1
|
Guerra A, Boselli C, Galli T, Ciofi L, Fichi G, Marchi MD, Manuelian CL. Low Effectiveness of Mid-Infrared Spectroscopy Prediction Models of Mediterranean Italian Buffalo Bulk Milk Coagulation Traits. Foods 2024; 13:1957. [PMID: 38998463 PMCID: PMC11241227 DOI: 10.3390/foods13131957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
This study evaluated the potential use of mid-infrared spectroscopy to predict milk coagulation traits in bulk milk from Mediterranean Italian buffaloes. A total of 1736 bulk milk samples from 55 farms in central Italy were collected during the official milk quality testing system. The prediction models were developed based on modified partial least-squares regression with 75% of the samples and validated with the remaining samples. All bulk milk samples coagulated between 7.37 and 29.45 min. Average values for milk coagulation traits in the calibration set were 17.71 min, 3.29 min, and 38.83 mm for rennet coagulation time, curd firming time, and curd firmness, respectively. The validation set included samples with similar mean and standard deviation for each trait. The prediction models showed the greatest coefficient of determination of external validation (0.57) and the ratio of prediction to deviation (1.52) for curd firmness. Similar fitting statistics of the prediction models were obtained for rennet coagulation time and curd firming time. In conclusion, the prediction models for all three coagulation traits were below the threshold to consider the prediction models adequate even for rough screening of the samples.
Collapse
Affiliation(s)
- Alberto Guerra
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Carlo Boselli
- Experimental Zooprophylactic Institute Lazio and Toscana "Mariano Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Tiziana Galli
- Experimental Zooprophylactic Institute Lazio and Toscana "Mariano Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Letizia Ciofi
- Experimental Zooprophylactic Institute Lazio and Toscana "Mariano Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - GianLuca Fichi
- Experimental Zooprophylactic Institute Lazio and Toscana "Mariano Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Massimo De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Carmen L Manuelian
- Group de Recerca en Remugats (G2R), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
2
|
Spina AA, Ceniti C, De Fazio R, Oppedisano F, Palma E, Gugliandolo E, Crupi R, Raza SHA, Britti D, Piras C, Morittu VM. Spectral Profiling (Fourier Transform Infrared Spectroscopy) and Machine Learning for the Recognition of Milk from Different Bovine Breeds. Animals (Basel) 2024; 14:1271. [PMID: 38731274 PMCID: PMC11083570 DOI: 10.3390/ani14091271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
The Podolica cattle breed is widespread in southern Italy, and its productivity is characterized by low yields and an extraordinary quality of milk and meats. Most of the milk produced is transformed into "Caciocavallo Podolico" cheese, which is made with 100% Podolica milk. Fourier Transform Infrared Spectroscopy (FTIR) is the technique that, in this research work, was applied together with machine learning to discriminate 100% Podolica milk from contamination of other Calabrian cattle breeds. The analysis on the test set produced a misclassification percentage of 6.7%. Among the 15 non-Podolica samples in the test set, 2 were misclassified and recognized as Podolica milk even though the milk was from other species. The correct classification rate improved to 100% when the same method was applied to the recognition of Podolica and Pezzata Rossa milk produced by the same farm. Furthermore, this technique was tested for the recognition of Podolica milk mixed with milk from other bovine species. The multivariate model and the respective confusion matrices obtained showed that all the 14 Podolica samples (test set) mixed with 40% non-Podolica milk were correctly classified. In addition, Pezzata Rossa milk produced by the same farm was detected as a contaminant in Podolica milk from the same farm down to concentrations as little as 5% with a 100% correct classification rate in the test set. The method described yielded higher accuracy values when applied to the discrimination of milks from different breeds belonging to the same farm. One of the reasons for this phenomenon could be linked to the elimination of the environmental variable. However, the results obtained in this work demonstrate the possibility of using FTIR to discriminate between milks from different breeds.
Collapse
Affiliation(s)
- Anna Antonella Spina
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (A.A.S.); (C.C.); (R.D.F.); (E.P.); (D.B.)
| | - Carlotta Ceniti
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (A.A.S.); (C.C.); (R.D.F.); (E.P.); (D.B.)
| | - Rosario De Fazio
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (A.A.S.); (C.C.); (R.D.F.); (E.P.); (D.B.)
