1
|
Yang J, Zhang T, Zhang L, Su X. A non-equilibrium dissipation system with tunable molecular fuel flux. NANOSCALE 2024; 16:4219-4228. [PMID: 38334944 DOI: 10.1039/d3nr06136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Cells convert macromolecule fuel into small molecule fuel through energy pathways, including glycolysis, the citric acid cycle, and oxidative phosphorylation. These processes drive vital dissipative networks or structures. Distinct from direct fuel (DF) utilization (directly acquire and utilize small molecule fuel), this macromolecule fuel mechanism is referred to as indirect fuel (IF) utilization, wherein the generation rate of small molecule fuel (fuel flux) can be effectively regulated. Here, we reported a bionic dissipation system with tunable fuel flux based on dynamic DNA nanotechnology. By regulating the rates of strand displacement and enzymatic reactions, we controlled the fuel flux and further tuned the strength of non-equilibrium transient states. Interestingly, we found that within a certain range, the fuel flux was positively correlated with the strength of the transient state. Once saturation was reached, it became negatively correlated. An appropriate fuel flux supports the maintenance of high-intensity non-equilibrium transients. Furthermore, we harnessed the dissipation system with tunable molecular fuel flux to regulate the dynamic assembly and disassembly of AuNPs. Different fuel fluxes resulted in varying assembly and disassembly rates and strengths for AuNPs, accomplishing a biomimetic process of regulating microtubule assembly through the control of fuel flux within living organisms. This work demonstrated a dissipation system with tunable molecular fuel flux, and we envision that this system holds significant potential for development in various fields such as biomimetics, synthetic biology, smart materials, biosensing, and artificial cells.
Collapse
Affiliation(s)
- Jiayu Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Tengfang Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Feng JH, Wei KZ, Gao JP, Xu X. Determination of adenosine phosphates in mouse myocardium tissue by HPLC with UV detection and using porous graphite carbon column. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1145:122110. [PMID: 32315974 DOI: 10.1016/j.jchromb.2020.122110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
A high-performance liquid chromatography (HPLC) method with UV detection was established and validated for the simultaneous determination of adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) in mouse myocardial tissues. After protein precipitation and compound extraction with pre-cooled perchloric acid and the supernatant was centrifuged with the pH value adjusted to 6.5-7.5, the analytes were separated on a porous graphitic carbon LC column (4.6 mm × 100 mm, 5 μm) using gradient elution with a mobile phase of 10 mmol/L borax solution, pH 9.18(A) and acetonitrile-tetrahydrofuran (1:1, v/v) (B). The LC flow rate was 0.8 mL/min; the UV detection wavelength was 254 nm and the column temperature was maintained at 35 °C. ATP, ADP, and AMP were separated and the intra-day relative standard deviations (RSDs) of peak area repeatability were 1.3-2.5% (n = 6). The correlation coefficients of the linearity between UV responses and adenosine phosphate concentrations were larger than 0.9998 in all cases, within concentration ranges of 0.71-91.6 μg/mL for ATP, 1.3-81.5 μg/mL for ADP and 1.69-108.1 μg/mL for AMP. The limits of detection were within 0.17-0.21 μg/mL. The average standard substance spiked-in recoveries were 93.6-104.7% (n = 3). The established HPLC method was successfully applied to quantitate ATP, ADP, and AMP in mouse myocardial tissues.
