1
|
Jeong J, Yu C, Kang R, Kim M, Park T. Application of propionate-producing bacterial consortium in ruminal methanogenesis inhibited environment with bromoethanesulfonate as a methanogen direct inhibitor. Front Vet Sci 2024; 11:1422474. [PMID: 39444738 PMCID: PMC11497462 DOI: 10.3389/fvets.2024.1422474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Methane production in ruminants is primarily due to the conversion of metabolic hydrogen (H2), produced during anaerobic microbial fermentation, into methane by ruminal methanogens. While this process plays a crucial role in efficiently disposes of H2, it also contributes to environmental pollution and eliminating methane production in the rumen has proven to be challenging. This study investigates the use of probiotics, specifically propionate-producing bacteria, to redirect accumulated H2 in a methane-mitigated environment. For this objective, we supplemented experimental groups with Lactiplantibacillus plantarum and Megasphaera elsdenii for the reinforced acrylate pathway (RA) and Selenomonas ruminantium and Acidipropionibacterium thoenii for the reinforced succinate pathway (RS), as well as a consortium of all four strains (CB), with the total microbial concentration at 1.0 × 1010 cells/mL. To create a methane-mitigated environment, 2-bromoethanesulfonate (BES) was added to all experimental groups at a dose of 15 mg/0.5 g of feed. BES reduced methane production by 85% in vitro, and the addition of propionate-producing bacteria with BES further decreased methane emission by up to 94% compared with the control (CON) group. Although BES did not affect the alpha diversity of the ruminal bacteriome, it reduced total volatile fatty acid production and altered beta diversity of ruminal bacteriota, indicating microbial metabolic adaptations to H2 accumulation. Despite using different bacterial strains targeting divergent metabolic pathways (RA and RS), a decrease in the dominance of the [Eubacterium] ruminantium group suggesting that both approaches may have a similar modulatory effect. An increase in the relative abundance of Succiniclasticum in the CB group suggests that propionate metabolism is enhanced by the addition of a propionate-producing bacterial consortium. These findings recommend using a consortium of propionate-producing bacteria to manage H2 accumulation by altering the rumen bacteriome, thus mitigating the negative effects of methane reduction strategies.
Collapse
Affiliation(s)
- Jongsik Jeong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Chaemin Yu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Ryukseok Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Myunghoo Kim
- Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
- Institute for Future Earth, JYS Institute for Basic Science, Pusan National University, Pusan, Republic of Korea
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
2
|
Sato Y, Shioya H, Uda Y, Asano H, Nagao Y, Kuno H, Yoshizawa F. Effects of two types of Coccomyxa sp. KJ on in vitro ruminal fermentation, methane production, and the rumen microbiota. PLoS One 2024; 19:e0308646. [PMID: 39173024 PMCID: PMC11341058 DOI: 10.1371/journal.pone.0308646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
Coccomyxa sp. KJ is a unicellular green microalga that accumulates abundant lipids when cultured under nitrogen-deficient conditions (KJ1) and high nitrogen levels when cultured under nitrogen-sufficient conditions (KJ2). Considering the different characteristics between KJ1 and KJ2, they are expected to have different effects on rumen fermentation. This study aimed to determine the effects of KJ1 and KJ2 on in vitro ruminal fermentation, digestibility, CH4 production, and the ruminal microbiome as corn silage substrate condition. Five treatments were evaluated: substrate only (CON) and CON + 0.5% dry matter (DM) KJ1 (KJ1_L), 1.0% DM KJ1 (KJ1_H), 0.5% DM KJ2 (KJ2_L), and 1.0% DM KJ2 (KJ2_H). DM degradability-adjusted CH4 production was inhibited by 48.4 and 40.8% in KJ2_L and KJ2_H, respectively, compared with CON. The proportion of propionate was higher in the KJ1 treatments than the CON treatment and showed further increases in the KJ2 treatments. The abundances of Megasphaera, Succiniclasticum, Selenomonas, and Ruminobacter, which are related to propionate production, were higher in KJ2_H than in CON. The results suggested that the rumen microbiome was modified by the addition of 0.5-1.0% DM KJ1 and KJ2, resulting in increased propionate and reduced CH4 production. In particular, the KJ2 treatments inhibited ruminal CH4 production more than the KJ1 treatments. These findings provide important information for inhibiting ruminal CH4 emissions, which is essential for increasing animal productivity and sustaining livestock production under future population growth.
Collapse
Affiliation(s)
- Yoshiaki Sato
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Tochigi, Japan
| | - Honoka Shioya
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Tochigi, Japan
| | - Yuma Uda
- University Farm, School of Agriculture, Utsunomiya University, Tochigi, Japan
| | - Hiroshi Asano
- University Farm, School of Agriculture, Utsunomiya University, Tochigi, Japan
| | - Yoshikazu Nagao
- University Farm, School of Agriculture, Utsunomiya University, Tochigi, Japan
| | | | - Fumiaki Yoshizawa
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Tochigi, Japan
| |
Collapse
|
3
|
Stothart MR, McLoughlin PD, Medill SA, Greuel RJ, Wilson AJ, Poissant J. Methanogenic patterns in the gut microbiome are associated with survival in a population of feral horses. Nat Commun 2024; 15:6012. [PMID: 39039075 PMCID: PMC11263349 DOI: 10.1038/s41467-024-49963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Gut microbiomes are widely hypothesised to influence host fitness and have been experimentally shown to affect host health and phenotypes under laboratory conditions. However, the extent to which they do so in free-living animal populations and the proximate mechanisms involved remain open questions. In this study, using long-term, individual-based life history and shallow shotgun metagenomic sequencing data (2394 fecal samples from 794 individuals collected between 2013-2019), we quantify relationships between gut microbiome variation and survival in a feral population of horses under natural food limitation (Sable Island, Canada), and test metagenome-derived predictions using short-chain fatty acid data. We report detailed evidence that variation in the gut microbiome is associated with a host fitness proxy in nature and outline hypotheses of pathogenesis and methanogenesis as key causal mechanisms which may underlie such patterns in feral horses, and perhaps, wild herbivores more generally.
Collapse
Affiliation(s)
- Mason R Stothart
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Biology, University of Oxford, Oxford, United Kingdom.
| | - Philip D McLoughlin
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sarah A Medill
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ruth J Greuel
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Jocelyn Poissant
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
4
|
Ungerfeld EM, Pitta D. Review: Biological consequences of the inhibition of rumen methanogenesis. Animal 2024:101170. [PMID: 38772773 DOI: 10.1016/j.animal.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024] Open
Abstract
Decreasing enteric CH4 emissions from ruminants is important for containing global warming to 1.5 °C and avoid the worst consequences of climate change. However, the objective of mitigating enteric CH4 emissions is difficult to reconcile with the forecasted increase in production of ruminant meat and milk, unless CH4 production per animal and per kilogram of animal product are decreased substantially. Chemical compound 3-nitrooxypropanol and bromoform-containing red algae Asparagopsis are currently the most potent inhibitors of rumen methanogenesis, but their average efficacy would have to be increased to mitigate enteric CH4 emissions to contain global warming to 1.5 °C, if the demand for ruminant products increases as predicted. We propose that it may be possible to enhance the efficacy of inhibitors of methanogenesis through understanding the mechanisms that cause variation in their efficacy across studies. We also propose that a more thorough understanding of the effects of inhibiting methanogenesis on rumen and postabsorptive metabolism may help improve feed efficiency and cost-effectiveness as co-benefits of the methanogenesis inhibition intervention. For enhancing efficacy, we examine herein how different inhibitors of methanogenesis affect the composition of the rumen microbial community and discuss some mechanisms that may explain dissimilar sensitivities among methanogens to different types of inhibitors. For improving feed efficiency and cost-effectiveness, we discuss the consequences of inhibiting methanogenesis on rumen fermentation, and how changes in rumen fermentation can in turn affect postabsorptive metabolism and animal performance. The objectives of this review are to identify knowledge gaps of the consequences of inhibiting methanogenesis on rumen microbiology and rumen and postabsorptive metabolism, propose research to address those knowledge gaps and discuss the implications that this research can have for the efficacy and adoption of inhibitors of methanogenesis. Depending on its outcomes, research on the microbiological, biochemical, and metabolic consequences of the inhibition of rumen methanogenesis could help the adoption of feed additives inhibitors of methanogenesis to mitigate enteric CH4 emissions from ruminants to ameliorate climate change.
Collapse
Affiliation(s)
- E M Ungerfeld
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Camino Cajón a Vilcún km 10, 4880000 Vilcún, La Araucanía, Chile.
| | - D Pitta
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, 19348 Kenneth Square, PA, United States
| |
Collapse
|
5
|
Shinkai T, Takizawa S, Fujimori M, Mitsumori M. - Invited Review - The role of rumen microbiota in enteric methane mitigation for sustainable ruminant production. Anim Biosci 2024; 37:360-369. [PMID: 37946422 PMCID: PMC10838666 DOI: 10.5713/ab.23.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Ruminal methane production functions as the main sink for metabolic hydrogen generated through rumen fermentation and is recognized as a considerable source of greenhouse gas emissions. Methane production is a complex trait affected by dry matter intake, feed composition, rumen microbiota and their fermentation, lactation stage, host genetics, and environmental factors. Various mitigation approaches have been proposed. Because individual ruminants exhibit different methane conversion efficiencies, the microbial characteristics of low-methane-emitting animals can be essential for successful rumen manipulation and environment-friendly methane mitigation. Several bacterial species, including Sharpea, uncharacterized Succinivibrionaceae, and certain Prevotella phylotypes have been listed as key players in low-methane-emitting sheep and cows. The functional characteristics of the unclassified bacteria remain unclear, as they are yet to be cultured. Here, we review ruminal methane production and mitigation strategies, focusing on rumen fermentation and the functional role of rumen microbiota, and describe the phylogenetic and physiological characteristics of a novel Prevotella species recently isolated from low methane-emitting and high propionate-producing cows. This review may help to provide a better understanding of the ruminal digestion process and rumen function to identify holistic and environmentally friendly methane mitigation approaches for sustainable ruminant production.
Collapse
Affiliation(s)
- Takumi Shinkai
- NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901,
Japan
| | - Shuhei Takizawa
- NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901,
Japan
| | - Miho Fujimori
- NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901,
Japan
| | - Makoto Mitsumori
- NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901,
Japan
| |
Collapse
|
6
|
Thorsteinsson M, Maigaard M, Lund P, Weisbjerg M, Nielsen M. Effect of fumaric acid in combination with Asparagopsis taxiformis or nitrate on in vitro gas production, pH, and redox potential. JDS COMMUNICATIONS 2023; 4:335-339. [PMID: 37727239 PMCID: PMC10505769 DOI: 10.3168/jdsc.2022-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/24/2023] [Indexed: 09/21/2023]
Abstract
Reduction in enteric methane (CH4) emissions from cattle can be achieved through use of feed additives, which often results in increased emission of hydrogen (H2). The objective of this study was to investigate in vitro effects of a known hydrogen sink, fumaric acid, in combination with either of 2 methane inhibitors, the macroalga Asparagopsis taxiformis or nitrate, on CH4 and H2 production, feed degradability, pH, and redox potential. A corn silage (0.5 g; control) was incubated in buffered rumen fluid with the addition of 0.025 g of nitrate (Nit), 0.025 g of dried A. taxiformis (Asp), 0.025 g of nitrate + 0.025 g of fumaric acid (Nit+Fum), or 0.025 g of dried A. taxiformis + 0.025 g of fumaric acid (Asp+Fum). Accumulated gas production was determined using the AnkomRF system equipped with airtight gasbags. There were 9 replicates per treatment with 3 replicates per treatment stopped after 24, 36, and 48 h of incubation. The amount of undegraded feed was determined by filtration. Gas composition was determined by gas chromatography. Degradable dry matter, degradable organic matter, pH, redox potential, and gas production data were analyzed using a mixed model. Asp and Asp+Fum reduced CH4 production by 98% or greater at all incubation times, whereas Nit and Nit+Fum reduced CH4 production (mL of CH4/g of dry matter) by 52% to 63% compared with the control. Hydrogen was only detectable in gas from Asp and Asp+Fum treatments, with no difference in H2 production between the 2 treatments. The treatments had only minor effects on redox potential in the fermented rumen fluid, and pH was lowest for treatments including A. taxiformis. In conclusion, both A. taxiformis and nitrate reduced CH4 production. Fumaric acid in combination with A. taxiformis did not reduce H2 production, and treatments including nitrate did not result in any detectable levels of H2. Future dose-response in vitro studies will contribute to investigating the potential of fumaric acid as a hydrogen sink during CH4 mitigation.
