1
|
Meng A, Luan B, Zhang W, Zheng Y, Guo B, Zhang B. Exploring changes in aggregation and gel network morphology of soybean protein isolate induced by pH, NaCl, and temperature in view of interactions. Int J Biol Macromol 2024; 273:132911. [PMID: 38844293 DOI: 10.1016/j.ijbiomac.2024.132911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/23/2024]
Abstract
The texture of soybean protein-based products is primarily influenced by the aggregation and gel morphology of the protein, which is modulated by manufacturing factors. Interactions involved in protein morphology changes include disulfide bonds, hydrophobic interactions, electrostatic interactions, and hydrogen bonds. Notably, an interaction perspective probably provides a new way to explaining the aggregation and gel morphology, which could help overcome the hurdle of developing a textured product. Based on the interaction perspective, this review provides detailed information and evidence on aggregation, conformational stability, and gel network morphology of soybean protein and its components induced by pH, NaCl, and temperature. pH-induced electrostatic interactions and hydrogen bonds, NaCl-induced electrostatic interactions, and temperature-induced hydrophobic interactions and disulfide linkages are the main motivations responsible for changes in soybean aggregation and gel morphology. By reducing the proportion of strong-interactions, such as disulfide linkages and hydrophobic interactions, and increasing the proportion of weak-interactions, such as electrostatic interactions and hydrogen bonds, the protein total surface area expands, indicating increased conformational stretching and decreased cohesion. This possibly results in reduced hardness and increased toughness of textured proteins. The opposite effect can be observed when the proportion of strong interactions is increased and that of weak interactions is decreased.
Collapse
Affiliation(s)
- Ang Meng
- Institute of Food Science and Technology CAAS, Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Binyu Luan
- Institute of Food Science and Technology CAAS, Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Wenjing Zhang
- Institute of Food Science and Technology CAAS, Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yan Zheng
- Wilmar Biotechnology Research and Development Center Company Limited, Shanghai 200000, China
| | - Boli Guo
- Institute of Food Science and Technology CAAS, Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Bo Zhang
- Institute of Food Science and Technology CAAS, Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
2
|
Wachirattanapongmetee K, Katekaew S, Weerapreeyakul N, Thawornchinsombut S. Differentiation of protein types extracted from tilapia byproducts by FTIR spectroscopy combined with chemometric analysis and their antioxidant protein hydrolysates. Food Chem 2024; 437:137862. [PMID: 37931446 DOI: 10.1016/j.foodchem.2023.137862] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/06/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023]
Abstract
This research aimed to characterize protein types including sarcoplasmic protein (SP), myofibrillar protein (MP), and alkali-aided protein extract (AP) prepared from tilapia byproducts using water, 0.6 M NaCl, and alkaline solution (pH 11), respectively compared to freeze-dried minced tilapia muscle (CONTROL). Principal component analysis was performed from second derivative FTIR spectra to differentiate protein type. The AP mostly contained β-sheet structure and had low total sulfhydryl content and surface hydrophobicity. SP can be distinguished from MP by the loading plots of the FTIR bands representing the α-helical structure. While the bands for lipids and β-sheet of protein were noted for differentiating AP from CONTROL. After being hydrolyzed by Protease G6, the AP hydrolysate disclosed the highest ABTS radical scavenging activity, while the SP hydrolysate revealed the strongest metal chelating ability. Thus, an understanding of how fish processing waste can be utilized in the production of antioxidant protein hydrolysates has been achieved.
Collapse
Affiliation(s)
| | - Somporn Katekaew
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthida Weerapreeyakul
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supawan Thawornchinsombut
- Department of Food Technology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
3
|
Lopes PM, Fechete R, Minteuan F, Mare L, Moldovan D, Moldovan M, Cuc S, Saroși CL, Popescu V. The Influence of Lyophilization Pretreatment and Whey Content on Whey and Gelatin-Based Hydrogels. Gels 2024; 10:229. [PMID: 38667648 PMCID: PMC11048941 DOI: 10.3390/gels10040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Whey and gelatin, natural polymers within the protein category, find widespread use in hydrogel formulations applied across the food, medical, and pharmaceutical industries. This study presents new characteristics of hydrogels based on whey, gelatin, and copper sulfate as a consequence of the additional steps in the preparation method, specifically refrigeration and freezing storage followed by lyophilization. The water state in hydrogels prior to lyophilization impacts the morphological appearance, with refrigerated hydrogels exhibiting a more regular and dense pore distribution, as shown by the Scanning Electron Microscopy (SEM) images. This observation aligns with the higher mobility of polymer chains indicated by T2 distributions in 1H nuclear magnetic resonance (RMN) relaxometry measurements. Changes in the intensity and amide-specific wavenumbers of the FTIR spectra of whey and gelatin proteins are evident in the Fourier Transformed Infrared (FTIR) spectra of crosslinked and frozen hydrogels before lyophilization. Moreover, the reinforcing effect in the hydrogel matrix, noted in mechanical tests, is attributed to increased polymer chain content and copper sulfate crosslinking.
Collapse
Affiliation(s)
- Pompilia Mioara Lopes
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (P.M.L.); (R.F.); (F.M.); (L.M.); (D.M.)