Collapse
Affiliation(s)
- Jia-Hua Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ke-Zhao Wei
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian-Ping Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xu Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
3
|
Wood KM, Montanholi YR, Fitzsimmons CF, Miller SP, McBride BW, Swanson KC. Characterization and evaluation of residual feed intake measured in mid- to late-gestation mature beef cows and relationships with circulating serum metabolites and linear body measurements. CANADIAN JOURNAL OF ANIMAL SCIENCE 2014. [DOI: 10.4141/cjas2013-165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- K. M. Wood
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Y. R. Montanholi
- Department of Plant and Animal Sciences, Dalhousie University, Truro, Nova Scotia, Canada B2N 5E3
| | - C. F. Fitzsimmons
- Agriculture and Agri-Food Canada, Edmonton, Alberta, Canada T6G 2C8
- Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2C8
| | - S. P. Miller
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - B. W. McBride
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - K. C. Swanson
- Department of Animal Science, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
4
|
Luna R, Duarte A, Weckerly F. Rumen–reticulum characteristics, scaling relationships, and ontogeny in white-tailed deer (Odocoileus virginianus). CAN J ZOOL 2012. [DOI: 10.1139/cjz-2012-0122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Scaling relationships between body mass and gut capacity are valuable to predicting digestive efficiency. Interspecific scaling relationships between body mass and gut capacity have consistently estimated a slope of 1.0; however, intraspecific scaling relationships between body mass and gut capacity have been highly variable. We examined the influence of demands of growth and production on scaling relationships of body mass and rumen–reticulum characteristics in white-tailed deer ( Odocoileus virginianus (Zimmermann, 1780)) because little is known about how juvenile and subadult ruminants accommodate increased digesta masses. We sampled 108 animals over a 2-year period and assessed the influence of body mass, time of kill, crude protein (%), and acid detergent fiber (%) in the rumen, lactation, sex, and back fat on rumen–reticulum organ mass, rumen–reticulum capacity, wet mass of the digesta, and the dry mass of the digesta. Juvenile and subadult white-tailed deer had rumen–reticulum organ masses, capacity, and digesta masses that were similar to adults because body mass and rumen–reticulum scaling relationships all had scalars similar to 1.0. Thus, under the confines of our study, ontogeny plays only a minor role in the physiological characteristics of the rumen–reticulum and the scaling relationships of body mass and rumen–reticulum capacity.
Collapse
Affiliation(s)
- R.S. Luna
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - A. Duarte
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - F.W. Weckerly
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
5
|
McCarthy SD, Waters SM, Kenny DA, Diskin MG, Fitzpatrick R, Patton J, Wathes DC, Morris DG. Negative energy balance and hepatic gene expression patterns in high-yielding dairy cows during the early postpartum period: a global approach. Physiol Genomics 2010; 42A:188-99. [PMID: 20716645 PMCID: PMC3008362 DOI: 10.1152/physiolgenomics.00118.2010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In high-yielding dairy cows the liver undergoes extensive physiological and biochemical changes during the early postpartum period in an effort to re-establish metabolic homeostasis and to counteract the adverse effects of negative energy balance (NEB). These adaptations are likely to be mediated by significant alterations in hepatic gene expression. To gain new insights into these events an energy balance model was created using differential feeding and milking regimes to produce two groups of cows with either a mild (MNEB) or severe NEB (SNEB) status. Cows were slaughtered and liver tissues collected on days 6–7 of the first follicular wave postpartum. Using an Affymetrix 23k oligonucleotide bovine array to determine global gene expression in hepatic tissue of these cows, we found a total of 416 genes (189 up- and 227 downregulated) to be altered by SNEB. Network analysis using Ingenuity Pathway Analysis revealed that SNEB was associated with widespread changes in gene expression classified into 36 gene networks including those associated with lipid metabolism, connective tissue development and function, cell signaling, cell cycle, and metabolic diseases, the three most significant of which are discussed in detail. SNEB cows displayed reduced expression of transcription activators and signal transducers that regulate the expression of genes and gene networks associated with cell signaling and tissue repair. These alterations are linked with increased expression of abnormal cell cycle and cellular proliferation associated pathways. This study provides new information and insights on the effect of SNEB on gene expression in high-yielding Holstein Friesian dairy cows in the early postpartum period.
