1
|
Zhuo S, Yang S, Chen S, Ding Y, Cheng H, Yang L, Wang K, Yang K. Unveiling the significance of cancer-testis antigens and their implications for immunotherapy in glioma. Discov Oncol 2024; 15:602. [PMID: 39472405 PMCID: PMC11522268 DOI: 10.1007/s12672-024-01449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
Glioma has a poor prognosis, which is attributable to its inherent characteristics and lack of specific treatments. Immunotherapy plays a pivotal role in the contemporary management of malignancies. Despite the initiation of numerous immunotherapy-based clinical trials, their effects on enhancing glioma prognosis remain limited, highlighting the need for innovative and effective therapeutic targets and strategies to address this challenge. Since the 1990s, there has been a growing interest in cancer-testis antigens (CTAs) present in normal mammalian testicular germ cells and placental trophoblast cells, which exhibit reactivated expression in various tumor types. Mechanisms such as DNA methylation, histone modification, transcriptional regulation, and alternative splicing influence the expression of CTAs in tumors. The distinct expression patterns and robust immunogenicity of CTAs are promising tumor biomarkers and optimal targets for immunotherapy. Previous reports have shown that multiple CTAs are present in gliomas and are closely related to prognosis. The expression of these antigens is also associated with the immune response in gliomas and the effectiveness of immunotherapy. Significantly, numerous clinical trials, with IL13RA2 as a representative CTA member, have assessed the immunotherapeutic potential of gliomas and have shown favorable clinical efficacy. This review provides a comprehensive overview of the regulation and function of CTAs, summarizes their expression and role in gliomas, emphasizes their importance as immunotherapy targets in gliomas, and discusses related challenges and future interventions.
Collapse
Affiliation(s)
- Shenghua Zhuo
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
- International Center for Aging and Cancer, Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
| | - Shuo Yang
- International Center for Aging and Cancer, Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Shenbo Chen
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Yueju Ding
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Honglei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Liangwang Yang
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Kai Wang
- International Center for Aging and Cancer, Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
| | - Kun Yang
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
| |
Collapse
|
2
|
Lin F, Lin EZ, Anekoji M, Ichim TE, Hu J, Marincola FM, Jones LD, Kesari S, Ashili S. Advancing personalized medicine in brain cancer: exploring the role of mRNA vaccines. J Transl Med 2023; 21:830. [PMID: 37978542 PMCID: PMC10656921 DOI: 10.1186/s12967-023-04724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Advancing personalized medicine in brain cancer relies on innovative strategies, with mRNA vaccines emerging as a promising avenue. While the initial use of mRNA vaccines was in oncology, their stunning success in COVID-19 resulted in widespread attention, both positive and negative. Regardless of politically biased opinions, which relate more to the antigenic source than form of delivery, we feel it is important to objectively review this modality as relates to brain cancer. This class of vaccines trigger robust immune responses through MHC-I and MHC-II pathways, in both prophylactic and therapeutic settings. The mRNA platform offers advantages of rapid development, high potency, cost-effectiveness, and safety. This review provides an overview of mRNA vaccine delivery technologies, tumor antigen identification, combination therapies, and recent therapeutic outcomes, with a particular focus on brain cancer. Combinatorial approaches are vital to maximizing mRNA cancer vaccine efficacy, with ongoing clinical trials exploring combinations with adjuvants and checkpoint inhibitors and even adoptive cell therapy. Efficient delivery, neoantigen identification, preclinical studies, and clinical trial results are highlighted, underscoring mRNA vaccines' potential in advancing personalized medicine for brain cancer. Synergistic combinatorial therapies play a crucial role, emphasizing the need for continued research and collaboration in this area.
Collapse
Affiliation(s)
- Feng Lin
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA.
| | - Emma Z Lin
- University of California San Diego, La Jolla, CA, 92093, USA
| | - Misa Anekoji
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA
| | - Thomas E Ichim
- Therapeutic Solutions International, Oceanside, CA, 92056, USA
| | - Joyce Hu
- Sonata Therapeutics, Watertown, MA, 02472, USA
| | | | - Lawrence D Jones
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA
| | - Santosh Kesari
- Saint John's Cancer Institute, Santa Monica, CA, 90404, USA
| | - Shashaanka Ashili
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA
| |
Collapse
|
3
|
Dain L, Zhu G. Nucleic acid immunotherapeutics and vaccines: A promising approach to glioblastoma multiforme treatment. Int J Pharm 2023; 638:122924. [PMID: 37037396 PMCID: PMC10194422 DOI: 10.1016/j.ijpharm.2023.122924] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
Glioblastoma multiforme (GBM) is a deadly and difficult to treat primary brain tumor for which satisfactory therapeutics have yet to be discovered. While cancer immunotherapeutics, such as immune checkpoint inhibitors, have successfully improved the treatment of some other types of cancer, the poorly immunogenic GBM tumor cells and the immunosuppressive GBM tumor microenvironment have made it difficult to develop GBM immunotherapeutics. Nucleic acids therapeutics and vaccines, particularly those of mRNA, have become a popular field of research in recent years. This review presents the progress of nucleic acid therapeutics and vaccines for GBM and briefly covers some representative delivery methods of nucleic acids to the central nervous system (CNS) for GBM therapy.