Collapse
Affiliation(s)
| | | | - P. Lund
- Department of Animal and Veterinary Sciences, Aarhus University, AU Viborg–Research Centre Foulum, DK-8830 Tjele, Denmark
| | - M.R. Weisbjerg
- Department of Animal and Veterinary Sciences, Aarhus University, AU Viborg–Research Centre Foulum, DK-8830 Tjele, Denmark
| | - M.O. Nielsen
- Department of Animal and Veterinary Sciences, Aarhus University, AU Viborg–Research Centre Foulum, DK-8830 Tjele, Denmark
| |
Collapse
|
7
|
Firkins JL, Mitchell KE. Invited review: Rumen modifiers in today's dairy rations. J Dairy Sci 2023; 106:3053-3071. [PMID: 36935236 DOI: 10.3168/jds.2022-22644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/23/2022] [Indexed: 03/19/2023]
Abstract
Our aim was to review feed additives that have a potential ruminal mechanism of action when fed to dairy cattle. We discuss how additives can influence ruminal fermentation stoichiometry through electron transfer mechanisms, particularly the production and usage of dihydrogen. Lactate accumulation should be avoided, especially when acidogenic conditions suppress ruminal neutral detergent fiber digestibility or lead to subclinical acidosis. Yeast products and other probiotics are purported to influence lactate uptake, but growing evidence also supports that yeast products influence expression of gut epithelial genes promoting barrier function and resulting inflammatory responses by the host to various stresses. We also have summarized methane-suppressing additives for potential usage in dairy rations. We focused on those with potential to decrease methane production without decreasing fiber digestibility or milk production. We identified some mitigating factors that need to be addressed more fully in future research. Growth factors such as branched-chain volatile fatty acids also are part of crucial cross-feeding among groups of microbes, particularly to optimize fiber digestibility in the rumen. Our developments of mechanisms of action for various rumen-active modifiers should help nutrition advisors anticipate when a benefit in field conditions is more likely.
Collapse
Affiliation(s)
- J L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus 43210.
| | - K E Mitchell
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| |
Collapse
|
8
|
Romero P, Huang R, Jiménez E, Palma-Hidalgo JM, Ungerfeld EM, Popova M, Morgavi DP, Belanche A, Yáñez-Ruiz DR. Evaluating the effect of phenolic compounds as hydrogen acceptors when ruminal methanogenesis is inhibited in vitro – Part 2. Dairy goats. Animal 2023; 17:100789. [PMID: 37087998 DOI: 10.1016/j.animal.2023.100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Most mitigation strategies to reduce enteric methane (CH4) production in the rumen induce an excess of rumen dihydrogen (H2) that is expelled and consequently not redirected to the synthesis of metabolites that can be utilised by the ruminant. We hypothesised that phenolic compounds can be potential H2 acceptors when added to the diet, as they can be degraded to compounds that may be beneficial for the animal, using part of the H2 available when ruminal methanogenesis is inhibited. We performed four in vitro incubation experiments using rumen inoculum from Murciano-Granadina adult goats: Experiment 1 examined the inhibitory potential of Asparagopsis taxiformis (AT) at different concentrations (0, 1, 2, 3, 4 and 5% of the substrate on a DM basis) in 24 h incubations; Experiment 2 investigated the effect of a wide range of phenolic compounds (phenol, catechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, gallic acid and formic acid) at different doses (0, 2, 4, and 6 mM) on rumen fermentation for 24 h; Experiment 3 evaluated the combined effect of each phenolic compound at 6 mM with AT at 2% DM in sequential batch cultures for 5 days; and Experiment 4 examined the dose-response effect of phloroglucinol at different concentrations (0, 6, 16, 26 and 36 mM) combined with AT in sequential batch cultures for 5 days. Results from Experiment 1 confirmed that AT at 2% DM substantially inhibited CH4 production while significantly increasing H2 accumulation and decreasing the acetate:propionate ratio. Results from Experiment 2 showed that phenolic compounds did not negatively affect rumen fermentation at any dose. In Experiment 3, each phenolic compound at 6 mM combined with AT at 2% DM inhibited CH4 production. Phloroglucinol numerically decreased H2 accumulation and significantly increased total gas production (TGP), volatile fatty acid (VFA) production and the acetate:propionate ratio. In Experiment 4, phloroglucinol at increasing doses supplemented with AT at 2% DM significantly decreased H2 accumulation and the abundances of archaea, protozoa and fungi abundances, and increased TGP, total VFA production and the acetate:propionate ratio in a dose-dependent way. In conclusion, combined treatment with AT and phloroglucinol was successful to mitigate CH4 production while preventing the accumulation of H2, leading to an increase in acetate and total VFA production and therefore an improvement in rumen fermentation in goats.
Collapse
Affiliation(s)
- P Romero
- Estación Experimental del Zaidín (CSIC), Profesor Albareda, 1, 18008 Granada, Spain
| | - R Huang
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès Champanelle, France
| | - E Jiménez
- Estación Experimental del Zaidín (CSIC), Profesor Albareda, 1, 18008 Granada, Spain
| | - J M Palma-Hidalgo
- Estación Experimental del Zaidín (CSIC), Profesor Albareda, 1, 18008 Granada, Spain
| | - E M Ungerfeld
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Temuco 4880000, Chile
| | - M Popova
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès Champanelle, France
| | - D P Morgavi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès Champanelle, France
| | - A Belanche
- Estación Experimental del Zaidín (CSIC), Profesor Albareda, 1, 18008 Granada, Spain; Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - D R Yáñez-Ruiz
- Estación Experimental del Zaidín (CSIC), Profesor Albareda, 1, 18008 Granada, Spain.
| |
Collapse
|
9
|
Ceron-Chafla P, de Vrieze J, Rabaey K, van Lier JB, Lindeboom REF. Steering the product spectrum in high-pressure anaerobic processes: CO 2 partial pressure as a novel tool in biorefinery concepts. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:27. [PMID: 36803622 PMCID: PMC9938588 DOI: 10.1186/s13068-023-02262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/05/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Elevated CO2 partial pressure (pCO2) has been proposed as a potential steering parameter for selective carboxylate production in mixed culture fermentation. It is anticipated that intermediate product spectrum and production rates, as well as changes in the microbial community, are (in)directly influenced by elevated pCO2. However, it remains unclear how pCO2 interacts with other operational conditions, namely substrate specificity, substrate-to-biomass (S/X) ratio and the presence of an additional electron donor, and what effect pCO2 has on the exact composition of fermentation products. Here, we investigated possible steering effects of elevated pCO2 combined with (1) mixed substrate (glycerol/glucose) provision; (2) subsequent increments in substrate concentration to increase the S/X ratio; and (3) formate as an additional electron donor. RESULTS Metabolite predominance, e.g., propionate vs. butyrate/acetate, and cell density, depended on interaction effects between pCO2-S/X ratio and pCO2-formate. Individual substrate consumption rates were negatively impacted by the interaction effect between pCO2-S/X ratio and were not re-established after lowering the S/X ratio and adding formate. The product spectrum was influenced by the microbial community composition, which in turn, was modified by substrate type and the interaction effect between pCO2-formate. High propionate and butyrate levels strongly correlated with Negativicutes and Clostridia predominance, respectively. After subsequent pressurized fermentation phases, the interaction effect between pCO2-formate enabled a shift from propionate towards succinate production when mixed substrate was provided. CONCLUSIONS Overall, interaction effects between elevated pCO2, substrate specificity, high S/X ratio and availability of reducing equivalents from formate, rather than an isolated pCO2 effect, modified the proportionality of propionate, butyrate and acetate in pressurized mixed substrate fermentations at the expense of reduced consumption rates and increased lag-phases. The interaction effect between elevated pCO2 and formate was beneficial for succinate production and biomass growth with a glycerol/glucose mixture as the substrate. The positive effect may be attributed to the availability of extra reducing equivalents, likely enhanced carbon fixating activity and hindered propionate conversion due to increased concentration of undissociated carboxylic acids.
Collapse
Affiliation(s)
- Pamela Ceron-Chafla
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands.
| | - Jo de Vrieze
- grid.5342.00000 0001 2069 7798Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Korneel Rabaey
- grid.5342.00000 0001 2069 7798Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium ,grid.510907.aCenter for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Coupure Links 653, 9000 Ghent, Belgium
| | - Jules B. van Lier
- grid.5292.c0000 0001 2097 4740Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Ralph E. F. Lindeboom
- grid.5292.c0000 0001 2097 4740Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|
10
|
Meng M, Zhao X, Huo R, Li X, Chang G, Shen X. Disodium Fumarate Alleviates Endoplasmic Reticulum Stress, Mitochondrial Damage, and Oxidative Stress Induced by the High-Concentrate Diet in the Mammary Gland Tissue of Hu Sheep. Antioxidants (Basel) 2023; 12:antiox12020223. [PMID: 36829784 PMCID: PMC9952365 DOI: 10.3390/antiox12020223] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The long-term feeding of the high-concentrate diet (HC) reduced rumen pH and induced subacute rumen acidosis (SARA), leading to mammary gland tissue damage among ruminants. Disodium fumarate enhanced rumen bufferation and alleviated a decrease in rumen pH induced by the HC diet. Therefore, the purpose of this study was to investigate whether disodium fumarate could alleviate endoplasmic reticulum (ER) stress, mitochondrial damage, and oxidative stress induced by the high-concentrate diet in the mammary gland tissue of Hu sheep. In this study, 18 Hu sheep in mid-lactation were randomly divided into three groups: one fed with a low-concentrate diet (LC) diet, one fed with a HC diet, and one fed with a HC diet with disodium fumarate (AHC). Each sheep was given an additional 10 g of disodium fumarate/day. The experiment lasted for eight weeks. After the experiment, rumen fluid, blood, and mammary gland tissue were collected. The results show that, compared with the LC diet, the HC diet could reduce rumen pH, and the pH below 5.6 was more than 3 h, and the LPS content of blood and rumen fluid in HC the diet was significantly higher than in the LC diet. This indicates that the HC diet induced SARA in Hu sheep. However, the supplementation of disodium fumarate in the HC diet increased the rumen pH and decreased the content of LPS in blood and rumen fluid. Compared with the LC diet, the HC diet increased Ca2+ content in mammary gland tissue. However, the AHC diet decreased Ca2+ content. The HC diet induced ER stress in mammary gland tissue by increasing the mRNA and protein expressions of GRP78, CHOP, PERK, ATF6, and IRE1α. The HC diet also activated the IP3R-VDAC1-MCU channel and lead to mitochondrial damage by inhibiting mitochondrial fusion and promoting mitochondrial division, while disodium fumarate could alleviate these changes. In addition, disodium fumarate alleviated oxidative stress induced by the HC diet by activating Nrf2 signaling and reducing ROS production in mammary gland tissue. In conclusion, the supplementation of disodium fumarate at a daily dose of 10 g/sheep enhanced rumen bufferation by maintaining the ruminal pH above 6 and reduced LPS concentration in ruminal fluid and blood. This reaction avoided the negative effect observed by non-supplemented sheep that were fed with a high-concentrate diet involving endoplasmic reticulum stress, oxidative stress, and mitochondrial damage in the mammary gland tissue of Hu sheep.
Collapse
|
11
|
BHARATHIDHASAN A. Effect of supplemental malic acid on methane mitigation in paddy straw based complete diet for sustainable animal production in indigenous dairy cattle. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2022. [DOI: 10.56093/ijans.v92i11.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A study was conducted to evaluate the effect of supplemental malic acid on mitigation of methane emission for dairy cattle by in vitro and in vivo methods. The in vitro finding was validated by in vivo feeding trial in indigenous dairy cattle. Ten dairy cattle with uniform milk production were selected and divided into two groups with five animals each and they were fed with and without supplementation of malic acid at 0.39% in 60% paddy straw and 40% concentrate mixture based complete diet. The malic acid at 0.39% was the minimum level which resulted in highly significant reduction of methane by 15.95% and methane (ml) per 100 mg of truly digested substrate by 15.69%, respectively than control in in vitro study. The methane emission per animal per day and per kg dry matter intake (DMI) was significantly decreased by 3.26% and 3.11%, respectively in malic acid supplemented group than control. The methane emission per kg milk production was significantly reduced by 5.43% in malic acid supplemented group than control. The total volatile fatty acid (TVFA) and propionic acid were significantly increased by 2.69% and 11.71%, respectively in malic acid supplemented group than control. It was concluded that the supplementation of malic acid at 0.39% of paddy straw based complete diet significantly reduced the methane emission per animal per day and per kg milk production than control in indigenous dairy cattle.
