1
|
Górka P, Sliwinski B, Flaga J, Olszewski J, Wojciechowski M, Krupa K, Godlewski MM, Zabielski R, Kowalski ZM. Effect of exogenous butyrate on the gastrointestinal tract of sheep. I. Structure and function of the rumen, omasum, and abomasum. J Anim Sci 2019; 96:5311-5324. [PMID: 30295810 DOI: 10.1093/jas/sky367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/03/2018] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to determine the effect of exogenous butyrate on the structure and selected functions of the stomach in sheep. Eighteen rams (30.8 ± 2.1 kg; 12 to 15 mo of age) were allocated to the study and fed a diet for 14 d without (CTRL) or with sodium butyrate (BUT; 36 g/kg of offered DM). Neither DMI nor initial BW differed between treatments (P ≥ 0.61), but final BW was greater for BUT compared with CTRL (P = 0.03). Butyrate concentration in the reticuloruminal fluid and abomasal digesta was greater for BUT compared with CTRL (P ≤ 0.01), but total short-chain fatty acids (SCFA) concentration, as well as concentration of other SCFA, did not differ between treatments (P ≥ 0.07). Relative to BW, reticuloruminal tissue mass tended (P = 0.09) to be greater and omasal digesta was less (P = 0.02) for BUT compared with CTRL. Dietary butyrate did not affect ruminal papillae length, width, and density nor did it affect ruminal epithelium thickness (P ≥ 0.12) in the ventral sac of the rumen. However, the DM of ruminal epithelium (mg/cm2) tended (P = 0.06) to be greater for BUT compared with CTRL. Omasal and abomasal epithelium thicknesses were greater (P ≤ 0.05) for BUT compared with CTRL. Mitosis-to-apoptosis ratio in the abomasal epithelium was less for BUT compared with CTRL (P = 0.04). Finally, the mRNA expression of peptide transporter 1 in the omasal epithelium was less (P = 0.02) and mRNA expression of monocarboxylate transporter 1 in the abomasal epithelium tended (P = 0.07) to be greater for BUT compared with CTRL. It can be concluded that exogenous butyrate supplementation affected not only the rumen but also omasum and abomasum in sheep.
Collapse
Affiliation(s)
- Pawel Górka
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza, Krakow, Poland
| | - Bogdan Sliwinski
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, ul. Krakowska, Balice, Poland
| | - Jadwiga Flaga
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza, Krakow, Poland
| | - Jaroslaw Olszewski
- Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, ul. Nowoursynowska, Warszawa, Poland
| | - Marcin Wojciechowski
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza, Krakow, Poland
| | - Klaudia Krupa
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza, Krakow, Poland
| | - Michal M Godlewski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, ul. Nowoursynowska, Warszawa, Poland
| | - Romuald Zabielski
- Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, ul. Nowoursynowska, Warszawa, Poland
| | - Zygmunt M Kowalski
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza, Krakow, Poland
| |
Collapse
|
3
|
Bugaut M. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1987; 86:439-72. [PMID: 3297476 DOI: 10.1016/0305-0491(87)90433-0] [Citation(s) in RCA: 177] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Short chain fatty acids (SCFA) also named volatile fatty acids, mainly acetate, propionate and butyrate, are the major end-products of the microbial digestion of carbohydrates in the alimentary canal. The highest concentrations are observed in the forestomach of the ruminants and in the large intestine (caecum and colon) of all the mammals. Butyrate and caproate released by action of gastric lipase on bovine milk triacylglycerols ingested by preruminants or infants are of nutritional importance too. Both squamous stratified mucosa of rumen and columnar simple epithelium of intestine absorb readily SCFA. The mechanisms of SCFA absorption are incompletely known. Passive diffusion of the unionized form across the cell membrane is currently admitted. In the lumen, the necessary protonation of SCFA anions could come first from the hydration of CO2. The ubiquitous cell membrane process of Na+-H+ exchange can also supply luminal protons. Evidence for an acid microclimate (pH = 5.8-6.8) suitable for SCFA-protonation on the surface of the intestinal lining has been provided recently. This microclimate would be generated by an epithelial secretion of H+ ions and would be protected by the mucus coating from the variable pH of luminal contents. Part of the absorbed SCFA does not reach plasma because it is metabolized in the gastrointestinal wall. Acetate incorporation in mucosal higher lipids is well-known. However, the preponderant metabolic pathway for all the SCFA is catabolism to CO2 except in the rumen wall where about 80% of butyrate is converted to ketone bodies which afterwards flow into bloodstream. Thus, SCFA are an important energy source for the gut mucosa itself.
Collapse
|
4
|
Scaife JR, Tichivangana JZ. Short chain acyl-CoA synthetases in ovine rumen epithelium. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 619:445-50. [PMID: 7407228 DOI: 10.1016/0005-2760(80)90097-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The activation of and interactions between physiological concentration of acetate, propionate, and butyrate are reported. A partially purified shortchain acyl-CoA synthetase has been prepared from ovine rumen epithelium and its kinetic properties characterised. These properties suggest the activation of volatile fatty acids by two short-chain acyl-CoA synthetases. One is capable of activating acetateactivating acetate, propionate and butyrate and the other will only accept butyrate as a substrate.
Collapse
|
9
|
Hodson HH, McGilliard A, Jacobson N, Allen R. Metabolic Role of Rumen Mucosa in Absorption of Butyrate. J Dairy Sci 1965. [DOI: 10.3168/jds.s0022-0302(65)88544-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Spahr S, Holter J, Kesler E. Separation of Organic Acids from Ruminant Blood by the Wiseman-Irvin Method. J Dairy Sci 1963. [DOI: 10.3168/jds.s0022-0302(63)89225-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|