Collapse
Affiliation(s)
- S D McCarthy
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Mellows Campus, Athenry, County Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Cramp RL, Kayes SM, Meyer EA, Franklin CE. Ups and downs of intestinal function with prolonged fasting during aestivation in the burrowing frog, Cyclorana alboguttata. J Exp Biol 2009; 212:3656-63. [DOI: 10.1242/jeb.027748] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SUMMARY
Although green striped burrowing frogs (Cyclorana alboguttata)experience large reductions in the mass and absorptive surface area of the small intestine (SI) during aestivation, little is known about how this may affect the functional capacity of the SI. We examined changes in the function(l-proline uptake rate and capacity) and metabolism of the SI(in vitro oxygen consumption, Na+/K+-ATPase activity and abundance) of C. alboguttata following 6 months of aestivation. l-Proline uptake rate was significantly higher in aestivating frogs, but overall uptake capacity was lower than in active frogs. Total SI oxygen consumption rate (VO2) was also lower in aestivating frogs, despite no difference in mass-specific V̇O2. The proportion of intestinal V̇O2 associated with Na+/K+-ATPase activity and protein synthesis was equivalent between active and aestivating frogs, suggesting these processes were unaffected by aestivation. Indeed, the activity of Na+/K+-ATPase transporters in the SI of aestivating frogs was not different from that of active animals. Aestivating frogs maintained Na+/K+-ATPase activity, despite experiencing a reduction in the density of Na+/K+-ATPase transporters, by increasing the molecular activity of the remaining pumps to 2–3 times that of active frogs. These results show that functionality of the SI is maintained at the cellular level, potentially facilitating the reclamation of nutrients from the intestinal lumen while in aestivation. Despite this, the functional capacity of the SI in aestivating C. alboguttata is significantly reduced due to a reduction in tissue mass,helping frogs to conserve energy while in aestivation.
Collapse
Affiliation(s)
- Rebecca L. Cramp
- School of Biological Sciences, The University of Queensland, St Lucia,Queensland, 4072 Australia
| | - Sara M. Kayes
- School of Biological Sciences, The University of Queensland, St Lucia,Queensland, 4072 Australia
| | - Edward A. Meyer
- School of Biological Sciences, The University of Queensland, St Lucia,Queensland, 4072 Australia
| | - Craig E. Franklin
- School of Biological Sciences, The University of Queensland, St Lucia,Queensland, 4072 Australia
| |
Collapse
|
7
|
Ramsey JJ, Hagopian K. Energy expenditure and restriction of energy intake: could energy restriction alter energy expenditure in companion animals? J Nutr 2006; 136:1958S-1966S. [PMID: 16772468 DOI: 10.1093/jn/136.7.1958s] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The treatment of obesity in companion animals frequently focuses on restriction of energy intake. One important question with this treatment is whether dietary energy restriction (ER) produces a sustained decrease in mass-adjusted energy expenditure (EE), which prevents further weight loss and promotes rapid regain of body weight during lapses in dietary ER. This review summarizes studies that investigated the effects of dietary ER on EE at the whole-animal, organ, and cellular level. Whole-animal studies indicate that long-term dietary ER either decreases or does not affect mass-adjusted EE. The reason for this discrepancy between studies is not entirely clear, although analysis of data pooled from multiple studies suggests that a reduction in mass-adjusted EE with long-term ER would be observed if the sample size were sufficiently large and appropriate methods were used to adjust EE for body size. At the organ level, attempts were made to determine whether alterations in organ mass can entirely explain changes in EE with dietary ER. However, these studies were not conclusive, and it remains to be determined whether changes in EE exceed those that would be predicted from ER-induced alterations in organ mass. At the cellular level, there is evidence that dietary ER may induce sustained decreases in substrate oxidation, mitochondrial proton, and Na+-K+-ATPase activity in at least some tissues. These results are consistent with the idea that dietary ER may induce decreases in cellular EE. However, future studies integrating measurements at the whole-animal, organ, and cellular level will be required to determine definitively whether dietary ER produces sustained decreases in tissue or cellular EE.
