1
|
Shen Z, Chen M, Li Q, Ma J. Decreased glucagon in diabetic peripheral neuropathy patients with long duration type 2 diabetes. Postgrad Med J 2024; 100:686-691. [PMID: 38646729 DOI: 10.1093/postmj/qgae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/06/2023] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVE The aim of this study was to investigate the association of fasting C-peptide and glucagon with diabetic peripheral neuropathy (DPN) in patients with type 2 diabetes (T2DM). METHODS A comprehensive evaluation was conducted on 797 patients with T2DM to assess the various risk factors affecting DPN. The subjects were categorized into short duration and long duration group according to the duration of diabetes with a threshold of 10 years. Logistic regression analysis was employed to examine the association between DPN and islet function, as well as other parameters. Receiver operating characteristic curve analysis was performed to evaluate the predictive capability of glucagon. RESULTS The fasting C-peptide levels were significantly lower in the DPN patients with short duration of diabetes, but lost significance in the long duration group. Conversely, a decreased level of glucagon was only observed in DPN patients with long duration of diabetes. For the group with long duration of diabetes, glucagon was the sole risk factor associated with DPN. The receiver operating characteristic curve analysis revealed that glucagon in the long duration group exhibited a moderate area under the curve of 0.706. CONCLUSIONS The serum glucagon levels in T2DM patients with DPN exhibited bidirectional changes based on the duration of diabetes. Decreased glucagon was associated with DPN in T2DM patients with long duration of diabetes.
Collapse
Affiliation(s)
- Ziyang Shen
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Mengxing Chen
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Qian Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| |
Collapse
|
2
|
Gao Y, Liu N, Chen J, Zheng P, Niu J, Tang S, Peng X, Wu J, Yu J, Ma L. Neuropharmacological insight into preventive intervention in posttraumatic epilepsy based on regulating glutamate homeostasis. CNS Neurosci Ther 2023; 29:2430-2444. [PMID: 37309302 PMCID: PMC10401093 DOI: 10.1111/cns.14294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Posttraumatic epilepsy (PTE) is one of the most critical complications of traumatic brain injury (TBI), significantly increasing TBI patients' neuropsychiatric symptoms and mortality. The abnormal accumulation of glutamate caused by TBI and its secondary excitotoxicity are essential reasons for neural network reorganization and functional neural plasticity changes, contributing to the occurrence and development of PTE. Restoring glutamate balance in the early stage of TBI is expected to play a neuroprotective role and reduce the risk of PTE. AIMS To provide a neuropharmacological insight for drug development to prevent PTE based on regulating glutamate homeostasis. METHODS We discussed how TBI affects glutamate homeostasis and its relationship with PTE. Furthermore, we also summarized the research progress of molecular pathways for regulating glutamate homeostasis after TBI and pharmacological studies aim to prevent PTE by restoring glutamate balance. RESULTS TBI can lead to the accumulation of glutamate in the brain, which increases the risk of PTE. Targeting the molecular pathways affecting glutamate homeostasis helps restore normal glutamate levels and is neuroprotective. DISCUSSION Taking glutamate homeostasis regulation as a means for new drug development can avoid the side effects caused by direct inhibition of glutamate receptors, expecting to alleviate the diseases related to abnormal glutamate levels in the brain, such as PTE, Parkinson's disease, depression, and cognitive impairment. CONCLUSION It is a promising strategy to regulate glutamate homeostasis through pharmacological methods after TBI, thereby decreasing nerve injury and preventing PTE.
