1
|
Nejati A, Shepley E, Dallago G, Vasseur E. Investigating the impact of 1 hour of daily outdoor access on the gait and hoof health of nonclinically lame cows housed in a movement-restricted environment. JDS COMMUNICATIONS 2024; 5:484-489. [PMID: 39310842 PMCID: PMC11410483 DOI: 10.3168/jdsc.2023-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/14/2024] [Indexed: 09/25/2024]
Abstract
Tiestalls, known for restrictive housing, can reduce cows' locomotor skills over time. While outdoor access benefits clinically lame cows, its effect on nonclinically lame cows is less known. This study evaluated 1 h daily outdoor access on gait and hoof health of nonclinically lame Holstein cows in tiestalls. Thirty cows, blocked by parity and DIM, were assigned to exercise (1 h outdoor access 5 d/wk for 5 wk) or nonexercise groups. Visual scoring assessed 6 gait attributes and overall gait (on scales of 0-5 and 1-5, respectively) at pre-trial, post-trial, and 8-wk follow-up stages. A total of 15 cows (9 exercise, 6 nonexercise) underwent visual gait scoring, with logistical challenges and exclusion criteria leading to this selection. Hoof health for all 30 cows was evaluated during pre-trial and follow-up hoof trims, documenting claw lesions. Hoof thermography captured dorsal coronary band views in wk 1 and 5. No significant gait score changes were observed, but exercise cows showed a 1-point improvement in overall gait score and 3 gait attributes after 5 wk of outdoor access, which persisted at follow-up. Sole hemorrhages were the only claw lesions observed, and their prevalence and severity remained consistent between pre-trial and follow-up for both groups. Thermography showed consistent coronary band temperature metrics across groups and over time. In conclusion, brief outdoor sessions resulted in noticeable, albeit not statistically significant, improvements in the gait of nonclinically lame cows in restrictive housing settings without adverse hoof health effects. Further studies should evaluate different outdoor access benefits and use precise gait and hoof health analysis technologies for a more accurate detection of subtle changes.
Collapse
Affiliation(s)
- A. Nejati
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada, H9X 3V9
| | - E. Shepley
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108
| | - G.M. Dallago
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - E. Vasseur
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada, H9X 3V9
| |
Collapse
|
2
|
Tuniyazi M, Tang R, Hu X, Zhang N, Shen P. Efficacy of Carbonate Buffer Mixture in Preventing Hoof Lamella Injury Associated with Subacute Ruminal Acidosis in Dairy Goats. Vet Sci 2024; 11:395. [PMID: 39330774 PMCID: PMC11435902 DOI: 10.3390/vetsci11090395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Subacute ruminal acidosis (SARA) is a prevalent metabolic disorder in highly productive dairy cows that results in serious issues, including hoof lamellar injuries. This study aimed to investigate the efficacy of a carbonate buffer mixture (CBM) in preventing hoof lamella injury in dairy goats, a species also susceptible to SARA due to similar feeding practices over a 17-week period. Twenty-four healthy dairy goats were randomly assigned to three groups: control, SARA, and CBM groups. The control group received a standardized diet, whereas the SARA and CBM groups were subjected to a high-grain feeding regimen to induce SARA. The CBM group received a daily supplement of 10 g CBM mixed with their diet. Clinical assessments, including body temperature, rumen pH, inflammatory markers, matrix metalloproteinases (MMPs), and hoof lamellar injuries, were monitored throughout the study. The results showed that the CBM group maintained a more stable rumen pH and had lower levels of inflammatory markers than the SARA group did. The incidence of hoof lamellar injury was slightly lower in the CBM group. These findings suggest that long-term CBM supplementation may mitigate SARA-associated hoof lamella injury in dairy goats by regulating the rumen environment, fostering the growth of healthy bacterial communities, and by reducing the production of harmful metabolites. The use of CBM as a dietary supplement may have significant implications in improving the health, welfare, and productivity of dairy animals.
Collapse
Affiliation(s)
- Maimaiti Tuniyazi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ruibo Tang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Peng Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
3
|
Quille P, Higgins T, Neville EW, Regan K, O’Connell S. Evaluation and Development of Analytical Procedures to Assess Buffering Capacity of Carbonate Ruminant Feed Buffers. Animals (Basel) 2024; 14:2333. [PMID: 39199867 PMCID: PMC11350906 DOI: 10.3390/ani14162333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
The inclusion of rumen buffers in ruminant feeds has gained widespread adoption for the prevention of rumen acidosis, thereby avoiding the negative production and health consequences of low rumen pH and resulting in improved feed efficiency. Benchmarking and quality controlling the performance of rumen buffer materials is of significant interest to feed mills and end-user producers. The aim of this study was to evaluate, develop and optimise a laboratory protocol to consistently and robustly evaluate rumen buffering materials in order to predict their in vivo efficacy. Three different methods were evaluated for determining the buffering potential of carbonate buffer materials: (a) 2 and 8 h static pH, (b) 8 h fixed HCl acid load addition and (c) 3 h acidotic diet simulation using acetic acid. Buffer material, threshold pH, test duration and interactions between all three variables were significant (p < 0.001) in evaluating the performance of the buffer materials. The acidotic diet simulation was found to provide a different ranking of materials to the 8 h fixed HCl acid load methodology. The results highlight the importance of method selection and test parameters for accurately evaluating the potential efficacy of rumen buffer materials.
Collapse
Affiliation(s)
- Patrick Quille
- Shannon Applied Biotechnology Centre, Munster Technological University Kerry, Clash, V92CX88 Tralee, Ireland;
| | - Tommy Higgins
- Marigot Researh Centre, Sycamore Court, Clash, V92 N6C8 Tralee, Ireland
| | - Enda W. Neville
- Celtic Sea Minerals, Strand Farm, Currabinny, P43 NN62 Carrigaline, Ireland
| | - Katy Regan
- Celtic Sea Minerals, Strand Farm, Currabinny, P43 NN62 Carrigaline, Ireland
| | - Shane O’Connell
- Shannon Applied Biotechnology Centre, Munster Technological University Kerry, Clash, V92CX88 Tralee, Ireland;
- Marigot Researh Centre, Sycamore Court, Clash, V92 N6C8 Tralee, Ireland
| |
Collapse
|
4
|
Laven R, Laven L. Measuring hoof horn haemorrhage in heifers: A history. Vet J 2024; 306:106183. [PMID: 38897376 DOI: 10.1016/j.tvjl.2024.106183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Understanding the aetiology and pathogenesis of claw-horn disease (CHD) is essential for developing prevention/treatment programmes. Haemorrhages in the hoof horn (i.e. white line/sole haemorrhages) are an important part of the pathogenesis of CHD, being precursors to and predictors of lesions such as white-line disease and sole ulcer. Understanding haemorrhage development can provide useful information about the aetiology and pathogenesis of CHD. The development of hoof horn haemorrhages is best studied in cattle without previous claw-horn damage, as previous history of damage can markedly alter the hoof's response to stressors. Since the early 1990s, many prospective studies of the risk factors associated with CHD have been undertaken in late pregnant and early lactation heifers, which have a low risk of having had CHD but which are exposed to the same risk factors as lactating cows. Those studies have used a range of methods to assess hoof horn haemorrhages, with the principal focus, particularly initially (but also more recently), being on measuring lesion severity. However, as the science developed it became clear that measuring lesion extent was also important and that combining severity and extent in a single measure was the best approach to assess hoof horn haemorrhages. Studies of hoof horn haemorrhage in heifers have significantly increased our understanding of CHD, demonstrating the importance of housing and the relative lack of importance of post-calving nutrition. Most importantly, they have shown the importance of parturition as a risk factor for CHD, and how parturition interacts with other risk factors to accentuate their effect. The use of such studies has decreased in recent years, despite recent research showing that we still have much to learn from prospective studies of hoof horn haemorrhages in heifers.
Collapse
Affiliation(s)
- Richard Laven
- School of Veterinary Science, Massey University, Palmerston North 4422, New Zealand.
| | - Linda Laven
- School of Veterinary Science, Massey University, Palmerston North 4422, New Zealand
| |
Collapse
|
5
|
Lorenz LM, Volkwein ME, Schmidt C, Lechner M, Kremer-Rücker PV. A Look Inside-Histopathological Examinations of Different Tail Tip Lesions in Dairy Cows. Animals (Basel) 2024; 14:2094. [PMID: 39061556 PMCID: PMC11274084 DOI: 10.3390/ani14142094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Feedlot cattle are frequently affected by inflammation and necrosis of the tail tips, resulting in impeded animal welfare and economic losses. In a recent study, it was demonstrated that dairy cows are also affected by different lesions of the tail tip, including alopecia, annular constrictions, crusting, scaling and swelling. Despite the frequent occurrence of these lesions, the underlying etiology and pathomechanisms are unclear to date. To gain insight into this malady, we histopathologically examined 16 tail tips of slaughtered dairy cows, representing the entire range of different lesions. While macroscopically alopecic areas were characterized by the formation of granulation tissue in the dermis with an inconspicuous epidermis, we found not only dermal granulation tissue but also purulent-necrotizing inflammation with the breakdown of the basement membrane in encrusted lesions. Interestingly, in some cases, we found areas of coagulation necrosis of the epidermal and dermal layers in the crusts. Tails with macroscopical scaling were affected by ortho- and/or parakeratotic hyperkeratosis, and, in tails with macroscopical swelling, we observed a low-protein edema of the central longitudinal connective tissue of the tail. We conclude that the observed lesions might be caused by ischemia of the skin in the distal parts of the tail.
Collapse
Affiliation(s)
- Lea M. Lorenz
- Animal Health and Welfare in Livestock Breeding, Faculty of Agriculture, Food and Nutrition, Hochschule Weihenstephan-Triesdorf, University of Applied Sciences, 91746 Weidenbach-Triesdorf, Germany
| | | | - Christine Schmidt
- Animal Health and Welfare in Livestock Breeding, Faculty of Agriculture, Food and Nutrition, Hochschule Weihenstephan-Triesdorf, University of Applied Sciences, 91746 Weidenbach-Triesdorf, Germany
| | - Mirjam Lechner
- Unabhängige Erzeugergemeinschaft Hohenlohe Franken, 97996 Niederstetten-Adolzhausen, Germany
| | - Prisca V. Kremer-Rücker
- Animal Health and Welfare in Livestock Breeding, Faculty of Agriculture, Food and Nutrition, Hochschule Weihenstephan-Triesdorf, University of Applied Sciences, 91746 Weidenbach-Triesdorf, Germany
| |
Collapse
|
6
|
Kearney CC, Ball RL, Hall MB. Effects of altering diet carbohydrate profile and physical form on zoo-housed giraffe Giraffa camelopardalis reticulata. J Anim Physiol Anim Nutr (Berl) 2024; 108:1119-1133. [PMID: 38590078 DOI: 10.1111/jpn.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Unlike wild giraffe that primarily consume low starch browse, the preference of zoo-housed giraffe for consuming supplemental feeds over forage could increase the risk of digestive disorders such as ruminal acidosis. Our objective was to evaluate the effects of modifying a supplemental feed's non-fibre carbohydrate profile and physical form on nutritional, behavioural, and blood measures of giraffe in a zoological setting. Six non-lactating, adult, female reticulated giraffes were used in a two-pen modified reversal study using two dietary treatments in seven 21-day periods with data collected on days 15-21. Dietary treatments were a control feed comprised of commercially available products used at the time as the giraffe feed (GF) and an unpelleted experimental feed (EF). On a dry matter basis, GF and EF, respectively, contained 17.0% and 17.4% crude protein, 14.2% and 1.5% starch, 14.9% and 21.3% ethanol-soluble carbohydrates, 22.9% and 26.0% acid detergent fibre (ADF) and 9.50% and 14.9% ND-soluble fibre (NDSF), with modulus of fineness values of 3.62 and 4.82. Supplemental feeds, alfalfa hay, salt, and water were available for ad libitum consumption. Significance was declared at p ≤ 0.05. Intakes of hay, supplemental feeds, and total feed did not differ by diet (p > 0.28), though intakes of starch (0.93 and 0.12 kg; p = 0.05) and ADF (1.83 and 2.23 kg; p = 0.04) differed between GF and EF respectively. Giraffe behaviour values (min/48 h) were greater with EF for total eating (p = 0.04); diets were not detected as different for engagement in oral stereotypes (GF = 433, EF = 318 min/48 h; p = 0.22). Blood glucose was higher on GF than EF (99.0 and 82.3 mg/dL; p = 0.03). The lower EF blood glucose value is more similar to ranges reported for domesticated ruminants. No differences were detected for changes in body weight or body condition score in the 21-day periods (p > 0.32). Modification of supplemental feed carbohydrate profile and physical form can influence behaviour and blood glucose values of zoo-housed giraffe.
Collapse
Affiliation(s)
- Celeste C Kearney
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Ray L Ball
- Busch Gardens Tampa, Tampa, Florida, USA
| | - Mary Beth Hall
- U.S. Dairy Forage Research Center, USDA-Agricultural Research Service, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Palhano RLA, Martins RA, Lemos GS, Faleiros RR, da Fonseca LA, Gorza LL, Lopes CEB, Meneses RM, de Carvalho AU, Filho EJF, Moreira TF. Exploring the impact of high-energy diets on cattle: Insights into subacute rumen acidosis, insulin resistance, and hoof health. J Dairy Sci 2024; 107:5054-5069. [PMID: 38460875 DOI: 10.3168/jds.2023-24151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/07/2024] [Indexed: 03/11/2024]
Abstract
Cattle lameness remains a significant concern, causing economic losses and compromising animal welfare. Claw horn lesions have been identified as a major cause of lameness in dairy cows, but their correlation with high-energy diets and ruminal acidosis remains unclear. Hence, the primary objective of this study was to assess the effects of a high-starch diet and a conventional diet on the rumen environment, acute-phase proteins, and metabolic alterations, with a particular focus on insulin resistance and the consequent implications for the histology of the hooves in Holstein steers. A total of 16 animals were divided into the high-starch (HS; 37% starch) and conventional (CON; 16.8% starch) groups. Glucose tolerance tests (GTT), blood analyses, rumen fluid analyses, and histological evaluations of the hoof tissue were conducted over a 102-d experimental period. The HS group showed a lower ruminal pH than the CON group, and with values indicating SARA. The plasma glucose and IGF-1 concentrations were higher in the HS group, suggesting an anabolic state. Both groups exhibited an increase in the insulin area under the curve (AUC) after the GTT on d 102. Histological analysis of the hooves showed a reduction in the length and width of the epidermal lamella in both groups. We found a significant negative correlation between the insulin AUC and the length and width of the epidermal lamella. Because both groups were similarly affected, the hypothesis that histological alterations were caused by the experimental diets still needs confirmation. Additionally, the development of SARA was not essential for the observed histological changes in the hoof. Further studies are warranted to thoroughly investigate the role of insulin and IGF-1 imbalances in claw health.
