1
|
Zang Y, Silva LHP, Geng YC, Lange MJ, Zambom MA, Brito AF. Replacing ground corn with soyhulls plus palmitic acid in low metabolizable protein diets with or without rumen-protected amino acids: Effects on production and nutrient utilization in dairy cows. J Dairy Sci 2023; 106:4002-4017. [PMID: 37105871 DOI: 10.3168/jds.2022-22270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/28/2022] [Indexed: 04/29/2023]
Abstract
We previously observed that diets with reduced starch concentration decreased yields of milk and milk protein in dairy cows fed low metabolizable protein diets. Supplementation of reduced-starch diets with a lipid source may attenuate or eliminate production losses. Our objective was to investigate the effects of partially replacing ground corn with soyhulls plus a palmitic acid-enriched supplement on dry matter (DM) intake, milk yield and composition, plasma AA concentration, and N and energy utilization in cows fed low metabolizable protein diets (mean = -68 g/d balance) with or without rumen-protected Met, Lys, and His (RP-MLH). Sixteen multiparous Holstein cows averaging (mean ± standard deviation) 112 ± 28 d in milk, 724 ± 44 kg of body weight, and 46 ± 5 kg/d of milk in the beginning of the study were used in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Each period lasted 21 d, consisting of 14 d for diet adaptation and 7 d for data and sample collection. Diets were fed as follows: (1) high starch (HS), (2) HS plus RP-MLH (HS+AA), (3) reduced starch plus a palmitic acid-enriched supplement (RSPA), and (4) RSPA plus RP-MLH (RSPA+AA). The HS diet contained (DM basis) 26% ground corn and 7% soyhulls, and the RSPA diet had 10% ground corn, 22% soyhulls, and 1.5% palmitic acid. The HS diet averaged (DM basis) 32.6% starch and 4% ether extract, while starch and ether extract concentrations of the RSPA diet were 21.7 and 5.9%, respectively. All 4 diets had (DM basis) 40% corn silage, 5% mixed-mostly grass haylage, 5% grass hay, and 50% concentrate. Diets did not affect DM intake and milk yield. Contrarily, feeding RSPA and RSPA+AA increased yields of energy-corrected milk (47.0 vs. 44.8 kg/d) and milk fat (1.65 vs. 1.50 kg/d) compared with HS and HS+AA. Milk fat concentration tended to decrease when RP-MLH was supplemented to HS, but no change was seen when added to RS (starch level × RP-MLH interaction). Milk and plasma urea N increased, and milk N efficiency decreased in cows fed RSPA and RSPA+AA versus HS and HS+AA. Apparent total-tract digestibilites of crude protein and neutral detergent fiber, as well as urinary urea N and total N excretion, were greater in cows offered RSPA and RSPA+AA than HS and HS+AA. Plasma Met and His concentrations increased with supplemental RP-MLH. Intake of gross energy and digestible energy and the output of urinary and milk energy were all greater with feeding RSPA and RSPA+AA versus HS and HS+AA. In summary, partially replacing ground corn with soyhulls plus palmitic acid in diets supplemented or not with RP-MLH increased milk fat yield and fiber digestibility and maintained DM intake and milk yield, but with decreased milk N efficiency and elevated urinary N excretion.
Collapse
Affiliation(s)
- Y Zang
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824; Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China 225009
| | - L H P Silva
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824
| | - Y C Geng
- Key Laboratory of Nonpoint Source Pollution Control, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China 100081
| | - M J Lange
- Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, Brazil 85960-000
| | - M A Zambom
- Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, Brazil 85960-000
| | - A F Brito
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824.
| |
Collapse
|
2
|
Allen MS. Symposium review: Integrating the control of energy intake and partitioning into ration formulation. J Dairy Sci 2023; 106:2181-2190. [PMID: 36631325 DOI: 10.3168/jds.2022-22473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/07/2022] [Indexed: 01/11/2023]
Abstract
Energy intake and partitioning are determined by many interacting factors and their prediction is the Achilles' heel of ration formulation. Inadequate energy intake can limit milk yield and reproductive performance, whereas excessive energy intake will increase body condition, increasing the risk of health and reproductive issues in the subsequent lactation. Ration composition interacts with the physiological state of cows, making it difficult to predict DMI and the partitioning of energy accurately. However, understanding the factors controlling these allows us to devise grouping strategies and manipulate rations to optimize energy intake through lactation. Eating is controlled by the integration of signals in brain feeding centers. Ration composition affects DMI of cows via signals from ruminal distention and the hepatic oxidation of fuels. Dairy cow rations must contain a minimal concentration of relatively low-energy roughages for proper rumen function, but signals from ruminal distension can limit DMI when the drive to eat is high. Signals from the hepatic oxidation of fuels likely dominate the control of DMI in the peripartum period when cows are in a lipolytic state and later in lactation when signals from distension diminish. Therefore, the effects of the ration on DMI vary with the physiological state of the animal. Furthermore, they interact with environmental stressors such as social (e.g., overcrowding) and thermal stress. The objective of this article is to discuss the effects of ration composition on energy intake and partitioning in lactating cows and how they can be manipulated to optimize productive performance.
Collapse
Affiliation(s)
- Michael S Allen
- Department of Animal Science, Michigan State University, East Lansing 48824.
| |
Collapse
|
3
|
Piantoni P, VandeHaar MJ. Symposium review: The impact of absorbed nutrients on energy partitioning throughout lactation. J Dairy Sci 2023; 106:2167-2180. [PMID: 36567245 DOI: 10.3168/jds.2022-22500] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
Most nutrition models and some nutritionists view ration formulation as accounting transactions to match nutrient supplies with nutrient requirements. However, diet and stage of lactation interact to alter the partitioning of nutrients toward milk and body reserves, which, in turn, alters requirements. Fermentation and digestion of diet components determine feeding behavior and the temporal pattern and profile of absorbed nutrients. The pattern and profile, in turn, alter hormonal signals, tissue responsiveness to hormones, and mammary metabolism to affect milk synthesis and energy partitioning differently depending on the physiological state of the cow. In the fresh period (first 2 to 3 wk postpartum), plasma insulin concentration and insulin sensitivity of tissues are low, so absorbed nutrients and body reserves are partitioned toward milk synthesis. As lactation progresses, insulin secretion and sensitivity increase, favoring deposition instead of mobilization of body reserves. High-starch diets increase ruminal propionate production, the flow of gluconeogenic precursors to the liver, and blood insulin concentrations. During early lactation, the glucose produced will preferentially be used by the mammary gland for milk production. As lactation progresses and milk yield decreases, glucose will increasingly stimulate repletion of body reserves. Diets with less starch and more digestible fiber increase ruminal production of acetate relative to propionate and, because acetate is less insulinogenic than propionate, these diets can minimize body weight gain. High dietary starch concentration and fermentability can also induce milk fat depression by increasing the production of biohydrogenation intermediates that inhibit milk fat synthesis and thus favor energy partitioning away from the mammary gland. Supplemental fatty acids also impact energy partitioning by affecting insulin concentration and insulin sensitivity of tissues. Depending on profile, physiological state, and interactions with other nutrients, supplemental fatty acids might increase milk yield at the expense of body reserves or partition energy to body reserves at the expense of milk yield. Supplemental protein or AA also can increase milk production but there is little evidence that dietary protein directly alters whole-body partitioning. Understanding the biology of these interactions can help nutritionists better formulate diets for cows at various stages of lactation.