Collapse
Affiliation(s)
- Yuan Gao
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
- Hunan Province Key Laboratory for Antibody‐Based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Ning Liu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Juan Chen
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Ping Zheng
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jianguo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous RegionNingxia Medical UniversityYinchuanChina
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody‐Based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Xiaodong Peng
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jing Wu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jianqiang Yu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Lin Ma
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous RegionNingxia Medical UniversityYinchuanChina
| |
Collapse
|
3
|
Jin J, Wang F, Tian J, Zhao X, Dong J, Wang N, Liu Z, Zhao H, Li W, Mang G, Hu S. Neutrophil extracellular traps contribute to coagulopathy after traumatic brain injury. JCI Insight 2023; 8:141110. [PMID: 36802340 PMCID: PMC10070118 DOI: 10.1172/jci.insight.141110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Coagulopathy contributes to the majority of deaths and disabilities associated with traumatic brain injury (TBI). Whether neutrophil extracellular traps (NETs) contribute to an abnormal coagulation state in the acute phase of TBI remains unknown. Our objectives were to demonstrate the definitive role of NETs in coagulopathy in TBI. We detected NET markers in 128 TBI patients and 34 healthy individuals. Neutrophil-platelet aggregates were detected in blood samples from TBI patients and healthy individuals using flow cytometry and staining for CD41 and CD66b. Endothelial cells were incubated with isolated NETs and we detected the expression of vascular endothelial cadherin, syndecan-1, thrombomodulin, von Willebrand factor, phosphatidylserine, and tissue factor. In addition, we established a TBI mouse model to determine the potential role of NETs in TBI-associated coagulopathy. NET generation was mediated by high mobility group box 1 (HMGB1) from activated platelets and contributed to procoagulant activity in TBI. Furthermore, coculture experiments indicated that NETs damaged the endothelial barrier and caused these cells to assume a procoagulant phenotype. Moreover, the administration of DNase I before or after brain trauma markedly reduced coagulopathy and improved the survival and clinical outcome of mice with TBI.
Collapse
Affiliation(s)
- Jiaqi Jin
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fang Wang
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Tian
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyi Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Dong
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Wang
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihui Liu
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongtao Zhao
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenqiang Li
- Department of Vascular Surgery, Jinshan Hospital of Fudan University, Shanghai, China
| | - Ge Mang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shaoshan Hu
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Imron A, Hernowo B, Hilmanto D, Wiriadisastra K, Hermanto Y. The Effects of Glucagon and Insulin Combination toward on Neurodegeneration Following Traumatic Brain Injury in Rat Model. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Traumatic brain injury (TBI) is a major cause of death and disability in the productive age. Glutamate excitotoxicity and hyperglycemia those occur following TBI are among the factors those influence secondary brain injury.
AIM: This study aimed to determine the effect of glucagon and insulin combination on neuronal necrosis following TBI.
METHODS: A total of 28 male wistar rats were randomized into four experimental groups: placebo, insulin, glucagon, and combination of glucagon and insulin. Each animal underwent controlled cortical impact model of TBI. The blood glucose and glutamate levels were measured before and 4 h following TBI. The brain tissues were collected to evaluate neuronal necrosis.
RESULTS: Glucagon or glucagon and insulin combination were able to prevent the increased of blood glutamate levels following TBI (p < 0.05). Glucagon administration was associated high blood glucose level (198.10 ± 32.58 mg/dL); a combination with insulin was able to minimize the increased of blood glucose level (166.53 ± 18.48 mg/dL). Combination of glucagon and insulin had a lower number of neuronal necrosis compare to the other groups (p < 0.005).
CONCLUSION: The combination of glucagon and insulin potentially exhibit neuroprotection effect on rats following TBI as being demonstrated by lower number of neuronal necrosis. This finding further indicates the role of glucose homeostasis in neuroprotection.
Collapse
|
5
|
Mohiuddin MS, Himeno T, Yamada Y, Morishita Y, Kondo M, Tsunekawa S, Kato Y, Nakamura J, Kamiya H. Glucagon Prevents Cytotoxicity Induced by Methylglyoxal in a Rat Neuronal Cell Line Model. Biomolecules 2021; 11:biom11020287. [PMID: 33672050 PMCID: PMC7919475 DOI: 10.3390/biom11020287] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Although diabetic polyneuropathy (DPN) is a frequent diabetic complication, no effective therapeutic approach has been established. Glucagon is a crucial hormone for glucose homeostasis but has pleiotropic effects, including neuroprotective effects in the central nervous system. However, the importance of glucagon in the peripheral nervous system (PNS) has not been clarified. Here, we hypothesized that glucagon might have a neuroprotective function in the PNS. The immortalized rat dorsal root ganglion (DRG) neuronal cell line 50B11 was treated with methylglyoxal (MG) to mimic an in vitro DPN model. The cells were cultured with or without glucagon or MG. Neurotoxicity, survival, apoptosis, neurite projection, cyclic adenosine monophosphate (cAMP), and protein kinase A (PKA) were examined. Glucagon had no cytotoxicity and rescued the cells from neurotoxicity. Cell survival was increased by glucagon. The ratio of apoptotic cells, which was increased by MG, was reduced by glucagon. Neurite outgrowth was accelerated in glucagon-treated cells. Cyclic AMP and PKA accumulated in the cells after glucagon stimulation. In conclusion, glucagon protected the DRG neuronal cells from MG-induced cellular stress. The cAMP/PKA pathway may have significant roles in those protective effects of glucagon. Glucagon may be a potential target for the treatment of DPN.