Collapse
Affiliation(s)
- Lauren Dain
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology and Drug Discovery, School of Pharmacy; The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guizhi Zhu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology and Drug Discovery, School of Pharmacy; The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Zhang JJ, Zhang Y, Chen Q, Chen QN, Yang X, Zhu XL, Hao CY, Duan HB. A Novel Prognostic Marker and Therapeutic Target Associated with Glioma Progression in a Tumor Immune Microenvironment. J Inflamm Res 2023; 16:895-916. [PMID: 36883185 PMCID: PMC9985882 DOI: 10.2147/jir.s398775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Background Immune microenvironment serves a vital role in glioma progression, and a large number of studies have found that tumor progression can be reduced to some extent by modulating the immune process in tumors. Materials and Methods ImmuneScore of each sample in CGGA datasets were calculated with Estimate R package, and samples were grouped by median ImmuneScore values for differential analysis to obtain immune microenvironment differential genes. We further conducted survival analysis, ROC curve analysis, independent prognostic analysis, and clinical correlation analysis on glioma sample genes in CGGA to obtain glioma prognostic genes, and then identified their intersection with immune microenvironment DEGs by Venn tool. The GEPIA and UALCAN databases were used to verify the differential expression of intersecting genes in the glioma and normal brain and to identify our target gene. After validation of their prognostic value, we constructed a nomogram to calculate the risk score and to estimate the accuracy of prognostic model. We mined co-expression genes, enriched functions and pathways, and correlations to immune cell infiltration of unigene with an online database. Finally, we verified the differential expression of FCGBP in glioma by immunohistochemical staining. Results We finally selected Fc fragment of IgG-binding protein (FCGBP) as our study gene. The prognostic values of FCGBP were validated by a series of analyses. Immunohistochemical staining showed that FCGBP expression increased in gliomas and was up-regulated with the progression of glioma grade. Conclusion As a key unigene in glioma progression, FCGBP contributes to the regulation of immune microenvironment and has the potential to be a prognostic biomarker and immune targets.
Collapse
Affiliation(s)
- Jun-Jie Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yu Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Qian Chen
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Qi-Ning Chen
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xin Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xiao-Lin Zhu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Chun-Yan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Hu-Bin Duan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| |
Collapse
|
5
|
Wang J, Nan Y, Liu M, Hu K. The Role of CD4 + T Cells in the Immunotherapy of Brain Disease by Secreting Different Cytokines. J Neuroimmune Pharmacol 2022; 17:409-422. [PMID: 36443518 DOI: 10.1007/s11481-022-10056-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
Upon different stimulation, naïve CD4+ T cells differentiate into various subsets of T helper (Th) cells, including Th1, Th2, Th17, and Tregs. They play both protective and pathogenic roles in the central nervous system (CNS) by secreting different cytokines. Failure of the homeostasis of the subgroups in the CNS can result in different brain diseases. Recently, immunotherapy has drawn more and more attention in the therapy of various brain diseases. Here, we describe the role of different CD4+ T cell subsets and their secreted cytokines in various brain diseases, as well as the ways in which by affecting CD4+ T cells in therapy of the CNS diseases. Understanding the role of CD4+ T cells and their secreted cytokines in the immunotherapy of brain disease will provide new targets and therapeutics for the treatment of brain disease. The role of CD4 + T cell subtypes in different diseases and their associated regulatory genes, proteins, and enzymes. CD4 + T cell subtypes play both protective (green) and pathogenic (red) roles in different brain diseases. The immune regulatory effects of CD4 + T cells and their subtypes are promoted or inhibited by different genes, proteins, and enzymes.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yunrong Nan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mei Liu
- Industrial Development Center of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Kaili Hu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
6
|
Khristov V, Nesterova D, Trifoi M, Clegg T, Daya A, Barrett T, Tufano E, Shenoy G, Pandya B, Beselia G, Smith N, Mrowczynski O, Zacharia B, Waite K, Lathia J, Barnholtz-Sloan J, Connor J. Plasma IL13Rα2 as a novel liquid biopsy biomarker for glioblastoma. J Neurooncol 2022; 160:743-752. [DOI: 10.1007/s11060-022-04196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022]
|
7
|
Zhang Z, Conniot J, Amorim J, Jin Y, Prasad R, Yan X, Fan K, Conde J. Nucleic acid-based therapy for brain cancer: Challenges and strategies. J Control Release 2022; 350:80-92. [PMID: 35970297 DOI: 10.1016/j.jconrel.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Nucleic acid-based therapy emerges as a powerful weapon for the treatment of tumors thanks to its direct, effective, and lasting therapeutic effect. Encouragingly, continuous nucleic acid-based drugs have been approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Despite the tremendous progress, there are few nucleic acid-based drugs for brain tumors in clinic. The most challenging problems lie on the instability of nucleic acids, difficulty in traversing the biological barriers, and the off-target effect. Herein, nucleic acid-based therapy for brain tumor is summarized considering three aspects: (i) the therapeutic nucleic acids and their applications in clinical trials; (ii) the various administration routes for nucleic acid delivery and the respective advantages and drawbacks. (iii) the strategies and carriers for improving stability and targeting ability of nucleic acid drugs. This review provides thorough knowledge for the rational design of nucleic acid-based drugs against brain tumor.