Collapse
Affiliation(s)
- P Piantoni
- Cargill Animal Nutrition and Health Innovation Campus, Elk River, MN 55330.
| | - M J VandeHaar
- Department of Animal Science, Michigan State University, East Lansing 48824
| |
Collapse
|
4
|
Zang Y, Silva LHP, Geng YC, Ghelichkhan M, Whitehouse NL, Miura M, Brito AF. Dietary starch level and rumen-protected methionine, lysine, and histidine: Effects on milk yield, nitrogen, and energy utilization in dairy cows fed diets low in metabolizable protein. J Dairy Sci 2021; 104:9784-9800. [PMID: 34147220 DOI: 10.3168/jds.2020-20094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
Our objective was to investigate the interactions between starch level and rumen-protected Met, Lys, His (RP-MLH) on milk yield, plasma AA concentration, and nutrient utilization in dairy cows fed low metabolizable protein diets (mean = -119 g/d of metabolizable protein balance). Sixteen multiparous Holstein cows (138 ± 46 d in milk, 46 ± 6 kg/d in milk) were used in a replicated 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments. Each period lasted 21 d with 14 d for diet adaptation and 7 d for data and sample collection. Dietary starch level varied by replacing (dry matter basis) pelleted beet pulp and soyhulls with ground corn resulting in the following treatments: (1) 20% pelleted beet pulp and 10% soyhulls (reduced starch = RS), (2) RS plus RP-MLH (RS+AA), (3) 30% ground corn (high starch = HS), and (4) HS plus RP-MLH (HS+AA). Dietary starch concentrations averaged 12.3 and 34.4% for RS and HS basal diets, respectively. Diets were supplemented with RP-MLH products to supply digestible Met, Lys, and His. Compared with RS and RS+AA diets, HS and HS+AA diets increased yields of milk (37.9 vs. 40.1 kg/d) and milk protein (1.07 vs. 1.16 kg/d) and decreased dry matter intake (25.9 vs. 25.2 kg/d), milk urea N (12.6 vs. 11.0 mg/dL), and plasma urea N (13.3 vs. 11.6 mg/dL). Milk N efficiency was greater in cows fed the HS and HS+AA than RS and RS+AA diets (28.9 vs. 25%), and RP-MLH supplementation improved milk true protein concentration. Starch level × RP-MLH interactions were observed for plasma concentrations of Arg and Lys, with RP-MLH being more effective to increase plasma Arg (+16%) and Lys (+23%) when supplemented to the RS than the HS basal diet. Replacing pelleted beet pulp and soyhulls with ground corn lowered the plasma concentrations of all essential AA except Met and Thr. In addition, the plasma concentrations of His and Met increased with RP-MLH. The apparent total-tract digestibilities of neutral and acid detergent fiber were lower, and those of starch and ether extract greater in cows offered the HS and HS+AA diets than RS and RS+AA diets. Urinary excretion of urea N decreased by replacing pelleted beet pulp and soyhulls with ground corn. Enteric CH4 production, CH4 yield, and CH4 intensity all decreased in the HS and HS+AA versus RS and RS+AA diets. Diets did not affect the intakes of gross energy, metabolizable energy, and net energy of lactation. In contrast, digestible energy intake increased with feeding the RS and RS+AA diets, whereas CH4 energy decreased in cows fed the HS and HS+AA diets. Supplementation with RP-MLH had no effect on energy utilization variables. Overall, the lack of interactions between dietary starch level and RP-MLH supplementation on most variables measured herein showed that the effects of starch intake and RP-MLH were independent or additive.
Collapse
Affiliation(s)
- Y Zang
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824
| | - L H P Silva
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824
| | - Y C Geng
- Key Laboratory of Nonpoint Source Pollution Control, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China 100081
| | - M Ghelichkhan
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824
| | - N L Whitehouse
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824
| | - M Miura
- Ajinomoto Co. Inc., Kawasaki-shi, Japan 210-8681
| | - A F Brito
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824.