Collapse
Affiliation(s)
- Rodrigo L A Palhano
- Veterinary Clinic and Surgery Department, Veterinary School, Universidade Federal de Minas Gerais, Minas Gerais 31270-901, Brazil
| | - Ronaldo A Martins
- Veterinary Clinic and Surgery Department, Veterinary School, Universidade Federal de Minas Gerais, Minas Gerais 31270-901, Brazil
| | - Guilherme S Lemos
- Veterinary Clinic and Surgery Department, Veterinary School, Universidade Federal de Minas Gerais, Minas Gerais 31270-901, Brazil
| | - Rafael R Faleiros
- Veterinary Clinic and Surgery Department, Veterinary School, Universidade Federal de Minas Gerais, Minas Gerais 31270-901, Brazil; Equinova Research Group, Universidade Federal de Minas Gerais, Minas Gerais 31270-901, Brazil
| | - Leandro A da Fonseca
- Veterinary Departament, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Leonardo L Gorza
- Veterinary Clinic and Surgery Department, Veterinary School, Universidade Federal de Minas Gerais, Minas Gerais 31270-901, Brazil
| | - Carlos E B Lopes
- Veterinary Clinic and Surgery Department, Veterinary School, Universidade Federal de Minas Gerais, Minas Gerais 31270-901, Brazil
| | - Rodrigo M Meneses
- Veterinary Clinic and Surgery Department, Veterinary School, Universidade Federal de Minas Gerais, Minas Gerais 31270-901, Brazil
| | - Antônio U de Carvalho
- Veterinary Clinic and Surgery Department, Veterinary School, Universidade Federal de Minas Gerais, Minas Gerais 31270-901, Brazil
| | - Elias J F Filho
- Veterinary Clinic and Surgery Department, Veterinary School, Universidade Federal de Minas Gerais, Minas Gerais 31270-901, Brazil
| | - Tiago F Moreira
- Veterinary Clinic and Surgery Department, Veterinary School, Universidade Federal de Minas Gerais, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
8
|
Zhang H, Shi H, Xie W, Meng M, Wang Y, Ma N, Chang G, Shen X. Subacute ruminal acidosis induces pyroptosis via the mitophagy-mediated NLRP3 inflammasome activation in the livers of dairy cows fed a high-grain diet. J Dairy Sci 2024; 107:4092-4107. [PMID: 38278294 DOI: 10.3168/jds.2023-23718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/23/2023] [Indexed: 01/28/2024]
Abstract
High-grain (HG) feeding can trigger subacute ruminal acidosis (SARA) and subsequent liver tissue injury. This study investigated pyroptosis and NLRP3 inflammasome activation in SARA-induced liver injury, and the role of mitophagy during this process. Twelve mid-lactating Holstein cows equipped with rumen fistulas were randomly divided into 2 groups: a low-grain (LG) diet group (grain:forage = 4:6) and a HG diet group (grain:forage = 6:4). Each group had 6 cows. The experiment lasted for 3 wk. The ruminal fluid was collected through the rumen fistula on experimental d 20 and 21, and the pH immediately measured. At the end of the experiment, all animals were slaughtered, and peripheral blood and liver tissue were collected. The ruminal pH was lower in the HG group than that in the LG group at all time points. In addition, the ruminal pH in the HG group was lower than 5.6 at 3 consecutive time points after feeding (4, 6, and 8 h on d 20; 2, 4, and 6 h on d 21), indicating that HG feeding induced SARA. The content of lipopolysaccharide, IL-1β, and apoptosis-related cysteine protease 1 (caspase-1) and the activity of alanine aminotransferase and aspartate aminotransferase in the blood plasma of the HG group were all significantly increased. Hepatic caspase-1 activity was increased in the livers of the HG group. The increased expression levels of pyroptosis- and NLRP3 inflammasome-related genes IL1B, IL18, gasdermin D (GSDMD), apoptosis-associated speck-like protein containing a card (ASC), NLR family pyrin domain-containing 3 (NLRP3), and caspase-1 (CASP1) in liver tissue of the HG group were detected. Furthermore, western blot analysis showed that HG feeding led to increased expression of pyroptosis- and NLRP3 inflammasome-related proteins GSDMD N-terminal (GSDMD-NT), IL-1β, IL-18, cleaved-caspase-1, ASC, NLRP3, and cleaved-caspase-11 and upregulated expression of mitophagy-related proteins microtubule-associated protein 1 light chain 3 II (MAP1LC3-II), beclin 1 (BECN1), Parkin, and PTEN-induced kinase 1 (PINK1) in liver tissue. Collectively, our results revealed that SARA caused increased mitophagy and activated the NLRP3 inflammasome, causing pyroptosis and subsequent liver injury in dairy cows fed a HG diet.
Collapse
Affiliation(s)
- Hongzhu Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Huimin Shi
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Wan Xie
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Meijuan Meng
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Yan Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
9
|
Panneerselvam S, Palanisamy V, Balasubramaniam M, Palanisamy S, Jaganathan M, Kannan TA. Effect of nonstructural carbohydrates on production performance, rumen metabolism and rumen health in lambs fed with isocaloric and isonitrogenous complete diets. Trop Anim Health Prod 2024; 56:181. [PMID: 38822166 DOI: 10.1007/s11250-024-04029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
Nonstructural carbohydrates (NSC) are readily fermentable in the rumen and, are a critical factor while preparing protracted feed for higher animal performance. Four isocaloric and isonitrogenous complete feeds were prepared for this investigation to contain varying levels of nonstructural carbohydrates viz., 40.13 (NSC1), 45.21 (NSC2), 50.00 (NSC3) and 55.85 (NSC4) per cent, respectively. The four isocaloric and isonitrogenous complete feeds were tested in 32 Mecheri ram lambs (around three months of age) in a completely randomised block design (n = 8), and the lambs were fed their respective feed for six months. The study revealed that the increased NSC level in the complete diet increased the body weight and weight gain linearly (P < 0.05). The dietary NSC level affected the dry matter consumption in a quadratic manner (P < 0.05) and the lambs of the NSC4 group consumed significantly (P < 0.05) less DM compared to other dietary groups. The overall average feed conversion efficiency differed significantly (P < 0.05) among dietary groups. The correlation between dietary NSC level and faecal score was quadratic (r2 = 62.7, P < 0.05). The rumen pH, total nitrogen and NH3-N concentration were linearly decreased (P < 0.05) and the molar proportion of total short-chain fatty acids and propionic acid were increased (P < 0.05). The energy loss expressed as methane production was significantly (P < 0.01) lower for the high NSC diet-fed lambs. The lambs fed on a low NSC diet had significantly (P < 0.05) lower carcass weights, dressing percentage and loin eye area. The per cent share of rumen weight in the total fore stomach and the rumen papillae measurements length, width and surface area were significantly (P < 0.05) higher in high NSC diet-fed lambs. Increased levels of NSC in the diet increased (P < 0.05) fat deposition in the internal organs. The saturated fatty acids content in the meat was significantly (P < 0.05) lowered, whereas, the oleic acid and linoleic acid were increased (P < 0.05) as the NSC level increased in the diet. The study revealed that as the level of NSC increased in the complete diet there was a concomitant improvement in the final body weight, ADG and feed efficiency of post-weaned Mecheri lambs. It can therefore be recommended that the complete feed with 50 per cent NSC levels would be optimum to reap maximum returns from fattening Mecheri lambs.
Collapse
Affiliation(s)
| | - Vasan Palanisamy
- Veterinary College and Research Institute, Namakkal, Tamil Nadu, India.
- Department of Animal Nutrition, Veterinary College and Research Institute, Namakkal, Tamil Nadu, India.
| | - Mohan Balasubramaniam
- Controller of Examinations, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Selvaraj Palanisamy
- Department of Veterinary Physiology, Veterinary College and Research Institute, Namakkal, India
| | | | | |
Collapse
|
10
|
Zhang Y, Mgeni M, Xiu Z, Chen Y, Chen J, Sun Y. Effects of Dandelion Extract on Promoting Production Performance and Reducing Mammary Oxidative Stress in Dairy Cows Fed High-Concentrate Diet. Int J Mol Sci 2024; 25:6075. [PMID: 38892271 PMCID: PMC11172500 DOI: 10.3390/ijms25116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
This study investigated the effects of rumen bypass dandelion extract on the lactation performance, immune index, and mammary oxidative stress of lactating dairy cows fed a high-concentrate diet. This study used a complete randomized block design, and initial milk production, somatic cell counts, and parities were set as block factors. Sixty Holstein cows with similar health conditions and lactating periods (70 ± 15 d) were divided into three groups with 20 replicates per group. The treatments included the LCD group (low-concentrate diet, concentrate-forage = 4:6), HCD group (high-concentrate group, concentrate-forage = 6:4), and DAE group (dandelion aqueous extract group, HCD group with 0.5% DAE). The experimental period was 35 d, and cows were fed three times in the morning, afternoon, and night with free access to water. The results showed the following: (1) Milk production in the HCD and DAE groups was significantly higher (p < 0.05) than that in the LCD group from WK4, and the milk quality differed during the experimental period. (2) The HCD group's pH values significantly differed (p < 0.01) from those of the LCD and DAE groups. (3) In WK2 and WK4 of the experimental period, the somatic cell counts of dairy cows in the HCD group were significantly higher (p < 0.05) than those in the DAE group. (4) The serum concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and protein carbonyl (PC) in the HCD group were significantly higher (p < 0.05) than those in the LCD group. The activity of catalase (CAT) in the LCD and DAE groups was stronger (p < 0.01) than that in the HCD group. (5) The correlation analysis revealed significantly positive correlations between the plasma LPS concentration and serum concentrations of 8-OHdG (p < 0.01), PC (p < 0.01), and malondialdehyde (MDA, p < 0.05) and significantly negative correlations (p < 0.01) between the plasma LPS concentration and activities of CAT and superoxide dismutase. (6) Compared with that in the HCD and DAE groups, the mRNA expression of α, β, and κ casein and acetyl CoA carboxylase in bovine mammary epithelial cells was significantly higher (p < 0.05) in the LCD group, and the mRNA expression of fatty acid synthetase and stearoyl CoA desaturase in the LCD group was significantly higher (p < 0.01) than that in the HCD group. (7) Compared with that in the LCD and HCD groups, the mRNA expression of Nrf2 was significantly higher (p < 0.01) in the DAE group, and the mRNA expression of cystine/glutamate transporter and NAD (P) H quinone oxidoreductase 1 in the DAE group was significantly higher (p < 0.05) than that in the HCD group. Overall, feeding a high-concentrate diet could increase the milk yield of dairy cows, but the milk quality, rumen homeostasis, and antioxidative capability were adversely affected. The supplementation of DAE in a high-concentrate diet enhanced antioxidative capability by activating the Nrf2 regulatory factor and improved rumen homeostasis and production performance.
Collapse
Affiliation(s)
| | | | | | | | | | - Yawang Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (Y.Z.); (Z.X.)
| |
Collapse
|
11
|
Linder HF, Berger LL, McCann JC. Effect of acidosis in the late-finishing phase on rumen fermentation in feedlot steers. Transl Anim Sci 2024; 8:txae084. [PMID: 38827161 PMCID: PMC11143494 DOI: 10.1093/tas/txae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024] Open
Abstract
The objective was to determine the effects of induced acidosis in the late-finishing phase on rumen fermentation in feedlot steers. Eleven ruminally cannulated steers (body weight [BW] = 795 kg ± 54) were blocked into two groups based on initial BW. For 195 d prior to the start of the study, cattle were consuming a basal finishing diet (60% dry-rolled corn, 15% modified distillers grains, 15% corn silage, and 10% ground corn-based supplement). Steers were randomly assigned to one of the two treatments: control (CON), or induced acidosis (ACD). Both treatments were fasted for 24 h then fed the basal finishing diet. Steers on the ACD treatment received 0.05% of BW of wheat starch via rumen cannula at 0800 and 2000 hours on day 1 and ad libitum refeeding following the fast. On days 1 and 2, CON steers were provided 25% of allotted feed every 6 h. Rumen fluid was collected every 4 h during the challenge period (hours 0 to 48), and 0, 6, and 12 h after feeding during the recovery period (hours 54 to 96). Rumen fluid was analyzed for pH, ammonia, volatile fatty acids (VFA), and lactate. Fecal grab samples were collected every 8 h to determine fecal pH. A treatment × day interaction (P = 0.03) was observed for dry matter intake during the challenge period with steers on the ACD treatments consuming more on day 1 than CON steers. Intake was not different on day 2 (P = 0.88). A treatment × hour effect (P < 0.01) was observed for ruminal pH during the challenge period with the ACD steers having a lesser pH than CON from hours 12 to 32. Duration of time below a pH of 5.6 during the challenge period was greater (P < 0.01) for ACD steers than CON. During the challenge period, a treatment × time interaction (P = 0.04) was observed for total VFA concentration with ACD steers having greater total VFA concentration from hours 12 to 36. Acetate to propionate ratio (A:P) was affected by treatment × hour (P = 0.04) with CON steers having greater A:P from hours 28 to 48. Rumen ammonia and lactate concentrations did not differ (P ≥ 0.25) between treatments or the interaction with time. Challenge and recovery period fecal pH were not affected (P ≥ 0.13) by treatment, time, or their interaction. Recovery period ruminal pH was not different (P = 0.99) between treatments. For the recovery period, total VFA and ammonia concentration were not affected by treatment, time, or their interaction (P ≥ 0.07). Ruminal pH and VFA were affected in the initial 48 h of induced acidosis in the late-finishing phase.