- “SAMUS” Special Vocational School, 17 Ialomiței Street, 400574 Cluj-Napoca, Romania
| | - Radu Fechete
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (P.M.L.); (R.F.); (F.M.); (L.M.); (D.M.)
| | - Felicia Minteuan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (P.M.L.); (R.F.); (F.M.); (L.M.); (D.M.)
| | - Liviu Mare
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (P.M.L.); (R.F.); (F.M.); (L.M.); (D.M.)
| | - Dumitrița Moldovan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (P.M.L.); (R.F.); (F.M.); (L.M.); (D.M.)
| | - Marioara Moldovan
- Polymeric Composite Laboratory, Institute of Chemistry “Raluca Ripan”, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania; (M.M.); (S.C.); (C.L.S.)
| | - Stanca Cuc
- Polymeric Composite Laboratory, Institute of Chemistry “Raluca Ripan”, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania; (M.M.); (S.C.); (C.L.S.)
| | - Codruța Liana Saroși
- Polymeric Composite Laboratory, Institute of Chemistry “Raluca Ripan”, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania; (M.M.); (S.C.); (C.L.S.)
| | - Violeta Popescu
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (P.M.L.); (R.F.); (F.M.); (L.M.); (D.M.)
| |
Collapse
|
4
|
Purcea Lopes PM, Moldovan D, Fechete R, Mare L, Barbu-Tudoran L, Sechel N, Popescu V. Characterization of a Graphene Oxide-Reinforced Whey Hydrogel as an Eco-Friendly Absorbent for Food Packaging. Gels 2023; 9:gels9040298. [PMID: 37102911 PMCID: PMC10138084 DOI: 10.3390/gels9040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
This study presents a structural analysis of a whey and gelatin-based hydrogel reinforced with graphene oxide (GO) by ultraviolet and visible (UV-VIS) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The results revealed barrier properties in the UV range for the reference sample (containing no graphene oxide) and the samples with minimal GO content of 0.66×10−3% and 3.33×10−3%, respectively, in the UV-VIS and near-IR range; for the samples with higher GO content, this was 6.67×10−3% and 33.33×10−3% as an effect of the introduction of GO into the hydrogel composite. The changes in the position of diffraction angles 2θ from the X-ray diffraction patterns of GO-reinforced hydrogels indicated a decrease in the distances between the turns of the protein helix structure due to the GO cross-linking effect. Transmission electron spectroscopy (TEM) was used for GO, whilst scanning electron microscopy (SEM) was used for the composite characterization. A novel technique for investigating the swelling rate was presented by performing electrical conductivity measurements, the results of which led to the identification of a potential hydrogel with sensor properties.
Collapse
Affiliation(s)
- Pompilia Mioara Purcea Lopes
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| | - Dumitrita Moldovan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| | - Radu Fechete
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| | - Liviu Mare
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center, Faculty of Biology and Geology, Babes-Bolyai University of Cluj-Napoca, 1 M. Kogalniceanu Street, 400347 Cluj-Napoca, Romania
| | - Niculina Sechel
- Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400641 Cluj-Napoca, Romania
| | - Violeta Popescu
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Association between Lysozyme and Carboxymethyl Konjac Glucomannan to Produce Dispersible Coacervates. FOOD BIOPHYS 2023. [DOI: 10.1007/s11483-022-09774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Effects of Calcium Sulfate and Chitosan on Textural Modification and Microstructure of Tofu Made from Lentils (Lens culinaris). Processes (Basel) 2022. [DOI: 10.3390/pr10102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This study investigated calcium sulfate and chitosan on the textural modification and microstructure of tofu made from lentils. The addition of varying amounts of calcium sulfate (0–12 mM) and chitosan (0–1.0%) into lentil milk could affect the gel properties of lentil-based tofu. The gel properties, including the hardness and cohesiveness, of lentil-based tofu significantly increased with the addition of 12 mM calcium sulfate, exhibiting a slightly discontinuous network structure and a slightly regular pore network. However, the gel properties including hardness and cohesiveness significantly decreased with the addition of 1.0% chitosan, presenting a slightly continuous network structure with pores. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed that the aggregation of the vicilin, legumin acidic unit and legumin basic unit proteins in lentil milk was induced both by 12 mM calcium sulfate and 1.0% chitosan. Our results suggested that calcium sulfate and chitosan could affect the gel properties, such as hardness and cohesiveness, of lentil-based tofu. Therefore, calcium sulfate and chitosan can be used as practical food additives for the development of texture-modified lentil-based tofu.
Collapse
|
7
|
Calcium-aided fabrication of pea protein hydrogels with filler emulsion particles coated by pH12-shifting and ultrasound treated protein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
Ma T, Wang X, Chen J. In vitro stability study of saliva emulsions: The impact of time, calcium ion and pH. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Purcea Lopes PM, Moldovan D, Moldovan M, Carpa R, Saroşi C, Păşcuţă P, Mazilu Moldovan A, Fechete R, Popescu V. New Composite Hydrogel Based on Whey and Gelatin Crosslinked with Copper Sulphate. MATERIALS 2022; 15:ma15072611. [PMID: 35407945 PMCID: PMC9000359 DOI: 10.3390/ma15072611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/15/2023]
Abstract
By-products from the meat and dairy industries are important sources of high biological value proteins. This paper explores possibilities for improving the swelling and integrity of a cross-linked whey and gelatin hydrogel with different amounts of CuSO4 × 5H2O. Overall, swelling tests demonstrate that cross-linked samples show a better hydration capacity and stability in the hydration medium, but different copper concentrations lead to different swelling behavior. At concentrations smaller than 0.39%, the sample lasts for 75 h in a water environment before beginning to disintegrate. At a concentration of copper sulphate higher than 0.55%, the stability of the sample increased substantially. The swelling kinetics has been investigated. The diffusion constant values increased with the increase in copper concentration, but, at the highest concentration of copper (0.86%), its value has decreased. Spectroscopy analyses such as Fourier transform infrared (FT-IR), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-VIS), and nuclear magnetic resonance (NMR) relaxometry analyses revealed changes in the secondary and tertiary structure of proteins as a result of the interaction of Cu2+ ions with functional groups of protein chains. In addition to its cross-linking ability, CuSO4 × 5H2O has also shown excellent antibacterial properties over common bacterial strains responsible for food spoilage. The result of this research demonstrates the potential of this hydrogel system as a unique material for food packaging.