Collapse
|
12
|
Effects of Different Fiber Substrates on In Vitro Rumen Fermentation Characteristics and Rumen Microbial Community in Korean Native Goats and Hanwoo Steers. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Korean native goats (Capra hircus coreanae) (KNG) and Hanwoo (Bos taurus coreanae) are indigenous breeds inhabiting Korea. This study compared the in vitro rumen fermentation characteristics, dry matter (DM) degradation, and ruminal microbial communities of Korean native goats and Hanwoo steers consuming rice hay (RH) and cotton fiber (CF). The pH, ammonia-nitrogen (NH3-N), and total volatile fatty acids (VFAs) production significantly differ (p < 0.05) across species in all incubation times. After 24 h, the pH, NH3-N, and total VFAs production were higher in Korean native goats than in Hanwoo steers. Total gas, molar proportion of propionate, and total VFAs were higher (p < 0.05) in RH than in CF for both ruminant species. DM digestibility of both substrates were higher (p < 0.05) in Hanwoo steers than in KNG. Both treatments in KNG produced higher (p < 0.01) microbial DNA copies of general bacteria than those in Hanwoo steers. Butyrivibrio fibrisolvens and Fibrobacter succinogenes had significantly higher DNA copies under RH and CF in Hanwoo steers than in Korean native goats. B. fibrisolvens, Ruminococcus albus, and Ruminococcus flavifaciens after 24 h of incubation had a higher abundance (p < 0.05) in RH than in CF. Overall results suggested that rumen bacteria had host-specific and substrate-specific action for fiber digestion and contribute to improving ruminal functions of forage utilization between ruminant species.
Collapse
|
13
|
Mohmad M, Agnihotri N, Kumar V. Fumaric acid: fermentative production, applications and future perspectives. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The rising prices of petroleum-based chemicals and the growing apprehension about food safety and dairy supplements have reignited interest in fermentation process to produce fumaric acid. This article reviews the main issues associated with industrial production of fumaric acid. Different approaches such as strain modulation, morphological control, selection of substrate and fermentative separation have been addressed and discussed followed by their potential towards production of fumaric acid at industrial scale is highlighted. The employment of biodegradable wastes as substrates for the microorganisms involved in fumaric acid synthesis has opened an economic and green route for production of the later on a commercial scale. Additionally, the commercial potential and technological approaches to the augmented fumaric acid derivatives have been discussed. Conclusion of the current review reveals future possibilities for microbial fumaric acid synthesis.
Collapse
Affiliation(s)
- Masrat Mohmad
- Department of Chemistry , Maharishi Markandeshwar (Deemed to be University) , Mullana , Ambala 133207 , India
| | - Nivedita Agnihotri
- Department of Chemistry , Maharishi Markandeshwar (Deemed to be University) , Mullana , Ambala 133207 , India
| | - Vikas Kumar
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University) , Mullana , Ambala 133207 , India
| |
Collapse
|
14
|
WADHWA M, BAKSHI MPS. Potential of waste flowers used as feed additive on the performance of goat kids. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i10.117223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present study was conducted to assess the impact of temple waste flowers as feed additive on the growth of goat kids. Marigold (Calendula officinalis) flowers constituted the bulk of WFs with negligible red roses (Rosa indica L). Marigold flowers as compared to rose flowers contained high (P<0.01) total phenols and flavonoids; and low (P<0.01) anthocyanins, saponins and vitamin C content. The in vitro studies revealed that the supplementation of WFs at 3 and 5% improved (P<0.01) digestibility of nutrients and VFAs production as compared to control. NGP at t½ increased (P<0.05) linearly up to 4% WFs supplementation and methane production decreased (P<0.05) at all levels of supplementation. Fifteen Beetal goat kids divided into three equal groups were fed TMR, or TMR supplemented with WFs at 3 or 5% of DM intake for 90 days. The daily DM consumed by the animals was similar in all the groups. The digestibility of proximate constituents at 3% level of WF was comparable with control TMR, but depressed (P<0.05) at 5% level of supplementation. The digestibility of cell wall constituents and N retention were not affected by WF supplementation. The average daily gain in weight was improved considerably. It was concluded that bio-active compounds present in WFs reduced the methane emission, resulting in improvement in nutrient utilization and growth of goat kids.
Collapse
|
15
|
Son AR, Kim SH, Valencia RA, Jeong CD, Islam M, Yang CJ, Lee SS. Kimchi cabbage ( Brassica rapa L.) by-products treated with calcium oxide and alkaline hydrogen peroxide as feed ingredient for Holstein steers. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:841-853. [PMID: 34447960 PMCID: PMC8367413 DOI: 10.5187/jast.2021.e75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 11/20/2022]
Abstract
This study aimed to investigate the effects of Kimchi cabbage by-products either treated or untreated with calcium oxide (CaO) and alkaline hydrogen peroxide (AHP) as substitutional ingredient of total mixed ration (TMR) on in vitro fermentation, in situ disappearance and growth performance of Holstein steers. Cannulated Holstein (600 ± 47 kg) was used for both the in vitro and in situ experiments. The treatments used were TMR only (CON), TMR + 30% Kimchi cabbage by-products fresh matter (FM) basis (TC), TMR + 30% Kimchi cabbage by-products FM basis + 5% CaO FM basis (TCC), and TMR + 30% Kimchi cabbage by-products FM basis + 5% CaO FM basis + 3.22% AHP FM basis (TCCA). For in vivo experiment, thirty-four Holstein steers (273 ± 45 kg) were subjected to a 150-day feeding trial, divided into two groups: CON and TC. In the in vitro experiment, pH of TCCA was greatest (p < 0.05) among other treatments at all incubation times. Ammonia nitrogen and volatile fatty acid concentrations were not significantly different for each treatment. However, butyrate was greater (p < 0.05) in TCC and CON than in both TC and TCCA. During in situ experiment, the dry matter (DM) disappearance was greatest (p < 0.05) in TCCA among other treatments. Also, disappearance of neutral detergent fiber (NDF) and acid detergent fiber (ADF) were observed greatest (p > 0.05) in TCCA treatment. In the in vivo experiment, average daily gain (ADG) did not differ between CON and TC. In blood profile analysis, alanine aminotransferase, aspartate aminotransferase, glucose, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total protein concentration were not significantly different between treatments. But, creatinine concentration was greater (p < 0.05) in TC than in CON. Overall results suggest that Kimchi cabbage by-products either treated or untreated with CaO and AHP can be used as substitutional ingredient in TMR for Holstein steers.
Collapse
Affiliation(s)
- A-Rang Son
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Raniel A Valencia
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea.,Interdisciplinary Program in IT-Bio Convergence System (BK 21 plus), Sunchon National University, Suncheon 57922, Korea.,Department of Animal Science, College of Agriculture, Central Luzon State University, Science City of Muñoz 3120, Philippines
| | - Chang-Dae Jeong
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Mahfuzul Islam
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Chul-Ju Yang
- Interdisciplinary Program in IT-Bio Convergence System (BK 21 plus), Sunchon National University, Suncheon 57922, Korea.,Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| |
Collapse
|
16
|
Schilde M, von Soosten D, Hüther L, Kersten S, Meyer U, Zeyner A, Dänicke S. Dose-Response Effects of 3-Nitrooxypropanol Combined with Low- and High-Concentrate Feed Proportions in the Dairy Cow Ration on Fermentation Parameters in a Rumen Simulation Technique. Animals (Basel) 2021; 11:1784. [PMID: 34203718 PMCID: PMC8232248 DOI: 10.3390/ani11061784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
Methane (CH4) from ruminal feed degradation is a major pollutant from ruminant livestock, which calls for mitigation strategies. The purpose of the present 4 × 2 factorial arrangement was to investigate the dose-response relationships between four doses of the CH4 inhibitor 3-nitrooxypropanol (3-NOP) and potential synergistic effects with low (LC) or high (HC) concentrate feed proportions (CFP) on CH4 reduction as both mitigation approaches differ in their mode of action (direct 3-NOP vs. indirect CFP effects). Diet substrates and 3-NOP were incubated in a rumen simulation technique to measure the concentration and production of volatile fatty acids (VFA), fermentation gases as well as substrate disappearance. Negative side effects on fermentation regarding total VFA and gas production as well as nutrient degradability were observed for neither CFP nor 3-NOP. CH4 production decreased from 10% up to 97% in a dose-dependent manner with increasing 3-NOP inclusion rate (dose: p < 0.001) but irrespective of CFP (CFP × dose: p = 0.094). Hydrogen gas accumulated correspondingly with increased 3-NOP dose (dose: p < 0.001). In vitro pH (p = 0.019) and redox potential (p = 0.066) varied by CFP, whereas the latter fluctuated with 3-NOP dose (p = 0.01). Acetate and iso-butyrate (mol %) decreased with 3-NOP dose, whereas iso-valerate increased (dose: p < 0.001). Propionate and valerate varied inconsistently due to 3-NOP supplementation. The feed additive 3-NOP was proven to be a dose-dependent yet effective CH4 inhibitor under conditions in vitro. The observed lack of additivity of increased CFP on the CH4 inhibition potential of 3-NOP needs to be verified in future research testing further diet types both in vitro and in vivo.
Collapse
Affiliation(s)
- Matthias Schilde
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (D.v.S.); (L.H.); (S.K.); (U.M.); (S.D.)
| | - Dirk von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (D.v.S.); (L.H.); (S.K.); (U.M.); (S.D.)
| | - Liane Hüther
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (D.v.S.); (L.H.); (S.K.); (U.M.); (S.D.)
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (D.v.S.); (L.H.); (S.K.); (U.M.); (S.D.)
| | - Ulrich Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (D.v.S.); (L.H.); (S.K.); (U.M.); (S.D.)
| | - Annette Zeyner
- Institute of Agricultural and Nutritional Sciences, Group Animal Nutrition, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (D.v.S.); (L.H.); (S.K.); (U.M.); (S.D.)
| |
Collapse
|
17
|
Granatto CF, Grosseli GM, Sakamoto IK, Fadini PS, Varesche MBA. Methanogenic potential of diclofenac and ibuprofen in sanitary sewage using metabolic cosubstrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140530. [PMID: 32629260 DOI: 10.1016/j.scitotenv.2020.140530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Diclofenac (DCF) and ibuprofen (IBU) are widely used anti-inflammatory drugs and are frequently detected in wastewater from Wastewater Treatment Plants and in aquatic environments. In this study, the methanogenic potential (P) of anaerobic sludge subjected to DCF (7.11 ± 0.02 to 44.41 ± 0.05 mg L-1) and IBU (6.11 ± 0.01 to 42.61 ± 0.05 mg L-1), in sanitary sewage, was investigated in batch reactors. Cosubstrates (200 mg L-1 of organic matter) in the form of ethanol, methanol:ethanol and fumarate were tested separately for the removal of drugs. In the DCF assays, P was 6943 ± 121 μmolCH4, 9379 ± 259 μmolCH4, 9897 ± 212 μmolCH4 and 11,530 ± 368 μmolCH4 for control, fumarate, methanol:ethanol and ethanol conditions, respectively. In the IBU assays, under the same conditions, P was 6145 ± 101 μmolCH4, 6947 ± 66 μmolCH4, 8141 ± 191 μmolCH4and 10,583 ± 512 μmolCH4, respectively. Without cosubstrates, drug removal was below 18% for 43.10 ± 0.01 mgDCF L-1 and 43.12 ± 0.03 mgIBU L-1, respectively. Higher P and removal of DCF (28.24 ± 1.10%) and IBU (18.72 ± 1.60%) with ethanol was observed for 43.20 ± 0.01 mgDCF L-1 and 43.42 ± 0.03 mgIBU L-1, respectively. This aspect was better evidenced with DCF due to its molecular structure, a condition that resulted in a higher diversity of bacterial populations. Through the 16S rRNA sequencing, bacteria genera capable of performing aromatic ring cleavage, β-oxidation and oxidation of ethanol and fatty acids were identified. Higher relative abundance (>0.6%) was observed for Smithella, Sulfuricurvum and Synthophus for the Bacteria Domain and Methanosaeta (>79%) for the Archaea Domain. The use of ethanol favored greater mineralization of organic matter and greater methane production, which can directly assist in the metabolic pathways of microorganisms.