| |
Collapse
|
5
|
Tebbe AW, Weiss WP. Effects of oscillating dietary crude protein concentrations on production, nutrient digestion, plasma metabolites, and body composition in lactating dairy cows. J Dairy Sci 2020; 103:10219-10232. [PMID: 32896402 DOI: 10.3168/jds.2020-18613] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
We hypothesized that dairy cows fed oscillating metabolizable protein (MP) and crude protein (CP) concentrations on a 24-h frequency for a diet formulated to be below MP requirements would use N more efficiently (i.e., increased milk protein yields and less manure N) without increasing mobilization of body protein stores than would cows fed the same deficient MP diet continuously, although both treatments would on average have equal MP concentrations. In a randomized block design, 30 Holstein cows (119 ± 21 d in milk; 667 ± 69 kg of body weight) were blocked according to milk yield within a parity (3 primiparous and 7 multiparous blocks) and fed 1 of 3 treatments: (1) diet with 16.2% CP (109% of MP requirements) fed continuously (109MP), (2) diet with 14.1% CP (95% of MP requirements) fed continuously (95MP), or (3) diets oscillating on a 24-h cycle from the 109MP diet and a diet with 11.9% CP (∼78% of MP requirements) such that average CP and MP concentration would be the same as 95MP (OSC). Dry matter intake was similar between 109MP and 95MP (22.9 vs. 23.2 kg/d) but tended to be lower for OSC (22.2 kg/d) compared with 95MP. Milk yield was greater for 109MP compared with 95MP (36.6 vs. 35.1 kg/d) and similar between 95MP and OSC (35.3 kg/d). Milk protein and energy-corrected milk yields were similar among treatments. Milk urea N (MUN) concentration was higher for 109MP compared with 95MP (12.8 vs. 10.2 mg/dL), and tended to be higher for OSC (10.9 mg/dL) compared with 95MP. Higher MUN concentration for OSC occurred despite lower N intake (474 vs. 512 g of N/d) and similar milk N outputs compared with 95MP (164 vs. 179 g/d). On days when cows on OSC were fed high versus low MP diets, yields of milk (34.8 vs. 36.3 kg/d) and milk protein (1.0 vs. 1.1 kg/d) and MUN concentration (9.3 vs. 12.5 mg/dL) followed the oscillation pattern but lagged the change in diet CP by 1 d, whereas dry matter intake, yields of milk fat, plasma energy metabolites, AA, and 3-methyl-His were similar between days. Nutrient digestibility was similar for major nutrients across treatments except for CP, which was greater for 109MP (65.2%) and OSC (65.3%) compared with 95MP (61.7%). Compared with 95MP, OSC did not increase milk N relative to N intake (averaged 0.35 g of milk N/g of N intake) or N balance; however, urinary N output was increased for OSC versus 95MP (0.32 vs. 0.24 g of urine N/g of N intake). Body composition estimated using urea dilution was similar across treatments, and all cows accreted lipid and energy during the trial. Empty body CP did not change over the 50-d treatment period. Overall, greater CP digestion, urinary N excretion, and MUN concentrations with lesser N intake and similar milk N outputs for OSC compared with 95MP suggests that the lower energy intake by OSC cows may have limited potential responses to altered N metabolism.
Collapse
Affiliation(s)
- A W Tebbe
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | - W P Weiss
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691.
| |
Collapse
|
6
|
Lunesu MF, Ledda A, Correddu F, Fancello F, Marzano A, Mossa F, Nudda A, Cannas A, Atzori AS. Prenatal exposure to different diets influences programming of glucose and insulin metabolism in dairy ewes. J Dairy Sci 2020; 103:8853-8863. [PMID: 32747113 DOI: 10.3168/jds.2020-18342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022]
Abstract
Nutrition in fetal and postnatal life can influence the development of several biological systems, with permanent effects in adult life. The aim of this work was to investigate in dairy sheep whether diets rich in starch or fiber during intrauterine life (75 d before lambing) and postnatal life (from weaning to first pregnancy; growth phase) program glucose and insulin metabolism in the female offspring during their first pregnancy. Starting from intrauterine life, 20 nulliparous Sarda ewes were exposed to 4 dietary regimens (n = 5 per group) based on different dietary carbohydrates during their intrauterine life and their subsequent growth phase: (1) the fiber (FI) diet during both intrauterine and growth life, (2) the starch (ST) diet during both intrauterine and growth life, (3) the FI diet in intrauterine life followed by the ST diet in the growth phase, and (4) the ST diet in intrauterine life followed by the FI diet in the growth phase. After the end of the growth phase, all growing ewes were fed the same diet and naturally mated. When ewes were pregnant, on average at 124 ± 2 d of gestation they were challenged with an intravenous glucose tolerance test, and peripheral concentrations of glucose and insulin were determined. Basal insulin concentrations were higher in ewes exposed to the ST diet (0.97 μg/L) than in ewes exposed to the FI diet (0.52 μg/L) in intrauterine life. After glucose infusion, glucose and insulin concentrations were not affected by intrauterine diet. Insulin resistance, determined by the homeostasis model assessment, was affected by the intrauterine × growth phases interaction. Insulin sensitivity, assessed by the quantitative insulin check index, was lower in ewes exposed to the ST diet than in those exposed to the FI diet in intrauterine life (ST = 0.28; FI = 0.30). Diet in growth life had no effect on glucose and insulin metabolism. In conclusion, starchy diets offered during intrauterine life but not during postnatal life increased basal insulin level and lowered insulin sensitivity during the first pregnancy. Nutritional strategies of metabolic programming should consider that exposure to starchy diets in late fetal life might favor the programming of dietary nutrient partitioning toward organs with high requirements, such as the gravid uterus or the mammary gland.
Collapse
Affiliation(s)
- M F Lunesu
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy
| | - A Ledda
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy
| | - F Correddu
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy
| | - F Fancello
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy
| | - A Marzano
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy
| | - F Mossa
- Dipartimento di Medicina Veterinaria, University of Sassari, 07100 Sassari, Italy
| | - A Nudda
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy
| | - A Cannas
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy
| | - A S Atzori
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
7
|
Quan S, Nan X, Wang K, Jiang L, Yao J, Xiong B. Different Diets Change the Expression of Bovine Serum Extracellular Vesicle-miRNAs. Animals (Basel) 2019; 9:ani9121137. [PMID: 31847150 PMCID: PMC6940744 DOI: 10.3390/ani9121137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Studies over the last decade have shown that cells can communicate with neighboring or distant cells through complex packets stuffed with selected proteins, lipids, and nucleic acids, called extracellular vesicles. The wrapped macromolecules are miRNAs, which play a central role in mediating the signal communication of creatural patho/physiological systems. Extracellular vesicle-miRNAs vary among species and different body fluids, such as milk, urine, saliva, cerebrospinal fluid and blood, providing general and individual characters of the vesicles. Cow’s milk is significant in the supply of human nutrition. Therefore, the extracellular vesicle-related physiological process of dairy cows should be of concern. This study clarified the miRNA profiling of bovine serum and found their potential influence on immunity. Moreover, we found that different diets could affect miRNA expression. The results implied that people could implement effective dietary strategies to intervene in the physiological state of animals. Abstract Cells can communicate with neighboring or distant cells using extracellular vesicles (EVs), mainly attributed to their containing miRNAs. Given that diets can change host circulatory miRNA profiling, and EVs are the major miRNA carriers in serum, we hypothesized that different diets could change bovine circulating EV-miRNA expression. We partly replaced alfalfa hay with whole cotton seed and soybean hull in the feed formula of the tested cows. Blood EVs were isolated using a polyethylene glycol precipitation kit. Particle size analysis revealed exosomes were dominant in bovine serum EVs. Small RNAs were enriched in bovine serum EVs, including miRNAs, snRNAs, tiRNAs, Cis-regulatory elements, piRNAs, etc. In total, 359 types of Bos taurus miRNAs were identified by Solexa sequencing. Each cow in the control group contained about 244 types of serum EV-miRNAs, compared to 246 types in the tested group. There were 15 immune-related miRNAs in the top 20 serum EV-miRNAs, accounting for about 80% of the total. Seven differently expressed known miRNAs were detected in responding to different diets. An analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed differently expressed miRNAs were related to hormone signal pathways and protein metabolism. Bovine serum EVs are abundant with miRNAs, most of which are immune-related. Different diets eventually change the miRNA profiling of bovine serum EVs.