Collapse
Affiliation(s)
- Pompilia Mioara Purcea Lopes
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (P.M.P.L.); (D.M.); (P.P.); (A.M.M.); (R.F.)
| | - Dumitriţa Moldovan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (P.M.P.L.); (D.M.); (P.P.); (A.M.M.); (R.F.)
| | - Marioara Moldovan
- Polymeric Composite Laboratory, Institute of Chemistry Raluca Ripan, Babeş-Bolyai University, 30 Fȃntȃnele Str., 400294 Cluj-Napoca, Romania; (M.M.); (C.S.)
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș Bolyai University, M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania;
| | - Codruţa Saroşi
- Polymeric Composite Laboratory, Institute of Chemistry Raluca Ripan, Babeş-Bolyai University, 30 Fȃntȃnele Str., 400294 Cluj-Napoca, Romania; (M.M.); (C.S.)
| | - Petru Păşcuţă
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (P.M.P.L.); (D.M.); (P.P.); (A.M.M.); (R.F.)
| | - Amalia Mazilu Moldovan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (P.M.P.L.); (D.M.); (P.P.); (A.M.M.); (R.F.)
| | - Radu Fechete
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (P.M.P.L.); (D.M.); (P.P.); (A.M.M.); (R.F.)
| | - Violeta Popescu
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (P.M.P.L.); (D.M.); (P.P.); (A.M.M.); (R.F.)
- Correspondence: ; Tel.: +40-74-317-41-95
| |
Collapse
|
10
|
Barone G, O'Regan J, Kelly AL, O'Mahony JA. Interactions between whey proteins and calcium salts and implications for the formulation of dairy protein‐based nutritional beverage products: A review. Compr Rev Food Sci Food Saf 2022; 21:1254-1274. [DOI: 10.1111/1541-4337.12884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 01/29/2023]
Affiliation(s)
- Giovanni Barone
- School of Food and Nutritional Sciences University College Cork Cork Ireland
| | - Jonathan O'Regan
- Nestlé Development Centre Nutrition Wyeth Nutritionals Ireland Askeaton Limerick Ireland
| | - Alan L. Kelly
- School of Food and Nutritional Sciences University College Cork Cork Ireland
| | - James A. O'Mahony
- School of Food and Nutritional Sciences University College Cork Cork Ireland
| |
Collapse
|
11
|
Role of Flaxseed Gum and Whey Protein Microparticles in Formulating Low-Fat Model Mayonnaises. Foods 2022; 11:foods11030282. [PMID: 35159434 PMCID: PMC8834398 DOI: 10.3390/foods11030282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 12/19/2022] Open
Abstract
Flaxseed gum (FG) and whey protein microparticles (WPMs) were used to substitute fats in model mayonnaises. WPMs were prepared by grinding the heat-set whey protein gel containing 10 mM CaCl2 into small particles (10–20 µm). Then, 3 × 4 low-fat model mayonnaises were prepared by varying FG (0.3, 0.6, 0.9 wt%) and WPM (0, 8, 16, 24 wt%) concentrations. The effect of the addition of FG and WPMs on rheology, instrumental texture and sensory texture and their correlations were investigated. The results showed that all samples exhibited shear thinning behavior and ‘weak gel’ properties. Although both FG and WPMs enhanced rheological (e.g., viscosity and storage modulus) and textural properties (e.g., hardness, consistency, adhesiveness, cohesiveness) and kinetic stability, this enhancement was dominated by FG. FG and WPMs affected bulk properties through different mechanisms, (i.e., active filler and entangled polysaccharide networks). Panellists evaluated sensory texture in three stages: extra-oral, intra-oral and after-feel. Likewise, FG dominated sensory texture of model mayonnaises. With increasing FG concentration, sensory scores for creaminess and mouth-coating increased, whereas those of firmness, fluidity and spreadability decreased. Creaminess had a linear negative correlation with firmness, fluidity and spreadability (R2 > 0.985), while it had a linear positive correlation with mouth-coating (R2 > 0.97). A linear positive correlation (R2 > 0.975) was established between creaminess and viscosity at different shear rates/instrumental texture parameters. This study highlights the synergistic role of FG and WPMs in developing low-fat mayonnaises.
Collapse
|
12
|
Lacroix A, Hayert M, Bosc V, Menut P. Batch versus microfluidic emulsification processes to produce whey protein microgel beads from thermal or acidic gelation. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Nayak A, Genot C, Meynier A, Dorlando A, Capron I. Impact of process and physico-chemical conditions on the formation of curcumin-whey protein composite particles capable to stabilize food-compatible oil in water emulsions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Calcium fortification of a model infant milk formula system using soluble and insoluble calcium salts. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Pellicer JA, Gabaldón JA, Gómez-López VM. Effect of pH on pulsed light inactivation of polyphenol oxidase. Enzyme Microb Technol 2021; 148:109812. [PMID: 34116758 DOI: 10.1016/j.enzmictec.2021.109812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/17/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
The inactivation of diverse food enzymes by pulsed light (PL) has been described before, including the inactivation of polyphenol oxidase (PPO) (at pH 6.5). Since the pH affects the conformation of enzymes, it may influence the inactivation of enzymes by PL. The aim of this work was to evaluate the effect of pH on the kinetics of the PL-inactivation and associated structural changes of a case enzyme. To this, PPO was treated by PL at different pHs (4.0-6.5) and its inactivation kinetics and changes in its structure were evaluated by spectrophotometric and spectrofluorometric methods. The inactivation proceeded faster at low pH and was highly correlated with the decrease in peak intrinsic fluorescence intensity. Phase diagrams and parameter A evolution indicated the absence of intermediate unfolded states during the course of the inactivation. No protein aggregation was detected by turbidimetry. Results indicate that although a low pH favors the PL-inactivation of PPO, the mechanism of inactivation is pH-independent. Beyond the specific outcome for PPO, the results are evidence of a general pH-independence in the mechanism of enzyme inactivation by PL in the pH range 4.0-6.5 and acidification can be a strategy to decrease treatment times during PL processing.