Collapse
Affiliation(s)
- Zixia Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China
| | - João Conniot
- ToxOmics, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Joana Amorim
- ToxOmics, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Yiliang Jin
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rajendra Prasad
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China; Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China; Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| | - João Conde
- ToxOmics, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| |
Collapse
|
8
|
Karlsson J, Luly KM, Tzeng SY, Green JJ. Nanoparticle designs for delivery of nucleic acid therapeutics as brain cancer therapies. Adv Drug Deliv Rev 2021; 179:113999. [PMID: 34715258 PMCID: PMC8720292 DOI: 10.1016/j.addr.2021.113999] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022]
Abstract
Glioblastoma (GBM) is an aggressive central nervous system cancer with a dismal prognosis. The standard of care involves surgical resection followed by radiotherapy and chemotherapy, but five-year survival is only 5.6% despite these measures. Novel therapeutic approaches, such as immunotherapies, targeted therapies, and gene therapies, have been explored to attempt to extend survival for patients. Nanoparticles have been receiving increasing attention as promising vehicles for non-viral nucleic acid delivery in the context of GBM, though delivery is often limited by low blood-brain barrier permeability, particle instability, and low trafficking to target brain structures and cells. In this review, nanoparticle design considerations and new advances to overcome nucleic acid delivery challenges to treat brain cancer are summarized and discussed.
Collapse
Affiliation(s)
- Johan Karlsson
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kathryn M. Luly
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Departments of Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
9
|
Tay ASMS, Amano T, Edwards LA, Yu JS. CD133 mRNA-transfected dendritic cells induce coordinated cytotoxic and helper T cell responses against breast cancer stem cells. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:64-71. [PMID: 34485687 PMCID: PMC8403713 DOI: 10.1016/j.omto.2021.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/12/2021] [Indexed: 01/16/2023]
Abstract
Breast cancer, a leading cause of death yearly, has been shown to be initiated and propagated by cancer stem cells. CD133, a cell surface antigen, has been shown to be present on cancer stem cells of many solid tumors, including breast cancer. A limitation to targeting CD133 is major histocompatibility complex (MHC)-restricted presentation of epitopes, leading to activation of only one arm of the immune system: either CD4+ helper T cells or CD8+ cytotoxic T cells. Thus, we hypothesized that by creating an MHC-independent vaccination, we would give rise to a sustained immune response against CD133 in triple-negative breast cancer (TNBCs). We transfected CD133 mRNA into dendritic cells and then tested this in animal models of TNBC. We showed in these models the activation of both CD8+ cytotoxic T cells and CD4+ helper T cells by dendritic cell vaccination with modified CD133 mRNA, with subsequent decrease in tumor growth. This study for the first time demonstrates in a syngeneic mouse model of TNBC that targeting CD133, in an MHC-independent manner, is an effective strategy against the cancer stem cell population, leading to tumor abrogation.