Collapse
Affiliation(s)
- Jon J Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
8
|
Stronge AJH, Sreenan JM, Diskin MG, Mee JF, Kenny DA, Morris DG. Post-insemination milk progesterone concentration and embryo survival in dairy cows. Theriogenology 2005; 64:1212-24. [PMID: 16125563 DOI: 10.1016/j.theriogenology.2005.02.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Indexed: 11/15/2022]
Abstract
Logistic regression analysis was used to evaluate the relationship between post-insemination milk progesterone concentration and embryo survival, and between milk yield and milk progesterone concentration. Milk samples were collected on Days 1, 4, 5, 6, and 7 (insemination=Day 0) following 871 inseminations in spring-calving dairy cows. Milk progesterone concentrations were measured by enzyme-immunoassay and pregnancy diagnosis was conducted with transrectal ultrasonography at approximately Day 30. There was a negative linear relationship (P<0.01) between milk progesterone concentration on Day 4 and embryo survival while, in contrast, there was a positive linear and quadratic relationship between milk progesterone concentration on Days 5, 6 and 7 (P<0.05) and also between the rate of change in progesterone concentrations between Days 4 and 7 inclusive and embryo survival (P<0.05). There was a weak negative linear relationship between average daily milk yield at the time of insemination and milk progesterone concentrations (P<0.001). There was no association between many production parameters, including liveweight and body condition score measured at various stages between calving and insemination, and milk progesterone concentration between Days 4 and 7 inclusive (P>0.05). In conclusion, low progesterone during Days 5-7 (after insemination) was associated with low fertility in dairy cows and there were indications of a range of progesterone concentrations within which embryo survival was maximal.
Collapse
Affiliation(s)
- A J H Stronge
- Animal Reproduction Department, Teagasc Research Centre, Athenry, Co., Galway, Ireland
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Energy restriction (ER), without malnutrition, increases maximum life span and retards the development of a broad array of pathophysiological changes in laboratory rodents. The mechanism responsible for the retardation of aging by ER is, however, unknown. One proposed explanation is a reduction in energy expenditure (EE). Reduced EE may increase life span by decreasing the number of oxygen molecules interacting with mitochondria, thereby lowering reactive oxygen species (ROS) production. As a step toward testing this hypothesis, it is important to determine the effect of ER on EE. Several whole-body, organ, and cellular studies have measured the influence of ER on EE. In general, whole-body studies have reported an acute decrease in mass-adjusted EE that disappears with long-term ER. Organ-specific studies have shown that decreases in EE of liver and gastrointestinal tract are primarily responsible for initial reductions in EE with ER. These data, however, do not determine whether cellular EE is altered with ER. Three major processes contributing to resting EE at the cellular level are mitochondrial proton leak, Na(+)-K(+)-ATPase activity, and protein turnover. Studies suggest that proton leak and Na(+)-K(+)-ATPase activity are decreased with ER, whereas protein turnover is either unchanged or slightly increased with ER. Thus, two of the three major processes contributing to resting EE at the cellular level may be decreased with ER. Although additional cellular measurements are needed, the current results suggest that a lowering of EE could be a mechanism for the action of ER.
Collapse
Affiliation(s)
- J J Ramsey
- Wisconsin Regional Primate Research Center, Madison, WI 53715-1299, USA.
| | | | | |
Collapse
|
10
|
Klein M, Schadereit R, Küchenmeister U. Energy metabolism and thyroid hormone levels of growing rats in response to different dietary proteins--soy protein or casein. ARCHIV FUR TIERERNAHRUNG 2000; 53:99-125. [PMID: 10849866 DOI: 10.1080/17450390009381941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Energy balances were measured by indirect calorimetry in four experiments on male growing rats, fed restrictively on isoenergetic and isonitrogenous (10% CP) diets based on either casein supplemented with methionine, or soy protein isolate (experiments 1, 2 and 3) and soy protein isolate supplemented with methionine (experiment 0), respectively. At the end of experiments the rats were killed for body analysis and determination of thyroid hormones and lipids in blood as well as mitochondrial respiration in liver and heart. Feeding of non-supplemented soy protein resulted in a lower efficiency of energy utilisation as well as a lower protein utilisation compared to casein-fed and supplemented soy protein-fed rats. Chemical body composition was not markedly different between the dietary groups. After long-term feeding of soy protein (experiment 3) mass and mitochondrial protein content of the interscapular brown adipose tissue were increased compared to casein-fed rats. Serum thyroid hormone levels were not changed (T3 and free T3) or were significantly lowered (T4 and free T4) following soy protein feeding in comparison with casein feeding (except for experiment 2). Cholesterol and triglycerides were decreased on an average in response to soy protein or supplemented soy protein feeding. In two of three experiments a significant lower efficiency of hepatic mitochondrial respiration with succinate as substrate, expressed by the ratio of added ADP to oxygen consumed, was observed in soy protein-fed rats compared to casein-fed rats.