Collapse
Affiliation(s)
- José A Pellicer
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe, 30107, Murcia, Spain
| | - José A Gabaldón
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe, 30107, Murcia, Spain
| | - Vicente M Gómez-López
- Cátedra Alimentos para la Salud, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe, 30107, Murcia, Spain.
| |
Collapse
|
16
|
Sruthi L, Srivastava V, Schmidt LE, Deshpande AP, Varughese S. Contributions from microstructural changes to the rheological behavior of casein dispersions during drying. SOFT MATTER 2020; 16:10954-10968. [PMID: 33146222 DOI: 10.1039/d0sm00992j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In several applications, a protein such as casein in dispersion form undergoes multiple processing steps including drying. In this work, the rheological and microstructural features of casein dispersions concentrated by evaporation of the solvent (drying dispersions) were studied in comparison with those of equal concentrations of the as-prepared dispersions without drying. The molecular assembly of casein is affected by drying along with the conformational composition changes in the secondary structures such as α-helix, β-sheets, turns and random structures of the protein. Modeling of the rheological data indicates that these changes also affect the packing of casein molecular assemblies and these molecular assemblies in alkaline dispersions can behave as soft deformable particles. During drying, casein dispersions show prominent shear thinning for concentrations higher than 20 wt% along with the prevalence of α-helices and β-sheets. In comparison, the as-prepared dispersions show different microstructural features, and therefore different rheological responses. A detailed analysis shows that alkalinity changes during drying is the crucial factor controlling the microstructural changes of the soft casein particles and hence the rheology.
Collapse
Affiliation(s)
- Lalitha Sruthi
- Department of Chemical Engineering, Indian Institute of Technology, Madras, India.
| | | | | | | | | |
Collapse
|
17
|
Carullo D, Donsì F, Ferrari G. Influence of high-pressure homogenization on structural properties and enzymatic hydrolysis of milk proteins. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109657] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
|
19
|
Liang X, Ma C, Yan X, Zeng H, McClements DJ, Liu X, Liu F. Structure, rheology and functionality of whey protein emulsion gels: Effects of double cross-linking with transglutaminase and calcium ions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105569] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Structural changes associated with the inactivation of lipoxygenase by pulsed light. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Chen X, Zhang Y, Han Y, Li Q, Wu L, Zhang J, Zhong X, Xie J, Shao S, Zhang Y, Wu Z. Emulsifying Properties of Polysaccharide Conjugates Prepared from Chin-Brick Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10165-10173. [PMID: 31398024 DOI: 10.1021/acs.jafc.9b03161] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chin-brick tea polysaccharide conjugates (TPC-C) were prepared to study their emulsion capabilities. Interfacial tension and the effects of some factors, such as storage time, metal ion concentrations (Na+, Ca2+), pH (2.0-8.0), and heat treatment (70-100 °C) on the emulsions stabilized by TPC-C were studied. The interfacial tension of TPC-C (10.88 mN/m) was lower than that of gum arabic (15.18 mN/m) at a concentration of 0.08%. As the TPC-C concentration increased from 0.1 to 3.0 wt %, the mean particle diameter (MPD) (d32) of emulsions stabilized by TPC-C decreased from 1.88 to 0.16 μm. Furthermore, at a concentration of 0.5 wt % or higher, the MPD (d32) of emulsions stabilized by TPC-C at 25 and 60 °C for 10 days was between 0.20 and 0.50 μm. In the tested pH conditions from 2.0 to 8.0, the MPD (d32) of emulsions stabilized by 2.0 wt % TPC-C was less than 0.20 μm. At Na+ concentration conditions between 0.10 and 0.50 mol/L, the MPD (d32) of emulsions was between 0.19 and 0.20 μm, and the zeta potential values varied from -34.10 to -32.60 mV. However, with an increasing Ca2+ concentration from 0.01 to 0.05 mol/L, the MPD (d32) of emulsions was between 0.20 and 21.65 μm, and the zeta potential raised sharply from -34.10 to -28.46 mV. The emulsions stabilized by TPC-C have a decent storage stability after a high-temperature heat treatment. Overall, tea polysaccharide conjugates strongly stabilized the emulsions, which support their new application as natural emulsifiers.