Collapse
Affiliation(s)
| | - Takayuki Amano
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lincoln A Edwards
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John S Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
10
|
Gupta P, Jiang ZK, Yang B, Manzuk L, Rosfjord E, Yao J, Lemon L, Noorbehesht K, David J, Puthenveetil S, Casavant JM, Muszynska E, Li F, Leal M, Sapra P, Giddabasappa A. Targeting and pharmacology of an anti-IL13Rα2 antibody and antibody-drug conjugate in a melanoma xenograft model. MAbs 2021; 13:1958662. [PMID: 34347577 PMCID: PMC8344738 DOI: 10.1080/19420862.2021.1958662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IL13Rα2 is a cell surface tumor antigen that is overexpressed in multiple tumor types. Here, we studied biodistribution and targeting potential of an anti-IL13Rα2 antibody (Ab) and anti-tumor activity of anti-IL13Rα2-antibody-drug conjugate (ADC). The anti-IL13Rα2 Ab was labeled with fluorophore AF680 or radioisotope 89Zr for in vivo tracking using fluorescence molecular tomography (FMT) or positron emission tomography (PET) imaging, respectively. Both imaging modalities showed that the tumor was the major uptake site for anti-IL13Rα2-Ab, with peak uptake of 5–8% ID and 10% ID/g as quantified from FMT and PET, respectively. Pharmacological in vivo competition with excess of unlabeled anti-IL13Rα2-Ab significantly reduced the tumor uptake, indicative of antigen-specific tumor accumulation. Further, FMT imaging demonstrated similar biodistribution and pharmacokinetic profiles of an auristatin-conjugated anti-IL13Rα2-ADC as compared to the parental Ab. Finally, the anti-IL13Rα2-ADC exhibited a dose-dependent anti-tumor effect on A375 xenografts, with 90% complete responders at a dose of 3 mg/kg. Taken together, both FMT and PET showed a favorable biodistribution profile for anti-IL13Rα2-Ab/ADC, along with antigen-specific tumor targeting and excellent therapeutic efficacy in the A375 xenograft model. This work shows the great potential of this anti-IL13Rα2-ADC as a targeted anti-cancer agent.
Collapse
Affiliation(s)
- Parul Gupta
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, CA, USA.,Biomedicine Design, Pfizer Inc., San Diego, CA, USA
| | - Ziyue Karen Jiang
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, CA, USA
| | - Bing Yang
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, CA, USA
| | - Lisa Manzuk
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, CA, USA
| | - Edward Rosfjord
- Oncology Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Johnny Yao
- Oncology Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Luanna Lemon
- Oncology Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Kavon Noorbehesht
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, CA, USA
| | - John David
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, CA, USA
| | | | | | - Elwira Muszynska
- Oncology Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Fengping Li
- Biomedicine Design, Pfizer Inc., San Diego, CA, USA
| | | | - Puja Sapra
- Oncology Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Anand Giddabasappa
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, CA, USA
| |
Collapse
|
11
|
Do ASMS, Amano T, Edwards LA, Zhang L, De Peralta-Venturina M, Yu JS. CD133 mRNA-Loaded Dendritic Cell Vaccination Abrogates Glioma Stem Cell Propagation in Humanized Glioblastoma Mouse Model. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:295-303. [PMID: 32728617 PMCID: PMC7378271 DOI: 10.1016/j.omto.2020.06.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/19/2020] [Indexed: 01/24/2023]
Abstract
Cancer stem cells are initiating cells of cancer and propagate its growth through self-renewal and differentiation of its daughter cells. CD133 is a cell surface antigen that is present on glioma stem cells and has been used to prospectively isolate glioma stem cells. We hypothesized that a major histocompatibility complex (MHC)-independent and long-lasting immune response against CD133 could be generated by transfecting CD133 mRNA into dendritic cells and vaccinating animals with experimental gliomas. To test this hypothesis, we developed a novel humanized mouse model using CD34-positive hematopoietic stem cells. We confirmed the robust simultaneous activation of CD8- and CD4-positive T cells by dendritic cell vaccination with modified CD133 mRNA leading to a potent and long-lived immune response, with subsequent abrogation of CD133-positive glioma stem cell propagation and tumor growth. This study for the first time demonstrates in both a humanized mouse model and in a syngeneic mouse model of glioblastoma that targeting a glioma stem cell-associated antigen is an effective strategy to target and kill glioma stem cells. This novel and simple humanized mouse model for immunotherapy is a significant advance in our ability to test human-specific immunotherapies for glioblastoma.