Collapse
Affiliation(s)
- Haley F Linder
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Larry L Berger
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joshua C McCann
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
MIZUGUCHI H, EGUCHI N, IKUTA K, SATO S, UYENO Y, TAN K, KUSHIBIKI S. Effects of pellet starch levels in automatic milking systems on rumen fermentation, plasma metabolites, and milk production in mid-lactation cows. J Vet Med Sci 2024; 86:542-549. [PMID: 38583986 PMCID: PMC11144542 DOI: 10.1292/jvms.23-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
The aim of this study was to evaluate whether the starch levels in pellets fed to cows in automatic milking systems (AMS) affect subacute ruminal acidosis (SARA) occurrence and metabolite parameters. Twenty-four lactating cows (124.4 ± 49.9 days in milk) were studied in a crossover design with two periods of 21 days each and two treatment groups-a control group fed AMS pellets containing 30.0% of starch dry matter (DM) and an experimental group fed AMS pellets containing 23.5% of starch DM. All cows received the same partial mixed ration (PMR). The 1-hr mean ruminal pH in both groups decreased over 4 hr after feeding on PMR but recovered by the next morning. The ruminal pH was unaffected by either treatment, and both groups developed SARA. The groups had no significant differences in the concentrations of ruminal volatile fatty acids, lipopolysaccharides, plasma acute-phase proteins, other metabolites, and hormones. The milk yield and composition were not different in both groups. Feeding low-starch pellets in the AMS did not contribute to the risk of SARA occurrence in cows and had no additive effects on rumen fermentation, plasma metabolites, or milk production.
Collapse
Affiliation(s)
- Hitoshi MIZUGUCHI
- DKK-Toa Yamagata Corporation, Yamagata, Japan
- Graduate School of Science and Technology, Degree Programs in Life and Earth Sciences, Degree Program in Agricultural Sciences, Subprogram in Advanced
Agricultural Technology and Science cooperated with NARO, Tsukuba University, Ibaraki, Japan
| | | | - Kentarou IKUTA
- Awaji Agricultural Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Hyogo, Japan
| | - Shigeru SATO
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate, Japan
| | - Yutaka UYENO
- Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Kei TAN
- Yamagata Prefectural Syonai Livestock Hygiene Division, Yamagata, Japan
| | - Shiro KUSHIBIKI
- Graduate School of Science and Technology, Degree Programs in Life and Earth Sciences, Degree Program in Agricultural Sciences, Subprogram in Advanced
Agricultural Technology and Science cooperated with NARO, Tsukuba University, Ibaraki, Japan
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| |
Collapse
|
13
|
Gao Q, He J, Wang J, Yan Y, Liu L, Wang Z, Shen W, Wan F. Effects of dietary D-lactate levels on rumen fermentation, microflora and metabolomics of beef cattle. Front Microbiol 2024; 15:1348729. [PMID: 38380091 PMCID: PMC10877051 DOI: 10.3389/fmicb.2024.1348729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction Excessive intake of lactate caused by improper use of silage in animal husbandry has adverse effects on rumen fermentation, such as rumen acidosis. The speed of absorption and metabolism of D-lactate in rumen epithelial cells was slower than that of L-lactate, making D-lactate more prone to accumulate and induce rumen acidosis. Therefore, this study was conducted to explore the effects of dietary D-lactate levels on rumen fermentation of beef cattle and its mechanism in an in vitro system. Methods This experiment was adopted in single-factor random trial design, with 5 days for adaptation and 3 days for sample collection. Three treatments (n = 8/treatment) were used: (1) D-LA (0.3%), basal fermentation substrate with 0.3% (dry matter, DM basis) D-lactate; (2) D-LA (0.75%), basal fermentation substrate with 0.75% (DM basis) D-lactate; and (3) D-LA (1.2%), basal fermentation substrate with 1.2% (DM basis) D-lactate. Results With the dietary D-lactate levels increased, the daily production of total gas, hydrogen and methane, as well as the ruminal concentrations of acetate, propionate, butyrate, isobutyrate, valerate, isovalerate, total volatile fatty acid and D-lactate increased (p < 0.05), but the ruminal pH and acetate/propionate ratios decreased (p < 0.05). Principle coordinate analysis based on Bray-Curtis distance showed that increasing dietary D-lactate levels could significantly affect the structure of rumen bacterial community (p < 0.05), but had no significant effect on the structure of rumen eukaryotic community (p > 0.05). NK4A214_group, Ruminococcus_gauvreauii_group, Eubacterium_oxidoreducens_group, Escherichia-Shigella, Marvinbryantia and Entodinium were enriched in D-LA (1.2%) group (p < 0.05), as well as WCHB1-41, vadinBE97, Clostridium_sensu_stricto_1, Anaeroplasma and Ruminococcus were enriched in D-LA (0.3%) group (p < 0.05). Changes in the composition of ruminal microorganisms affected rumen metabolism, mainly focus on the biosynthesis of glycosaminoglycans (p < 0.05). Discussion Overall, feeding whole-plant corn silage with high D-lactate content could not induce rumen acidosis, and the metabolization of dietary D-lactate into volatile fatty acids increased the energy supply of beef cattle. However, it also increased the ruminal CH4 emissions and the relative abundance of opportunistic pathogen Escherichia-Shigella in beef cattle. The relative abundance of Verrucomicrobiota and Escherichia-Shigella may be influenced by glycosaminoglycans, reflecting the interaction between rumen microorganisms and metabolites.
Collapse
Affiliation(s)
- Qian Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianfu He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jin Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yonghui Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Lei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Zuo Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
14
|
Voulgarakis N, Gougoulis D, Psalla D, Papakonstantinou G, Katsoulos PD, Katsoulis K, Angelidou-Tsifida M, Athanasiou L, Papatsiros V, Christodoulopoulos G. Can computerized rumen mucosal colorimetry serve as an effective field test for managing subacute ruminal acidosis in feedlot cattle? Vet Res Commun 2024; 48:475-484. [PMID: 37812359 PMCID: PMC10811041 DOI: 10.1007/s11259-023-10231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Subacute ruminal acidosis (SARA) is one of the major nutritional disorders in the dairy and beef industries, leading to significant financial losses. Diagnosing SARA is challenging due to the need to evaluate multiple parameters, such as milk fat/protein ratio, ruminal lactate, and hemogram, instead of relying on a single definitive symptom or diagnostic method. This study aimed to evaluate the effectiveness of computerized rumen colorimetry in detecting SARA in beef cattle. Over one year, 75 cattle aged 8-10 months from five farms were periodically monitored for rumen pH prior to slaughter. Samples of rumen wall and rumen content were obtained at slaughter for analysis. The study found a positive correlation coefficient between rumen pH and color components, particularly for Red (0.853) and color lightness (L) (0.862). The darkening of the rumen epithelium's color was attributed to the effect of rumen pH on the keratinized layer of the epithelium. Furthermore, an increase in the thickness of ruminal epithelium layers, particularly non-keratinized and total epithelium, was observed in animals with a history of SARA. It is possible that the lower rumen pH increases the rate of replacement of the keratinized epithelium, and the non-keratinized epithelium overgrows to compensate for the need to of produce keratinized layers. In conclusion, computerized rumen colorimetry shows promise as a reliable method for managing SARA in bovine farms by monitoring the condition in the slaughterhouse. Further research is needed to evaluate its effectiveness in detecting SARA in live animals.
Collapse
Affiliation(s)
- Nikolaos Voulgarakis
- Clinical Veterinary Medicine Department, Faculty of Veterinary Science, University of Thessaly, Karditsa, Greece
| | - Dimitrios Gougoulis
- Clinical Veterinary Medicine Department, Faculty of Veterinary Science, University of Thessaly, Karditsa, Greece
| | - Dimitra Psalla
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Georgios Papakonstantinou
- Clinical Veterinary Medicine Department, Faculty of Veterinary Science, University of Thessaly, Karditsa, Greece
| | - Panagiotis-Dimitrios Katsoulos
- Clinic of Farm Animals, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Konstantinos Katsoulis
- Department of Animal Husbandry and Nutrition, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Mariana Angelidou-Tsifida
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Labrini Athanasiou
- Clinical Veterinary Medicine Department, Faculty of Veterinary Science, University of Thessaly, Karditsa, Greece
| | - Vasilleios Papatsiros
- Clinical Veterinary Medicine Department, Faculty of Veterinary Science, University of Thessaly, Karditsa, Greece
| | | |
Collapse
|
15
|
Ricci S, Pacífico C, Kreuzer-Redmer S, Castillo-Lopez E, Rivera-Chacon R, Sener-Aydemir A, Rossi G, Galosi L, Biagini L, Schwartz-Zimmermann HE, Berthiller F, Reisinger N, Petri RM, Zebeli Q. Integrated microbiota-host-metabolome approaches reveal adaptive ruminal changes to prolonged high-grain feeding and phytogenic supplementation in cattle. FEMS Microbiol Ecol 2024; 100:fiae006. [PMID: 38281064 PMCID: PMC10858391 DOI: 10.1093/femsec/fiae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 01/29/2024] Open
Abstract
Diets rich in readily fermentable carbohydrates primarily impact microbial composition and activity, but can also impair the ruminal epithelium barrier function. By combining microbiota, metabolome, and gene expression analysis, we evaluated the impact of feeding a 65% concentrate diet for 4 weeks, with or without a phytogenic feed additive (PFA), on the rumen ecosystem of cattle. The breaking point for rumen health seemed to be the second week of high grain (HG) diet, with a dysbiosis characterized by reduced alpha diversity. While we did not find changes in histological evaluations, genes related with epithelial proliferation (IGF-1, IGF-1R, EGFR, and TBP) and ZO-1 were affected by the HG feeding. Integrative analyses allowed us to define the main drivers of difference for the rumen ecosystem in response to a HG diet, identified as ZO-1, MyD88, and genus Prevotella 1. PFA supplementation reduced the concentration of potentially harmful compounds in the rumen (e.g. dopamine and 5-aminovaleric acid) and increased the tolerance of the epithelium toward the microbiota by altering the expression of TLR-2, IL-6, and IL-10. The particle-associated rumen liquid microbiota showed a quicker adaptation potential to prolonged HG feeding compared to the other microenvironments investigated, especially by the end of the experiment.
Collapse
Affiliation(s)
- Sara Ricci
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Cátia Pacífico
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Susanne Kreuzer-Redmer
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Ezequias Castillo-Lopez
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Raul Rivera-Chacon
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Arife Sener-Aydemir
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, MC, Italy
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, MC, Italy
| | - Lucia Biagini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, MC, Italy
| | - Heidi E Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Nicole Reisinger
- dsm-firmenich,
Animal Health and Nutrition R&D Center, Technopark 1, 3430 Tulln an der Donau, Austria
| | - Renee M Petri
- Agriculture and Agri-Food Canada,
Sherbrooke Research and Development Centre, 2000 College Street, Sherbrooke, Quebec J1M 0C8, Canada
| | - Qendrim Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
16
|
Cabral LDS, Weimer PJ. Megasphaera elsdenii: Its Role in Ruminant Nutrition and Its Potential Industrial Application for Organic Acid Biosynthesis. Microorganisms 2024; 12:219. [PMID: 38276203 PMCID: PMC10819428 DOI: 10.3390/microorganisms12010219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The Gram-negative, strictly anaerobic bacterium Megasphaera elsdenii was first isolated from the rumen in 1953 and is common in the mammalian gastrointestinal tract. Its ability to use either lactate or glucose as its major energy sources for growth has been well documented, although it can also ferment amino acids into ammonia and branched-chain fatty acids, which are growth factors for other bacteria. The ruminal abundance of M. elsdenii usually increases in animals fed grain-based diets due to its ability to use lactate (the product of rapid ruminal sugar fermentation), especially at a low ruminal pH (<5.5). M. elsdenii has been proposed as a potential dietary probiotic to prevent ruminal acidosis in feedlot cattle and high-producing dairy cows. However, this bacterium has also been associated with milk fat depression (MFD) in dairy cows, although proving a causative role has remained elusive. This review summarizes the unique physiology of this intriguing bacterium and its functional role in the ruminal community as well as its role in the health and productivity of the host animal. In addition to its effects in the rumen, the ability of M. elsdenii to produce C2-C7 carboxylic acids-potential precursors for industrial fuel and chemical production-is examined.