Collapse
Affiliation(s)
- Xiaoqiang Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education) , Hubei University of Technology , Wuhan 430068 , China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology and Business University (BTBU) , Beijing 100048 , China
| | - Yuntian Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education) , Hubei University of Technology , Wuhan 430068 , China
| | - Yu Han
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education) , Hubei University of Technology , Wuhan 430068 , China
| | - Qian Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education) , Hubei University of Technology , Wuhan 430068 , China
| | - Li Wu
- Department of Ophthalmology , Renmin Hospital of Wuhan University , Wuhan 430060 , China
| | - Jia Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education) , Hubei University of Technology , Wuhan 430068 , China
| | - Xiaoling Zhong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education) , Hubei University of Technology , Wuhan 430068 , China
| | - Jianchun Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology and Business University (BTBU) , Beijing 100048 , China
| | - Shengrong Shao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education) , Hubei University of Technology , Wuhan 430068 , China
| | - Yinjun Zhang
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Zhengqi Wu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education) , Hubei University of Technology , Wuhan 430068 , China
| |
Collapse
|
22
|
Dziadek M, Kudlackova R, Zima A, Slosarczyk A, Ziabka M, Jelen P, Shkarina S, Cecilia A, Zuber M, Baumbach T, Surmeneva MA, Surmenev RA, Bacakova L, Cholewa‐Kowalska K, Douglas TEL. Novel multicomponent organic–inorganic WPI/gelatin/CaP hydrogel composites for bone tissue engineering. J Biomed Mater Res A 2019; 107:2479-2491. [DOI: 10.1002/jbm.a.36754] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Michal Dziadek
- Department of Glass Technology and Amorphous CoatingsAGH University of Science and Technology Krakow Poland
- Department of Ceramics and RefractoriesAGH University of Science and Technology Krakow Poland
- Engineering DepartmentLancaster University Lancaster UK
| | - Radmila Kudlackova
- Engineering DepartmentLancaster University Lancaster UK
- Institute of PhysiologyCzech Academy of Sciences Prague Czech Republic
| | - Aneta Zima
- Department of Ceramics and RefractoriesAGH University of Science and Technology Krakow Poland
| | - Anna Slosarczyk
- Department of Ceramics and RefractoriesAGH University of Science and Technology Krakow Poland
| | - Magdalena Ziabka
- Department of Ceramics and RefractoriesAGH University of Science and Technology Krakow Poland
| | - Piotr Jelen
- Department of Silicate Chemistry and Macromolecular CompoundsAGH University of Science and Technology Krakow Poland
| | - Svetlana Shkarina
- Research Center Physical Materials Science and Composite MaterialsNational Research Tomsk Polytechnic University Tomsk Russian Federation
| | - Angelica Cecilia
- Institute for Photon Science and Synchrotron RadiationKarlsruhe Institute of Technology Eggenstein‐Leopoldshafen Germany
| | - Marcus Zuber
- Institute for Photon Science and Synchrotron RadiationKarlsruhe Institute of Technology Eggenstein‐Leopoldshafen Germany
- Laboratory for Applications of Synchrotron RadiationKarlsruhe Institute of Technology Eggenstein‐Leopoldshafen Germany
| | - Tilo Baumbach
- Institute for Photon Science and Synchrotron RadiationKarlsruhe Institute of Technology Eggenstein‐Leopoldshafen Germany
- Laboratory for Applications of Synchrotron RadiationKarlsruhe Institute of Technology Eggenstein‐Leopoldshafen Germany
| | - Maria A. Surmeneva
- Research Center Physical Materials Science and Composite MaterialsNational Research Tomsk Polytechnic University Tomsk Russian Federation
| | - Roman A. Surmenev
- Research Center Physical Materials Science and Composite MaterialsNational Research Tomsk Polytechnic University Tomsk Russian Federation
| | - Lucie Bacakova
- Institute of PhysiologyCzech Academy of Sciences Prague Czech Republic
| | - Katarzyna Cholewa‐Kowalska
- Department of Glass Technology and Amorphous CoatingsAGH University of Science and Technology Krakow Poland
| | - Timothy E. L. Douglas
- Engineering DepartmentLancaster University Lancaster UK
- Materials Science Institute (MSI)Lancaster University Lancaster UK
| |
Collapse
|
23
|
Pulsed Light Inactivation of Mushroom Polyphenol Oxidase: a Fluorometric and Spectrophotometric Study. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-2033-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
24
|
Siddique MAB, Maresca P, Pataro G, Ferrari G. Influence of pulsed light treatment on the aggregation of whey protein isolate. Food Res Int 2017; 99:419-425. [DOI: 10.1016/j.foodres.2017.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/18/2017] [Accepted: 06/02/2017] [Indexed: 12/22/2022]
|
25
|
Poznar M, Hołubowicz R, Wojtas M, Gapiński J, Banachowicz E, Patkowski A, Ożyhar A, Dobryszycki P. Structural properties of the intrinsically disordered, multiple calcium ion-binding otolith matrix macromolecule-64 (OMM-64). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1358-1371. [PMID: 28866388 DOI: 10.1016/j.bbapap.2017.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/28/2017] [Indexed: 01/28/2023]
Abstract
Fish otoliths are calcium carbonate biominerals that are involved in hearing and balance sensing. An organic matrix plays a crucial role in their formation. Otolith matrix macromolecule-64 (OMM-64) is a highly acidic, calcium-binding protein (CBP) found in rainbow trout otoliths. It is a component of high-molecular-weight aggregates, which influence the size, shape and polymorph of calcium carbonate in vitro. In this study, a protocol for the efficient expression and purification of OMM-64 was developed. For the first time, the complete structural characteristics of OMM-64 were described. Various biophysical methods were combined to show that OMM-64 occurs as an intrinsically disordered monomer. Under denaturing conditions (pH, temperature) OMM-64 exhibits folding propensity. It was determined that OMM-64 binds approximately 61 calcium ions with millimolar affinity. The folding-unfolding experiments showed that calcium ions induced the collapse of OMM-64. The effect of other counter ions present in trout endolymph on OMM-64 conformational changes was studied. The significance of disordered properties of OMM-64 and the possible function of this protein is discussed.
