Nishino N, Yoshida M, Shiota H, Sakaguchi E. Accumulation of 1,2-propanediol and enhancement of aerobic stability in whole crop maize silage inoculated with Lactobacillus buchneri.
J Appl Microbiol 2003;
94:800-7. [PMID:
12694444 DOI:
10.1046/j.1365-2672.2003.01810.x]
[Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS
To assess the effects of inoculation of Lactobacillus buchneri on the ensiling properties and aerobic stability of maize silage.
METHODS AND RESULTS
Chopped whole crop maize was ensiled in 0.5 litre airtight polyethylene bottles (0.4 kg per bottle) and in double-layered, thin polyethylene bags (15 kg per bag), with or without inoculation of Lact. buchneri. The silos were stored for two to four months and the chemical composition, microbial numbers and aerobic stability were determined. Inoculation lowered lactic acid and yeasts, and increased acetic acid and pH value, resulting in improved aerobic stability of the silages. Inoculated silages produced 1,2-propanediol, the content of which increased as ensiling was prolonged, and nearly 50 g kg-1 dry matter had accumulated after four months of storage. The effects of inoculation, however, were much less pronounced in silages prepared in bags. Mannitol was found in all silages; the production was lowered by Lact. buchneri treatment and appeared to be unrelated to the accumulation of 1,2-propanediol.
CONCLUSIONS
Inoculation of Lact. buchneri occasionally causes accumulation of 1,2-propanediol in silages without further degradation into propionic acid and 1-propanol.
SIGNIFICANCE AND IMPACT OF THE STUDY
Substantial amounts of 1,2-propanediol could be consumed by ruminants when fed on silages inoculated with Lact. buchneri. In addition to increasing acetic acid, attention needs to be paid to 1,2-propanediol because the two fermentation products might affect the intake and utilization of silage-based diets.
Collapse