Collapse
Affiliation(s)
- Suyu Quan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Q.) (X.N.); (K.W.)
- College of Animal Science and Technology, Northwest A&F University, Yanglin 712100, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Q.) (X.N.); (K.W.)
| | - Kun Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Q.) (X.N.); (K.W.)
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China;
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yanglin 712100, China
- Correspondence: (J.Y.); (B.X.); Tel.: +86-010-6281-6017 (B.X.)
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Q.) (X.N.); (K.W.)
- Correspondence: (J.Y.); (B.X.); Tel.: +86-010-6281-6017 (B.X.)
| |
Collapse
|
8
|
Effects of an artificial hay aroma and compound feed formulation on feed intake pattern, rumen function and milk production in lactating dairy cows. Animal 2019; 14:529-537. [PMID: 31578158 DOI: 10.1017/s1751731119002192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Kempen system is a dairy feeding system in which diet is provided in the form of a compound feed (CF) and hay offered ad libitum. Ad libitum access to CF and hay allows cows in this system to achieve a high DM intake (DMI). Out of physiological concerns, the voluntary hay intake could be increased and the consumption pattern of CF could be manipulated to maintain proper rumen functioning and health. This study investigated the effects of an artificial hay aroma and CF formulation on feed intake pattern, rumen function and milk production in mid- to late-lactating dairy cows. Twenty Holstein-Friesian cows were assigned to four treatments in a 4 × 4 Latin square design. Diet consisted of CF and grass hay (GH), fed separately, and both offered ad libitum, although CF supply was restricted in maximum meal size and speed of supply by an electronic system. Treatments were the combination of two CF formulations - high in starch (CHS) and fibre (CHF); and two GH - untreated (UGH) and the same hay treated with an artificial aroma (TGH). Meal criteria were determined using three-population Gaussian-Gaussian-Weibull density functions. No GH × CF interaction effects on feed intake pattern characteristics were found. Total DMI and CF intake, but not GH intake, were greater (P < 0.01) in TGH treatment, and feed intake was not affected by type of CF. Total visits to feeders per day, visits to the GH feeder, visits to the CF feeder and CF eating time (all P < 0.01) were significantly greater in cows fed with TGH. Meal frequency, meal size and meal duration were unaffected by treatments. Cows fed CHF had a greater milk fat (P = 0.02), milk urea content (P < 0.01) and a greater milk fat yield (P < 0.01). Cows fed TGH had a greater milk lactose content and lactose yield (P < 0.05), and milk urea content (P < 0.01). Cows fed TGH had smaller molar proportions of acetic acid and greater molar proportions of propionic acid compared with UGH. In conclusion, treatment of GH with an artificial aroma increased CF intake and total DMI, but did not affect hay intake. Additionally, GH treatment increased the frequency of visits to both feeders, and affected rumen volatile fatty acid profile. Type of CF did not affect meal patterns, ruminal pH, nor fermentation profiles.
Collapse
|
9
|
Tsiplakou E, Yiasoumis L, Maragou A, Mavrommatis A, Sotirakoglou K, Moatsou G, Zervas G. The response of goats to different starch/NDF ratios of concentrates on the milk chemical composition, fatty acid profile, casein fractions and rennet clotting properties. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Whelan S, Carey W, Boland T, Lynch M, Kelly A, Rajauria G, Pierce K. The effect of by-product inclusion level on milk production, nutrient digestibility and excretion, and rumen fermentation parameters in lactating dairy cows offered a pasture-based diet. J Dairy Sci 2017; 100:1055-1062. [DOI: 10.3168/jds.2016-11600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/31/2016] [Indexed: 11/19/2022]
|
11
|
da Silva GG, Ferreira de Jesus E, Takiya CS, Del Valle TA, da Silva TH, Vendramini THA, Yu EJ, Rennó FP. Short communication: Partial replacement of ground corn with algae meal in a dairy cow diet: Milk yield and composition, nutrient digestibility, and metabolic profile. J Dairy Sci 2016; 99:8880-8884. [PMID: 27544859 DOI: 10.3168/jds.2016-11542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/02/2016] [Indexed: 11/19/2022]
Abstract
This study was undertaken to evaluate the effects of partially replacing dietary ground corn with a microalgae meal from Prototheca moriformis (composed of deoiled microalgae and soyhulls) on milk yield and composition, nutrient intake, total-tract apparent digestibility, and blood profile of lactating dairy cows. Twenty multiparous Holstein cows (57.7±49.4d in milk, 25.3±5.3 of milk yield, and 590±71kg of live weight at the start of experiment, mean ± standard deviation) were used in a cross-over design experiment, with 21-d periods. Diets were no microalgae meal (CON) or 91.8g/kg of microalgae meal partially replacing dietary ground corn (ALG). Cows showed similar milk yield and composition. The 3.5% fat-corrected milk production was 30.2±1.34kg/d for CON and 31.1±1.42kg/d for ALG. Despite cows having similar dry matter intake, ALG increased neutral detergent fiber and ether extract intake. In addition, cows fed ALG exhibited higher ether extract digestibility. No differences were detected in glucose, urea, amino-aspartate transferase, and gamma-glutamyl transferase blood concentrations. Feeding ALG increased the total cholesterol and high-density lipoprotein in blood compared with CON. The microalgae meal may partially replace ground corn in diets of lactating cows without impairing the animal's performance.