Collapse
Affiliation(s)
- Monika Poznar
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Rafał Hołubowicz
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Magdalena Wojtas
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jacek Gapiński
- A. Mickiewicz University, Faculty of Physics, Molecular Biophysics Division, Umultowska 85, 61-614, Poznań, Poland
| | - Ewa Banachowicz
- A. Mickiewicz University, Faculty of Physics, Molecular Biophysics Division, Umultowska 85, 61-614, Poznań, Poland
| | - Adam Patkowski
- A. Mickiewicz University, Faculty of Physics, Molecular Biophysics Division, Umultowska 85, 61-614, Poznań, Poland
| | - Andrzej Ożyhar
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Piotr Dobryszycki
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
26
|
Optimization of pH, temperature and CaCl2 concentrations for Ricotta cheese production from Buffalo cheese whey using Response Surface Methodology. J DAIRY RES 2017; 84:109-116. [PMID: 28252360 DOI: 10.1017/s0022029916000819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The recovery of milk constituents from cheese whey is affected by various processing conditions followed during production of Ricotta cheese. The objective of the present investigation was to optimize the temperature (60-90 °C), pH (3-7) and CaCl2 concentration (2·0-6·0 mm) for maximum yield/recovery of milk constituents. The research work was carried out in two phases. In 1st phase, the influence of these processing conditions was evaluated through 20 experiments formulated by central composite design (CCD) keeping the yield as response factor. The results obtained from these experiments were used to optimize processing conditions for maximum yield using response surface methodology (RSM). The three best combinations of processing conditions (90 °C, pH 7, CaCl2 6 mm), (100 °C, pH 5, CaCl2 4 mm) and (75 °C, pH 8·4, CaCl2 4 mm) were exploited in the next phase for Ricotta cheese production from a mixture of Buffalo cheese whey and skim milk (9 : 1) to determine the influence of optimized conditions on the cheese composition. Ricotta cheeses were analyzed for various physicochemical (moisture, fat, protein, lactose, total solids, pH and acidity indicated) parameters during storage of 60 d at 4 ± 2 °C after every 15 d interval. Ricotta cheese prepared at 90 °C, pH 7 and CaCl2 6 mm exhibited the highest cheese yield, proteins and total solids, while high fat content was recorded for cheese processed at 100 °C, pH 5 and 4 mm CaCl2 concentration. A significant storage-related increase in acidity and NPN was recorded for all cheese samples.
Collapse
|
27
|
Zand-Rajabi H, Madadlou A. Caffeine-loaded whey protein hydrogels reinforced with gellan and enriched with calcium chloride. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2015.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Effect of temperature, calcium and protein concentration on aggregation of whey protein isolate: Formation of gel-like micro-particles. Int Dairy J 2015. [DOI: 10.1016/j.idairyj.2015.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Jia D, You J, Hu Y, Liu R, Xiong S. Effect of CaCl2 on denaturation and aggregation of silver carp myosin during setting. Food Chem 2015; 185:212-8. [DOI: 10.1016/j.foodchem.2015.03.130] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/04/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
|
30
|
Hsiao YH, Yu CJ, Li WT, Hsieh JF. Coagulation of β-conglycinin, glycinin and isoflavones induced by calcium chloride in soymilk. Sci Rep 2015; 5:13018. [PMID: 26260443 PMCID: PMC4542527 DOI: 10.1038/srep13018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/14/2015] [Indexed: 11/09/2022] Open
Abstract
The coagulation of β-conglycinin (7S), glycinin (11S) and isoflavones induced by calcium chloride was investigated. Approximately 92.6% of the soymilk proteins were coagulated into the soymilk pellet fraction (SPF) after the addition of 5 mM calcium chloride. SDS-PAGE and two-dimensional electrophoresis analysis indicated that most of the 7S (α', α and β), 11S acidic (A1a, A1b, A2, A3 and A4) and 11S basic (B1a) proteins in the SSF were coagulated into the SPF after treatment with 5 mM calcium chloride. Isoflavones, including daidzein and genistein, were also coagulated into the SPF after the addition of 5 mM calcium chloride. The amounts of daidzein and genistein in the SSF decreased to 39.4 ± 1.6 and 11.8 ± 7.0%, respectively. HPLC analysis suggested that daidzein and genistein were bound with 7S and 11S proteins and then were coprecipitated into the SPF by 5 mM calcium chloride.