Collapse
Affiliation(s)
- Luciano da Silva Cabral
- Department of Animal Science and Rural Extension, Agronomy and Animal Science School, Federal University of Mato Grosso, Cuiabá 780600-900, Mato Grosso, Brazil;
| | - Paul J. Weimer
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
17
|
Hartinger T, Castillo-Lopez E, Reisinger N, Zebeli Q. Elucidating the factors and consequences of the severity of rumen acidosis in first-lactation Holstein cows during transition and early lactation. J Anim Sci 2024; 102:skae041. [PMID: 38364366 PMCID: PMC10946224 DOI: 10.1093/jas/skae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
First-lactation cows are particularly prone to subacute ruminal acidosis (SARA) during transition. Besides common risk factors of SARA, such as feeding of starch-rich diets, an individual severity of SARA in cows has been recently evidenced. Yet, the factors that play a role in SARA severity have not been elucidated. The main goal of this research was to evaluate the factors of SARA severity in first-lactation cows during transition and early lactation, which go beyond high-grain feeding, and to explore their impact on behavior, health, and fermentation in the rumen and hindgut. Twenty-four first-lactation Holstein cows with the same feeding regime were used starting from 3 wk before the expected calving day until 10 wk postpartum. Cows received a close-up diet (32% concentrate) until calving and were then transitioned to a lactation diet (60% concentrate) within 1 week. The SARA severity was assessed by cluster analysis of several rumen pH metrics, which revealed exceptionally longer and more severe SARA in cows denominated as high (n = 9), as compared to moderate (n = 9) and low (n = 6) SARA severity cows (P < 0.01). The logistic analysis showed that the length of close-up feeding, age at parturition, and the level of dry matter intake (DMI) were the main factors that influenced the cows' odds for high SARA severity (each P ≤ 0.01). Moreover, the ANOVA hinted differences in the metabolic activity of the ruminal microbiome to promote SARA severity, as indicated by highest ruminal propionate proportions (P = 0.05) in high SARA severity cows, also with similar DMI. The distinct SARA severity was marginally reflected in behavior and there were no effects of SARA severity or high-grain feeding on blood inflammation markers, which peaked at parturition regardless of SARA severity (P < 0.01). Still, ongoing high-grain feeding increased liver enzyme concentrations from 6 wk postpartum on, compared to weeks before (P < 0.01), yet irrespectively of SARA severity. In conclusion, first-lactation cows differed in SARA severity under the same feeding regime, which was ascribed to management factors and differences in ruminal fermentation. Further research is warranted to validate these findings and to understand the mechanisms behind differences in the metabolic function of rumen microbiome, in particular in terms of evaluating markers for various SARA severity, as well as to evaluate potential long-term effects on health, performance, fertility, and longevity of dairy cows.
Collapse
Affiliation(s)
- Thomas Hartinger
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, 1210 Vienna, Austria
| | - Ezequias Castillo-Lopez
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, 1210 Vienna, Austria
| | | | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, 1210 Vienna, Austria
| |
Collapse
|
18
|
Mia GK, Hawley E, Yusuf M, Dorsam G, Swanson KC. Influence of vasoactive intestinal polypeptide on growth performance, nutrient digestibility, nitrogen balance, and digestive enzyme activity in lambs. J Anim Sci 2024; 102:skae112. [PMID: 38656435 PMCID: PMC11075736 DOI: 10.1093/jas/skae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024] Open
Abstract
This study evaluated if vasoactive intestinal polypeptide (VIP) influences growth performance, nutrient digestibility, nitrogen balance, and digestive enzyme activity. Sixteen wether lambs (69.6 ± 1.9 kg) were housed in individual pens, adapted to a corn grain-based diet, and randomly assigned to 2 treatment groups. Lambs were injected intraperitoneally every other day for 28 d with saline (0.9% NaCl) containing no VIP (n = 8; control) or containing VIP (n = 8; 1.3 nmol/kg body weight [BW]). All lambs were transferred to individual metabolic crates for the final 7 d of the experiment to measure nitrogen balance and nutrient digestibility. At the end of the treatment period, lambs were slaughtered, and pancreatic tissue, small intestinal tissue, and rumen fluid were collected for protein, digestive enzymes, ruminal pH, and volatile fatty acid (VFA) analyses. Lambs treated with VIP had greater final BW, average daily gain, and gain:feed (P = 0.01, 0.05, 0.03, respectively). No differences between treatment groups were observed (P ≥ 0.25) for nutrient intake, digestibility, nitrogen retention, ruminal pH, and VFA concentrations. Moreover, VIP treatment did not influence (P ≥ 0.19) plasma glucose, urea N, and insulin concentrations. Treatment with VIP increased (P = 0.03) relative cecum weight (g/kg BW) and decreased (P = 0.05) relative brain weight. Pancreatic and intestinal digestive enzyme activities, except for duodenal maltase (P = 0.02), were not influenced (P ≥ 0.09) by VIP treatment. These data suggest that the administration of VIP may have potential to improve average daily gain and gain:feed in lambs fed grain-based diets.
Collapse
Affiliation(s)
- Golam K Mia
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Emma Hawley
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Mustapha Yusuf
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Glenn Dorsam
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Kendall C Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
19
|
Chen M, Xie W, Zhou S, Ma N, Wang Y, Huang J, Shen X, Chang G. A high-concentrate diet induces colonic inflammation and barrier damage in Hu sheep. J Dairy Sci 2023; 106:9644-9662. [PMID: 37641289 DOI: 10.3168/jds.2023-23359] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/15/2023] [Indexed: 08/31/2023]
Abstract
Long-term feeding of a high-concentrate diet can induce subacute ruminal acidosis (SARA) in ruminants, which further leads to systemic inflammatory response. However, few studies have examined the effects of feeding a high-concentrate diet on the hindgut of ruminants. The purpose of this study was to investigate the effects of a high-concentrate diet on the composition of gut microbiota in colonic contents, inflammatory response, and barrier damage in the colon tissue of ruminants. A total of 12 healthy multiparous lactating Hu sheep were randomly allotted into the following 2 groups: a high-concentrate (HC) group (concentrate:forage = 7:3) and a low-concentrate (LC) group (concentrate:forage = 3:7). All sheep were fitted with ruminal fistulas. The formal feeding experiment lasted for 8 wk. After the feeding experiment, rumen fluid, portal vein blood, hepatic vein blood, colonic contents, and colon tissue samples were collected. The results showed that feeding the HC diet induced SARA in Hu sheep and significantly reduced pH in the colonic contents. The abundances of Firmicutes, Verrucomicrobiota, and Actinobacteriota decreased significantly, whereas those of Bacteroidota, Spirochaetota, and Fibrobacterota significantly increased in colonic contents. At the genus level, the relative abundances of 29 genera were significantly altered depending on the different type of diets. Analysis of the 10 bacterial genera with high relative abundance revealed that feeding the HC diet significantly reduced the abundance of UCG-005, Christensenellaceae R-7 group, UCG-010-norank, Monoglobus, [Eubacterium] coprostanoligenes group_norank, and Alistipes, whereas the abundances of Rikenellaceae RC9 gut group, Treponema, Bacteroides, and Prevotella increased. Compared with the LC group, feeding the HC diet significantly increased the concentration of LPS in rumen fluid, portal vein blood, hepatic vein blood, and colonic contents, and significantly upregulated the mRNA expression levels of proinflammatory cytokines in colon tissue, including TNF-α, IL-1β, IL-6, and IL-8, indicating the occurrence of inflammatory response in the colon tissue. In addition, the structure of colonic epithelial cells was loose, the intercellular space became larger, epithelial cells were exfoliated, and the mRNA and protein abundances of ZO-1, occludin, claudin-1, claudin-3, and claudin-4 were significantly decreased in the HC group, which was consistent with the results of immunohistochemistry. Furthermore, feeding the HC diet increased the ratios of DNA methylation and chromatin compaction in the promoter regions of occludin and claudin-1, which in turn inhibited their transcriptional expression. Therefore, the present study demonstrated that feeding an HC diet induced SARA in Hu sheep, altered the composition and structure of the microbial community in the colonic contents, induced an inflammatory response, and disrupted the intestinal mucosal barrier in the colonic tissue.
Collapse
Affiliation(s)
- Mengru Chen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Wan Xie
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Shendong Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Yan Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Jie Huang
- Huzhou Research Institute of Hu Sheep, Huzhou Academy of Agricultural Science, Huzhou, Zhejiang, P. R. China 313099
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095.
| |
Collapse
|
20
|
Ashokan M, Rana E, Sneha K, Namith C, Naveen Kumar GS, Azharuddin N, Elango K, Jeyakumar S, Ramesha KP. Metabolomics-a powerful tool in livestock research. Anim Biotechnol 2023; 34:3237-3249. [PMID: 36200897 DOI: 10.1080/10495398.2022.2128814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Advancements in the Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS) along with recent developments in omics sciences have resulted in a better understanding of molecular mechanisms and pathways associated with the physio-pathological state of the animal. Metabolomics is a post-genomics tool that deals with small molecular metabolites in a given set of time which provides clear information about the status of an organism. Recently many researchers mainly focus their research on metabolomics studies due to its valuable information in the various fields of livestock management and precision dairying. The main aim of the present review is to provide an insight into the current research output from different sources and application of metabolomics in various areas of livestock including nutri-metabolomics, disease diagnosis advancements, reproductive disorders, pharmaco-metabolomics, genomics studies, and dairy production studies. The present review would be helpful in understanding the metabolomics methodologies and use of livestock metabolomics in various areas in a brief way.
Collapse
Affiliation(s)
- M Ashokan
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
- Animal Genetics and Breeding Division, Hassan Veterinary College, Hassan, India
- Department of Animal Husbandry, Cattle Breeding and Fodder Development, Thiruvarur, India
| | - Ekta Rana
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - Kadimetla Sneha
- Animal Genetics and Breeding Division, Hassan Veterinary College, Hassan, India
| | - C Namith
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - G S Naveen Kumar
- Animal Genetics and Breeding Division, Hassan Veterinary College, Hassan, India
| | - N Azharuddin
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - K Elango
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - S Jeyakumar
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - K P Ramesha
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| |
Collapse
|
21
|
Toledo AF, Dondé SC, Silva AP, Cezar AM, Coelho MG, Tomaluski CR, Virgínio GF, Costa JHC, Bittar CMM. Whole-plant flint corn silage inclusion in total mixed rations for pre- and postweaning dairy calves. J Dairy Sci 2023; 106:6185-6197. [PMID: 37500427 DOI: 10.3168/jds.2023-23494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/25/2023] [Indexed: 07/29/2023]
Abstract
Assuming that acetic acid plays a minor role in the development of ruminal epithelium of preweaning dairy calves, the fiber supply for growing calves has been neglected. More research has been done on including starch and nonfibrous carbohydrates in solid feed for preweaning calves. Accordingly, the fiber requirement of these calves is not well known, as diet recommendations vary greatly. Hence, elucidating the effects of including fiber from long particle sizes in the diet may be essential for helping calves overcome the transition challenge during weaning. Forty-five Holstein calves were used in a randomized block design, considering sex, birth date, and weight at 28 d of age, when the supply of the total mixed ration (TMR) with the inclusion of corn silage started. Three TMR with increasing whole-plant flint corn silage content (0, 10, or 20% on a dry matter basis) were compared: 0CS, 10CS, or 20CS, respectively. During the first 28 d of life, the calves were managed homogeneously and were fed 6 L/d of whole milk, a commercial calf starter pelleted, and water ad libitum. Next, the solid diet was changed to the respective solid feed treatment. Calves were gradually weaned from 52 to 56 d of age but were evaluated for an additional 14 d postweaning. Feed intake was measured daily, while body weight and metabolic indicators of intermediate metabolism were evaluated weekly. Ruminal fluid was collected at 6, 8, and 10 wk of age. Behavioral analysis was conducted on wk 7 (preweaning) and 10 (postweaning). There was a quadratic effect for dry matter intake from wk 7 to 10, with higher intake for the 10CS diet than the 0CS and 20CS diets. Consequently, the 10CS diet also promoted greater average daily gain at wk 8 and 9 compared with the 0CS and 20CS diets. However, the final body weight was not affected by the different solid diets. Silage inclusion in calves' diet positively affected time spent ruminating and chewing pre- and postweaning. Including 10% of whole-plant flint corn silage in the diets of young dairy calves is a strategy to increase total solid intake and decrease acidosis risk by increasing pH and ruminating activity around weaning.
Collapse
Affiliation(s)
- A F Toledo
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil 13418-900
| | - S C Dondé
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil 13418-900
| | - A P Silva
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil 13418-900
| | - A M Cezar
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil 13418-900
| | - M G Coelho
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil 13418-900
| | - C R Tomaluski
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil 13418-900
| | - G F Virgínio
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil 13418-900
| | - J H C Costa
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546
| | - C M M Bittar
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil 13418-900.
| |
Collapse
|
22
|
Lu Z, Kong L, Ren S, Aschenbach JR, Shen H. Acid tolerance of lactate-utilizing bacteria of the order Bacteroidales contributes to prevention of ruminal acidosis in goats adapted to a high-concentrate diet. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:130-140. [PMID: 37397354 PMCID: PMC10314236 DOI: 10.1016/j.aninu.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/07/2023] [Accepted: 05/11/2023] [Indexed: 07/04/2023]
Abstract
The rapid accumulation of organic acids, particularly lactate, has been suggested as the main cause of ruminal acidosis (RA) for ruminants fed high-concentrate diets. Previous research has shown that a gradual shift from low-to high-concentrate diets within 4 to 5 weeks effectively reduces the risk for RA. However, the mechanisms remain unknown. In this study, 20 goats were randomly allocated into four groups (n = 5) and fed with a diet containing a weekly increasing concentrate portion of 20%, 40%, 60%, and 80% over 28 d. At d 7, 14, 21, and 28, one group (named C20, C40, C60, and C80 according to the last concentrate level that they received) was killed and the ruminal microbiome was collected. Ruminal acidosis was not detected in any of the goats during the experiment. Nonetheless, ruminal pH dropped sharply from 6.2 to 5.7 (P < 0.05) when dietary concentrate increased from 40% to 60%. A combined metagenome and metatranscriptome sequencing approach identified that this was linked to a sharp decrease in the abundance and expression of genes encoding nicotinamide adenine dinucleotide (NAD)-dependent lactate dehydrogenase (nLDH), catalyzing the enzymatic conversion of pyruvate to lactate (P < 0.01), whereas the expression of two genes encoding NAD-independent lactate dehydrogenase (iLDH), catalyzing lactate oxidation to pyruvate, showed no significant concomitant change. Abundance and expression alterations for nLDH- and iLDH-encoding genes were attributable to bacteria from Clostridiales and Bacteroidales, respectively. By analyzing the gene profiles of 9 metagenome bins (MAG) with nLDH-encoding genes and 5 MAG with iLDH-encoding genes, we identified primary and secondary active transporters as being the major types of sugar transporter for lactate-producing bacteria (LPB) and lactate-utilizing bacteria (LUB), respectively. Furthermore, more adenosine triphosphate was required for the phosphorylation of sugars to initiate their catabolic pathways in LPB compared to LUB. Thus, the low dependence of sugar transport systems and catabolic pathways on primary energy sources supports the acid tolerance of LUB from Bacteroidales. It favors ruminal lactate utilization during the adaptation of goats to a high-concentrate diet. This finding has valuable implications for the development of measures to prevent RA.