Collapse
Affiliation(s)
- G G da Silva
- Department of Animal Nutrition and Production, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - E Ferreira de Jesus
- Department of Animal Nutrition and Production, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - C S Takiya
- Department of Animal Nutrition and Production, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - T A Del Valle
- Department of Animal Nutrition and Production, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - T H da Silva
- Department of Animal Nutrition and Production, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - T H A Vendramini
- Department of Animal Nutrition and Production, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - Esther J Yu
- TerraVia Holdings Inc., 225 Gateway Blvd., South San Francisco, CA 94080
| | - F P Rennó
- Department of Animal Nutrition and Production, University of Sao Paulo, Pirassununga 13635-900, Brazil.
| |
Collapse
|
12
|
Boerman JP, Potts SB, VandeHaar MJ, Allen MS, Lock AL. Milk production responses to a change in dietary starch concentration vary by production level in dairy cattle. J Dairy Sci 2015; 98:4698-706. [PMID: 25981075 DOI: 10.3168/jds.2014-8999] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/30/2015] [Indexed: 11/19/2022]
Abstract
The effects of dietary starch concentration on yield of milk and milk components were evaluated in a crossover design experiment. Holstein cows (n=32; 115±22 d in milk) with a wide range in milk yield (28 to 62kg/d) were assigned randomly within level of milk yield to a treatment sequence. Treatments were diets containing 30% dry ground corn (CG) or 30% soyhulls (SH) on a DM basis. Diets containing corn silage and alfalfa silage were formulated to contain 16% crude protein, 24% forage neutral detergent fiber, and either 27 or 44% neutral detergent fiber and 30 or 12% starch for CG and SH, respectively. Cows were fed a diet intermediate to the treatments during a preliminary 14-d period. Treatment periods were 28 d with measurements taken throughout the period for energy calculations and the final 5 d used for data and sample collection for production variables. Compared with SH, CG increased dry matter intake, and yields of milk, milk protein, milk fat, and energy-corrected milk, as well as milk protein concentration. Treatment did not affect milk fat concentration. Yield of de novo synthesized and preformed milk fatty acids increased with CG. Treatment interacted with level of preliminary milk production for several response variables (yields of milk, milk protein, milk fat, energy-corrected milk, and 3.5% fat-corrected milk). Compared with SH, the CG treatment increased energy-corrected milk in higher-producing cows with a lesser response to CG as milk yield decreased. The CG treatment increased milk:feed compared with the SH treatment, but not body weight or body condition score. In conclusion, higher-producing cows benefited from the high-starch diet, and lower-producing cows were able to maintain production when most of the starch was replaced with nonforage fiber.
Collapse
Affiliation(s)
- J P Boerman
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - S B Potts
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - M J VandeHaar
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - M S Allen
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - A L Lock
- Department of Animal Science, Michigan State University, East Lansing 48824.
| |
Collapse
|
13
|
Potts SB, Boerman JP, Lock AL, Allen MS, VandeHaar MJ. Residual feed intake is repeatable for lactating Holstein dairy cows fed high and low starch diets. J Dairy Sci 2015; 98:4735-47. [PMID: 25981070 DOI: 10.3168/jds.2014-9019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022]
Abstract
Residual feed intake (RFI) is a tool to quantify feed efficiency in livestock and is commonly used to assess feed efficiency independent of production level, body weight (BW), or BW change. Lactating Holstein cows (n=109; 44 primiparous and 65 multiparous), averaging (mean ± standard deviation, SD) 665±77kg of BW, 42±9kg of milk/d, and 120±30 d postpartum, were fed diets of high (HI) or low (LO) starch content in 4 crossover experiments with two 28-d treatment periods. The LO diets were ~40% neutral detergent fiber (NDF) and ~14% starch and the HI diets were ~26% NDF and ~30% starch. Individual dry matter intake (DMI) of a cow was modeled as a function of milk energy output, metabolic BW, body energy change, and fixed effects of parity, experiment, cohort nested within experiment, and diet nested within cohort and experiment; RFI for each cow was the residual error term. Cows were classified as high (>0.5 SD of the mean), medium (±0.5 SD of the mean), or low (<-0.5 SD of the mean) RFI. On average, for the linear model used to determine RFI for individual cows, each unit increase in milk energy output, metabolic BW, or body energy gain was associated with 0.35, 0.09, or 0.05kg increase in DMI, respectively. When compared with LO diets, HI diets increased energy partitioning to body energy gain and tended to increase DMI. The correlation between RFI when cows were fed HI diets and RFI when cows were fed LO diets was 0.73 and was similar across each parity and experiment. Fifty-six percent of cows maintained the same RFI classification (high, medium, or low RFI) and only 4 of 109 cows changed from high RFI to low RFI or vice versa when diets were changed. Milk:feed, income over feed cost, and DMI were also highly repeatable (r=0.72, 0.84, and 0.92, respectively). We achieved significant changes in milk yield and component concentration as well as energy partitioning between HI and LO diets and still determined RFI to be repeatable across diets. We conclude that RFI is reasonably repeatable for a wide range of dietary starch levels fed to mid-lactation cows, so that cows that have low RFI when fed high corn diets will likely also have low RFI when fed diets high in nonforage fiber sources.
Collapse
Affiliation(s)
- S B Potts
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - J P Boerman
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - A L Lock
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - M S Allen
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - M J VandeHaar
- Department of Animal Science, Michigan State University, East Lansing 48824.
| |
Collapse
|
14
|
Ertl P, Zebeli Q, Zollitsch W, Knaus W. Feeding of by-products completely replaced cereals and pulses in dairy cows and enhanced edible feed conversion ratio. J Dairy Sci 2015; 98:1225-33. [DOI: 10.3168/jds.2014-8810] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/27/2014] [Indexed: 11/19/2022]
|
15
|
Pirondini M, Colombini S, Mele M, Malagutti L, Rapetti L, Galassi G, Crovetto G. Effect of dietary starch concentration and fish oil supplementation on milk yield and composition, diet digestibility, and methane emissions in lactating dairy cows. J Dairy Sci 2015; 98:357-72. [DOI: 10.3168/jds.2014-8092] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022]
|
16
|
|
17
|
Mohammadzadeh H, Rezayazdi K, Nikkhah A. Effects of inclusion of graded amounts of soya bean hulls on feed intake, chewing activity and nutrient digestibility in dairy cows. J Anim Physiol Anim Nutr (Berl) 2014; 98:476-82. [PMID: 23758335 DOI: 10.1111/jpn.12094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 05/24/2013] [Indexed: 11/28/2022]
Abstract
Twelve multiparous Holstein dairy cows were used in a replicated 4 × 4 Latin square changeover design to evaluate the effects of graded inclusion of soya bean hulls (SHs) in replacement of diet forages at 0%, 10%, 20% and 30% of dietary dry matter (DM) basis on peNDF > 8 and peNDF > 1.18 contents of diets and their resulting effects on chewing activity, nutrient digestibility and milk production of dairy cattle. The control diet contained 50% forage, 50% concentrate and no SH. In the other three diets, SH was substituted for alfalfa hay, corn silage and wheat bran to supply 10%, 20% and 30% of the dietary DM. Increasing SH concentration in the diets resulted in decreasing concentrations of forage neutral detergent fibre (NDF), physically effective NDF (peNDF) and mean particle size (p < 0.01). Chewing activity per kilogram of daily dry matter intake (DMI) was not affected by the different diets tested. However, chewing activity significantly decreased for kilogram intake of NDF, but increased for peNDF > 1.18 when SH was included in the diets (p < 0.01). Total tract apparent digestibility of nutrients significantly increased for DM, organic matter (p < 0.05) and NDF (p < 0.01) but decreased for crude protein (p < 0.05) as the proportion of SH was increased in the diets. Rumen pH value of cattle was not influenced by the diets. Including medium and high amounts of SH in the diets decreased DMI of the animals (p < 0.05) without any significant effect on their daily milk or 4% fat-corrected milk production. In conclusion, the results of this study showed that the NDF from a non-forage fibre source like SH had a lower potential for stimulating chewing activity than did forage NDF. Despite this, the small size of dietary particles increased not only the chewing activity per kilogram of peNDF intake but also saliva secretion as well as the potential for rumen to neutralize acids. The findings of this study demonstrate the greater differences in peNDF > 8 among the diets and that these differences are better reflected in terms of DMI, chewing activity and nutrient digestibility, but not in rumen pH.