Collapse
Affiliation(s)
- Yu-Hsuan Hsiao
- Department of Food Science, Fu Jen Catholic University, Taipei 242, Taiwan
- Ph.D. Program in Nutrition & Food Science, Fu Jen Catholic University, Taipei 242, Taiwan
| | - Chia-Jung Yu
- Department of Food Science, Fu Jen Catholic University, Taipei 242, Taiwan
| | - Wen-Tai Li
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Jung-Feng Hsieh
- Department of Food Science, Fu Jen Catholic University, Taipei 242, Taiwan
- Ph.D. Program in Nutrition & Food Science, Fu Jen Catholic University, Taipei 242, Taiwan
| |
Collapse
|
31
|
Westerik N, Scholten E, Corredig M. The effect of calcium on the composition and physical properties of whey protein particles prepared using emulsification. Food Chem 2015; 177:72-80. [DOI: 10.1016/j.foodchem.2014.12.095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 12/21/2014] [Accepted: 12/23/2014] [Indexed: 11/15/2022]
|
32
|
Effect of calcium chloride on the structure and in vitro hydrolysis of heat induced whey protein and wheat starch composite gels. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2014.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Duongthingoc D, George P, Gorczyca E, Kasapis S. Studies on the viability of Saccharomyces boulardii within microcapsules in relation to the thermomechanical properties of whey protein. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2013.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Dissanayake M, Ramchandran L, Donkor O, Vasiljevic T. Denaturation of whey proteins as a function of heat, pH and protein concentration. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2013.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Ndoye FT, Erabit N, Flick D, Alvarez G. In-line characterization of a whey protein aggregation process: Aggregates size and rheological measurements. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2012.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Dissanayake M, Ramchandran L, Piyadasa C, Vasiljevic T. Influence of heat and pH on structure and conformation of whey proteins. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2012.08.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Chanarat S, Benjakul S, H-Kittikun A. Comparative study on protein cross-linking and gel enhancing effect of microbial transglutaminase on surimi from different fish. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:844-852. [PMID: 22413145 DOI: 10.1002/jsfa.4656] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Microbial transglutaminase (MTGase) has been used to increase the gel strength of surimi. Nevertheless, its effectiveness varies with fish species. The aim of this study was to elucidate the effect of MTGase at different levels on protein cross-linking and gel property of surimi from threadfin bream, Indian mackerel and sardine in the presence and absence of endogenous transglutaminase. RESULT Breaking force of all surimi gels increased as MTGase levels (0-0.6 U g⁻¹) increased except for threadfin bream surimi gel, where the breaking force decreased at 0.6 U g⁻¹ (P < 0.05). In the presence of EDTA, the gel strengthening effect was lower, suggesting the combined effect of endogenous transglutaminase with MTGase. With the addition of MTGase, the gel with the highest increase in breaking force showed highest decrease in myosin heavy chain. When cross-linking activity of MTGase on natural actomyosin (NAM) was determined, the highest decreasing rate in ε-amino group content with the concomitant increased formation of cross-linked proteins was found in NAM from threadfin bream. The reactivity of muscle proteins toward MTGase-induced cross-linking was in agreement with surimi gel strengthening. CONCLUSION The composition and properties of muscle proteins of varying fish species more likely determined protein cross-linking induced by MTGase, thereby affecting their gel properties.
Collapse
Affiliation(s)
- Sochaya Chanarat
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | | |
Collapse
|
38
|
Hsieh JF, Pan PH. Proteomic profiling of the coagulation of milk proteins induced by chymosin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2039-2045. [PMID: 22304647 DOI: 10.1021/jf204582g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chymosin-induced coagulation of individual milk proteins during incubation at 30 °C was investigated using a proteomic approach. The addition of chymosin (0.006 units/mL) caused the milk proteins to coagulate after a 3 h incubation period. Approximately 88% of the milk proteins were coagulated into the milk pellet fraction, and the protein concentration of the milk supernatant fraction (MSF) decreased from 29.88 ± 0.12 to 3.74 ± 0.13 mg/mL. SDS-PAGE analysis showed that α(S)-, β- and κ-caseins in the MSF were almost depleted and that the total intensity of the protein bands corresponding to α(S)-caseins (α(S1) and α(S2)), β-casein, and κ-casein decreased from 1088.0, 901.5, and 617.0 area units to 6.9, 6.1, and 5.2 area units, respectively. Two-dimensional electrophoresis analysis indicated that α(S1)-, α(S2)-, β-, and κ-casein and a fraction of the β-lactoglobulin and serum albumin were found in the MSF following incubation with chymosin.
Collapse
Affiliation(s)
- Jung-Feng Hsieh
- Department of Food Science, Fu Jen Catholic University, Taipei 242, Taiwan.
| | | |
Collapse
|
39
|
GANASEN PALANIVEL, BENJAKUL SOOTTAWAT. CHEMICAL COMPOSITION, PHYSICAL PROPERTIES AND MICROSTRUCTURE OF PIDAN WHITE AS AFFECTED BY DIFFERENT DIVALENT AND MONOVALENT CATIONS. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2010.00475.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
How to tailor heat-induced whey protein/κ-casein complexes as a means to investigate the acid gelation of milk—a review. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s13594-011-0013-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
Hussain R, Gaiani C, Aberkane L, Scher J. Characterization of high-milk-protein powders upon rehydration under various salt concentrations. J Dairy Sci 2011; 94:14-23. [DOI: 10.3168/jds.2010-3323] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 09/14/2010] [Indexed: 11/19/2022]
|
42
|
Changed dynamics in myofibrillar protein aggregation as a consequence of heating time and temperature. Meat Sci 2010; 85:625-31. [DOI: 10.1016/j.meatsci.2010.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/14/2010] [Accepted: 03/15/2010] [Indexed: 11/21/2022]
|
43
|
Chai Z, Shang J, Jiang Y, Ren F, Leng X. Effects of the free and pre-encapsulated calcium ions on the physical properties of whey protein edible film. Int J Food Sci Technol 2010. [DOI: 10.1111/j.1365-2621.2010.02303.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Dissanayake M, Kelly AL, Vasiljevic T. Gelling properties of microparticulated whey proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:6825-6832. [PMID: 20476755 DOI: 10.1021/jf1009796] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Subjecting whey proteins to high-pressure shearing with or without heating, commonly termed microparticulation, results in novel ingredients with modulated functionalities. Gelling properties of microparticulated whey proteins (MWP) were specifically assessed in this study. MWP powders were produced from commercial cheese whey retentate, standardized to 10% (w/w) protein, and subjected to microfluidization (MFZ) at 140 MPa either with or without prior heat-induced denaturation, followed by spray-drying. Gels were created from aqueous MWP dispersions either by heating at 90 degrees C for 20 min or by allowing gels to form at ambient temperature through addition of glucano-delta-lactone and/or NaCl. MWP powders produced from unheated WP dispersions created firm gels upon heating, whereas those produced from denatured WP gave only cold-set gels. Covalent and noncovalent protein-protein interactions were involved during both heat- and cold-induced gelation. Hydrophobic interactions were more pronounced during aggregation of bovine serum albumin. In conclusion, microparticulation of WP resulted in heat- and cold-set gels with different molecular and physical characteristics from those of untreated controls.