Collapse
Affiliation(s)
- Caroline F Granatto
- Department of Hydraulics and Sanitation Engineering, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, 13566-590 São Carlos, SP, Brazil..
| | - Guilherme M Grosseli
- Federal University of São Carlos, Washington Luiz Highway, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Isabel K Sakamoto
- Department of Hydraulics and Sanitation Engineering, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, 13566-590 São Carlos, SP, Brazil
| | - Pedro S Fadini
- Federal University of São Carlos, Washington Luiz Highway, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Maria Bernadete A Varesche
- Department of Hydraulics and Sanitation Engineering, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, 13566-590 São Carlos, SP, Brazil..
| |
Collapse
|
18
|
Calcium salts of long-chain fatty acids from linseed oil decrease methane production by altering the rumen microbiome in vitro. PLoS One 2020; 15:e0242158. [PMID: 33170886 PMCID: PMC7654805 DOI: 10.1371/journal.pone.0242158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/27/2020] [Indexed: 01/10/2023] Open
Abstract
Calcium salts of long-chain fatty acids (CSFA) from linseed oil have the potential to reduce methane (CH4) production from ruminants; however, there is little information on the effect of supplementary CSFA on rumen microbiome as well as CH4 production. The aim of the present study was to evaluate the effects of supplementary CSFA on ruminal fermentation, digestibility, CH4 production, and rumen microbiome in vitro. We compared five treatments: three CSFA concentrations-0% (CON), 2.25% (FAL) and 4.50% (FAH) on a dry matter (DM) basis-15 mM of fumarate (FUM), and 20 mg/kg DM of monensin (MON). The results showed that the proportions of propionate in FAL, FAH, FUM, and MON were increased, compared with CON (P < 0.05). Although DM and neutral detergent fiber expressed exclusive of residual ash (NDFom) digestibility decreased in FAL and FAH compared to those in CON (P < 0.05), DM digestibility-adjusted CH4 production in FAL and FAH was reduced by 38.2% and 63.0%, respectively, compared with that in CON (P < 0.05). The genera Ruminobacter, Succinivibrio, Succiniclasticum, Streptococcus, Selenomonas.1, and Megasphaera, which are related to propionate production, were increased (P < 0.05), while Methanobrevibacter and protozoa counts, which are associated with CH4 production, were decreased in FAH, compared with CON (P < 0.05). The results suggested that the inclusion of CSFA significantly changed the rumen microbiome, leading to the acceleration of propionate production and the reduction of CH4 production. In conclusion, although further in vivo study is needed to evaluate the reduction effect on rumen CH4 production, CSFA may be a promising candidate for reduction of CH4 emission from ruminants.
Collapse
|
19
|
Miguel M, Mamuad L, Ramos S, Ku MJ, Jeong CD, Kim SH, Cho YI, Lee SS. Effects of using different roughages in the total mixed ration inoculated with or without coculture of Lactobacillus acidophilus and Bacillus subtilis on in vitro rumen fermentation and microbial population. Anim Biosci 2020; 34:642-651. [PMID: 32898945 PMCID: PMC7961279 DOI: 10.5713/ajas.20.0386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/05/2020] [Indexed: 11/27/2022] Open
Abstract
Objective This study aimed to determine the effects of different roughages in total mixed ration (TMR) inoculated with or without coculture of Lactobacillus acidophilus (L. acidophilus) and Bacillus subtilis (B. subtilis) on in vitro rumen fermentation and microbial population. Methods Three TMRs formulations composed of different forages were used and each TMR was grouped into two treatments: non-fermented TMR and fermented TMR (F-TMR) (inoculated with coculture of L. acidophilus and B. subtilis). After fermentation, the fermentation, chemical and microbial profile of the TMRs were determined. The treatments were used for in vitro rumen fermentation to determine total gas production, pH, ammonia-nitrogen (NH3-N), and volatile fatty acids (VFA). Microbial populations were determined by quantitative real-time polymerase chain reaction (PCR). All data were analyzed as a 3×2 factorial arrangement design using the MIXED procedure of Statistical Analysis Systems. Results Changes in the fermentation (pH, lactate, acetate, propionate, and NH3-N) and chemical composition (moisture, crude protein, crude fiber, and ash) were observed. For in vitro rumen fermentation, lower rumen pH, higher acetate, propionate, and total VFA content were observed in the F-TMR group after 24 h incubation (p<0.05). F-TMR group had higher acetate concentration compared with the non-fermented group. Total VFA was highest (p<0.05) in F-TMR containing combined forage of domestic and imported source (F-CF) and F-TMR containing Italian ryegrass silage and corn silage (F-IRS-CS) than that of TMR diet containing oat, timothy, and alfalfa hay. The microbial population was not affected by the different TMR diets. Conclusion The use of Italian ryegrass silage and corn silage, as well as the inoculation of coculture of L. acidophilus and B. subtilis, in the TMR caused changes in the pH, lactate and acetate concentrations, and chemical composition of experimental diets. In addition, F-TMR composed with Italian ryegrass silage and corn silage altered ruminal pH and VFA concentrations during in vitro rumen fermentation experiment.
Collapse
Affiliation(s)
- Michelle Miguel
- Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University, Suncheon 57922, Korea
| | - Lovelia Mamuad
- Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University, Suncheon 57922, Korea
| | - Sonny Ramos
- Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University, Suncheon 57922, Korea
| | - Min Jung Ku
- Livestock Research Institute, Jeonnam Agricultural Research and Extension Services, Gangjin 59213, Korea
| | - Chang Dae Jeong
- Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University, Suncheon 57922, Korea
| | - Seon Ho Kim
- Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University, Suncheon 57922, Korea
| | - Yong Il Cho
- Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University, Suncheon 57922, Korea
| | - Sang Suk Lee
- Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University, Suncheon 57922, Korea
| |
Collapse
|
20
|
Eom JS, Lee SJ, Kim HS, Choi YY, Kim SH, Lee YG, Lee SS. Metabolomics Comparison of Hanwoo ( Bos taurus coreanae) Biofluids Using Proton Nuclear Magnetic Resonance Spectroscopy. Metabolites 2020; 10:E333. [PMID: 32824041 PMCID: PMC7465992 DOI: 10.3390/metabo10080333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to identify the metabolomic profiles of rumen fluid, serum, and urine from Hanwoo (Bos taurus coreanae), using proton nuclear magnetic resonance (1H-NMR) spectroscopy. In all, 189, 110, and 188 metabolites were identified in rumen fluid, serum, and urine, and 107, 49, and 99 were quantified, respectively. Organic acids, carbohydrates, and aliphatic acyclic compound metabolites were present at the highest concentrations in rumen fluid, serum, and urine, respectively. In addition, acetate, glucose, and urea were the most highly concentrated individual metabolites in rumen fluid, serum, and urine, respectively. In all, 77 metabolites were commonly identified, and 19 were quantified across three biofluids. Metabolic pathway analysis showed that the common quantified metabolites could provide relevant information about three main metabolic pathways, phenylalanine, tyrosine, and tryptophan biosynthesis; caffeine metabolism; and histidine metabolism. These results can be useful as reference values for future metabolomic research on Hanwoo biofluids in Korea.
Collapse
Affiliation(s)
- Jun Sik Eom
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Gyeongsangnam-do, Jinju-si 52828, Korea; (J.S.E.); (H.S.K.); (Y.Y.C.)
| | - Shin Ja Lee
- Institute of Agriculture and Life Science & University-Centered Labs, Gyeongsang National University, Gyeongsangnam-do, Jinju-si 52828, Korea;
| | - Hyun Sang Kim
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Gyeongsangnam-do, Jinju-si 52828, Korea; (J.S.E.); (H.S.K.); (Y.Y.C.)
| | - You Young Choi
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Gyeongsangnam-do, Jinju-si 52828, Korea; (J.S.E.); (H.S.K.); (Y.Y.C.)
| | - Sang Ho Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Jeonrabuk-do, Jeonju-si 55365, Korea; (S.H.K.); (Y.G.L.)
| | - Yoo Gyung Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Jeonrabuk-do, Jeonju-si 55365, Korea; (S.H.K.); (Y.G.L.)
| | - Sung Sill Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Gyeongsangnam-do, Jinju-si 52828, Korea; (J.S.E.); (H.S.K.); (Y.Y.C.)
- Institute of Agriculture and Life Science & University-Centered Labs, Gyeongsang National University, Gyeongsangnam-do, Jinju-si 52828, Korea;
| |
Collapse
|
21
|
Ungerfeld EM. Metabolic Hydrogen Flows in Rumen Fermentation: Principles and Possibilities of Interventions. Front Microbiol 2020; 11:589. [PMID: 32351469 PMCID: PMC7174568 DOI: 10.3389/fmicb.2020.00589] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 01/10/2023] Open
Abstract
Rumen fermentation affects ruminants productivity and the environmental impact of ruminant production. The release to the atmosphere of methane produced in the rumen is a loss of energy and a cause of climate change, and the profile of volatile fatty acids produced in the rumen affects the post-absorptive metabolism of the host animal. Rumen fermentation is shaped by intracellular and intercellular flows of metabolic hydrogen centered on the production, interspecies transfer, and incorporation of dihydrogen into competing pathways. Factors that affect the growth of methanogens and the rate of feed fermentation impact dihydrogen concentration in the rumen, which in turn controls the balance between pathways that produce and incorporate metabolic hydrogen, determining methane production and the profile of volatile fatty acids. A basic kinetic model of competition for dihydrogen is presented, and possibilities for intervention to redirect metabolic hydrogen from methanogenesis toward alternative useful electron sinks are discussed. The flows of metabolic hydrogen toward nutritionally beneficial sinks could be enhanced by adding to the rumen fermentation electron acceptors or direct fed microbials. It is proposed to screen hydrogenotrophs for dihydrogen thresholds and affinities, as well as identifying and studying microorganisms that produce and utilize intercellular electron carriers other than dihydrogen. These approaches can allow identifying potential microbial additives to compete with methanogens for metabolic hydrogen. The combination of adequate microbial additives or electron acceptors with inhibitors of methanogenesis can be effective approaches to decrease methane production and simultaneously redirect metabolic hydrogen toward end products of fermentation with a nutritional value for the host animal. The design of strategies to redirect metabolic hydrogen from methane to other sinks should be based on knowledge of the physicochemical control of rumen fermentation pathways. The application of new –omics techniques together with classical biochemistry methods and mechanistic modeling can lead to exciting developments in the understanding and manipulation of the flows of metabolic hydrogen in rumen fermentation.
Collapse
Affiliation(s)
- Emilio M Ungerfeld
- Laboratorio de Fermentación Ruminal, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional Carillanca, Temuco, Chile
| |
Collapse
|
22
|
Wilson HC, Hilscher FH, McPhillips LJ, Boyd BM, Watson AK, Erickson GE, MacDonald JC. Impact of a fumaric acid and palm oil additive on beef cattle performance and carcass characteristics in diets containing increasing concentrations of corn silage1. Transl Anim Sci 2020; 4:txaa043. [PMID: 32705040 PMCID: PMC7254485 DOI: 10.1093/tas/txaa043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/06/2020] [Indexed: 11/24/2022] Open
Abstract
A feedlot study was conducted comparing a natural feed additive at varying corn silage (CS) inclusions on receiving and finishing cattle performance. The study utilized 480 crossbred steers (initial shrunk body weight [BW] = 296 kg; SD = 24.1 kg) in 48 pens with 10 steers/pen and 8 pens per treatment. Treatments were designed as a 2 × 3 factorial with 3 inclusions of CS (14%, 47%, 80%; dry matter [DM] basis) with or without (+, −) the inclusion of a feed additive containing fumaric acid and palm oil (FAPO). All treatment diets contained 16% modified distillers grains plus solubles and 4% supplement with dry-rolled corn replacing CS on a DM basis. All steers were fed the 80 CS diet and adapted to 47% and 14% CS over a 10- and 24-d period, respectively. Cattle fed 80 CS were fed for 238 days, 47 CS for 195 days, and 14% CS were fed for 168 days to a common backfat of 1.28 cm (P ≥ 0.59). There were no interactions for CS inclusion and the inclusion of FAPO on final body weight (FBW), DMI, ADG, G:F, hot carcass weight (HCW), LM area, marbling, or calculated yield grade (CYG; P ≥ 0.15). There was no significant difference for FBW, DMI, ADG, G:F, HCW, marbling, or CYG for cattle fed with or without FAPO (P ≥ 0.13). However, there was a quadratic response for FBW, ADG, G:F, HCW, marbling, and CYG with increased inclusion of CS (P ≤ 0.04). Inclusion of FAPO had no effect on performance. Feeding CS at greater inclusions decreased daily gain and feed efficiency but increased FBW when fed to an equal fat endpoint. CS gave greater returns ($/animal) when fed at 80% of diet DM. Feeding greater amounts of CS can be an economical way to finish cattle. In this study, FAPO did not affect animal performance, carcass characteristics, or economic return.