Collapse
Affiliation(s)
- Zhongyan Lu
- Key Lab of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lingmeng Kong
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shenhao Ren
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jörg R. Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| | - Hong Shen
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
TAN K, NISHIMURA K, UMEDA K, YAMADA K, IKUTA K, SHINGU H, KUSHIBIKI S. Effect of anti-lipopolysaccharide of Escherichia coli antibody feeding for Holstein calves on ruminal lipopolysaccharide activity and plasma metabolites concentrations during pre- and post-weaning periods. J Vet Med Sci 2023; 85:813-819. [PMID: 37344442 PMCID: PMC10466060 DOI: 10.1292/jvms.23-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
This study was performed to examine the effects of anti- lipopolysaccharide (LPS) of Escherichia coli chicken egg Yolk immunoglobulin (IgY) provided to calves for 7 weeks during the pre- and post-weaning periods on rumen LPS activity, plasma acute phase protein (APP) concentrations, and metabolic parameters. A total of 30 Holstein calves were randomly assigned to two groups of 15 each: an IgY group fed Anti-E. coli LPS IgY, and a control group fed whole egg powder as a placebo. The study was conducted on calves aged 3-10 weeks, weaned at 7 weeks. The ruminal LPS activity of the IgY group was approximately 60% lower than the control group at 10 weeks of age. Plasma APP and cytokine concentrations in the IgY group did not differ from those in the control group. The daily weight gain in the IgY group was significantly higher than the control group for the whole experimental period. Plasma albumin/globulin was lower (P<0.05), and plasma aspartate transferase concentration was higher (P<0.05) in the IgY group than in the control group during the experimental period. In conclusion, feeding Anti-E. coli LPS IgY for 7 weeks pre- and post-weaning remarkably reduced the rumen LPS activity and improved the daily weight gain. The impact of Anti-E. coli LPS IgY on LPS activities in the lower gastrointestinal tract, and elucidation as to the mechanism responsible for the improvement in daily weight gain require further investigation.
Collapse
Affiliation(s)
- Kei TAN
- Yamagata Prefectural Syonai Livestock Hygiene Division,
Yamagata, Japan
| | - Keiko NISHIMURA
- )Miyazaki Prefectural Minaminaka Agricultural Extension
Center, Miyazaki, Japan
| | | | | | - Kentarou IKUTA
- Hyogo Prefectural Technology Center of Agriculture, Forestry
and Fisheries, Hyogo, Japan
| | | | - Shiro KUSHIBIKI
- Institute of Livestock and Grassland Science, NARO, Ibaraki,
Japan
| |
Collapse
|
24
|
Passos LT, Bettencourt AF, Ritt LA, Canozzi MEA, Fischer V. Systematic review of the relationship between rumen acidosis and laminitis in cattle. Res Vet Sci 2023; 161:110-117. [PMID: 37356405 DOI: 10.1016/j.rvsc.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023]
Abstract
Laminitis is usually considered a consequence of digestive disorders that reduce ruminal pH. However, it is still not clear the direct relation between low ruminal pH provoked by excessive fast-digesting carbohydrate ingestion and laminitis, considering indicators, signs, and diagnosis aspects. This study aimed to clarify the association between different clinical presentations of laminitis with ruminal acidosis provoked by diet using the systematic review methodology. Three electronic databases were used: ISI Web of Science, PubMed, and Scopus. A total of 339 manuscripts were identified and only 16 were included. Manuscripts were published between 2000 and 2021 in 11 different peer-reviewed journals. Fifteen studies confirmed the occurrence of ruminal acidosis. The main indicators used were ruminal pH and clinical signs, such as anorexia, depression, discomfort and diarrhea. Two of the studies that administered oligofructose to induce acidosis and acute laminitis did not observe clinical signs of laminitis, using lameness score or hooves' sensitivity as an indicator. Various diagnostic methods were used to describe laminitis, like thermography, hoof biopsy, sensitivity test, and visual inspection. Although the variety of laminitis indicators used in the included studies, we evidence the existence of an association between diet (high level of fast-digesting carbohydrates), ruminal acidosis, and acute laminitis, mostly in the short-term acidosis' induction protocols, but the mechanism of action is still not clear.
Collapse
Affiliation(s)
- Lorena Teixeira Passos
- Department of Animal Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Luciano Antônio Ritt
- Department of Animal Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Eugênia Andrighetto Canozzi
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa Producción de Carne y Lana, Estación Experimental INIA La Estanzuela, Colonia, Uruguay
| | - Vivian Fischer
- Department of Animal Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
25
|
Wang W, Wang Y, Guo T, Gao C, Yang Y, Yang L, Cui Z, Mao J, Liu N, An X, Qi J. Blend of Cinnamaldehyde, Eugenol, and Capsicum Oleoresin Improved Rumen Health of Lambs Fed High-Concentrate Diet as Revealed by Fermentation Characteristics, Epithelial Gene Expression, and Bacterial Community. Animals (Basel) 2023; 13:ani13101663. [PMID: 37238093 DOI: 10.3390/ani13101663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
We investigated the effects of CEC on the fermentation characteristics, epithelial gene expression, and bacterial community in the rumen of lambs fed a high-concentrate diet. Twenty-four 3-month-old female crossbred lambs with an initial body weight of 30.37 ± 0.57 kg were randomly allocated to consume a diet supplemented with 80 mg/kg CEC (CEC) or not (CON). The experiment consisted of a 14 d adaptation period and a 60 d data collection period. Compared with the CON group, the CEC group had higher ADG, epithelial cell thickness, ruminal butyrate proportion, and lower ammonia nitrogen concentration. Increases in the mRNA expression of Occludin and Claudin-4, as well as decreases in the mRNA expression of apoptotic protease activating factor-1 (Apaf-1), cytochrome c (Cyt-C), Caspase-8, Caspase-9, Caspase-3, Caspase-7, and toll-like receptor 4 (TLR4), were observed in the CEC group. Moreover, CEC treatment also decreased the concentration of IL-1β, IL-12, and TNF-α. Supplementation with CEC altered the structure and composition of the rumen bacterial community, which was indicated by the increased relative abundances of Firmicutes, Synergistota, Rikenellaceae_RC9_gut_group, Olsenella, Schwartzia, Erysipelotrichaceae_UCG-002, Lachnospiraceae_NK3A20_group, Acetitomaculum, [Eubacterium]_ruminantium_group, Prevotellaceae_UCG-004, Christensenellaceae_R-7_group, Sphaerochaeta, Pyramidobacter, and [Eubacterium]_eligens_group, and the decreased relative abundances of Acidobacteriota, Chloroflexi, Gemmatimonadota, and MND1. Furthermore, Spearman correlation analysis revealed that the altered rumen bacteria were closely correlated with rumen health-related indices. Dietary CEC supplementation improved growth performance, reduced inflammation and apoptosis, protected barrier function, and modulated the bacterial community of lambs fed a high-concentrate diet.
Collapse
Affiliation(s)
- Wenwen Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Yuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Tao Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Chang Gao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Yi Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Lei Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Zhiwei Cui
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Jinju Mao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Na Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Xiaoping An
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| |
Collapse
|
26
|
Kofler J, Hoefler M, Hartinger T, Castillo-Lopez E, Huber J, Tichy A, Reisinger N, Zebeli Q. Effects of High Concentrate-Induced Subacute Ruminal Acidosis Severity on Claw Health in First-Lactation Holstein Cows. Animals (Basel) 2023; 13:ani13081418. [PMID: 37106981 PMCID: PMC10135006 DOI: 10.3390/ani13081418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to evaluate the effects of diet-induced subacute rumen acidosis (SARA) severity during transition and the early lactation period on claw health in 24 first-lactation Holstein heifers. All heifers were fed a 30% concentrate (in dry matter) close-up ration three weeks before calving, then switched to a high-concentrate ration (60% dry matter), which was fed until the 70th day in milk (DIM) to induce SARA. Thereafter, all cows were fed the same post-SARA ration with around 36% concentrate in dry matter. Hoof trimming was performed before calving (visit 1), at 70 (visit 2) and at 160 DIM (visit 3). All claw lesions were recorded, and a Cow Claw Score (CCS) was calculated for each cow. Locomotion scores (LCS 1-5) were assessed at two-week intervals. Intraruminal sensors for continuous pH measurements were used to determine SARA (pH below 5.8 for more than 330 min in 24 h). The cluster analysis grouped the cows retrospectively into light (≤11%; n = 9), moderate (>11-<30%; n = 7), and severe (>30%; n = 8) SARA groups, based on the percentage of days individual cows experienced SARA. Statistically significant differences were found between SARA groups light and severe in terms of lameness incidence (p = 0.023), but not for LCS and claw lesion prevalence. Further, the analysis of maximum likelihood estimates revealed that for each day experiencing SARA, the likelihood of becoming lame increased by 2.52% (p = 0.0257). A significant increase in white line lesion prevalence was observed between visits 2 and 3 in the severe SARA group. The mean CCS in severe SARA group cows were higher at each visit compared to cows in the other two groups, but without statistical significance. Overall, this is the first study indicating that first-lactation cows fed a similar high-concentrate diet but with a higher severity of SARA tended to have poorer claw health, albeit with only partial statistical evidence.
Collapse
Affiliation(s)
- Johann Kofler
- Department of Farm Animals and Veterinary Public Health, University Clinic for Ruminants, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Michael Hoefler
- Department of Farm Animals and Veterinary Public Health, University Clinic for Ruminants, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Thomas Hartinger
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Ezequias Castillo-Lopez
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Johann Huber
- Teaching Farm, VetFarm Kremesberg, University of Veterinary Medicine Vienna, 2563 Pottenstein, Austria
| | - Alexander Tichy
- Department of Biomedical Sciences, University of Veterinary Medicine, Platform for Bioinformatics and Biostatistics, 1210 Vienna, Austria
| | | | - Qendrim Zebeli
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
27
|
Abstract
Beef cattle are less prone to metabolic diseases as compared with dairy cattle; however, there are disease entities of concern in feedlot and cow-calf beef cattle operations. In one study, a prevalence of 2% was found for ruminant acidosis in a feedlot; however, there is little prevalence information published with regard to metabolic diseases in beef cattle.1 Metabolic diseases covered in this article are hypomagnesemia, ruminal acidosis, and all of the common sequelae, polioencephalomalacia, manganese deficiency, and protein-energy malnutrition (PEM).
Collapse
Affiliation(s)
- Megan S Hindman
- Veterinary Production Animal Medicine Department, Iowa State University, 1712 S Riverside Dr, Ames, IA 50010, USA.
| |
Collapse
|
28
|
Microbial Fermented Liquid Supplementation Improves Nutrient Digestibility, Feed Intake, and Milk Production in Lactating Dairy Cows Fed Total Mixed Ration. Animals (Basel) 2023; 13:ani13050933. [PMID: 36899790 PMCID: PMC10000028 DOI: 10.3390/ani13050933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The purpose of this experiment was to examine the effects of MFL supplementation on feed intake, nutrient digestibility, milk yield, and milk composition in early lactating dairy cows. Twelve, Thai crossbred Holstein Friesian cows in early lactation, 500 ± 30 kg of body weight (BW), were randomly assigned according to a completely randomized design (CRD). MFL supplementation levels of 0, 100, 200, and 300 mL/d were used as treatments. Experimental animals were fed a total mixed ration (TMR) with a roughage to concentrate ratio (R:C ratio) of 40:60, which contains 12% crude protein (CP) and 70% total digestible nutrient (TDN). Rice straw was a roughage source. MFL supplementation levels had no effect (p > 0.05) on body weight change and dry matter intake (DMI) expressed as %BW, whereas DMI expressed as metabolic body weight (BW0.75) was linearly (p < 0.05) increased, with the highest at 200 mL/d in the YFL supplementation group (147.5 g/kg BW0.75), whereas feed intake of organic matter (OM), CP, ether extract (EE), neutral detergent fiber (NDF) and acid detergent fiber (ADF) did not significant (p > 0.05) difference among treatments. Related to apparent digestibility, MFL levels did not affect (p > 0.05) on DM, OM, and EE digestibility, while apparent digestibility of CP, NDF, and ADF were linearly increased (p < 0.05) when increasing MFL supplementation levels, and the highest (p < 0.05) were the 200 and 300 mL/d FML supplemented groups. BUN at 0 h post feeding did not show a significant difference (p > 0.05) between treatments, while at 4 h after feeding, BUN was linearly (p < 0.05) increased from 0, 100, 200, and 300 (mL/day) MFL supplementation, the values were 12.9, 13.1, 19.7, and 18.4 mg/dL, respectively and the highest was 200 mL/head/day for the MFL supplemented group. MFL supplementation did not affect (p > 0.05) milk fat, lactose, solid not fat (SNF), and specific gravity of milk, while MFL supplementation at 200 mL/day caused a linear increase (p < 0.01) in BUN, MUN, milk yield, milk protein, total solids (TS) and 3.5% FCM when supplement levels were increased. In conclusion, MFL supplementation in early lactating dairy cows could improve feed intake, nutrient digestibility, milk yield, and milk composition.