Collapse
Affiliation(s)
- Muditha Dissanayake
- Faculty of Health, Engineering and Science, School of Biomedical and Health Sciences, Victoria University, Werribee Campus, Melbourne, Victoria 8001, Australia
| | | | | |
Collapse
|
45
|
Abd El-Salam M, El-Shibiny S, Salem A. Factors Affecting the Functional Properties of Whey Protein Products: A Review. FOOD REVIEWS INTERNATIONAL 2009. [DOI: 10.1080/87559120902956224] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Zhou P, Liu X, Labuza TP. Effects of moisture-induced whey protein aggregation on protein conformation, the state of water molecules, and the microstructure and texture of high-protein-containing matrix. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:4534-40. [PMID: 18494483 DOI: 10.1021/jf073216u] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Moisture-induced protein aggregation through intermolecular interactions such as disulfide bonding can occur in a high-protein-containing food matrix during nonthermal processing and storage. The present study investigated the effect of moisture-induced whey protein aggregation on the structure and texture of such high-protein-containing matrices using a protein/buffer model system. Whey proteins in the protein/buffer model systems formed insoluble aggregates during 3 months' storage at temperatures varying from 4 to 45 degrees C, resulting in changes in microstructure and texture. The level of aggregation that began to cause significant texture change was an inverse function of storage temperature. The protein conformation and the state of water molecules in the model system also changed during storage, as measured by differential scanning calorimetry and Fourier transform infrared spectroscopy. During storage, the model system that had an initially smooth structure formed aggregated particles (100-200 nm) as measured by scanning electron microscopy, which lead to an aggregation network in the high-protein-containing matrix and caused a harder texture.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People's Republic of China
| | | | | |
Collapse
|
47
|
Zhou P, Liu X, Labuza TP. Moisture-induced aggregation of whey proteins in a protein/buffer model system. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:2048-2054. [PMID: 18311919 DOI: 10.1021/jf073151v] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Moisture-induced protein aggregation in a dry or intermediate-moisture food matrix can contribute to the loss of product acceptability. The present study evaluated the molecular mechanisms and controlling factors for moisture-induced whey protein aggregation in a premixed protein/buffer model system. Insoluble aggregates rapidly formed during the first 3 days of storage at 35 degrees C with a slower rate afterward. Evaluation of the insoluble aggregates by solubility tests in solutions containing SDS/urea/guanidine HCl/dithiothreitol and gel electrophoresis showed that the formation of intermolecular disulfide bonds was the main mechanism for protein aggregation, and all major whey proteins were involved in the formation of insoluble aggregates. Effects of various factors on aggregation were also investigated, including moisture content, medium pH, and the addition of NaCl. The dependence of aggregation on moisture content was bell-shaped, and the maximal extent of aggregation was achieved at a moisture content of around 70-80% on a dry weight basis.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, People's Republic of China
| | | | | |
Collapse
|
48
|
Clare DA, Lillard SJ, Ramsey SR, Amato PM, Daubert CR. Calcium effects on the functionality of a modified whey protein ingredient. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:10932-10940. [PMID: 18038975 DOI: 10.1021/jf071613z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The primary objective for this study addressed the effects of supplemental calcium on the functional properties of a modified whey protein ingredient (mWPC), prepared by acidification to pH 3.35, followed by extended heat treatment, gelation, and spray drying. In the presence of added calcium (mWPC-Ca2+), protein solutions showed increased thickening capacity, especially under refrigeration temperatures, compared to dispersions made with mWPC alone. A rheological assessment included the determination of (i) power law parameters, (ii) viscoelastic properties, and (iii) the effects of heating and cooling on these protein systems. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) banding profile suggested that various disulfide-linked molecular forms of beta-lactoglobulin, bovine serum albumin, and immunoglobulin were likely formed during manufacturing of the mWPC ingredient based on the patterns obtained when electrophoresis was performed in the absence of beta-mercaptoethanol compared to those observed with commercial WPC samples. An enhanced water-holding capacity was measured in mWPC-Ca2+ dispersions. Differential scanning calorimetry established that the addition of calcium salts caused a 2-fold increase in the amount of bound or unfreezeable water compared to mWPC controls. The physical appearance of the network structure varied significantly upon visualization with scanning electron microscopy, in which case the formation of large, rounded, spherical structures was noted in mWPC-Ca2+ samples, ascribed to an increased surface tension caused by the higher salt content. Ultimately, such attributes may afford distinct advantages for whey-based ingredients intended for application within food systems, especially under cold processing conditions.
Collapse
Affiliation(s)
- Debra A Clare
- Department of Food Science, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695-7624, USA.
| | | | | | | | | |
Collapse
|
49
|
Martins VB, Netto FM. Physicochemical and functional properties of soy protein isolate as a function of water activity and storage. Food Res Int 2006. [DOI: 10.1016/j.foodres.2005.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Bo T, Pawliszyn J. Role of calcium binding in protein structural changes and phospholipid–protein interactions studied by capillary isoelectric focusing with whole column imaging detection. Anal Chim Acta 2006. [DOI: 10.1016/j.aca.2005.11.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|