Collapse
Affiliation(s)
| | - Fred H Hilscher
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | | | - Bradley M Boyd
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | - Andrea K Watson
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | - Galen E Erickson
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | - Jim C MacDonald
- Department of Animal Science, University of Nebraska, Lincoln, NE
| |
Collapse
|
23
|
Ghanbari Maman L, Palizban F, Fallah Atanaki F, Elmi Ghiasi N, Ariaeenejad S, Ghaffari MR, Hosseini Salekdeh G, Kavousi K. Co-abundance analysis reveals hidden players associated with high methane yield phenotype in sheep rumen microbiome. Sci Rep 2020; 10:4995. [PMID: 32193482 PMCID: PMC7081230 DOI: 10.1038/s41598-020-61942-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
Rumen microbial environment hosts a variety of microorganisms that interact with each other to carry out the feed digestion and generation of several by-products especially methane, which plays an essential role in global warming as a greenhouse gas. However, due to its multi-factorial nature, the exact cause of methane production in the rumen has not yet been fully determined. The current study is an attempt to use system modeling to analyze the relationship between interacting components of rumen microbiome and its role in methane production. Metagenomic data of sheep rumen, with equal numbers of high methane yield (HMY) and low methane yield (LMY) samples, were used. As a well-known approach for the systematic comparative study of complex traits, the co-abundance networks were constructed in both operational taxonomic unit (OTU) and gene levels. A gene-catalog of 1,444 different rumen microbial strains was developed as a reference to measure gene abundances. The results from both types of co-abundance networks showed that methanogens, which are the main ruminal source for methanogenesis, need other microbial species to accomplish the task of methane production through producing the main precursor molecules like H2 and acetate for methanogenesis pathway as their byproducts. KEGG Orthology(KO) analysis of the current study shows that the metabolism and growth rate of methanogens will be increased due to the higher rate of the metabolism and carbohydrate/fiber digestion pathways in the hidden elements. This finding proposes that any ruminant methane yield alteration strategy should consider complex interactions of rumen microbiome components as one tightly integrated unit rather than several separate parts.
Collapse
Affiliation(s)
- Leila Ghanbari Maman
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Fahimeh Palizban
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Fereshteh Fallah Atanaki
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Naser Elmi Ghiasi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
24
|
Mamuad LL, Kim SH, Biswas AA, Yu Z, Cho KK, Kim SB, Lee K, Lee SS. Rumen fermentation and microbial community composition influenced by live Enterococcus faecium supplementation. AMB Express 2019; 9:123. [PMID: 31363877 PMCID: PMC6667549 DOI: 10.1186/s13568-019-0848-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Supplementation of appropriate probiotics can improve the health and productivity of ruminants while mitigating environmental methane production. Hence, this study was conducted to determine the effects of Enterococcus faecium SROD on in vitro rumen fermentation, methane concentration, and microbial population structure. Ruminal samples were collected from ruminally cannulated Holstein–Friesian cattle, and 40:60 rice straw to concentrate ratio was used as substrate. Fresh culture of E. faecium SROD at different inclusion rates (0, 0.1%, 0.5%, and 1.0%) were investigated using in vitro rumen fermentation system. Addition of E. faecium SROD had a significant effect on total gas production with the greatest effect observed with 0.1% supplementation; however, there was no significant influence on pH. Supplementation of 0.1% E. faecium SROD resulted in the highest propionate (P = 0.005) but the lowest methane concentration (P = 0.001). In addition, acetate, butyrate, and total VFA concentrations in treatments were comparatively higher than control. Bioinformatics analysis revealed the predominance of the bacterial phyla Bacteroidetes and Firmicutes and the archaeal phylum Euryarchaeota. At the genus level, Prevotella (15–17%) and Methanobrevibacter (96%) dominated the bacterial and archaeal communities of the in vitro rumen fermenta, respectively. Supplementation of 0.1% E. faecium SROD resulted in the highest quantities of total bacteria and Ruminococcus flavefaciens, whereas 1.0% E. faecium SROD resulted in the highest contents of total fungi and Fibrobacter succinogenes. Overall, supplementation of 0.1% E. faecium SROD significantly increased the propionate and total volatile fatty acids concentrations but decreased the methane concentration while changing the microbial community abundance and composition.
Collapse
|
25
|
Greening C, Geier R, Wang C, Woods LC, Morales SE, McDonald MJ, Rushton-Green R, Morgan XC, Koike S, Leahy SC, Kelly WJ, Cann I, Attwood GT, Cook GM, Mackie RI. Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME JOURNAL 2019; 13:2617-2632. [PMID: 31243332 PMCID: PMC6776011 DOI: 10.1038/s41396-019-0464-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 01/17/2023]
Abstract
Farmed ruminants are the largest source of anthropogenic methane emissions globally. The methanogenic archaea responsible for these emissions use molecular hydrogen (H2), produced during bacterial and eukaryotic carbohydrate fermentation, as their primary energy source. In this work, we used comparative genomic, metatranscriptomic and co-culture-based approaches to gain a system-wide understanding of the organisms and pathways responsible for ruminal H2 metabolism. Two-thirds of sequenced rumen bacterial and archaeal genomes encode enzymes that catalyse H2 production or consumption, including 26 distinct hydrogenase subgroups. Metatranscriptomic analysis confirmed that these hydrogenases are differentially expressed in sheep rumen. Electron-bifurcating [FeFe]-hydrogenases from carbohydrate-fermenting Clostridia (e.g., Ruminococcus) accounted for half of all hydrogenase transcripts. Various H2 uptake pathways were also expressed, including methanogenesis (Methanobrevibacter), fumarate and nitrite reduction (Selenomonas), and acetogenesis (Blautia). Whereas methanogenesis-related transcripts predominated in high methane yield sheep, alternative uptake pathways were significantly upregulated in low methane yield sheep. Complementing these findings, we observed significant differential expression and activity of the hydrogenases of the hydrogenogenic cellulose fermenter Ruminococcus albus and the hydrogenotrophic fumarate reducer Wolinella succinogenes in co-culture compared with pure culture. We conclude that H2 metabolism is a more complex and widespread trait among rumen microorganisms than previously recognised. There is evidence that alternative hydrogenotrophs, including acetogenic and respiratory bacteria, can prosper in the rumen and effectively compete with methanogens for H2. These findings may help to inform ongoing strategies to mitigate methane emissions by increasing flux through alternative H2 uptake pathways, including through animal selection, dietary supplementation and methanogenesis inhibitors.
Collapse
Affiliation(s)
- Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| | - Renae Geier
- Department of Animal Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Cecilia Wang
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Laura C Woods
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Sergio E Morales
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Michael J McDonald
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Rowena Rushton-Green
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Xochitl C Morgan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Satoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Sinead C Leahy
- Grasslands Research Centre, AgResearch Ltd., Palmerston North, 4410, New Zealand
| | | | - Isaac Cann
- Department of Animal Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Graeme T Attwood
- Grasslands Research Centre, AgResearch Ltd., Palmerston North, 4410, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Roderick I Mackie
- Department of Animal Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
26
|
Islam M, Lee SS. Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2019; 61:122-137. [PMID: 31333869 PMCID: PMC6582924 DOI: 10.5187/jast.2019.61.3.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/09/2019] [Accepted: 05/13/2019] [Indexed: 11/20/2022]
Abstract
Methane, one of the important greenhouse gas, has a higher global warming
potential than that of carbon dioxide. Agriculture, especially livestock, is
considered as the biggest sector in producing anthropogenic methane. Among
livestock, ruminants are the highest emitters of enteric methane.
Methanogenesis, a continuous process in the rumen, carried out by archaea either
with a hydrogenotrophic pathway that converts hydrogen and carbon dioxide to
methane or with methylotrophic pathway, which the substrate for methanogenesis
is methyl groups. For accurate estimation of methane from ruminants, three
methods have been successfully used in various experiments under different
environmental conditions such as respiration chamber, sulfur hexafluoride tracer
technique, and the automated head-chamber or GreenFeed system. Methane
production and emission from ruminants are increasing day by day with an
increase of ruminants which help to meet up the nutrient demands of the
increasing human population throughout the world. Several mitigation strategies
have been taken separately for methane abatement from ruminant productions such
as animal intervention, diet selection, dietary feed additives, probiotics,
defaunation, supplementation of fats, oils, organic acids, plant secondary
metabolites, etc. However, sustainable mitigation strategies are not established
yet. A cumulative approach of accurate enteric methane measurement and existing
mitigation strategies with more focusing on the biological reduction of methane
emission by direct-fed microbials could be the sustainable methane mitigation
approaches.
Collapse
Affiliation(s)
- Mahfuzul Islam
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| |
Collapse
|
27
|
Lan W, Yang C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:1270-1283. [PMID: 30841400 DOI: 10.1016/j.scitotenv.2018.11.180] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 05/16/2023]
Abstract
Methane emission from ruminants not only causes serious environmental problems, but also represents a significant source of energy loss to animals. The increasing demand for sustainable animal production is driving researchers to explore proper strategies to mitigate ruminal methanogenesis. Since hydrogen is the primary substrate of ruminal methanogenesis, hydrogen metabolism and its associated microbiome in the rumen may closely relate to low- and high-methane phenotypes. Using candidate microbes that can compete with methanogens and redirect hydrogen away from methanogenesis as ruminal methane mitigants are promising avenues for methane mitigation, which can both prevent the adverse effects deriving from chemical additives such as toxicity and resistance, and increase the retention of feed energy. This review describes the ruminal microbial ecosystem and its association with methane production, as well as the effects of interspecies hydrogen transfer on methanogenesis. It provides a scientific perspective on using bacteria that are involved in hydrogen utilization as ruminal modifiers to decrease methanogenesis. This information will be helpful in better understanding the key role of ruminal microbiomes and their relationship with methane production and, therefore, will form the basis of valuable and eco-friendly methane mitigation methods while improving animal productivity.
Collapse
Affiliation(s)
- Wei Lan
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; MoE Key Laboratory of Molecular Animal Nutrition, China
| | - Chunlei Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; MoE Key Laboratory of Molecular Animal Nutrition, China.
| |
Collapse
|
28
|
Chellapandi P, Bharathi M, Sangavai C, Prathiviraj R. Methanobacterium formicicum as a target rumen methanogen for the development of new methane mitigation interventions: A review. Vet Anim Sci 2018; 6:86-94. [PMID: 32734058 PMCID: PMC7386643 DOI: 10.1016/j.vas.2018.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
Methanobacterium formicicum (Methanobacteriaceae family) is an endosymbiotic methanogenic Archaean found in the digestive tracts of ruminants and elsewhere. It has been significantly implicated in global CH4 emission during enteric fermentation processes. In this review, we discuss current genomic and metabolic aspects of this microorganism for the purpose of the discovery of novel veterinary therapeutics. This microorganism encompasses a typical H2 scavenging system, which facilitates a metabolic symbiosis across the H2 producing cellulolytic bacteria and fumarate reducing bacteria. To date, five genome-scale metabolic models (iAF692, iMG746, iMB745, iVS941 and iMM518) have been developed. These metabolic reconstructions revealed the cellular and metabolic behaviors of methanogenic archaea. The characteristics of its symbiotic behavior and metabolic crosstalk with competitive rumen anaerobes support understanding of the physiological function and metabolic fate of shared metabolites in the rumen ecosystem. Thus, systems biological characterization of this microorganism may provide a new insight to realize its metabolic significance for the development of a healthy microbiota in ruminants. An in-depth knowledge of this microorganism may allow us to ensure a long term sustainability of ruminant-based agriculture.
Collapse
Affiliation(s)
- P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - M Bharathi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - C Sangavai
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - R Prathiviraj
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| |
Collapse
|
29
|
Baraz H, Jahani-Azizabadi H, Azizi O. Simultaneous use of thyme essential oil and disodium fumarate can improve in vitro ruminal microbial fermentation characteristics. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2018; 9:193-198. [PMID: 30065809 PMCID: PMC6047581 DOI: 10.30466/vrf.2018.30828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022]
Abstract
Two trials were conducted to investigate the effects of disodium fumarate (DSF; 0.00, 8.00, 10.00 and 12.00 mM) and thyme essential oil (TEO; 0.00, 100.00, 200.00, 300.00 and 400.00 µL L-1) solely and simultaneously (10.00 mM DSF along with 100.00, 200.00, 300.00 and 400 µL L-1 TEO) on in vitro ruminal fermentation of a 50:50 alfalfa hay to concentrate diet. The DSF and TEO did not affect crude protein disappearance, gas production, microbial crude protein synthesis and hydrogen recovery. The DSF addition linearly increased partitioning factor (PF) and molar proportion of propionate and decreased acetate: propionate ratio and methane production. Moreover, 100.00 µL L-1 of TEO decreased ammonia nitrogen, total volatile fatty acids concentration and methane production and increased PF compared to the control. Results of the present study demonstrated that simultaneous use of DSF and TEO can cause a further decrease in methane production and linearly increase in the molar proportion of propionate and efficiency of feed use compared to DSF and TEO solely.
