuate the effect of apoptosis and necrosis compared with the negative control group. In vivo, the qPCR and ELISA results demonstrated that scFvs reduced the transcription and expression of Tumor Necrosis Factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8, and IL-18. Histopathology and myeloperoxidase (MPO) results showed that scFvs ameliorated the histopathological damages and reduced the inflammatory cells infiltration. The overall results demonstrated the positive anti-inflammatory effect of scFvs, revealing the potential role of scFvs in the prevention and treatment of S. aureus infections.
Collapse
|
16
|
Wu H, Chen Q, Liu J, Chen X, Luo H, Ye Z, Liu J. Microbiome analysis reveals gut microbiota alteration in mice with the effect of matrine. Microb Pathog 2021; 156:104926. [PMID: 33964419 DOI: 10.1016/j.micpath.2021.104926] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Mounting evidence revealed the negative effects of abuse of antibiotic including the induction of decreased immunity and dysbacteriosis. Matrine displayed multiple beneficial effects such as anti-inflammatory, antiviral and antibacterial, but studies of its influence on gut microbiota are still insufficient to report. Here, the present study was conducted to investigate the influence of matrine on the gut microbiota of mice and amoxicillin was used as a positive control. A total of 21 cecal samples were obtained from seven groups for high-throughput sequencing analysis based on V3-V4 variable region of 16S rRNA genes. Results revealed that the diversity and abundance of gut microbiota in mice gradually decreased with the increase of the concentration of amoxicillin, whereas matrine administration did not effect the intestinal microbial community structure. Additionally, amoxicillin and matrine supplementation also caused significant changes in the relative abundance of some intestinal bacteria. Specifically, the ratio of Klebsiella and Corynebacterium_1, Bacteroides and Parasutterella in the amoxicillin treated-group were increased as compared to the control group, whereas Muribaculaceae_unclassified, Alistipes and Lactobacillus were significantly decreased. Conversely, matrine administration significantly increased the proportion of beneficial bacteria such as Ruminiclostridium_9, Lachnospiraceae_NK4A136_group and Ruminococcaceae_unclassified. In conclusion, amoxicillin administration could change the microbial community composition and structure by increasing the proportion of pathogenic to beneficial bacteria, whereas matrine could increase the number of beneficial bacteria. Moreover, this study provides a theoretical basis for finding alternatives to antibiotics to decrease bacterial resistance and intestinal flora imbalance.
Collapse
Affiliation(s)
- Haigang Wu
- College of Animal Science and VeterinaryMedicine, Xinyang Agriculture And Forestry University, Xinyang, China
| | - Qiong Chen
- College of Animal Science and VeterinaryMedicine, Xinyang Agriculture And Forestry University, Xinyang, China
| | - Jinni Liu
- College of Animal Science and VeterinaryMedicine, Xinyang Agriculture And Forestry University, Xinyang, China
| | - Xiaoqing Chen
- College of Animal Science and VeterinaryMedicine, Xinyang Agriculture And Forestry University, Xinyang, China
| | - Houqiang Luo
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, China.
| | - Zhaowei Ye
- College of Animal Science and VeterinaryMedicine, Xinyang Agriculture And Forestry University, Xinyang, China
| | - Jicheng Liu
- College of Animal Science and VeterinaryMedicine, Xinyang Agriculture And Forestry University, Xinyang, China
| |
Collapse
|
17
|
Yin B, Li W, Qin H, Yun J, Sun X. The Use of Chinese Skullcap ( Scutellaria baicalensis) and Its Extracts for Sustainable Animal Production. Animals (Basel) 2021; 11:ani11041039. [PMID: 33917159 PMCID: PMC8067852 DOI: 10.3390/ani11041039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary With the increasing pressure to address the problems of bacterial resistance and drug residues, medicinal herbs are gradually taking a more important role in animal production. Scutellaria baicalensis is a common and widely used Chinese medicinal herb. The main bioactive compounds in the plant are baicalein and baicalin. These compounds have many biological functions including anti-oxidation, antipyretic, analgesic, anti-inflammatory, antiallergic, antimicrobial, immunomodulatory, and antitumor effects. S. baicalensis and its extracts can effectively promote animal growth, improve the production performance of dairy cows, reduce the stress and inflammatory response, and have effective therapeutic effects on diseases caused by bacteria, viruses, and other pathogenic microorganisms. This paper summarizes the biological function of S. baicalensis and its application in sustainable animal production to provide a reference for future application of S. baicalensis and other medicinal herbs in animal production and disease treatment. Abstract Drugs have been widely adopted in animal production. However, drug residues and bacterial resistance are a worldwide issue, and thus the most important organizations (FAO, USDA, EU, and EFSA) have limited or banned the use of some drugs and the use of antibiotics as growth promoters. Natural products such as medicinal herbs are unlikely to cause bacterial resistance and have no chemical residues. With these advantages, medicinal herbs have long been used to treat animal diseases and improve animal performance. In recent years, there has been an increasing interest in the study of medicinal herbs. S. baicalensis is a herb with a high medicinal value. The main active compounds are baicalin and baicalein. They may act as antipyretic, analgesic, anti-inflammatory, antiallergenic, antimicrobial, and antitumor agents. They also possess characteristics of being safe, purely natural, and not prone to drug resistance. S. baicalensis and its extracts can effectively promote the production performance of livestock and treat many animal diseases, such as mastitis. In this review, we summarize the active compounds, biological functions, and applications of S. baicalensis in the production of livestock and provide a guideline for the application of natural medicines in the production and treatment of diseases.