Collapse
Affiliation(s)
| | - Takayuki Amano
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lincoln A Edwards
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lei Zhang
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - John S Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
12
|
Sharma P, Debinski W. Receptor-Targeted Glial Brain Tumor Therapies. Int J Mol Sci 2018; 19:E3326. [PMID: 30366424 PMCID: PMC6274942 DOI: 10.3390/ijms19113326] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022] Open
Abstract
Among primary brain tumors, malignant gliomas are notably difficult to manage. The higher-grade tumors represent an unmet need in medicine. There have been extensive efforts to implement receptor-targeted therapeutic approaches directed against gliomas. These approaches include immunotherapies, such as vaccines, adoptive immunotherapy, and passive immunotherapy. Targeted cytotoxic radio energy and pro-drug activation have been designed specifically for brain tumors. The field of targeting through receptors progressed significantly with the discovery of an interleukin 13 receptor alpha 2 (IL-13RA2) as a tumor-associated receptor over-expressed in most patients with glioblastoma (GBM) but not in normal brain. IL-13RA2 has been exploited in novel experimental therapies with very encouraging clinical responses. Other receptors are specifically over-expressed in many patients with GBM, such as EphA2 and EphA3 receptors, among others. These findings are important in view of the heterogeneity of GBM tumors and multiple tumor compartments responsible for tumor progression and resistance to therapies. The combined targeting of multiple receptors in different tumor compartments should be a preferred way to design novel receptor-targeted therapeutic approaches in gliomas.
Collapse
Affiliation(s)
- Puja Sharma
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Waldemar Debinski
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
13
|
Hypoxic regulation of the expression of cell proliferation related genes in U87 glioma cells upon inhibition of IRE1 signaling enzyme. UKRAINIAN BIOCHEMICAL JOURNAL 2016; 88:11-21. [DOI: 10.15407/ubj88.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
14
|
Park SB, Kim B, Bae H, Lee H, Lee S, Choi EH, Kim SJ. Differential Epigenetic Effects of Atmospheric Cold Plasma on MCF-7 and MDA-MB-231 Breast Cancer Cells. PLoS One 2015; 10:e0129931. [PMID: 26042423 PMCID: PMC4456358 DOI: 10.1371/journal.pone.0129931] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/14/2015] [Indexed: 11/19/2022] Open
Abstract
Cold atmospheric plasma (plasma) has emerged as a novel tool for a cancer treatment option, having been successfully applied to a few types of cancer cells, as well as tissues. However, to date, no studies have been performed to examine the effect of plasma on epigenetic alterations, including CpG methylation. In this study, the effects of plasma on DNA methylation changes in breast cancer cells were examined by treating cultured MCF-7 and MDA-MB-231 cells, representing estrogen-positive and estrogen-negative cancer cells, respectively, with plasma. A pyrosequencing analysis of Alu indicated that a specific CpG site was induced to be hypomethylated from 23.4 to 20.3% (p < 0.05) by plasma treatment in the estrogen-negative MDA-MB-231 cells only. A genome-wide methylation analysis identified “cellular movement, connective tissue development and function, tissue development” and “cell-to-cell signaling and interaction, cell death and survival, cellular development” as the top networks. Of the two cell types, the MDA-MB-231 cells underwent a higher rate of apoptosis and a decreased proliferation rate upon plasma treatment. Taken together, these results indicate that plasma induces epigenetic and cellular changes in a cell type-specific manner, suggesting that a careful screening of target cells and tissues is necessary for the potential application of plasma as a cancer treatment option.
Collapse
Affiliation(s)
- Sung-Bin Park
- Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| | - Byungtak Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| | - Hansol Bae
- Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| | - Hyunkyung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| | - Seungyeon Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| | - Eun H. Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Korea
- * E-mail:
| |
Collapse
|
15
|
Calinescu AA, Kamran N, Baker G, Mineharu Y, Lowenstein PR, Castro MG. Overview of current immunotherapeutic strategies for glioma. Immunotherapy 2015; 7:1073-104. [PMID: 26598957 PMCID: PMC4681396 DOI: 10.2217/imt.15.75] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last decade, numerous studies of immunotherapy for malignant glioma (glioblastoma multiforme) have brought new knowledge and new hope for improving the prognosis of this incurable disease. Some clinical trials have reached Phase III, following positive outcomes in Phase I and II, with respect to safety and immunological end points. Results are encouraging especially when considering the promise of sustained efficacy by inducing antitumor immunological memory. Progress in understanding the mechanisms of tumor-induced immune suppression led to the development of drugs targeting immunosuppressive checkpoints, which are used in active clinical trials for glioblastoma multiforme. Insights related to the heterogeneity of the disease bring new challenges for the management of glioma and underscore a likely cause of therapeutic failure. An emerging therapeutic strategy is represented by a combinatorial, personalized approach, including the standard of care: surgery, radiation, chemotherapy with added active immunotherapy and multiagent targeting of immunosuppressive checkpoints.