Collapse
Affiliation(s)
- Hiwa Baraz
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | | | - Osman Azizi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
30
|
Capelari M, Powers W. The effect of nitrate and monensin on in vitro ruminal fermentation. J Anim Sci 2018; 95:5112-5123. [PMID: 29293719 DOI: 10.2527/jas2017.1657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two experiments evaluated the effect of calcium ammonium nitrate decahydrate (calcium nitrate [NIT]) and monensin sodium (MON) on in vitro fermentation parameters of 2 contrasting diets (100:0 and 10:90 forage-to-concentrate ratios). Diet addition of NIT (0, 1.25, and 2.5 g/100 g DM) and MON (0, 3, and 6 mg/L) were tested alone and combined (9 treatments total; 5 bottles per treatment). Mixed ruminal microorganisms were incubated in anaerobic media containing 0.5 g of substrate diet, 1 of 9 treatments, and 40 mL buffer solution. Incubations were performed in batch cultures for 48 h at 39°C. Headspace gas volume was measured and sampled at 4, 8, 12, 24, and 48 h, and the VFA profile was assessed at the end of the experiment. Total gas production was reduced by NIT (87.9 vs. 94.6 mL; < 0.01) and MON (78.6 vs. 94.6 mL; < 0.01) and, in Exp. 2, further reduced by NIT+MON when the additives were combined (161.1 vs. 196.9 mL; < 0.01). Methane production from control in Exp. 1 and Exp. 2 averaged 9.1 and 15.3 mL, respectively, and was decreased by NIT (3.4 and 8.3 mL in Exp. 1 and Exp. 2, respectively; P < 0.01), MON (4.1 and 7.7 mL; in Exp. 1 and Exp. 2, respectively; < 0.01) and NIT+MON (1.1 and 1.5 mL; in Exp. 1 and Exp. 2, respectively; < 0.01). Both experiments demonstrated a significant increase in nitrous oxide (NO; < 0.01) when NIT was added. Compared to the control treatment, IVDMD was reduced when NIT+MON was added at the higher doses in EXP1 (31.7 vs. 37.4%; < 0.01) and EXP2 (76.6 vs. 79.9 %; < 0.01). Net VFA production was not affected by treatments ( > 0.10), but molar proportions of acetate and butyrate were reduced by MON ( < 0.01). Propionate molar proportion was increased in both experiments by MON ( < 0.01) and further increased in Exp. 2 when the additives were combined at lower doses ( < 0.01). Compared to the control treatment, the acetate:propionate (A:P) ratio was reduced by MON in Exp. 1(1.2 vs. 2.8; < 0.01) and Exp. 2 (1.0 vs. 2.3; < 0.01). Fermentation efficiency (%) was increased by MON (81.7 vs. 73.7%; < 0.01) and further increased in Exp. 2 when the additives were combined at lower doses (87.2 vs. 76.6%; < 0.01). The combination of NIT and MON in 2 contrasting diets proved beneficial by altering fermentation products toward lower CH and more propionate; however, the addition of NIT consistently increased NO production. Negative effects of the additives on IVDMD were found only when the additives were combined at higher doses.
Collapse
|
31
|
Li Z, Liu N, Cao Y, Jin C, Li F, Cai C, Yao J. Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concentrate particle size. J Anim Sci Biotechnol 2018; 9:21. [PMID: 29449940 PMCID: PMC5806233 DOI: 10.1186/s40104-018-0235-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/12/2018] [Indexed: 12/22/2022] Open
Abstract
Background In rumen fermentation, fumaric acid (FA) could competitively utilize hydrogen with methanogenesis to enhance propionate production and suppress methane emission, but both effects were diet-dependent. This study aimed to explore the effects of FA supplementation on methanogenesis and rumen fermentation in goats fed diets varying in forage and concentrate particle size. Methods Four rumen-cannulated goats were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments: low or high ratio of forage particle size: concentrate particle size (Fps:Cps), without or with FA supplementation (24 g/d). Fps:Cps was higher in the diet with chopped alfalfa hay plus ground corn than in that with ground alfalfa hay plus crushed corn. Results Both increasing dietary Fps:Cps and FA supplementation shifted ruminal volatile fatty acid (VFA) patterns toward more propionate and less acetate in goats. An interaction between dietary Fps:Cps and FA supplementation was observed for the ratio of acetate to propionate (A:P), which was more predominant when FA was supplemented in the low-Fps:Cps diet. Methane production was reduced by FA, and the reduction was larger in the low-Fps:Cps diet (31.72%) than in the high-Fps:Cps diet (17.91%). Fumaric acid decreased ruminal total VFA concentration and increased ruminal pH. No difference was found in ruminal DM degradation of concentrate or alfalfa hay by dietary Fps:Cps or FA. Goats presented a lower ruminal methanogen abundance with FA supplementation and a higher B. fibrisolvens abundance with high dietary Fps:Cps. Conclusions Adjusting dietary Fps:Cps is an alternative dietary model for studying diet-dependent effects without changing dietary chemical composition. Fumaric acid supplementation in the low-Fps:Cps diet showed greater responses in methane mitigation and propionate increase.
Collapse
Affiliation(s)
- Zongjun Li
- 1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Nannan Liu
- 1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yangchun Cao
- 1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Chunjia Jin
- 1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Fei Li
- 1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China.,2College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020 China
| | - Chuanjiang Cai
- 1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Junhu Yao
- 1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| |
Collapse
|
32
|
Kim SH, Mamuad LL, Kim EJ, Sung HG, Bae GS, Cho KK, Lee C, Lee SS. Effect of different concentrate diet levels on rumen fluid inoculum used for determination of in vitro rumen fermentation, methane concentration, and methanogen abundance and diversity. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1394170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Seon-Ho Kim
- Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
- Department of Animal Sciences Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Lovelia L. Mamuad
- Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Eun-Joong Kim
- Department of Animal Science, Kyungpook National University, Sangju, South Korea
| | - Ha-Guyn Sung
- Department of Animal Science and Technology, Sangji University, Gangwon-do, South Korea
| | - Gui-Seck Bae
- Department of Animal Science and Technology, Chung-Ang University, Ansung, South Korea
| | - Kwang-Keun Cho
- Gyeongnam National University of Science and Technology, Jinju, South Korea
| | - Chanhee Lee
- Department of Animal Sciences Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Sang-Suk Lee
- Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
33
|
Biswas AA, Lee SS, Mamuad LL, Kim SH, Choi YJ, Lee C, Lee K, Bae GS, Lee SS. Effects of illite supplementation on in vitro and in vivo rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets. Anim Sci J 2017; 89:114-121. [PMID: 28960611 DOI: 10.1111/asj.12913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 07/20/2017] [Indexed: 11/26/2022]
Abstract
This study was conducted to evaluate the effects of feeding supplemental illite to Hanwoo steers on methane (CH4 ) emission and rumen fermentation parameters. An in vitro ruminal fermentation technique was conducted using a commercial concentrate as substrate and illite was added at different concentrations as treatments: 0%, 0.5%, 1.0%, and 2.0% illite. Total volatile fatty acids (VFA) were different (P < 0.05) at 24 h of incubation where the highest total VFA was observed at 1.0% of illite. Conversely, lowest CH4 production (P < 0.01) was found at 1.0% of illite. In the in vivo experiment, two diets were provided, without illite and with addition of 1% illite. An automated head chamber (GreenFeed) system was used to measure enteric CH4 production. Cattle received illite supplemented feed increased (P < 0.05) total VFA concentrations in the rumen compared with those fed control. Feeding illite numerically decreased CH4 production (g/day) and yield (g/kg dry matter intake). Rumen microbial population analysis indicated that the population of total bacteria, protozoa and methanogens were lower (P < 0.05) for illite compared with the control. Accordingly, overall results suggested that feeding a diet supplemented with 1% illite can have positive effects on feed fermentation in the rumen and enteric CH4 mitigation in beef cattle.
Collapse
Affiliation(s)
- Ashraf A Biswas
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, Korea
| | - Sung-Sill Lee
- Division of Applied Life Science (BK21+, IALS), Gyeongsang National University, Jinju, Korea
| | - Lovelia L Mamuad
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, Korea.,Department of Animal Sciences, The Ohio State University, Columbus, OH, United States of America
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, Korea.,Department of Animal Sciences, OARDC, The Ohio State University, Wooster, OH, United States of America
| | - Yeon-Jae Choi
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, Korea
| | - Chanhee Lee
- Department of Animal Sciences, OARDC, The Ohio State University, Wooster, OH, United States of America
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States of America
| | - Gui-Seck Bae
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, Korea
| |
Collapse
|
34
|
Jin W, Xue C, Liu J, Yin Y, Zhu W, Mao S. Effects of Disodium Fumarate on In Vitro Rumen Fermentation, The Production of Lipopolysaccharide and Biogenic Amines, and The Rumen Bacterial Community. Curr Microbiol 2017; 74:1337-1342. [PMID: 28761980 DOI: 10.1007/s00284-017-1322-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
The effect of disodium fumarate (DF) on the ruminal fermentation profiles, the accumulation of lipopolysaccharide (LPS) and bioamines, and the composition of the ruminal bacterial community was investigated by in vitro rumen fermentation. The addition of DF increased the total gas production; the concentrations of propionate, valerate, total volatile fatty acids, and ammonia-nitrogen; and the rumen pH after a 24 h fermentation. By contrast, DF addition decreased the ratio of acetate to propionate and the concentrations of lactate, lipopolysaccharide, methylamine, tryptamine, putrescine, histamine, and tyramine (P < 0.05). Principal coordinates analysis and molecular variance analysis showed that DF altered the ruminal bacterial community (P < 0.05). At the phylum level, DF decreased the proportion of Proteobacteria, and increased the proportions of Spirochaetae and Elusimicrobia (P < 0.05). At the genus level, DF decreased the percentage of Ruminobacter, while increasing the percentage of Succinivibrio and Treponema (P < 0.05). Overall, the results indicate that DF modified rumen fermentation and mitigated the production of several toxic compounds. Thus, DF has great potential for preventing subacute rumen acidosis in dairy cows and for improving the health of ruminants.
Collapse
Affiliation(s)
- Wei Jin
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunxu Xue
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhua Liu
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyang Yin
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengyong Mao
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
35
|
Mamuad LL, Kim SH, Choi YJ, Soriano AP, Cho KK, Lee K, Bae GS, Lee SS. Increased propionate concentration in Lactobacillus mucosae-fermented wet brewers grains and during in vitro rumen fermentation. J Appl Microbiol 2017; 123:29-40. [PMID: 28425572 DOI: 10.1111/jam.13475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 01/15/2023]
Abstract
AIMS This study was conducted to isolate and identify propionate-producing bacteria that can be used as an inoculum in improving wet brewers grains and rumen fermentation via increasing propionate concentration. METHODS AND RESULTS A strain of Lactobacillus that exhibits high levels of propionate production was identified and characterized as Lactobacillus mucosae 521129 by 16S rRNA gene sequencing and phylogenetic analyses. Wet brewers grains were fermented through L. mucosae inoculation and resulted in an increase in propionate concentration. Fermented wet brewers grains were used in in vitro rumen fermentation and revealed that L. mucosae-fermented wet brewers grains produced more gas and had higher accumulations propionate and total volatile fatty acid (VFA) than the control. The fewest methanogen DNA copies were detected in L. mucosae-fermented wet brewers grains. CONCLUSION Identified L. mucosae improved the fermentation of wet brewers grains and the in vitro rumen fermentation via increasing propionate and total VFA concentrations. SIGNIFICANCE AND IMPACT OF THE STUDY The presented research provided the identification of L. mucosae 521129 as a propionate producer and was metabolically profiled. Furthermore, data present the putative application of this organism in improving the fermentation of wet brewers grains and in vitro rumen fermentation.