Collapse
|
29
|
Huot F, Claveau S, Bunel A, Santschi DE, Gervais R, Paquet ÉR. Relationship between farm management strategies, reticuloruminal pH variations, and risks of subacute ruminal acidosis. J Dairy Sci 2023; 106:2487-2497. [PMID: 36870835 DOI: 10.3168/jds.2022-22509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/14/2022] [Indexed: 03/06/2023]
Abstract
Low reticuloruminal pH (rpH), often observed in subacute ruminal acidosis (SARA), may negatively affect rumen health and animal performance. To investigate the variability of rpH and the prevalence of SARA on commercial farms, we conducted an observational study on 110 early-lactation Holstein cows of different parities from 12 farms selected to cover a broad range of farm management strategies. The rpH of each cow was continuously monitored for 50 d using wireless boluses. To study the effects of animal and farm management characteristics on rpH, we used a multivariable mixed model analysis with the animal and farm as random effects. Automatic milking system and presence of corn silage in the ration were associated with a decrease in rpH of 0.37 and 0.20 pH units, respectively, whereas monensin supplementation was associated with an increase of 0.27 pH units. The rpH increased by 0.15 pH units during the first 60 d in milk. We defined a SARA-positive day as rpH below 5.8 (SARA5.8) or 6.0 (SARA6.0) for at least 300 min for 1 d. Using those definitions, during our study, a total of 38 (35%) and 65 (59%) cows experienced at least one episode of SARA5.8 and SARA6.0, respectively. The proportion of cows with at least one SARA-positive day varied among farms from 0 to 100%. Automatic milking system was associated with an increased risk of SARA5.8 (odds ratio: 10) and SARA6.0 (odds ratio: 11). The use of corn silage was associated with an increased risk of SARA5.8 (odds ratio: 21), whereas the use of monensin was associated with a decreased risk of SARA5.8 (odds ratio: 0.02). Our study shows that rpH is quite variable among farms, but also among animals on the same farm. We also show that multiple animal and farm characteristics are associated with rpH variability and the risk of SARA under commercial conditions.
Collapse
Affiliation(s)
- F Huot
- Département des sciences animales, Université Laval, Québec, Québec, Canada G1V 0A6
| | - S Claveau
- Agrinova, Alma, Québec, Canada G8B 7S8
| | - A Bunel
- Agrinova, Alma, Québec, Canada G8B 7S8
| | - D E Santschi
- Lactanet, Sainte-Anne-de-Bellevue, Québec, Canada H9X 3R4
| | - R Gervais
- Département des sciences animales, Université Laval, Québec, Québec, Canada G1V 0A6.
| | - É R Paquet
- Département des sciences animales, Université Laval, Québec, Québec, Canada G1V 0A6.
| |
Collapse
|
30
|
Momeni-Pooya F, Kazemi-Bonchenari M, Mirzaei M, HosseinYazdi M. Effects of linseed oil supplementation in Holstein dairy calves received starters based on either corn or barley grain on growth performance and immune response. J Anim Physiol Anim Nutr (Berl) 2023; 107:329-339. [PMID: 35417567 DOI: 10.1111/jpn.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/08/2022] [Accepted: 03/18/2022] [Indexed: 12/01/2022]
Abstract
This study evaluated the effects of linseed oil (LO) and two-grain sources on growth performance, microbial protein yield (MPY), blood metabolites, and inflammatory markers in Holstein dairy calves. Forty-eight 3-day-old dairy calves (24 males and 24 females) with starting BW of 40.3 ± 1.6 kg were allocated in a completely randomised block design with a 2 × 2 factorial arrangement as follows; (1) Corn grain (CG) with no LO supplementation (CG-NLO), (2) CG with 2.5% LO supplementation (CG-LO), (3) Barley grain (BG) with no LO supplementation (BG-NLO), and (4) BG with 2.5% LO supplementation (BG-LO). The calves were weaned on d 59 but the study lasted for 14 days after weaning (Day 73 of experiment). The results showed that starter feed intake was influenced neither by grain source nor linseed oil. However, average daily gain, BW, hip height, and MPY were improved in calves received BG compared to CG diets. Linseed oil supplementation had no significant effects on growth performance and MPY. During preweaning period, calves fed BG-LO had the greatest feed efficiency and the highest wither height. However, the greatest tumour necrosis factor and serum amyloid A were observed in BG-NLO. Despite, LO supplementation did not influence growth performance of animals per se; however, it reduced circulating inflammatory markers in calves during preweaning period. Based on this study condition, BG is more favourable than CG in dairy calves from the daily gain and microbial protein synthesis perspectives, and supplementing the starters with n-3 FA can be strategy to improve immune performance of calves fed barley-based starter diets.
Collapse
Affiliation(s)
- Fatemeh Momeni-Pooya
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - Mehdi Kazemi-Bonchenari
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - Mehdi Mirzaei
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - Mehdi HosseinYazdi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| |
Collapse
|
31
|
Zhang H, Xue Y, Xie W, Wang Y, Ma N, Chang G, Shen X. Subacute ruminal acidosis downregulates FOXA2, changes oxidative status, and induces autophagy in the livers of dairy cows fed a high-concentrate diet. J Dairy Sci 2023; 106:2007-2018. [PMID: 36631320 DOI: 10.3168/jds.2022-22222] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/02/2022] [Indexed: 01/11/2023]
Abstract
The purpose of this experiment was to investigate high-concentrate feeding-induced changed status of oxidative and autophagy in the livers of dairy cows. Hepatocyte nuclear factor 3β (FOXA2) was reported in cases of liver fibrosis, glucolipid metabolism, and hepatocyte differentiation, but not in cases liver damage in cows fed a high-concentrate diet. Therefore, we also aimed to explore the potential role of FOXA2 in SARA-induced liver damage. We divided 12 mid-lactating Holstein cows into 2 groups and fed them a high-concentrate (HC group, forage:concentrate = 4:6) and a low-concentrate (forage:concentrate = 6:4) diet. After a 2-wk adaptation period and a 3-wk experimental period, peripheral blood was collected for determination of antioxidant enzyme activity, and liver tissue was collected to examine genes and proteins. On d 20 and 21 of the experiment, rumen fluid was collected, and the pH was measured. A significant difference in rumen fluid pH was found between the 2 groups (low-concentrate: 6.10 ± 0.07 vs. HC: 5.59 ± 0.09). The rumen fluid pH in the HC group was less than 5.6 at 2 time points, indicating that SARA was successfully induced. Lipopolysaccharide (0.24 ± 0.10 vs. 0.42 ± 0.12) and malondialdehyde (1.46 ± 0.25 vs. 2.94 ± 0.65) increased, whereas superoxide dismutase (14.06 ± 0.63 vs. 11.71 ± 0.64), reduced glutathione (14.48 ± 2.25 vs. 6.82 ± 0.67), and the total antioxidant capacity (0.43 ± 0.03 vs. 0.30 ± 0.03) decreased in the peripheral blood of the HC group. Moreover, in liver tissue from the HC group, catalase (0.71 ± 0.03 vs. 0.49 ± 0.03) and superoxide dismutase (27.46 ± 1.90 vs. 20.32 ± 1.54) were decreased, whereas malondialdehyde (0.21 ± 0.03 vs. 0.28 ± 0.03) was elevated. Meanwhile, we observed lower gene expression of CAT (1.00 ± 0.15 vs. 0.64 ± 0.17), NAD(P)H quinone dehydrogenase 1 (NQO1; 1.00 ± 0.09 vs. 0.47 ± 0.14), glutathione peroxidase 1 (GPX1; 1.03 ± 0.27 vs. 0.55 ± 0.09), SOD1 (1.01 ± 0.17 vs. 0.76 ± 0.17), and SOD3 (1.02 ± 0.21 vs. 0.55 ± 0.16) in the liver tissue of the HC group. Furthermore, western blot analysis showed that high-concentrate feeding led to decreased sirtuin-1 (SIRT1) (1.00 ± 0.10 vs. 0.62 ± 0.15) and FOXA2 (1.02 ± 0.19 vs. 0.68 ± 0.18), elevated autophagy-related protein microtubule associated protein 1 light chain 3 II (MAP1LC3-II; 1.00 ± 0.32 vs. 1.98 ± 0.83) and autophagy related 5 (ATG5; 1.00 ± 0.30 vs. 1.80 ± 0.27), and suppressed antioxidant signaling pathway-related protein nuclear factor erythroid 2-like 2 (NFE2L2; 1.00 ± 0.18 vs. 0.61 ± 0.30) and heme oxygenase 1 (HMOX1; 1.00 ± 0.48 vs. 0.38 ± 0.25) in liver tissue. Overall, these data indicated that SARA elevated systematic oxidative status and enhanced autophagy in the liver, and suppressed SIRT1 and FOXA2 may mediate enhanced oxidative damage and autophagy in the livers of dairy cows fed a high-concentrate diet.
Collapse
Affiliation(s)
- Hongzhu Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Yang Xue
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Wan Xie
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Yan Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China.
| |
Collapse
|
32
|
Abeyta MA, Horst EA, Mayorga EJ, Goetz BM, Al-Qaisi M, McCarthy CS, O'Neil MR, Dooley BC, Piantoni P, Schroeder GF, Baumgard LH. Effects of hindgut acidosis on metabolism, inflammation, and production in dairy cows consuming a standard lactation diet. J Dairy Sci 2023; 106:1429-1440. [PMID: 36460494 DOI: 10.3168/jds.2022-22303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022]
Abstract
Postruminal intestinal barrier dysfunction caused by excessive hindgut fermentation may be a source of peripheral inflammation in dairy cattle. Therefore, the study objectives were to evaluate the effects of isolated hindgut acidosis on metabolism, inflammation, and production in lactating dairy cows. Five rumen-cannulated lactating Holstein cows (32.6 ± 7.2 kg/d of milk yield, 242 ± 108 d in milk; 642 ± 99 kg of body weight; 1.8 ± 1.0 parity) were enrolled in a study with 2 experimental periods (P). During P1 (4 d), cows were fed ad libitum a standard lactating cow diet (26% starch dry matter) and baseline data were collected. During P2 (7 d), all cows were fed the same diet ad libitum and abomasally infused with 4 kg/d of pure corn starch (1 kg of corn starch + 1.25 L of H2O/infusion at 0600, 1200, 1800, and 0000 h). Effects of time (hour relative to the first infusion or day) relative to P1 were evaluated using PROC MIXED in SAS (version 9.4; SAS Institute Inc.). Infusing starch markedly reduced fecal pH (5.84 vs. 6.76) and increased fecal starch (2.2 to 9.6% of dry matter) relative to baseline. During P2, milk yield, milk components, energy-corrected milk yield, and voluntary dry matter intake remained unchanged. At 14 h, plasma insulin and β-hydroxybutyrate increased (2.4-fold and 53%, respectively), whereas circulating glucose concentrations remained unaltered. Furthermore, blood urea nitrogen increased at 2 h (23%) before promptly decreasing below baseline at 14 h (13%). Nonesterified fatty acids tended to decrease from 2 to 26 h (40%). Circulating white blood cells and neutrophils increased on d 4 (36 and 73%, respectively) and somatic cell count increased on d 5 (4.8-fold). However, circulating serum amyloid A and lipopolysaccharide-binding protein concentrations were unaffected by starch infusions. Despite minor changes in postabsorptive energetics and leukocyte dynamics, abomasal starch infusions and the subsequent hindgut acidosis had little or no meaningful effects on biomarkers of immune activation or production variables.
Collapse
Affiliation(s)
- M A Abeyta
- Department of Animal Science, Iowa State University, Ames 50011
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Al-Qaisi
- Department of Animal Science, Iowa State University, Ames 50011
| | - C S McCarthy
- Department of Animal Science, Iowa State University, Ames 50011
| | - M R O'Neil
- Department of Animal Science, Iowa State University, Ames 50011
| | - B C Dooley
- Department of Animal Science, Iowa State University, Ames 50011
| | - P Piantoni
- Cargill Animal Nutrition Innovation Center, Elk River, MN 55330
| | - G F Schroeder
- Cargill Animal Nutrition Innovation Center, Elk River, MN 55330
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
33
|
Sitz T, DelCurto-Wyffels H, Van Emon M, Wyffels S, Retallick K, Tarpoff E, Kangas K, DelCurto T. Importance of Foot and Leg Structure for Beef Cattle in Forage-Based Production Systems. Animals (Basel) 2023; 13:ani13030495. [PMID: 36766384 PMCID: PMC9913362 DOI: 10.3390/ani13030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Understanding the relationship of foot angle and claw set to beef cattle structural soundness will be critical to the selection of animals that fit forage-based production systems. In an effort to address concerns about foot and leg structure, the American Angus Association's foot angle and foot claw set expected progeny differences (EPD) were developed in 2019. As a result, these relatively new EPD and associated guidelines have limited phenotypic data submitted thus far. While ample research has evaluated lameness and foot issues in the dairy breeds, less is known about the factors that affect foot structure in beef cattle. This review focuses on beef cattle foot and leg structure, selection factors that may have led to increased problems with feet and legs, and the importance of foot and leg structure in forage-based grazing production systems. Specifically, the importance of locomotion and freedom of movement in extensive rangeland environments is discussed relative to the current literature. In addition, environmental factors that may influence foot and leg structure are addressed as well as heritability of various aspects of foot and leg traits. Where possible, information gaps and research needs are identified to enhance further investigation and the improvement of foot and leg selection tools.