Collapse
Affiliation(s)
| | - Neha Kamran
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Gregory Baker
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Yohei Mineharu
- Department of Neurosurgery, Kyoto University, Kyoto, Japan
| | - Pedro Ricardo Lowenstein
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria Graciela Castro
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Mahadev V, Starr R, Wright SL, Martinez C, Jensen MC, Barish ME, Forman SJ, Brown CE. Cytokine induction of VCAM-1 but not IL13Rα2 on glioma cells: a tale of two antibodies. PLoS One 2014; 9:e95123. [PMID: 24787244 PMCID: PMC4008428 DOI: 10.1371/journal.pone.0095123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/24/2014] [Indexed: 01/01/2023] Open
Abstract
The interleukin-13 receptor alpha2 (IL13Rα2) is a cell surface receptor that is over-expressed by a subset of high-grade gliomas, but not expressed at significant levels by normal brain tissue. For both malignant and non-malignant cells, IL13Rα2 surface expression is reported to be induced by various cytokines such as IL-4 or IL-13 and tumor necrosis factor (TNF). Our group has developed a therapeutic platform to target IL13Rα2-positive brain tumors by engineering human cytotoxic T lymphocytes (CTLs) to express the IL13-zetakine chimeric antigen receptor. We therefore sought to investigate the potential of cytokine stimulation to induce IL13Rα2 cell surface expression, and thereby increase susceptibility to IL13Rα2-specific T cell killing. In the course of these experiments, we unexpectedly found that the commercially available putative IL13Rα2-specific monoclonal antibody B-D13 recognizes cytokine-induced VCAM-1 on glioblastoma. We provide evidence that the induced receptor is not IL13Rα2, because its expression does not consistently correlate with IL13Rα2 mRNA levels, it does not bind IL-13, and it is not recognized by IL13-zetakine CTL. Instead we demonstrate by immunoprecipitation experiments and mass spectrometry that the antigen recognized by the B-D13 antibody following cytokine stimulation is VCAM-1, and that VCAM-1, but not IL13Rα2, is induced on glioma cells by TNF alone or in combination with IL-13 or IL-4. Further evaluation of several commercial B-D13 antibodies revealed that B-D13 is bi-specific, recognizing both IL13Rα2 and VCAM-1. This binding is non-overlapping based on soluble receptor competition experiments, and mass spectrometry identifies two distinct heavy and light chain species, providing evidence that the B-D13 reagent is di-clonal. PE-conjugation of the B-D13 antibody appears to disrupt IL13Rα2 recognition, while maintaining VCAM-1 specificity. While this work calls into question previous studies that have used the B-D13 antibody to assess IL13Rα2 expression, it also suggests that TNF may have significant effects on glioma biology by up-regulating VCAM-1.
Collapse
Affiliation(s)
- Vaidehi Mahadev
- Departments of Hematology and Hematopoietic Cell Transplantation, Cancer Immunotherapy & Tumor Immunology, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Renate Starr
- Departments of Hematology and Hematopoietic Cell Transplantation, Cancer Immunotherapy & Tumor Immunology, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Sarah L. Wright
- Departments of Hematology and Hematopoietic Cell Transplantation, Cancer Immunotherapy & Tumor Immunology, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Catalina Martinez
- Departments of Hematology and Hematopoietic Cell Transplantation, Cancer Immunotherapy & Tumor Immunology, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Michael C. Jensen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Michael E. Barish
- Department of Neurosciences, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Stephen J. Forman
- Departments of Hematology and Hematopoietic Cell Transplantation, Cancer Immunotherapy & Tumor Immunology, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Christine E. Brown
- Departments of Hematology and Hematopoietic Cell Transplantation, Cancer Immunotherapy & Tumor Immunology, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Brown CE, Warden CD, Starr R, Deng X, Badie B, Yuan YC, Forman SJ, Barish ME. Glioma IL13Rα2 is associated with mesenchymal signature gene expression and poor patient prognosis. PLoS One 2013; 8:e77769. [PMID: 24204956 PMCID: PMC3800130 DOI: 10.1371/journal.pone.0077769] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022] Open
Abstract
A major challenge for successful immunotherapy against glioma is the identification and characterization of validated targets. We have taken a bioinformatics approach towards understanding the biological context of IL-13 receptor α2 (IL13Rα2) expression in brain tumors, and its functional significance for patient survival. Querying multiple gene expression databases, we show that IL13Rα2 expression increases with glioma malignancy grade, and expression for high-grade tumors is bimodal, with approximately 58% of WHO grade IV gliomas over-expressing this receptor. By several measures, IL13Rα2 expression in patient samples and low-passage primary glioma lines most consistently correlates with the expression of signature genes defining mesenchymal subclass tumors and negatively correlates with proneural signature genes as defined by two studies. Positive associations were also noted with proliferative signature genes, whereas no consistent associations were found with either classical or neural signature genes. Probing the potential functional consequences of this mesenchymal association through IPA analysis suggests that IL13Rα2 expression is associated with activation of proinflammatory and immune pathways characteristic of mesenchymal subclass tumors. In addition, survival analyses indicate that IL13Rα2 over-expression is associated with poor patient prognosis, a single gene correlation ranking IL13Rα2 in the top ~1% of total gene expression probes with regard to survival association with WHO IV gliomas. This study better defines the functional consequences of IL13Rα2 expression by demonstrating association with mesenchymal signature gene expression and poor patient prognosis. It thus highlights the utility of IL13Rα2 as a therapeutic target, and helps define patient populations most likely to respond to immunotherapy in present and future clinical trials.