Collapse
Affiliation(s)
- M Klein
- Department of Nutritional Physiology Oskar Kellner, Research Institute for the Biology of Farm Animals Dummerstorf-Rostock, Germany
| | | | | |
Collapse
|
11
|
Morgan JD, Iwama GK. Energy cost of NaCl transport in isolated gills of cutthroat trout. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R631-9. [PMID: 10484478 DOI: 10.1152/ajpregu.1999.277.3.r631] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Few studies have made direct estimates of the energy required for ion transport in gills of freshwater (FW) and seawater (SW) fish. Oxygen consumption was measured in excised gill tissue of FW-adapted cutthroat trout (Oncorhynchus clarki clarki) to estimate the energy cost of NaCl transport in that osmoregulatory organ. Ouabain (0.5 mM) and bafilomycin A1 (1 microM) were used to inhibit the Na+-K+ and H+ pumps, respectively. Both inhibitors significantly decreased gill tissue oxygen consumption, accounting for 37% of total tissue respiration. On a whole mass basis, the cost of NaCl uptake in the FW trout gill was estimated to be 1.8% of whole animal oxygen uptake. An isolated, saline-perfused gill arch preparation was also used to compare gill energetics in FW- and SW-adapted trout. The oxygen consumption of FW gills was significantly (33%) higher than SW gills. On a whole animal basis, total gill oxygen consumption in FW and SW trout accounted for 3.9 and 2.4% of resting metabolic rate, respectively. The results of both experiments suggest that the energy cost of NaCl transport in FW and SW trout gills represents a relatively small (<4%) portion of the animal's total energy budget.
Collapse
Affiliation(s)
- J D Morgan
- Department of Animal Science, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| | | |
Collapse
|
12
|
Abstract
Sixty-five multiparous Holstein cows were used to test the effects of feeding diets of varied ruminal carbohydrate availability during the transition period on dry matter intake, blood metabolites, and lactational performance. Cows received total mixed rations containing either cracked corn or steam-flaked corn beginning 28 d prior to expected calving date. At parturition, cows were assigned to a postpartum total mixed ration that contained either cracked corn or steam-flacked corn. Diets were fed until 63 d in milk. No treatment effects on prepartum or postpartum dry matter intake, body weight, and body condition score were observed. Cows fed steam-flaked corn had lower blood urea N concentrations during the prepartum period and lower plasma nonesterified fatty acid concentrations during the prepartum and postpartum periods. Cows fed steam-flaked corn postpartum produced 2.3 kg/d more milk than cows fed cracked corn during the first 63 d in milk. Fat corrected milk showed no treatment effect. Seven cows were used to evaluate treatment effects on ruminal fermentation and digesta kinetics. Prepartum and postpartum treatments had minimal effects on ruminal fermentation. Feeding steam-flaked corn prepartum decreased apparent fiber digestibility and ruminal NH3 N. Feeding steam-flaked corn postpartum decreased the acetate to propionate ratio. Prepartum and postpartum treatments did not affect digesta kinetics. An increase in ruminal carbohydrate availability during the postpartum period enhanced milk production, but had variable results on ruminal fermentation.