Collapse
Affiliation(s)
- L L Mamuad
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University, Suncheon, Jeonnam, Korea
| | - S H Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University, Suncheon, Jeonnam, Korea
| | - Y J Choi
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University, Suncheon, Jeonnam, Korea
| | - A P Soriano
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University, Suncheon, Jeonnam, Korea.,Small Ruminant Center, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - K K Cho
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju, Gyeongsang, Korea
| | - K Lee
- Department of Animal Sciences, Ohio State University, Columbus, OH, USA
| | - G S Bae
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - S S Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University, Suncheon, Jeonnam, Korea
| |
Collapse
|
36
|
Carvalho IPCD, Fiorentini G, Castagnino PDS, Jesus RBD, Messana JD, Granja-Salcedo YT, Detmann E, Padmanabha J, McSweeney CS, Berchielli TT. Supplementation with lipid sources alters the ruminal fermentation and duodenal flow of fatty acids in grazing Nellore steers. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Guyader J, Ungerfeld EM, Beauchemin KA. Redirection of Metabolic Hydrogen by Inhibiting Methanogenesis in the Rumen Simulation Technique (RUSITEC). Front Microbiol 2017; 8:393. [PMID: 28352256 PMCID: PMC5349286 DOI: 10.3389/fmicb.2017.00393] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/24/2017] [Indexed: 01/08/2023] Open
Abstract
A decrease in methanogenesis is expected to improve ruminant performance by allocating rumen metabolic hydrogen ([2H]) to more energy-rendering fermentation pathways for the animal. However, decreases in methane (CH4) emissions of up to 30% are not always linked with greater performance. Therefore, the aim of this study was to understand the fate of [2H] when CH4 production in the rumen is inhibited by known methanogenesis inhibitors (nitrate, NIT; 3-nitrooxypropanol, NOP; anthraquinone, AQ) in comparison with a control treatment (CON) with the Rumen Simulation Technique (RUSITEC). Measurements started after 1 week adaptation. Substrate disappearance was not modified by methanogenesis inhibitors. Nitrate mostly seemed to decrease [2H] availability by acting as an electron acceptor competing with methanogenesis. As a consequence, NIT decreased CH4 production (-75%), dissolved dihydrogen (H2) concentration (-30%) and the percentages of reduced volatile fatty acids (butyrate, isobutyrate, valerate, isovalerate, caproate and heptanoate) except propionate, but increased acetate molar percentage, ethanol concentration and the efficiency of microbial nitrogen synthesis (+14%) without affecting gaseous H2. Nitrooxypropanol decreased methanogenesis (-75%) while increasing both gaseous and dissolved H2 concentrations (+81% and +24%, respectively). Moreover, NOP decreased acetate and isovalerate molar percentages and increased butyrate, valerate, caproate and heptanoate molar percentages as well as n-propanol and ammonium concentrations. Methanogenesis inhibition with AQ (-26%) was associated with higher gaseous H2 production (+70%) but lower dissolved H2 concentration (-76%), evidencing a lack of relationship between the two H2 forms. Anthraquinone increased ammonium concentration, caproate and heptanoate molar percentages but decreased acetate and isobutyrate molar percentages, total microbial nitrogen production and efficiency of microbial protein synthesis (-16%). Overall, NOP and AQ increased the amount of reduced volatile fatty acids, but part of [2H] spared from methanogenesis was lost as gaseous H2. Finally, [2H] recovery was similar among CON, NOP and AQ but was largely lower than 100%. Consequently, further studies are required to discover other so far unidentified [2H] sinks for a better understanding of the metabolic pathways involved in [2H] production and utilization.
Collapse
Affiliation(s)
- Jessie Guyader
- Lethbridge Research and Development Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | | | - Karen A. Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| |
Collapse
|
38
|
Biswas AA, Lee SS, Mamuad LL, Kim SH, Choi YJ, Bae GS, Lee K, Sung HG, Lee SS. Use of Lysozyme as a Feed Additive on In vitro Rumen Fermentation and Methane Emission. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1601-1607. [PMID: 27703130 PMCID: PMC5088380 DOI: 10.5713/ajas.16.0575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/12/2016] [Accepted: 09/28/2016] [Indexed: 11/27/2022]
Abstract
This study was conducted to determine the effect of lysozyme addition on in vitro rumen fermentation and to identify the lysozyme inclusion rate for abating methane (CH4) production. An in vitro ruminal fermentation technique was done using a commercial concentrate to rice straw ratio of 8:2 as substrate. The following treatments were applied wherein lysozyme was added into 1 mg dry matter substrate at different levels of inclusion: Without lysozyme, 2,000, 4,000, and 8,000 U lysozyme. Results revealed that, lysozyme addition had a significant effect on pH after 24 h of incubation, with the highest pH (p<0.01) observed in 8,000 U lysozyme, followed by the 4,000 U, 2,000 U, and without lysozyme. The highest amounts of acetic acid, propionic acid (p<0.01) and total volatile fatty acid (TVFA) (p<0.05) were found in 8,000 U after 24 h of incubation. The CH4 concentration was the lowest in the 8,000 U and the highest in the without lysozyme addition after 24 h of incubation. There was no significant differences in general bacteria, methanogen, or protozoan DNA copy number. So far, addition of lysozyme increased the acetate, propionate, TVFA, and decreased CH4 concentration. These results suggest that lysozyme supplementation may improve in vitro rumen fermentation and reduce CH4 emission.
Collapse
Affiliation(s)
- Ashraf A Biswas
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 540-742, Korea
| | - Sung Sill Lee
- Division of Applied Life Science (BK21 , IALS), Gyeongsang National University, Jinju 52828, Korea
| | - Lovelia L Mamuad
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 540-742, Korea
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 540-742, Korea
| | - Yeon-Jae Choi
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 540-742, Korea
| | - Gui-Seck Bae
- Department of Animal Science and Technology, Chung-Ang University, Anseong 456-756, Korea
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Ha-Guyn Sung
- Department of Animal Science & Technology, Sangji University, Wonju 26339, Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 540-742, Korea
| |
Collapse
|
39
|
Pisarčíková J, Váradyová Z, Mihaliková K, Kišidayová S. Quantification of organic acids in ruminal in vitro batch culture fermentation supplemented with fumarate using a herb mix as a substrate. CANADIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.1139/cjas-2015-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two 24 h in vitro batch culture experiments were conducted to investigate the effects of fumarate addition (10 mmol L−1) on the ruminal fermentation parameters of selected medicinal herbs, and the effects of different doses of fumarate (0, 10, or 30 mmol L−1) on ruminal metabolism of organic acids when a high-concentrate diet (meadow hay and barley grain, 400/600, w/w) was supplemented with a mix of medicinal herbs (Artemisia absinthium L., Melissa officinalis L., Malva sylvestris L., Matricaria chamomilla L., Plantago lanceolata L., Foeniculum vulgare Mill., and Althaea officinalis L.). Depending on the concentration, fumarate treatment decreased methane production (by 10–11%) and increased propionate proportions (by 5–13%) with high-concentrate diets. The organic acid (fumaric, succinic, malic, and lactic acid) concentrations in the batch culture were measured at intervals of 0, 4, 6, 12, and 24 h. The time and organic acid concentrations with 10 mmol L−1 fumarate were well correlated (R 2 = 0.846). The amount of succinate was accumulated and metabolized more slowly than that of fumarate (>24 h). The addition of fumarate and a herb mix could positively influence in vitro ruminal fermentation parameters of high-concentrate diets by increasing the levels of propionate and succinate as well as the pH, and by decreasing of methane emissions.
Collapse
Affiliation(s)
- J. Pisarčíková
- Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovak Republic
- Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovak Republic
| | - Z. Váradyová
- Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovak Republic
- Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovak Republic
| | - K. Mihaliková
- Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovak Republic
- Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovak Republic
| | - S. Kišidayová
- Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovak Republic
- Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovak Republic
| |
Collapse
|
40
|
Ungerfeld EM. Limits to Dihydrogen Incorporation into Electron Sinks Alternative to Methanogenesis in Ruminal Fermentation. Front Microbiol 2015; 6:1272. [PMID: 26635743 PMCID: PMC4649033 DOI: 10.3389/fmicb.2015.01272] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022] Open
Abstract
Research is being conducted with the objective of decreasing methane (CH4) production in the rumen, as methane emissions from ruminants are environmentally damaging and a loss of digestible energy to ruminants. Inhibiting ruminal methanogenesis generally results in accumulation of dihydrogen (H2), which is energetically inefficient and can inhibit fermentation. It would be nutritionally beneficial to incorporate accumulated H2 into propionate or butyrate production, or reductive acetogenesis. The objective of this analysis was to examine three possible physicochemical limitations to the incorporation of accumulated H2 into propionate and butyrate production, and reductive acetogenesis, in methanogenesis-inhibited ruminal batch and continuous cultures: (i) Thermodynamics; (ii) Enzyme kinetics; (iii) Substrate kinetics. Batch (N = 109) and continuous (N = 43) culture databases of experiments with at least 50% inhibition in CH4 production were used in this meta-analysis. Incorporation of accumulated H2 into propionate production and reductive acetogenesis seemed to be thermodynamically feasible but quite close to equilibrium, whereas this was less clear for butyrate. With regard to enzyme kinetics, it was speculated that hydrogenases of ruminal microorganisms may have evolved toward high-affinity and low maximal velocity to compete for traces of H2, rather than for high pressure accumulated H2. Responses so far obtained to the addition of propionate production intermediates do not allow distinguishing between thermodynamic and substrate kinetics control.
Collapse
Affiliation(s)
- Emilio M Ungerfeld
- INIA Carillanca, Instituto de Investigaciones Agropecuarias Temuco, Chile
| |
Collapse
|
41
|
Abrar A, Kondo M, Kitamura T, Ban-Tokuda T, Matsui H. Effect of supplementation of rice bran and fumarate alone or in combination on in vitro rumen fermentation, methanogenesis and methanogens. Anim Sci J 2015; 87:398-404. [PMID: 26388080 DOI: 10.1111/asj.12431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/19/2015] [Accepted: 03/09/2015] [Indexed: 11/29/2022]
Abstract
This study investigated the effect of fumarate (FUM) and rice bran (RB), alone and together, on in vitro rumen fermentation, methanogenesis and methanogens. In vitro incubation was performed with six media that were either unsupplemented (control) or supplemented with 10% RB, 5 mmol/L FUM, 10% RB + 5 mmol/L FUM, 10 mmol/L FUM, or 10% RB + 10 mmol/L FUM. Methane (CH4 ) production, dry matter digestibility, CH4 per digested dry matter, total short-chain fatty acid (SCFA) production, proportion of SCFA, acetate : proprionate ratio, production of NH3 -N, and population density of rumen microbes were determined. Supplementation with 10% RB + 10 mmol/L FUM yielded a 36% decrease in CH4 production compared to the control. Supplementation of FUM, in the presence or absence of RB, provided increases in total SCFA production and propionate proportion up to 61% and 31%, respectively. Total bacteria, methanogens and protozoa populations were significantly (P < 0.05) decreased with the 10% RB + 10 mmol/L FUM supplementation. The effect of anti-methanogenesis of FUM was enhanced by the addition of RB. Notably, the CH4 production attenuation was achieved by 10% RB + 10 mmol/L FUM without reduction of digestibility or of ruminal fermentation.
Collapse
Affiliation(s)
- Arfan Abrar
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Makoto Kondo
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | | | | | - Hiroki Matsui
- Graduate School of Bioresources, Mie University, Tsu, Japan
| |
Collapse
|
42
|
Vyas D, Beauchemin KA, Koenig KM. Using organic acids to control subacute ruminal acidosis and fermentation in feedlot cattle fed a high-grain diet1,2. J Anim Sci 2015; 93:3950-8. [DOI: 10.2527/jas.2015-9009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
43
|
Li XZ, Park BK, Shin JS, Choi SH, Smith SB, Yan CG. Effects of dietary linseed oil and propionate precursors on ruminal microbial community, composition, and diversity in Yanbian yellow cattle. PLoS One 2015; 10:e0126473. [PMID: 26024491 PMCID: PMC4449012 DOI: 10.1371/journal.pone.0126473] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 04/02/2015] [Indexed: 01/27/2023] Open
Abstract
The rumen microbial ecosystem is a complex system where rumen fermentation processes involve interactions among microorganisms. There are important relationships between diet and the ruminal bacterial composition. Thus, we investigated the ruminal fermentation characteristics and compared ruminal bacterial communities using tag amplicon pyrosequencing analysis in Yanbian yellow steers, which were fed linseed oil (LO) and propionate precursors. We used eight ruminally cannulated Yanbian yellow steers (510 ± 5.8 kg) in a replicated 4 × 4 Latin square design with four dietary treatments. Steers were fed a basal diet that comprised 80% concentrate and 20% rice straw (DM basis, CON). The CON diet was supplemented with LO at 4%. The LO diet was also supplemented with 2% dl-malate or 2% fumarate as ruminal precursors of propionate. Dietary supplementation with LO and propionate precursors increased ruminal pH, total volatile fatty acid concentrations, and the molar proportion of propionate. The most abundant bacterial operational taxonomic units in the rumen were related to dietary treatments. Bacteroidetes dominated the ruminal bacterial community and the genus Prevotella was highly represented when steers were fed LO plus propionate precursors. However, with the CON and LO diet plus malate or fumarate, Firmicutes was the most abundant phylum and the genus Ruminococcus was predominant. In summary, supplementing the diets of ruminants with a moderate level of LO plus propionate precursors modified the ruminal fermentation pattern. The most positive responses to LO and propionate precursors supplementation were in the phyla Bacteriodetes and Firmicutes, and in the genus Ruminococcus and Prevotella. Thus, diets containing LO plus malate or fumarate have significant effects on the composition of the rumen microbial community.