Collapse
Affiliation(s)
- Christine E. Brown
- Department of Cancer Immunotherapy & Tumor Immunology and Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute and City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| | - Charles D. Warden
- Department of Molecular Medicine, Beckman Research Institute and City of Hope National Medical Center, Duarte, California, United States of America
| | - Renate Starr
- Department of Cancer Immunotherapy & Tumor Immunology and Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute and City of Hope National Medical Center, Duarte, California, United States of America
| | - Xutao Deng
- Department of Molecular Medicine, Beckman Research Institute and City of Hope National Medical Center, Duarte, California, United States of America
| | - Behnam Badie
- Department of Neurosurgery, Beckman Research Institute and City of Hope National Medical Center, Duarte, California, United States of America
| | - Yate-Ching Yuan
- Department of Molecular Medicine, Beckman Research Institute and City of Hope National Medical Center, Duarte, California, United States of America
| | - Stephen J. Forman
- Department of Cancer Immunotherapy & Tumor Immunology and Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute and City of Hope National Medical Center, Duarte, California, United States of America
| | - Michael E. Barish
- Department of Neurosciences, Beckman Research Institute and City of Hope National Medical Center, Duarte, California, United States of America
| |
Collapse
|
18
|
Bovenberg MSS, Degeling MH, Tannous BA. Cell-based immunotherapy against gliomas: from bench to bedside. Mol Ther 2013; 21:1297-305. [PMID: 23648695 DOI: 10.1038/mt.2013.80] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/17/2013] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) comprises 51% of all gliomas and is the most malignant form of brain tumors with a median survival of 18-21 months. Standard-of-care treatment includes maximal surgical resection of the tumor mass in combination with radiation and chemotherapy. However, as the poor survival rate indicates, these treatments have not been effective in preventing disease progression. Cellular immunotherapy is currently being explored as therapeutic approach to treat malignant brain tumors. In this review, we discuss advances in active, passive, and vaccine-based immunotherapeutic strategies for gliomas both at the bench and in the clinic.
Collapse
Affiliation(s)
- M Sarah S Bovenberg
- Department of Neurology, Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
19
|
Nakashima H, Husain SR, Puri RK. IL-13 receptor-directed cancer vaccines and immunotherapy. Immunotherapy 2012; 4:443-51. [DOI: 10.2217/imt.12.28] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many immunotherapy approaches including therapeutic cancer vaccines targeting specific tumor-associated antigens are at various stages of development. Although the significance of overexpression of (IL-13Rα2) in cancer is being actively investigated, we have reported that IL-13Rα2 is a novel tumor-associated antigen. The IL-13Rα2-directed cancer vaccine is one of the most promising approaches to tumor immunotherapy, because of the selective expression of IL-13Rα2 in various solid tumor types but not in normal tissues. In this article, we will summarize its present status and potential strategies to improve IL-13Rα2-directed cancer vaccines for an optimal therapy of cancer.