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
| | - Ernesto Palma
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (A.A.S.); (C.C.); (R.D.F.); (E.P.); (D.B.)
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China;
| | - Domenico Britti
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (A.A.S.); (C.C.); (R.D.F.); (E.P.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
| | - Cristian Piras
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (A.A.S.); (C.C.); (R.D.F.); (E.P.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
| | - Valeria Maria Morittu
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
- Department of Medical and Surgical Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Stocco G, Dadousis C, Pazzola M, Vacca GM, Dettori ML, Mariani E, Cipolat-Gotet C. Prediction accuracies of cheese-making traits using Fourier-transform infrared spectra in goat milk. Food Chem 2023; 403:134403. [DOI: 10.1016/j.foodchem.2022.134403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/04/2022] [Accepted: 09/22/2022] [Indexed: 10/14/2022]
|
4
|
Villar-Hernández BDJ, Amalfitano N, Cecchinato A, Pazzola M, Vacca GM, Bittante G. Phenotypic Analysis of Fourier-Transform Infrared Milk Spectra in Dairy Goats. Foods 2023; 12:foods12040807. [PMID: 36832882 PMCID: PMC9955890 DOI: 10.3390/foods12040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The infrared spectrum of bovine milk is used to predict many interesting traits, whereas there have been few studies on goat milk in this regard. The objective of this study was to characterize the major sources of variation in the absorbance of the infrared spectrum in caprine milk samples. A total of 657 goats belonging to 6 breeds and reared on 20 farms under traditional and modern dairy systems were milk-sampled once. Fourier-transform infrared (FTIR) spectra were taken (2 replicates per sample, 1314 spectra), and each spectrum contained absorbance values at 1060 different wavenumbers (5000 to 930 × cm-1), which were treated as a response variable and analyzed one at a time (i.e., 1060 runs). A mixed model, including the random effects of sample/goat, breed, flock, parity, stage of lactation, and the residual, was used. The pattern and variability of the FTIR spectrum of caprine milk was similar to those of bovine milk. The major sources of variation in the entire spectrum were as follows: sample/goat (33% of the total variance); flock (21%); breed (15%); lactation stage (11%); parity (9%); and the residual unexplained variation (10%). The entire spectrum was segmented into five relatively homogeneous regions. Two of them exhibited very large variations, especially the residual variation. These regions are known to be affected by the absorbance of water, although they also exhibited wide variations in the other sources of variation. The average repeatability of these two regions were 45% and 75%, whereas for the other three regions it was about 99%. The FTIR spectrum of caprine milk could probably be used to predict several traits and to authenticate the origin of goat milk.
Collapse
Affiliation(s)
| | - Nicolò Amalfitano
- Department of Agronomy, Food and Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Alessio Cecchinato
- Department of Agronomy, Food and Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | | | - Giovanni Bittante
- Department of Agronomy, Food and Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
- Correspondence:
| |
Collapse
|
5
|
Tiezzi F, Fleming A, Malchiodi F. Use of Milk Infrared Spectral Data as Environmental Covariates in Genomic Prediction Models for Production Traits in Canadian Holstein. Animals (Basel) 2022; 12:1189. [PMID: 35565615 PMCID: PMC9099576 DOI: 10.3390/ani12091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
The purpose of this study was to provide a procedure for the inclusion of milk spectral information into genomic prediction models. Spectral data were considered a set of covariates, in addition to genomic covariates. Milk yield and somatic cell score were used as traits to investigate. A cross-validation was employed, making a distinction for predicting new individuals' performance under known environments, known individuals' performance under new environments, and new individuals' performance under new environments. We found an advantage of including spectral data as environmental covariates when the genomic predictions had to be extrapolated to new environments. This was valid for both observed and, even more, unobserved families (genotypes). Overall, prediction accuracy was larger for milk yield than somatic cell score. Fourier-transformed infrared spectral data can be used as a source of information for the calculation of the 'environmental coordinates' of a given farm in a given time, extrapolating predictions to new environments. This procedure could serve as an example of integration of genomic and phenomic data. This could help using spectral data for traits that present poor predictability at the phenotypic level, such as disease incidence and behavior traits. The strength of the model is the ability to couple genomic with high-throughput phenomic information.
Collapse
Affiliation(s)
- Francesco Tiezzi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|