Collapse
Affiliation(s)
- Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Wei Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Hongyu Qin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Jinyan Yun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Xuezhao Sun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
- The Innovation Centre of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin Agricultural Science and Technology University, Jilin 132109, China
- Jilin Inter-Regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin 132109, China
- Correspondence: ; Tel.: +86-187-4327-5745
| |
Collapse
|
18
|
Li X, Tang Z, Wen L, Jiang C, Feng Q. Matrine: A review of its pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113682. [PMID: 33307055 DOI: 10.1016/j.jep.2020.113682] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Dogel ebs" was known as Sophora flavescens Ait., which has been widely utilized in the clinical practice of traditional Chinese Mongolian herbal medicine for thousands of years. Shen Nong's Materia Medica (Shen Nong Ben Cao Jing in Chinese pinyin) recorded that it is bitter in taste and cold in nature with the effect of clearing heat and eliminating dampness, insecticide, diuresis. Due to its extensive application in the fields of ethnopharmacological utilization, the pharmaceutical researches of Sophora flavescens Ait.s keeps deepening. Modern pharmacological studies have exhibited that matrine, which is rich in this traditional herbal medicine, mediates its main biological properties. AIMS OF THE REVIEW This review aimed at summarizing the latest and comprehensive information of matrine on the pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches to explore the therapeutic potential of this natural ingredient. In addition, outlooks and perspective for possible future researches that related are also discussed. MATERIALS AND METHODS Related information concerning matrine was gathered from the internet database of Google scholar, Pubmed, ResearchGate, Web of Science and Wiley Online Library with the keywords including "matrine", "pharmacology", "toxicology" and "pharmacokinetics", "clinical application", etc. RESULTS: Based on literatures, matrine has a variety of pharmacological effects, including anti-cancer, anti-inflammatory, anti-microbial, detoxification and so on. Nevertheless, there are still some doubts about it due to the toxicity and questionable bioavailability that does exist. CONCLUSIONS Future researches directions probably include elucidate the mechanism of its toxicity and accurately tracing the in vivo behavior of its drug delivery system. Without doubt, integration of toxicity and efficiency and structure modification based on it are also pivotal methods to enhance pharmacological activity and bioavailability.
Collapse
Affiliation(s)
- Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ziwei Tang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Beibei Traditional Chinese Medical Hospital, Chongqing, 400700, China
| | - Li Wen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cen Jiang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
19
|
You L, Yang C, Du Y, Wang W, Sun M, Liu J, Ma B, Pang L, Zeng Y, Zhang Z, Dong X, Yin X, Ni J. A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine. Front Pharmacol 2020; 11:01067. [PMID: 33041782 PMCID: PMC7526649 DOI: 10.3389/fphar.2020.01067] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Matrine (MT) is a naturally occurring alkaloid and an bioactive component of Chinese herbs, such as Sophora flavescens and Radix Sophorae tonkinensis. Emerging evidence suggests that MT possesses anti-cancer, anti-inflammatory, anti-oxidant, antiviral, antimicrobial, anti-fibrotic, anti-allergic, antinociceptive, hepatoprotective, cardioprotective, and neuroprotective properties. These pharmacological properties form the foundation for its application in the treatment of various diseases, such as multiple types of cancers, hepatitis, skin diseases, allergic asthma, diabetic cardiomyopathy, pain, Alzheimer's disease (AD), Parkinson's disease (PD), and central nervous system (CNS) inflammation. However, an increasing number of published studies indicate that MT has serious adverse effects, the most obvious being liver toxicity and neurotoxicity, which are major factors limiting its clinical use. Pharmacokinetic studies have shown that MT has low oral bioavailability and short half-life in vivo. This review summarizes the latest advances in research on the pharmacology, toxicology, and pharmacokinetics of MT, with a focus on its biological properties and mechanism of action. The review provides insight into the future of research on traditional Chinese medicine.
Collapse
Affiliation(s)
- Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital Affiliated to Capital University of Medical Sciences, Beijing, China
| | - Yuanyuan Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenping Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mingyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Baorui Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linnuo Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yawen Zeng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|