Collapse
Affiliation(s)
- Hideyuki Nakashima
- Tumor Vaccines & Biotechnology Branch, Division of Cellular & Gene Therapies, Food & Drug Administration, Center for Biologics Evaluation & Research, NIH Building 29B, Room 2NN20, 29 Lincoln Drive, Bethesda, MD 20892, USA
| | - Syed R Husain
- Tumor Vaccines & Biotechnology Branch, Division of Cellular & Gene Therapies, Food & Drug Administration, Center for Biologics Evaluation & Research, NIH Building 29B, Room 2NN20, 29 Lincoln Drive, Bethesda, MD 20892, USA
| | - Raj K Puri
- Tumor Vaccines & Biotechnology Branch, Division of Cellular & Gene Therapies, Food & Drug Administration, Center for Biologics Evaluation & Research, NIH Building 29B, Room 2NN20, 29 Lincoln Drive, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Brown CE, Starr R, Aguilar B, Shami AF, Martinez C, D'Apuzzo M, Barish ME, Forman SJ, Jensen MC. Stem-like tumor-initiating cells isolated from IL13Rα2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T Cells. Clin Cancer Res 2012; 18:2199-209. [PMID: 22407828 DOI: 10.1158/1078-0432.ccr-11-1669] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE To evaluate IL13Rα2 as an immunotherapeutic target for eliminating glioma stem-like cancer initiating cells (GSC) of high-grade gliomas, with particular focus on the potential of genetically engineered IL13Rα2-specific primary human CD8(+) CTLs (IL13-zetakine(+) CTL) to target this therapeutically resistant glioma subpopulation. EXPERIMENTAL DESIGN A panel of low-passage GSC tumor sphere (TS) and serum-differentiated glioma lines were expanded from patient glioblastoma specimens. These glioblastoma lines were evaluated for expression of IL13Rα2 and for susceptibility to IL13-zetakine(+) CTL-mediated killing in vitro and in vivo. RESULTS We observed that although glioma IL13Rα2 expression varies between patients, for IL13Rα2(pos) cases this antigen was detected on both GSCs and more differentiated tumor cell populations. IL13-zetakine(+) CTL were capable of efficient recognition and killing of both IL13Rα2(pos) GSCs and IL13Rα2(pos) differentiated cells in vitro, as well as eliminating glioma-initiating activity in an orthotopic mouse tumor model. Furthermore, intracranial administration of IL13-zetakine(+) CTL displayed robust antitumor activity against established IL13Rα2(pos) GSC TS-initiated orthotopic tumors in mice. CONCLUSIONS Within IL13Rα2 expressing high-grade gliomas, this receptor is expressed by GSCs and differentiated tumor populations, rendering both targetable by IL13-zetakine(+) CTLs. Thus, our results support the potential usefullness of IL13Rα2-directed immunotherapeutic approaches for eradicating therapeutically resistant GSC populations.
Collapse
Affiliation(s)
- Christine E Brown
- Department of Cancer Immunotherapy & Tumor Immunology and Hematology & Hematopoietic Cell Transplantation, Pathology, and Neurosciences, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wiwanitkit V. T-cell epitope finding on EPHA2 for further glioma vaccine development: An immunomics study. J Pediatr Neurosci 2011; 6:2-3. [PMID: 21977079 PMCID: PMC3173908 DOI: 10.4103/1817-1745.84398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Glioma is a deadly neurological tumor. For modern management of glioma, glioma vaccinotherapy is the new concept. Materials and Methods: Based on present biomedical technique, the identification of T-cell epitopes via MHC mapping can help clarify the inter-relationship of tumor and immune system. This process can be performed using advanced immunoinformatics technique. Results: Here, the author performs an immunoinformatics analysis to find alternative epitopes for glioma-related antigen, EPHA2. Conclusion: After complete manipulation on EPHA2 molecules, the five best epitopes were derived.
Collapse
|
22
|
Arbab AS. Cytotoxic T-cells as imaging probes for detecting glioma. World J Clin Oncol 2010; 1:3-11. [PMID: 21603304 PMCID: PMC3095453 DOI: 10.5306/wjco.v1.i1.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 09/04/2010] [Accepted: 09/11/2010] [Indexed: 02/06/2023] Open
Abstract
Tumor vaccination using tumor-associated antigen-primed dendritic cells (DCs) is in clinical trials. Investigators are using patients’ own immune systems to activate T-cells against recurrent or metastatic tumors. Following vaccination of DCs or attenuated tumor cells, clinical as well as radiological improvements have been noted due to migration and accumulation of cytotoxic T-cells (CTLs). CTLs mediated tumor cell killing resulted in extended survival in clinical trails and in preclinical models. Besides administration of primed DCs or attenuated or killed tumors cells to initiate the generation of CTLs, investigators have started making genetically altered T-cells (CTLs) to target specific tumors and showed in vivo migration and accumulation in the implanted or recurrent tumors using different imaging modalities. Our groups have also showed the utilization of both in vivo and in vitro techniques to make CTLs against glioma and used them as imaging probes to determine the sites of tumors. In this short review, the current status of vaccination therapy against glioma and utilization of CTLs as in vivo imaging probes to determine the sites of tumors and differentiate recurrent glioma from radiation necrosis will be discussed.
Collapse
Affiliation(s)
- Ali Syed Arbab
- Ali Syed Arbab, Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, MI 48202, United States
| |
Collapse
|