Collapse
Affiliation(s)
- Xiang Z. Li
- Department of Animal Science, Yanbian University, Yanji, Jilin, 133002, P. R. China
| | - Byung K. Park
- Feed Research Institute, Nonghyup Feed Co. Ltd, Seoul, 134–763, Republic of Korea
| | - Jong S. Shin
- Department of Animal Life Science, Kangwon National University, Chunchoen, 200–701, Republic of Korea
| | - Seong H. Choi
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361–763, Korea
| | - Stephen B. Smith
- Department of Animal Science, Texas A & M University, College Station, 77843–2471, United States of America
| | - Chang G. Yan
- Department of Animal Science, Yanbian University, Yanji, Jilin, 133002, P. R. China
- * E-mail:
| |
Collapse
|
44
|
Ribeiro LG, Machado FS, Campos MM, Guimaraes R, Tomich TR, Reis LG, Coombs C. Enteric methane mitigation strategies in ruminants: a review. REV COLOMB CIENC PEC 2015. [DOI: 10.17533/udea.rccp.v28n2a02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
Li XZ, Gao QS, Yan CG, Choi SH, Shin JS, Song MK. Conjugated fatty acids and methane production by rumen microbes when incubated with linseed oil alone or mixed with fish oil and/or malate. Anim Sci J 2015; 86:755-64. [DOI: 10.1111/asj.12354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 10/05/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Xiang Z. Li
- Department of Animal Science; Yanbian University; Yanji China
| | - Qing S. Gao
- Department of Animal Science; Yanbian University; Yanji China
| | - Chang G. Yan
- Department of Animal Science; Yanbian University; Yanji China
| | - Seong H. Choi
- Department of Animal Science; Chungbuk National University; Cheong-ju Chungbuk Korea
| | - Jong S. Shin
- Department of Animal Life Science; Kangwon National University; Chunchoen Korea
| | - Man K. Song
- Department of Animal Science; Chungbuk National University; Cheong-ju Chungbuk Korea
| |
Collapse
|
46
|
Asanuma N, Yokoyama S, Hino T. Effects of nitrate addition to a diet on fermentation and microbial populations in the rumen of goats, with special reference to Selenomonas ruminantium having the ability to reduce nitrate and nitrite. Anim Sci J 2014; 86:378-84. [PMID: 25439583 DOI: 10.1111/asj.12307] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/17/2014] [Indexed: 11/24/2022]
Abstract
This study investigated the effects of dietary nitrate addition on ruminal fermentation characteristics and microbial populations in goats. The involvement of Selenomonas ruminantium in nitrate and nitrite reduction in the rumen was also examined. As the result of nitrate feeding, the total concentration of ruminal volatile fatty acids decreased, whereas the acetate : propionate ratio and the concentrations of ammonia and lactate increased. Populations of methanogens, protozoa and fungi, as estimated by real-time PCR, were greatly decreased as a result of nitrate inclusion in the diet. There was modest or little impact of nitrate on the populations of prevailing species or genus of bacteria in the rumen, whereas Streptococcus bovis and S. ruminantium significantly increased. Both the activities of nitrate reductase (NaR) and nitrite reductase (NiR) per total mass of ruminal bacteria were increased by nitrate feeding. Quantification of the genes encoding NaR and NiR by real-time PCR with primers specific for S. ruminantium showed that these genes were increased by feeding nitrate, suggesting that the growth of nitrate- and nitrite-reducing S. ruminantium is stimulated by nitrate addition. Thus, S. ruminantium is likely to play a major role in nitrate and nitrite reduction in the rumen.
Collapse
Affiliation(s)
- Narito Asanuma
- Department of Life Science, Meiji University, Kawasaki, Japan
| | | | | |
Collapse
|
47
|
Soriano AP, Mamuad LL, Kim SH, Choi YJ, Jeong CD, Bae GS, Chang MB, Lee SS. Effect of Lactobacillus mucosae on In vitro Rumen Fermentation Characteristics of Dried Brewers Grain, Methane Production and Bacterial Diversity. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1562-70. [PMID: 25358315 PMCID: PMC4213700 DOI: 10.5713/ajas.2014.14517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/25/2014] [Accepted: 09/14/2014] [Indexed: 11/27/2022]
Abstract
The effects of Lactobacillus mucosae (L. mucosae), a potential direct fed microbial previously isolated from the rumen of Korean native goat, on the rumen fermentation profile of brewers grain were evaluated. Fermentation was conducted in serum bottles each containing 1% dry matter (DM) of the test substrate and either no L. mucosae (control), 1% 24 h broth culture of L. mucosae (T1), or 1% inoculation with the cell-free culture supernatant (T2). Each serum bottle was filled anaerobically with 100 mL of buffered rumen fluid and sealed prior to incubation for 0, 6, 12, 24, and 48 h from which fermentation parameters were monitored and the microbial diversity was evaluated. The results revealed that T1 had higher total gas production (65.00 mL) than the control (61.33 mL) and T2 (62.00 mL) (p<0.05) at 48 h. Consequently, T1 had significantly lower pH values (p<0.05) than the other groups at 48 h. Ammonia nitrogen (NH3-N), individual and total volatile fatty acids (VFA) concentration and acetate:propionate ratio were higher in T1 and T2 than the control, but T1 and T2 were comparable for these parameters. Total methane (CH4) production and carbon dioxide (CO2) were highest in T1. The percent DM and organic matter digestibilities were comparable between all groups at all times of incubation. The total bacterial population was significantly higher in T1 (p<0.05) at 24 h, but then decreased to levels comparable to the control and T2 at 48 h. The denaturing gradient gel electrophoresis profile of the total bacterial 16s rRNA showed higher similarity between T1 and T2 at 24 h and between the control and T1 at 48 h. Overall, these results suggest that addition of L. mucosae and cell-free supernatant during the in vitro fermentation of dried brewers grain increases the VFA production, but has no effect on digestibility. The addition of L. mucosae can also increase the total bacterial population, but has no significant effect on the total microbial diversity. However, inoculation of the bacterium may increase CH4 and CO2in vitro.
Collapse
Affiliation(s)
- Alvin P Soriano
- Department of Animal Science and Technology, Chung-Ang University, Anseong 456-756, Korea
| | - Lovelia L Mamuad
- Department of Animal Science and Technology, Chung-Ang University, Anseong 456-756, Korea
| | - Seon-Ho Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 456-756, Korea
| | - Yeon Jae Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong 456-756, Korea
| | - Chang Dae Jeong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 456-756, Korea
| | - Gui Seck Bae
- Department of Animal Science and Technology, Chung-Ang University, Anseong 456-756, Korea
| | - Moon Baek Chang
- Department of Animal Science and Technology, Chung-Ang University, Anseong 456-756, Korea
| | - S Suk Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 456-756, Korea
| |
Collapse
|
48
|
Kim SH, Mamuad LL, Jeong CD, Choi YJ, Lee SS, Ko JY, Lee SS. In vitro Evaluation of Different Feeds for Their Potential to Generate Methane and Change Methanogen Diversity. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:1698-707. [PMID: 25049760 PMCID: PMC4092884 DOI: 10.5713/ajas.2013.13260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/18/2013] [Accepted: 08/05/2013] [Indexed: 11/27/2022]
Abstract
Optimization of the dietary formulation is the most effective way to reduce methane. Nineteen feed ingredients (brans, vegetable proteins, and grains) were evaluated for their potential to generate methane and change methanogen diversity using an in vitro ruminal fermentation technique. Feed formulations categorized into high, medium and low production based on methane production of each ingredient were then subjected to in vitro fermentation to determine the real methane production and their effects on digestibility. Methanogen diversity among low, medium and high-methane producing groups was analyzed by PCR-DGGE. The highest methane production was observed in Korean wheat bran, soybean and perilla meals, and wheat and maize of brans, vegetable protein and cereal groups, respectively. On the other hand, corn bran, cotton seed meal and barley led to the lowest production in the same groups. Nine bacteria and 18 methanogen 16s rDNA PCR-DGGE dominant bands were identified with 83% to 99% and 92% to 100% similarity, respectively. Overall, the results of this study showed that methane emissions from ruminants can be mitigated through proper selection of feed ingredients to be used in the formulation of diets.
Collapse
Affiliation(s)
- Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam 540-742, Korea
| | - Lovelia L Mamuad
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam 540-742, Korea
| | - Chang-Dae Jeong
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam 540-742, Korea
| | - Yeon-Jae Choi
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam 540-742, Korea
| | - Sung Sill Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam 540-742, Korea
| | - Jong-Youl Ko
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam 540-742, Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam 540-742, Korea
| |
Collapse
|
49
|
Mamuad L, Kim SH, Jeong CD, Choi YJ, Jeon CO, Lee SS. Effect of fumarate reducing bacteria on in vitro rumen fermentation, methane mitigation and microbial diversity. J Microbiol 2014; 52:120-8. [PMID: 24500476 DOI: 10.1007/s12275-014-3518-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/09/2014] [Accepted: 01/15/2014] [Indexed: 11/26/2022]
Abstract
The metabolic pathways involved in hydrogen (H(2)) production, utilization and the activity of methanogens are the important factors that should be considered in controlling methane (CH(4)) emissions by ruminants. H(2) as one of the major substrate for CH(4) production is therefore should be controlled. One of the strategies on reducing CH(4) is through the use of hydrogenotrophic microorganisms such as fumarate reducing bacteria. This study determined the effect of fumarate reducing bacteria, Mitsuokella jalaludinii, supplementation on in vitro rumen fermentation, CH(4) production, diversity and quantity. M. jalaludinii significantly reduced CH(4) at 48 and 72 h of incubation and significantly increased succinate at 24 h. Although not significantly different, propionate was found to be highest in treatment containing M. jalaludinii at 12 and 48 h of incubation. These results suggest that supplementation of fumarate reducing bacteria to ruminal fermentation reduces CH(4) production and quantity, increases succinate and changes the rumen microbial diversity.
Collapse
Affiliation(s)
- Lovelia Mamuad
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University, Suncheon, 540-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
50
|
Ungerfeld EM. A theoretical comparison between two ruminal electron sinks. Front Microbiol 2013; 4:319. [PMID: 24198813 PMCID: PMC3812538 DOI: 10.3389/fmicb.2013.00319] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/10/2013] [Indexed: 11/13/2022] Open
Abstract
Dihydrogen accumulation resulting from methanogenesis inhibition in the rumen is an energy loss and can inhibit fermentation. The objective of this analysis was to compare the energetic and nutritional consequences of incorporating H2 into reductive acetogenesis or additional propionate production beyond the acetate to propionate shift occurring along with methanogenesis inhibition. Stoichiometric consequences were calculated for a simulated fermentation example. Possible nutritional consequences are discussed. Incorporating H2 into reductive acetogenesis or additional propionate production resulted in equal heat of combustion output in volatile fatty acids (VFA). Incorporation of H2 into reductive acetogenesis could result in moderate decrease in ruminal pH, although whole-animal buffering mechanisms make pH response difficult to predict. Research would be needed to compare the microbial protein production output. There could be post-absorptive implications due to differences in VFA profile. Electron incorporation into reductive acetogenesis could favor energy partition toward milk, but increase risk of ketosis in high-producing dairy cows on ketogenic diets. Greater propionate production could favor milk protein production, but may be less desirable in animals whose intake is metabolically constrained, like feedlot steers. Because of the different nutritional implications, and because practical solutions to incorporate H2 into either pathway are not yet available, it is recommended to research both alternatives.
Collapse
Affiliation(s)
- Emilio M. Ungerfeld
- CONICYT Regional R10C1002, Centro de Investigación y Desarrollo CIEN Austral, Universidad Austral de ChilePuerto Montt, Chile
| |
Collapse
|