Collapse
Affiliation(s)
- Taylre Sitz
- Department of Animal Science, Montana State University, Bozeman, MT 59717, USA
| | | | - Megan Van Emon
- Department of Animal Science, Montana State University, Bozeman, MT 59717, USA
| | - Sam Wyffels
- Department of Animal Science, Montana State University, Bozeman, MT 59717, USA
| | | | | | - Kurt Kangas
- American Angus Association, Saint Joseph, MO 64506, USA
| | - Tim DelCurto
- Department of Animal Science, Montana State University, Bozeman, MT 59717, USA
- Correspondence:
| |
Collapse
|
34
|
Diagnosis of lameness via data mining algorithm by using thermal camera and image processing method in Brown Swiss cows. Trop Anim Health Prod 2023; 55:50. [PMID: 36708370 DOI: 10.1007/s11250-023-03468-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
Lameness is one of the culling factors such as mastitis, low milk yield, and infertility that cause economic losses in herd management as they threaten animal health and welfare. The purpose of this study was to evaluate the early detection of lameness in Brown Swiss cattle by using a data mining algorithm by both integrating lameness scores and some image parameters such as Lab (CIE L*, a*, b*), HSB (hue, saturation, brightness), RGB (red, green, blue) by processing thermal images with ImageJ program. In the study, the variables obtained as a result of processing the skin surface temperatures and thermal images taken at the fetlock joint of 33 Brown Swiss cattle were used as independent variables. Also, healthy cows (lameness scores 1 and 2) and unhealthy cows (lameness scores 3, 4, and 5) used in the diagnosis of lameness were used as a binary response variable. Classification and regression tree (CART) was used as a data mining algorithm in the diagnosis of lameness. As a result, the CART algorithm correctly classified 12 of the 13 heads unhealthy cows according to locomotion scores. According to locomotion scores by using CART analysis in this study, independent variables that are used to classify healthy and unhealthy (lame) animals were determined as maximum temperature (Tmax), green (mean), L (max), and age (P<0.05). The cut-off values of these independent variables were predicted as 32.40, 149.14, 97.11, and 5.50 for Tmax, green (mean), L (max), and age, respectively. Also, the sensitivity, specificity, and area under the ROC curve (AUC) of the CART algorithm for locomotion scoring were found as 92.31%, 95%, and 93.7% respectively. The area under ROC curve (AUC) was found to be significant in the diagnosis of lameness (P<0.01). Results showed that the use of CART classification algorithm together with thermal camera and image processing methods is a usefull tool in the detection of lameness in the herds. It is recommended that more comprehensive studies by increasing the number of animals in the future would be more beneficial.
Collapse
|
35
|
Khurshid MA, Rashid MA, Yousaf MS, Naveed S, Shahid MQ, Rehman HU. Effect of straw particle size in high grain complete pelleted diet on growth performance, rumen pH, feeding behavior, nutrient digestibility, blood and carcass indices of fattening male goats. Small Rumin Res 2023. [DOI: 10.1016/j.smallrumres.2023.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Mastitis: Impact of Dry Period, Pathogens, and Immune Responses on Etiopathogenesis of Disease and its Association with Periparturient Diseases. DAIRY 2022. [DOI: 10.3390/dairy3040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mastitis is an inflammation of the mammary gland initiated by pathogenic bacteria. In fact, mastitis is the second most important reason for the culling of cows from dairy herds, after infertility. In this review we focus on various forms of mastitis, including subclinical and clinical mastitis. We also stress the importance of the dry-off period as an important time when pathogenic bacteria might start their insult to the mammary gland. An important part of the review is the negative effects of mastitis on milk production and composition, as well as economic consequences for dairy farms. The two most important groups of bacteria that are involved in infection of the udder, Gram-negative and Gram-positive bacteria, are also discussed. Although all cows have both innate and adaptive immunity against most pathogens, some are more susceptible to the disease than others. That is why we summarize the most important components of innate and adaptive immunity so that the reader understands the specific immune responses of the udder to pathogenic bacteria. One of the most important sections of this review is interrelationship of mastitis with other diseases, especially retained placenta, metritis and endometritis, ketosis, and laminitis. Is mastitis the cause or the consequence of this disease? Finally, the review concludes with treatment and preventive approaches to mastitis.
Collapse
|
37
|
Wang X, Li F, Zhang N, Ungerfeld E, Guo L, Zhang X, Wang M, Ma Z. Effects of Supplementing A Yeast Culture in a Pelleted Total Mixed Ration on Fiber Degradation, Fermentation Parameters, and the Bacterial Community in the Rumen of Sheep. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Khorrami B, Kheirandish P, Zebeli Q, Castillo-Lopez E. Variations in fecal pH and fecal particle size due to changes in dietary starch: Their potential as an on-farm tool for assessing the risk of ruminal acidosis in dairy cattle. Res Vet Sci 2022; 152:678-686. [DOI: 10.1016/j.rvsc.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022]
|
39
|
Physicochemical Evaluations of Diets, Rumen Fluid, Blood and Faeces of Beef Cattle under Two Different Feedlot Systems. Animals (Basel) 2022; 12:ani12223114. [PMID: 36428342 PMCID: PMC9687041 DOI: 10.3390/ani12223114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The physicochemical characteristics of diets and faeces were evaluated in combination with data of rumen fluid and blood lactate collected from two distinct feedlot systems in Brazil to understand the causes and correlations to digestive disorders in these production systems. The data were collected during two visits to a finishing system which fed about 80,000 head per year, and four visits to two properties that fed 150 to 180 straight bred Nellore bulls per year to be sold as stud cattle. The findings suggest that ruminal acidosis occurred when there was high intake of starch-rich concentrate, and that subacute rumen acidosis (SARA) most likely occurred in situations where more than 4% of faecal dry matter was excreted as particles larger than 4 mm. The latter were associated with diets having less than 15% of particles smaller than 8 mm and faecal pH under 6.30. It is concluded that ancillary tests, such as ruminal and faecal pH, and particle size distribution in the faeces, can potentially be used in combination with information on diet nutritional composition and a series of best practice management protocols to increase not only animal productivity but to reduce the risks of SARA and ensure the welfare of animals.
Collapse
|
40
|
Egyedy A, Rosales EB, Ametaj BN. Association of High Somatic Cell Counts Prior to Dry off to the Incidence of Periparturient Diseases in Holstein Dairy Cows. Vet Sci 2022; 9:vetsci9110624. [PMID: 36356101 PMCID: PMC9693442 DOI: 10.3390/vetsci9110624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
Intramammary infections (mastitis) of dairy cows, along with other periparturient diseases, have become problematic within the dairy industry as they lead to loss of milk production. The main objective of this study was to determine whether elevated somatic cell counts (SCC) in cows prior to drying off are related to the incidence of other periparturient diseases. Additionally, we determined whether milk composition and milk yield are affected by a high SCC prior to drying off. Somatic cell counts of milk samples were determined prior to dry off (n = 140) and were used to classify cows in the study as high (>200,000 cells/mL) or low (<200,000 cells/mL) SCC. The composition of milk was analyzed before drying off and at 1 and 2 weeks after calving. The results showed that an elevated SCC before drying off was related to the incidence of ketosis. Cows with a high SCC at drying off also showed an increased likelihood of retained placenta, metritis, and lameness postpartum; however, it was not statistically significant. Milk lactose was lower in cows with high SCC, whereas protein content was lower after parturition. Milk production was lower for cows with pre-drying elevated SCC, particularly for cows with retained placenta, ketosis, and mastitis. In conclusion, cows with pre-drying elevated SCC were more likely to develop disease after parturition and produce less milk and with lower lactose and protein content.
Collapse
|
41
|
Quiroga J, Alarcón P, Manosalva C, Teuber S, Carretta MD, Burgos RA. d-lactate-triggered extracellular trap formation in cattle polymorphonuclear leucocytes is glucose metabolism dependent. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104492. [PMID: 35830898 DOI: 10.1016/j.dci.2022.104492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
D-lactic acidosis is a metabolic disease of cattle caused by the digestive overgrowth of bacteria that are highly producers of d-lactate, a metabolite that then reaches and accumulates in the bloodstream. d-lactate is a proinflammatory agent in cattle that induces the formation of extracellular traps (ETs) in polymorphonuclear leucocytes (PMN), although information on PMN metabolic requirements for this response mechanism is insufficient. In the present study, metabolic pathways involved in ET formation induced by d-lactate were studied. We show that d-lactate but not l-lactate induced ET formation in cattle PMN. We analyzed the metabolomic changes induced by d-lactate in bovine PMN using gas chromatography-mass spectrometry (GC-MS). Several metabolic pathways were altered, including glycolysis/gluconeogenesis, amino sugar and nucleotide sugar metabolism, galactose metabolism, starch and sucrose metabolism, fructose and mannose metabolism, and pentose phosphate pathway. d-lactate increased intracellular levels of glucose and glucose-6-phosphate, and increased uptake of the fluorescent glucose analog 2-NBDG, suggesting improved glycolytic activity. In addition, using an enzymatic assay and transmission electron microscopy (TEM), we observed that d-lactate was able to decrease intracellular glycogen levels and the presence of glycogen granules. Relatedly, d-lactate increased the expression of enzymes of glycolysis, gluconeogenesis and glycogen metabolism. In addition, 2DG (a hexokinase inhibitor), 3PO (a 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 inhibitor), MB05032 (inhibitor of fructose-1,6-bisphosphatase) and CP-91149 (inhibitor of glycogen phosphorylase) reduced d-lactate-triggered ETosis. Taken together, these results suggest that d-lactate induces a metabolic rewiring that increases glycolysis, gluconeogenesis and glycogenolysis, all of which are required for d-lactate-induced ET release in cattle PMN.
Collapse
Affiliation(s)
- John Quiroga
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Stefanie Teuber
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - María Daniella Carretta
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
42
|
Crossley RE, Bokkers EAM, Browne N, Sugrue K, Kennedy E, Conneely M. Risk factors associated with indicators of dairy cow welfare during the housing period in Irish, spring-calving, hybrid pasture-based systems. Prev Vet Med 2022; 208:105760. [PMID: 36181750 DOI: 10.1016/j.prevetmed.2022.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022]
Abstract
In a dairy production system where cows are grazing for a large portion of their lactation, little attention has been afforded to investigating multiple indicators of welfare for risk factors associated with the housing period. Yet regardless of the length of the housing period, cows still experience the positive and negative welfare impacts of both indoor and outdoor environments in a hybrid system. Thus, the objective of this study was to identify risk factors for indicators of dairy cow welfare during the housing period in a spring-calving, hybrid pasture-based system. Herd-level scores for seven indicators of welfare (locomotion, body condition, ocular and nasal discharge, integument damage, tail injury and human avoidance response) were collected from 82 Irish dairy farms during the housing period (October - February). Data were analysed using multiple beta regression or zero-inflated beta regression to identify associations between these welfare indicators and measured herd-level housing, resource and management factors. Thirty-six unique risk factors were associated with one or more welfare indicators (P < 0.05). Analyses identified two risk factors for body condition < 3.0 and four for body condition > 3.5, the target range during the housing period. Four risk factors were identified for each of ocular discharge, nasal discharge and avoidance response of > 1 m from human approach. Six risk factors each were associated with the proportion of lame cows and integument damage to the head-neck-back or hindquarter regions. The greatest number of risk factors, 12, were associated with tail injury (broken, lacerated or incomplete tails). Risk factors associated with multiple indicators of welfare were cow comfort index (tail lacerations and hindquarter integument damage), cubicle width (broken and incomplete tails), shed floor slipperiness (lameness and head-neck-back integument damage), shed light-level (tail lacerations, avoidance response and below target body condition), shed passage width (broken tails and head-neck-back integument damage) and presence (incomplete tails) or absence (broken tails) of a collecting yard backing gate. With the large number of risk factors associated with tail injury, continued research is necessary to identify causes and determine prevention methods to contribute to improved overall welfare of dairy cows. Housing features meeting recommended guidelines from the literature were frequently associated with greater negative indicators of welfare. In light of this, housing guidelines may benefit from regular re-evaluation to ensure facilities meet the welfare needs of cows during the housing period.
Collapse
Affiliation(s)
- R E Crossley
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland; Animal Production Systems group, Department of Animal Sciences, Wageningen University and Research, Wageningen 6700 AH, the Netherlands.
| | - E A M Bokkers
- Animal Production Systems group, Department of Animal Sciences, Wageningen University and Research, Wageningen 6700 AH, the Netherlands.
| | - N Browne
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland; School of Veterinary Medicine and Science, University of Nottingham, Loughborough LE12 5RD, United Kingdom.
| | - K Sugrue
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland.
| | - E Kennedy
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland.
| | - M Conneely
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland.
| |
Collapse
|
43
|
Active Dry Yeast and Thiamine in Synergistic Mode Can Mitigate Adverse Effects of In Vitro Ruminal Acidosis Model of Goats. Animals (Basel) 2022; 12:ani12182333. [PMID: 36139193 PMCID: PMC9495026 DOI: 10.3390/ani12182333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ruminal acidosis is a type of metabolic disorder of high-yielding ruminants which is associated with the consumption of a high-grain diet. It not only harms the productive efficiency, health and wellbeing of the animals but also has detrimental effects on the economy of the farmers. Various strategies have been adapted to control ruminal acidosis. However, none of them have produced the desired results. This research was carried out to investigate the potential of active dry yeast (ADY) and thiamine in a synergistic mode to mitigate in vitro-induced ruminal acidosis. The purpose of this study was to determine how active dry yeast alone and in combination with thiamine affected the ruminal pH, lactate, volatile fatty acids, lipopolysaccharides (LPS) and microbial community in in vitro-induced ruminal acidosis. The experiment comprises three treatment groups, (1) SARA/control, (2) ADY and (3) ADYT (ADY + thiamine). In vitro batch fermentation was conducted for 24 h. The results indicated that ruminal induced successfully and both additives improved the final pH (p < 0.01) and decreased the LPS and lactate (p < 0.01) level as compared to the SARA group. However, the ADYT group decreased the level of lactate below 0.5 mmol/L. Concomitant to fermentation indicators, both the treatment groups decreased (p < 0.05) the abundance of lactate-producing bacteria while enhancing (p < 0.01) the abundance of lactate-utilizing bacteria. However, ADYT also increased (p < 0.05) the abundance of protozoa compared to the SARA and ADY group. Therefore, it can be concluded that ADY and thiamine in synergistic mode could be a better strategy in combating the adverse effects of subacute ruminal acidosis.