Collapse
Affiliation(s)
- H Mohammadzadeh
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | | | | |
Collapse
|
18
|
Sun Y, Oba M. Effects of feeding a high-fiber byproduct feedstuff as a substitute for barley grain on rumen fermentation and productivity of dairy cows in early lactation. J Dairy Sci 2014; 97:1594-602. [DOI: 10.3168/jds.2013-7068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 11/09/2013] [Indexed: 11/19/2022]
|
19
|
Akins MS, Perfield KL, Green HB, Bertics SJ, Shaver RD. Effect of monensin in lactating dairy cow diets at 2 starch concentrations. J Dairy Sci 2013; 97:917-29. [PMID: 24342685 DOI: 10.3168/jds.2013-6756] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 10/06/2013] [Indexed: 11/19/2022]
Abstract
The objective of this study was to determine the effects of monensin (M) supplementation on lactation performance of dairy cows fed diets of either reduced (RS) or normal (NS) starch concentrations as total mixed rations. One hundred twenty-eight Holstein and Holstein × Jersey cows (90 ± 33 d in milk) were stratified by breed and parity and randomly assigned to 16 pens of 8 cows each in a randomized controlled trial. Pens were then randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement of treatments. A 4-wk covariate adjustment period preceded the treatment period, with all pens receiving NS supplemented with 18 g of monensin/t of dry matter (DM). Following the 4-wk covariate adjustment period, cows were fed their assigned treatment diets of NS with M (18 g of monensin/t), NS with 0 g of monensin/t (C), RS with M, or RS with C for 12 wk. Actual starch concentrations for the RS and NS diets were 20.4 and 26.9% (DM basis), respectively. Mean dry matter intake (DMI; 27.0 kg/d) was unaffected by the treatments. Feeding M compared with C and NS compared with RS increased milk yield by 1.3 and 1.5 kg/d per cow, respectively. Milk protein percentage and yield and lactose yield were increased and milk urea nitrogen was decreased for NS compared with RS. Feeding M increased actual and component-corrected milk feed efficiencies (component-corrected milk yield/DMI) and lactose yield and tended to increase milk urea nitrogen compared with C. Milk protein percentage was decreased for M compared with C, but milk fat percentage and yield, protein yield, and lactose percentage were unaffected by M. We observed a tendency for a starch × monensin interaction for milk feed efficiency (actual milk yield/DMI); M tended to increase efficiency more for NS than for RS. Starch and monensin had minimal effects on milk fatty acid composition and yields. Feeding RS decreased milk and protein yields, but component-corrected milk yields and feed efficiencies were similar for RS and NS. Monensin increased feed efficiency and lactation performance for both dietary starch concentrations.
Collapse
Affiliation(s)
- M S Akins
- School of Agriculture, University of Wisconsin, Platteville 53818.
| | | | - H B Green
- Elanco Animal Health, Greenfield, IN 46140
| | - S J Bertics
- Department of Dairy Science, University of Wisconsin, Madison 53706
| | - R D Shaver
- Department of Dairy Science, University of Wisconsin, Madison 53706
| |
Collapse
|
20
|
Bradford B, Mullins C. Invited review: Strategies for promoting productivity and health of dairy cattle by feeding nonforage fiber sources. J Dairy Sci 2012; 95:4735-4746. [DOI: 10.3168/jds.2012-5393] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/19/2012] [Indexed: 11/19/2022]
|
21
|
Ferraretto L, Shaver R, Bertics S. Effect of dietary supplementation with live-cell yeast at two dosages on lactation performance, ruminal fermentation, and total-tract nutrient digestibility in dairy cows. J Dairy Sci 2012; 95:4017-28. [DOI: 10.3168/jds.2011-5190] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/26/2012] [Indexed: 11/19/2022]
|
22
|
Zhang S, Penner G, Yang W, Oba M. Effects of partially replacing barley silage or barley grain with dried distillers grains with solubles on rumen fermentation and milk production of lactating dairy cows. J Dairy Sci 2010; 93:3231-42. [DOI: 10.3168/jds.2009-3005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 03/31/2010] [Indexed: 11/19/2022]
|
23
|
Ranathunga SD, Kalscheur KF, Hippen AR, Schingoethe DJ. Replacement of starch from corn with nonforage fiber from distillers grains and soyhulls in diets of lactating dairy cows. J Dairy Sci 2010; 93:1086-97. [PMID: 20172230 DOI: 10.3168/jds.2009-2332] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 11/16/2009] [Indexed: 12/16/2023]
Abstract
Forty Holstein cows were used in a completely randomized design with a 2-wk covariate period followed by a 6-wk experimental period to evaluate incremental substitution of nonforage fiber provided by dried distillers grains with solubles (DDGS) and soyhulls (SH) for starch provided by corn in the diet. Diets provided decreasing concentrations of starch: 29% starch with 0% DDGS; 26% starch with 7% DDGS; 23% starch with 14% DDGS; and 20% starch with 21% DDGS. Diets contained 27% corn silage, 22% alfalfa hay, and 51% concentrate mix and were formulated to be 17% crude protein, 4.7% fat, and 23% neutral detergent fiber from forage. Total neutral detergent fiber increased as DDGS and SH were included in the diet. Soyhulls were included in a linear fashion along with DDGS to replace soybean meal and expeller soybean meal, thereby maintaining a similar crude protein content across diets. Dry matter intake decreased linearly; consequently, feed efficiency tended to increase linearly as starch was replaced by nonforage fiber. There was no effect of diet on milk production or milk fat and protein percentage or yield. Milk fatty acid profiles were similar across diets. Other response variables, including 4% fat-corrected milk, total solids, and milk urea nitrogen, were unaffected by dietary treatments. Ruminal volatile fatty acid concentration did not differ between diets. Concentrations of blood glucose and beta-hydroxybutyrate were similar across diets. Results from this research suggest that nonforage fiber from DDGS can partially substitute for starch from corn in dairy cow diets without affecting milk production and milk composition. Economic analysis of the diets showed that feeding DDGS and SH in substitution of corn was cost-effective. Results from this experiment indicate that DDGS and SH can replace corn as an energy source to decrease feed costs.