Collapse
Affiliation(s)
- H M Dann
- Department of Dairy and Animal Science, Pennsylvania State University, University Park 16802, USA
| | | | | |
Collapse
|
13
|
Morgan JD, Iwama GK, Wilson JM. Oxygen consumption and Na+,K+-ATPase activity of rectal gland and gill tissue in the spiny dogfish,Squalus acanthias. CAN J ZOOL 1997. [DOI: 10.1139/z97-105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxygen consumption was measured in rectal gland and gill tissue of the spiny dogfish (Squalus acanthias) to estimate the energy cost of salt (NaCl) transport in these osmoregulatory organs. Ouabain (0.5 mM) was used to specifically inhibit Na+,K+-ATPase activity and thus the portion of tissue respiration required by the Na+/K+pump. The total mass-specific oxygen consumption of rectal gland tissue (14.2 ± 1.2 μmol O2/(g wet mass∙h)) was significantly higher than measured for the gills (9.6 ± 1.4 μmol O2/(g wet mass∙h)), and ouabain significantly reduced oxygen consumption in both tissues. Ouabain-sensitive oxygen consumption of the rectal gland accounted for 55% of total mass-specific oxygen consumption, compared with 22% for the gill. The higher ion transport capacity of the rectal gland was also evident in Na+,K+-ATPase specific activity measurements of fresh tissue samples, which were sixfold higher in the rectal gland than in the gill. Ouabain-sensitive oxygen consumption was also calculated on the basis of total organ mass to determine the portion of whole-animal oxygen uptake related to organismal NaCl transport. The cost of NaCl secretion was estimated to be 0.5% of standard metabolic rate for the rectal gland compared with 0.14% for the gills, suggesting that this process constitutes a relatively small portion of the total energy budget in the spiny dogfish.
Collapse
|
14
|
Reynolds CK, Harmon DL, Cecava MJ. Absorption and delivery of nutrients for milk protein synthesis by portal-drained viscera. J Dairy Sci 1994; 77:2787-808. [PMID: 7814746 DOI: 10.3168/jds.s0022-0302(94)77220-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The predictability of diet effects on milk composition is limited by the lack of understanding of the metabolic transformations that absorbed nutrients undergo within the portal-drained viscera and liver of high yielding dairy cows. The mass of splanchnic tissues increases dramatically in early lactation, but little is known about the regulation of gut growth and adaptation in early lactation, and further research may provide strategies for optimizing gut adaptation. Glucose is critical for milk synthesis, but portal-drained visceral tissues normally use rather than absorb glucose on a net basis. Dietary starch of low ruminal digestibility increases postruminal starch digestion and decreases net use of glucose by portal-drained viscera slightly, but increases in glucose absorption by portal-drained viscera never account fully for increases in starch disappearance from the small intestine and occur at the expense of VFA absorption. For cows in positive energy balance, greater glucose availability increases tissue energy balance and glucose oxidation, but has little effect on milk or milk protein yield. Similarly, chronic increases in propionate absorption have little effect on milk or milk protein yield. In contrast, casein infusion into the small intestine consistently increases milk and milk protein yield, but the mechanisms responsible remain unclear. There are few data describing the absorption and metabolism of AA by splanchnic tissues of lactating dairy cows, but, as for glucose and VFA, utilization of many AA by portal-drained viscera is substantial. In addition, the contribution of peptides to AA absorption and transport is uncertain and must be clarified. Therefore, measurements of nutrient disappearance from the lumen of the gut cannot be equated with nutrient appearance in the portal vein. Data describing metabolism of nutrients by portal-drained viscera and liver of high yielding dairy cows are needed to improve feeding standards.
Collapse
Affiliation(s)
- C K Reynolds
- USDA, Agricultural Research Service, Ruminant Nutrition Laboratory, Beltsville, MD 20705
| | | | | |
Collapse
|
15
|
Keery C, Amos H. Effects of Source and Level of Undegraded Intake Protein on Nutrient Use and Performance of Early Lactation Cows. J Dairy Sci 1993. [DOI: 10.3168/jds.s0022-0302(93)77370-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|