Collapse
|
44
|
Ricci S, Petri RM, Pacífico C, Castillo-Lopez E, Rivera-Chacon R, Sener-Aydemir A, Reisinger N, Zebeli Q, Kreuzer-Redmer S. Characterization of presence and activity of microRNAs in the rumen of cattle hints at possible host-microbiota cross-talk mechanism. Sci Rep 2022; 12:13812. [PMID: 35970850 PMCID: PMC9378797 DOI: 10.1038/s41598-022-17445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs), as important post-transcriptional regulators, are ubiquitous in various tissues. The aim of this exploratory study was to determine the presence of miRNAs in rumen fluid, and to investigate the possibility of miRNA-mediated cross-talk within the ruminal ecosystem. Rumen fluid samples from four cannulated Holstein cows were collected during two feeding regimes (forage and high-grain diet) and DNA and RNA were extracted for amplicon and small RNA sequencing. Epithelial biopsies were simultaneously collected to investigate the co-expression of miRNAs in papillae and rumen fluid. We identified 377 miRNAs in rumen fluid and 638 in rumen papillae, of which 373 were shared. Analysis of microbiota revealed 20 genera to be differentially abundant between the two feeding regimes, whereas no difference in miRNAs expression was detected. Correlations with at least one genus were found for 170 miRNAs, of which, 39 were highly significant (r > |0.7| and P < 0.01). Both hierarchical clustering of the correlation matrix and WGCNA analysis identified two main miRNA groups. Putative target and functional prediction analysis for the two groups revealed shared pathways with the predicted metabolic activities of the microbiota. Hence, our study supports the hypothesis of a cross-talk within the rumen at least partly mediated by miRNAs.
Collapse
Affiliation(s)
- Sara Ricci
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria.
| | - Renée M Petri
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| | - Cátia Pacífico
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
- Biome Diagnostics GmbH, Vienna, Austria
| | - Ezequias Castillo-Lopez
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Raul Rivera-Chacon
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Arife Sener-Aydemir
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | | | - Qendrim Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Susanne Kreuzer-Redmer
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
45
|
Elolimy AA, Liang Y, Wilachai K, Alharthi AS, Paengkoum P, Trevisi E, Loor JJ. Residual feed intake in peripartal dairy cows is associated with differences in milk fat yield, ruminal bacteria, biopolymer hydrolyzing enzymes, and circulating biomarkers of immunometabolism. J Dairy Sci 2022; 105:6654-6669. [PMID: 35840400 DOI: 10.3168/jds.2021-21274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/18/2022] [Indexed: 11/19/2022]
Abstract
Residual feed intake (RFI) measures feed efficiency independent of milk production level, and is typically calculated using data past peak lactation. In the current study, we retrospectively classified multiparous Holstein cows (n = 320) from 5 of our published studies into most feed-efficient (M-eff) or least feed-efficient (L-eff) groups using performance data collected during the peripartal period. Objectives were to assess differences in profiles of plasma biomarkers of immunometabolism, relative abundance of key ruminal bacteria, and activities of digestive enzymes in ruminal digesta between M-eff and L-eff cows. Individual data from cows with ad libitum access to a total mixed ration from d -28 to d +28 relative to calving were used. A linear regression model including dry matter intake (DMI), energy-corrected milk (ECM), changes in body weight (BW), and metabolic BW was used to classify cows based on RFI divergence into L-eff (n = 158) and M-eff (n = 162). Plasma collected from the coccygeal vessel at various times around parturition (L-eff = 60 cows; M-eff = 47 cows) was used for analyses of 30 biomarkers of immunometabolism. Ruminal digesta collected via esophageal tube (L-eff = 19 cows; M-eff = 29 cows) was used for DNA extraction and assessment of relative abundance (%) of 17 major bacteria using real-time PCR, as well as activity of cellulase, amylase, xylanase, and protease. The UNIVARIATE procedure of SAS 9.4 (SAS Institute Inc.) was used for analyses of RFI coefficients. The MIXED procedure of SAS was used for repeated measures analysis of performance, milk yield and composition, plasma immunometabolic biomarkers, ruminal bacteria, and enzyme activities. The M-eff cows consumed less DMI during the peripartal period compared with L-eff cows. In the larger cohort of cows, despite greater overall BW for M-eff cows especially in the prepartum (788 vs. 764 kg), no difference in body condition score was detected due to RFI or the interaction of RFI × time. Milk fat content (4.14 vs. 3.75 ± 0.06%) and milk fat yield (1.75 vs. 1.62 ± 0.04 kg) were greater in M-eff cows. Although cumulative ECM yield did not differ due to RFI (1,138 vs. 1,091 ± 21 kg), an RFI × time interaction due to greater ECM yield was found in M-eff cows. Among plasma biomarkers studied, concentrations of nonesterified fatty acids, β-hydroxybutyrate, bilirubin, ceruloplasmin, haptoglobin, myeloperoxidase, and reactive oxygen metabolites were overall greater, and glucose, paraoxonase, and IL-6 were lower in M-eff compared with L-eff cows. Among bacteria studied, abundance of Ruminobacter amylophilus and Prevotella ruminicola were more than 2-fold greater in M-eff cows. Despite lower ruminal activity of amylase in M-eff cows in the prepartum, regardless of RFI, we observed a marked linear increase after calving in amylase, cellulase, and xylanase activities. Protease activity did not differ due to RFI, time, or RFI × time. Despite greater concentrations of biomarkers reflective of negative energy balance and inflammation, higher feed efficiency measured as RFI in peripartal dairy cows might be associated with shifts in ruminal bacteria and amylase enzyme activity. Further studies could help address such factors, including the roles of the liver and the mammary gland.
Collapse
Affiliation(s)
- A A Elolimy
- Department of Animal Sciences, University of Illinois, Urbana 61801; Department of Animal Production, National Research Centre, Giza 12622, Egypt
| | - Y Liang
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - K Wilachai
- Program of Animal science, Faculty of Agricultural Technology, Rajabhat Maha Sarakham University, Maha Sarakham 44000, Thailand; Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand, 30000
| | - A S Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - P Paengkoum
- Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand, 30000
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facolta di Scienze Agrarie, Alimentari e Ambientali, Universita Cattolicadel Sacro Cuore, Piacenza 29122, Italy
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
46
|
Fu Y, He Y, Xiang K, Zhao C, He Z, Qiu M, Hu X, Zhang N. The Role of Rumen Microbiota and Its Metabolites in Subacute Ruminal Acidosis (SARA)-Induced Inflammatory Diseases of Ruminants. Microorganisms 2022; 10:1495. [PMID: 35893553 PMCID: PMC9332062 DOI: 10.3390/microorganisms10081495] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022] Open
Abstract
Subacute ruminal acidosis (SARA) is a common metabolic disease in ruminants. In the early stage of SARA, ruminants do not exhibit obvious clinical symptoms. However, SARA often leads to local inflammatory diseases such as laminitis, mastitis, endometritis and hepatitis. The mechanism by which SARA leads to inflammatory diseases is largely unknown. The gut microbiota is the totality of bacteria, viruses and fungi inhabiting the gastrointestinal tract. Studies have found that the gut microbiota is not only crucial to gastrointestinal health but also involved in a variety of disease processes, including metabolic diseases, autoimmune diseases, tumors and inflammatory diseases. Studies have shown that intestinal bacteria and their metabolites can migrate to extraintestinal distal organs, such as the lung, liver and brain, through endogenous pathways, leading to related diseases. Combined with the literature, we believe that the dysbiosis of the rumen microbiota, the destruction of the rumen barrier and the dysbiosis of liver function in the pathogenesis of SARA lead to the entry of rumen bacteria and/or metabolites into the body through blood or lymphatic circulation and place the body in the "chronic low-grade" inflammatory state. Meanwhile, rumen bacteria and/or their metabolites can also migrate to the mammary gland, uterus and other organs, leading to the occurrence of related inflammatory diseases. The aim of this review is to describe the mechanism by which SARA causes inflammatory diseases to obtain a more comprehensive and profound understanding of SARA and its related inflammatory diseases. Meanwhile, it is also of great significance for the joint prevention and control of diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.F.); (Y.H.); (K.X.); (C.Z.); (Z.H.); (M.Q.)
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.F.); (Y.H.); (K.X.); (C.Z.); (Z.H.); (M.Q.)
| |
Collapse
|
47
|
Xie W, Xue Y, Zhang H, Wang Y, Meng M, Chang G, Shen X. A high-concentrate diet provokes inflammatory responses by downregulating Forkhead box protein A2 (FOXA2) through epigenetic modifications in the liver of dairy cows. Gene X 2022; 837:146703. [PMID: 35772653 DOI: 10.1016/j.gene.2022.146703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/04/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022] Open
Abstract
A high-concentrate diet has been reported to promote an inflammatory response in dairy cows. The purpose of this study was to clarify the effect of the high-concentrate (HC) diet on hepatic Forkhead box protein A2 (FOXA2) expression and uncover the molecular mechanisms in inflammatory responses in the liver. The results showed that the HC diet reduced the ruminal fluid pH and elevated the secretion of SAA3, IL-1α, and IL-8 and reduced that of IL-10 in peripheral blood plasma. Compared with the low-concentrate (LC) group, the concentration of myeloperoxidase (MPO) was higher in the liver of dairy cows in the HC group. In addition, the relative mRNA expression of acute phase proteins (HP, SAA3, and LBP), proinflammatory cytokines (TNFα, IL-1α, IL-1β, IL-8), TLR4, MyD88, TRAF6, TRIF, IκBα, p65, p38 and JNK1 was upregulated and that of IL-10 was downregulated in the liver of the HC group. Consistently, the protein abundance of TLR4, TNFα and phosphorylation of proteins involved in NF-κB (IκBα and p65) and MAPK (p38 and JNK) pathways were significantly increased in the HC group compared with the LC group. And both the mRNA and protein abundance of FOXA2 were downregulated in the HC group. Further epigenetic analysis results demonstrated that chromatin compaction and DNA hypermethylation contributed to inhibiting FOXA2 expression, in which the demethylase ten-eleven translocation 1 (TET1) and histone deacetylase 3 (HDAC3) might participate. Overall, these findings demonstrated that the high-concentrate diet triggered inflammatory cascades and downregulated FOXA2 by epigenetic modifications in the liver of dairy cows.
Collapse
Affiliation(s)
- Wan Xie
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Xue
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hongzhu Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yan Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Meijuan Meng
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
48
|
Hossain ME, Akter N. Further insights into the prevention of pulmonary hypertension syndrome (ascites) in broiler: a 65-year review. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2090305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Md. Emran Hossain
- Department of Animal Science and Nutrition, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Bangladesh
| | - Nasima Akter
- Department of Dairy and Poultry Science, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Bangladesh
| |
Collapse
|
49
|
Yohe TT, Dennis TS, Villot C, Quigley JD, Hill TM, Suarez-Mena FX, Aragona KM, Pineda A, Laarman AH, Costa JHC, Steele MA. Effects of milk replacer allowances and levels of starch in pelleted starter on nutrient digestibility, whole gastrointestinal tract fermentation, and pH around weaning. J Dairy Sci 2022; 105:6710-6723. [PMID: 35717332 DOI: 10.3168/jds.2022-21982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022]
Abstract
The objectives of this study were to examine the effects of pelleted starter diets differing in starch and neutral detergent fiber (NDF) content when fed differing levels of milk replacer (MR) on nutrient digestibility, whole gastrointestinal tract fermentation, pH, and inflammatory markers in dairy calves around weaning. Calves were randomly assigned to 1 of 4 dietary treatments (n = 12 per treatment) in a 2 × 2 factorial design based on daily MR allowance and amount of starch in pelleted starter (SPS): 0.691 kg of MR per day [dry matter (DM) basis] with starter containing low or high starch (12.0% and 35.6% starch on DM basis, respectively), and 1.382 kg of MR per day (DM) with starter containing low or high starch. All calves were housed in individual pens with straw bedding until wk 5 when bedding was covered. Calves were fed MR twice daily (0700 and 1700 h) containing 24.5% crude protein (DM) and 19.8% fat (DM), and had access to pelleted starter (increased by 50 g/d if there were no refusals before weaning and then 200 g/d during and after weaning) and water starting on d 1. Calves arrived between 1 and 3 d of age and were enrolled into an 8-wk study, with calves undergoing step-down weaning during wk 7. Starting on d 35, an indwelling pH logger was inserted orally to monitor rumen pH until calves were dissected at the end of the study in wk 8. Higher SPS calves showed an increase in rumen pH magnitude (1.46 ± 0.07) compared with low SPS calves (1.16 ± 0.07), a decrease in rumen pH in wk 8 (high SPS: 5.37 ± 0.12; low SPS: 5.57 ± 0.12), and a decrease in haptoglobin in wk 8 (high SPS: 0.24 ± 0.06 g/L; low SPS: 0.49 ± 0.06 g/L). The majority of differences came from increased starter intake in general, which suggests that with completely pelleted starters the differences in starch and NDF do not elicit drastic changes in fermentation, subsequent end products, and any resulting inflammation in calves around weaning.
Collapse
Affiliation(s)
- T T Yohe
- Department of Animal Biosciences, University of Guelph, Guelph, Canada N1G 2W1
| | - T S Dennis
- Nurture Research Center, Provimi, Cargill Animal Nutrition, Lewisburg, OH 45338
| | - C Villot
- Lallemand Animal Nutrition, F-31702, Blagnac, France
| | - J D Quigley
- Nurture Research Center, Provimi, Cargill Animal Nutrition, Lewisburg, OH 45338
| | - T M Hill
- Nurture Research Center, Provimi, Cargill Animal Nutrition, Lewisburg, OH 45338
| | - F X Suarez-Mena
- Nurture Research Center, Provimi, Cargill Animal Nutrition, Lewisburg, OH 45338
| | - K M Aragona
- Nurture Research Center, Provimi, Cargill Animal Nutrition, Lewisburg, OH 45338
| | - A Pineda
- Department of Animal Biosciences, University of Guelph, Guelph, Canada N1G 2W1
| | - A H Laarman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada T6G 2P5
| | - J H C Costa
- Department of Animal and Food Sciences, University of Kentucky, Lexington 40506
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, Canada N1G 2W1.
| |
Collapse
|
50
|
Effects of n-3 fatty acid supplementation from flax oil on growth performance, ruminal fermentation, and immune response in Holstein dairy calves fed either coarsely ground or steam-flaked corn grain. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|