Collapse
Affiliation(s)
- S D Ranathunga
- Dairy Science Department, South Dakota State University, Brookings 57007, USA
| | | | | | | |
Collapse
|
24
|
Gencoglu H, Shaver R, Steinberg W, Ensink J, Ferraretto L, Bertics S, Lopes J, Akins M. Effect of feeding a reduced-starch diet with or without amylase addition on lactation performance in dairy cows. J Dairy Sci 2010; 93:723-32. [DOI: 10.3168/jds.2009-2673] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 10/29/2009] [Indexed: 11/19/2022]
|
25
|
Aikman P, Beever D, Humphries D. The effect of incremental replacement of wheat with soya hulls in diets for Jersey cows on lactational performance, diet digestibility and feeding behaviour. Livest Sci 2006. [DOI: 10.1016/j.livsci.2006.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Zenou A, Miron J. Milking performance of dairy ewes fed pellets containing soy hulls as starchy grain substitute. Small Rumin Res 2005. [DOI: 10.1016/j.smallrumres.2004.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Miron J, Nikbachat M, Zenou A, Ben-Ghedalia D, Solomon R, Shoshani E, Halachmi I, Livshin N, Antler A, Maltz E. Lactation Performance and Feeding Behavior of Dairy Cows Supplemented Via Automatic Feeders with Soy Hulls or Barley Based Pellets. J Dairy Sci 2004; 87:3808-15. [DOI: 10.3168/jds.s0022-0302(04)73520-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Miron J, Yosef E, Nikbachat M, Zenou A, Maltz E, Halachmi I, Ben-Ghedalia D. Feeding behavior and performance of dairy cows fed pelleted nonroughage fiber byproducts. J Dairy Sci 2004; 87:1372-9. [PMID: 15290984 DOI: 10.3168/jds.s0022-0302(04)73286-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The potential of pellets made of soy hulls (SH) and corn gluten feed (CGF) to replace starchy pelleted supplement in diets of lactating cows was measured in a feeding regime comparable to automatic milking systems. Twenty-four cows were divided into 2 equal groups and fed for 7 wk in individual feeders monitored by computer on one of the 2 experimental diets. Both diets contained 75% basic total mixed ration plus an additional 25% of pelleted supplement (17% CP), being either high starch pellets (HST) in treatment, or pellets made of SH + CGF (2:1) (SHCG) in treatment. In vitro dry matter digestibility was higher in the HST pellets, whereas neutral detergent fiber (NDF) digestibility was higher in the SHCG pellets. The NDF content was higher in the SHCG diet. Individual cow behavior at the feeding lane was analyzed during the experimental period. Average number of meals and daily eating duration of the SHCG cows were significantly greater, as compared with the HST group. However, intake per meal and rate of eating were greater in the HST cows, whereas meal duration was similar in both groups. Feeding behavior resulted in significantly higher daily dry matter and NDF intake by the SHCG cows (27.1 and 11.1 kg, respectively) as compared with the HST group (24.8 and 7.61 kg, respectively). Consequently, significantly higher milk fat content, milk fat yield, and 4% FCM yield were obtained in the SHCG cows. Milk and milk protein yields were similar in both treatments. Data suggest potential advantages of the SHCG pellets for herds using automatic milking systems.
Collapse
Affiliation(s)
- J Miron
- Institute of Animal Science, Department of Dairy Science, ARO, The Volcani Center, Bet Dagan, Israel.
| | | | | | | | | | | | | |
Collapse
|
29
|
Grant RJ, Fanning KC, Kleinschmit D, Stanisiewski EP, Hartnell GF. Influence of glyphosate-tolerant (event nk603) and corn rootworm protected (event MON863) corn silage and grain on feed consumption and milk production in Holstein cattle. J Dairy Sci 2003; 86:1707-15. [PMID: 12778581 DOI: 10.3168/jds.s0022-0302(03)73756-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two studies were conducted to evaluate the effect of a glyphosate-tolerant (event nk603) and a corn rootworm protected (event MON863) corn hybrid on feed intake and milk production compared with the nontransgenic hybrid and two reference hybrids. In Experiment 1, 16 multiparous Holstein cows were assigned to one of four treatments in replicated 4 x 4 Latin squares with 28-d periods. Diets contained 40% (dry matter [DM] basis) of either 1) glyphosate-tolerant corn silage (GT), 2) nontransgenic control corn silage, or 3) two nontransgenic reference hybrids which are commercially available. Each diet also contained 23% corn grain from the same hybrid that supplied the silage. At ensiling, rapid drying conditions prevailed and the GT hybrid was the last to be harvested which resulted in greater DM content at similar physiological maturity. The 4% fat-corrected milk (FCM) yield and DMI were reduced for cows fed the GT corn diet due to the higher DM content of the GT silage (37.1 vs. 33.2 kg/d and 4.05 vs. 3.61% of BW, respectively). There was no effect of the GT diet on milk composition or efficiency of 4% FCM production that averaged 1.43 kg/kg of DM intake for all diets. In Experiment 2, 16 multiparous Holstein cows were assigned to one of four treatments in replicated 4 x 4 Latin squares with 21-d periods. Diets contained 26.7% (DM basis) corn grain from either 1) corn rootworm protected (event MON863) corn hybrid, 2) nontransgenic control corn hybrid, or 3) the same two nongenetically enhanced reference hybrids used in Experiment 1. The 4% FCM yield (34.8 kg/d) and DM intake (4.06% of BW) were unaffected by diet. Efficiency of FCM production (average 1.32 kg/kg of DMI) was not affected by diet. In summary, these two studies indicated that insertion of a gene for glyphosate tolerance or corn rootworm protection into a corn hybrid did not affect its nutritional value (as measured by efficiency of milk production) for lactating dairy cows compared with conventional corn hybrids.
Collapse
Affiliation(s)
- R J Grant
- Department of Animal Science, University of Nebraska, Lincoln 68583-0908, USA.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Dairy producers use soyhulls, a byproduct of soybean processing, to replace either grain or forage in diets of lactating dairy cows. In view of the nutritional and economical value of soyhulls it is anticipated that this practice will continue to increase in popularity among nutritionists and producers of ruminant animals. This paper reviews information regarding the nutritional value of soyhulls and the effects of feeding this alternative feed on ruminal fermentation, nutrient digestion and utilization, and performance of dairy cows. Soyhulls can replace corn grain to supply about 30% of the dry matter (DM) in high-grain diets without negatively affecting either the fermentation or digestion of nutrients in the gastrointestinal tract or the performance of dairy cows. Additionally, data suggest that soyhulls might successfully replace forage to supply < or = 25% of the DM in diets of dairy cows when the supply of effective fiber, which includes a chemical and a physical component, remains adequate after including the hulls. However, caution should be exercised when data from different studies are extrapolated to practical situations because the response to feeding soyhulls appears to be largely affected by the type of carbohydrate being replaced by soyhulls; the amount, type, and physical form of the dietary forage; and the incidence of either negative or positive associative effects before and after the addition of soyhulls to the original diet. Unfortunately, the paucity of data from experiments in which soyhulls constituted more than 25 to 30% of the dietary DM restricts the ability to identify the maximum amount of soyhulls that can be used in diets of dairy cows. Information from studies in which > or = 25 to 30% of dietary DM supplied as either cereal grains or forages are replaced with soyhulls is needed to better understand and predict the production of dairy cows fed diets containing the hulls. This knowledge is essential for maximizing the use of soyhulls in diets for dairy cows.
Collapse
Affiliation(s)
- I R Ipharraguerre
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA.
| | | |
Collapse
|
31
|
Ipharraguerre IR, Ipharraguerre RR, Clark JH. Performance of lactating dairy cows fed varying amounts of soyhulls as a replacement for corn grain. J Dairy Sci 2002; 85:2905-12. [PMID: 12487458 DOI: 10.3168/jds.s0022-0302(02)74378-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fifteen multiparous Holstein cows averaging 112 d in milk were used in a replicated 5 x 5 Latin square to evaluate the incremental substitution of soyhulls for corn in the diet. Diets contained 23% alfalfa silage, 23% corn silage, and 54% concentrate on a dry matter basis. Pelleted soyhulls replaced corn in the concentrate to supply 0, 10, 20, 30, or 40% of the dietary dry matter. Dry matter intake decreased linearly as soyhulls replaced corn in the diet, but the major decrease in dry matter intake occurred when soyhulls provided 30 and 40% of the dietary dry matter. Intakes of both acid and neutral detergent fiber increased linearly as soyhulls increased from 0 to 40% of dietary dry matter. Production of milk tended to decrease when soyhulls supplied 40% of the dietary dry matter. Production of 3.5% fat-corrected milk, milk crude protein percentage and yield, milk urea N, and total solids yield were not affected by treatments. Production of true protein, but not percentage, tended to decrease by about 5% when soyhulls supplied 40% of the dietary dry matter. Increasing the percentage of soyhulls in the dietary dry matter increased linearly milk fat content and yield, and total solids content in milk. These data suggest that soyhulls can successfully supply up to about 30% of the dry matter intake of midlactation cows without depressing animal performance. Furthermore, replacing part of the corn with soyhulls in high grain diets may be viable when milk fat has a high monetary value or when soyhulls can be purchased at a more competitive price than grains on a nutrient content basis.
Collapse
Affiliation(s)
- I R Ipharraguerre
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
32
|
Ipharraguerre IR, Shabi Z, Clark JH, Freeman DE. Ruminal fermentation and nutrient digestion by dairy cows fed varying amounts of soyhulls as a replacement for corn grain. J Dairy Sci 2002; 85:2890-904. [PMID: 12487457 DOI: 10.3168/jds.s0022-0302(02)74377-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Five multiparous Holstein cows cannulated in the rumen and duodenum that averaged 63 d in milk were used in a 5 x 5 Latin square design with 14-d periods to evaluate the incremental substitution of soyhulls for corn in the diet. Diets contained 23% alfalfa silage, 23% corn silage, and 54% concentrate on a dry matter (DM) basis. Pelleted soyhulls replaced corn in the concentrate to supply 0, 10, 20, 30, or 40% of the dietary DM. The intakes of DM and organic matter were unaffected by treatments. Intakes of acid detergent fiber and neutral detergent fiber increased linearly, but the intake of nonstructural carbohydrates decreased linearly as soyhulls increased from 0 to 40% of dietary DM. The amount of acid detergent fiber and neutral detergent fiber digested was increased whereas the amount of nonstructural carbohydrate digested was decreased in the rumen, in the lower digestive tract, and in the total digestive tract as soyhulls replaced corn in the diet. Passage to the duodenum of nonammonia N, microbial N, nonammonia nonmicrobial N, total essential amino acids, total nonessential amino acids, and total amino acids were not affected by treatments. Yield of milk (29.5 kg/d) was not affected by treatments in this experiment. In a companion experiment, cows fed the 40% SH diet produced 1.2 kg/day per cow less (P < 0.07) milk than cows fed the control diet which is similar to the 1.3 kg/day per cow less milk produced by cows fed the same 40% SH diet in this experiment. Differences in the source of energy (fiber vs. nonstructural carbohydrates), in the amount of fiber and nonstructural carbohydrates digested, and in the site of digestion in the gastrointestinal tract may cause a shortage of the source and/or amount of energy that is required for maximum milk production in high producing cows when more than 30% of the dietary DM that is supplied as corn is replaced with soyhullss.
Collapse
Affiliation(s)
- I R Ipharraguerre
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| | | | | | | |
Collapse
|