Collapse
|
6
|
A method for the generation of human stem cell-derived alpha cells. Nat Commun 2020; 11:2241. [PMID: 32382023 PMCID: PMC7205884 DOI: 10.1038/s41467-020-16049-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/10/2020] [Indexed: 01/14/2023] Open
Abstract
The generation of pancreatic cell types from renewable cell sources holds promise for cell replacement therapies for diabetes. Although most effort has focused on generating pancreatic beta cells, considerable evidence indicates that glucagon secreting alpha cells are critically involved in disease progression and proper glucose control. Here we report on the generation of stem cell-derived human pancreatic alpha (SC-alpha) cells from pluripotent stem cells via a transient pre-alpha cell intermediate. These pre-alpha cells exhibit a transcriptional profile similar to mature alpha cells and although they produce proinsulin protein, they do not secrete significant amounts of processed insulin. Compound screening identified a protein kinase c activator that promotes maturation of pre-alpha cells into SC-alpha cells. The resulting SC-alpha cells do not express insulin, share an ultrastructure similar to cadaveric alpha cells, express and secrete glucagon in response to glucose and some glucagon secretagogues, and elevate blood glucose upon transplantation in mice.
Collapse
|
7
|
Higazi M, Abdeen S, Abu-Fanne R, Heyman SN, Masarwy A, Bdeir K, Maraga E, Cines DB, Higazi AAR. Opposing effects of HNP1 (α-defensin-1) on plasma cholesterol and atherogenesis. PLoS One 2020; 15:e0231582. [PMID: 32302327 PMCID: PMC7164655 DOI: 10.1371/journal.pone.0231582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis, the predominant cause of death in well-resourced countries, may develop in the presence of plasma lipid levels within the normal range. Inflammation may contribute to lesion development in these individuals, but the underlying mechanisms are not well understood. Transgenic mice expressing α-def-1 released from activated neutrophils develop larger lipid and macrophage-rich lesions in the proximal aortae notwithstanding hypocholesterolemia caused by accelerated clearance of α-def-1/low-density lipoprotein (LDL) complexes from the plasma. The phenotype does not develop when the release of α-def-1 is prevented with colchicine. However, ApoE-/- mice crossed with α-def-1 mice or given exogenous α-def-1 develop smaller aortic lesions associated with reduced plasma cholesterol, suggesting a protective effect of accelerated LDL clearance. Experiments were performed to address this seeming paradox and to determine if α-def-1 might provide a means to lower cholesterol and thereby attenuate atherogenesis. We confirmed that exposing ApoE-/- mice to α-def-1 lowers total plasma cholesterol and decreases lesion size. However, lesion size was larger than in mice with total plasma cholesterol lowered to the same extent by inhibiting its adsorption or by ingesting a low-fat diet. Furthermore, α-def-1 levels correlated independently with lesion size in ApoE-/- mice. These studies show that α-def-1 has competing effects on atherogenesis. Although α-def-1 accelerates LDL clearance from plasma, it also stimulates deposition and retention of LDL in the vasculature, which may contribute to development of atherosclerosis in individuals with normal or even low plasma levels of cholesterol. Inhibiting α-def-1 may attenuate the impact of chronic inflammation on atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Mohamed Higazi
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | - Suhair Abdeen
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | - Rami Abu-Fanne
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | - Samuel N. Heyman
- Department of Medicine, Hadassah University Hospital, Mt. Scopus, Jerusalem, Israel
| | - Aseel Masarwy
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | - Khalil Bdeir
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania-Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Emad Maraga
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | - Douglas B. Cines
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania-Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Abd Al-Roof Higazi
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania-Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
8
|
Li Y, Glotfelty EJ, Namdar I, Tweedie D, Olson L, Hoffer BJ, DiMarchi RD, Pick CG, Greig NH. Neurotrophic and neuroprotective effects of a monomeric GLP-1/GIP/Gcg receptor triagonist in cellular and rodent models of mild traumatic brain injury. Exp Neurol 2019; 324:113113. [PMID: 31730763 DOI: 10.1016/j.expneurol.2019.113113] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 02/08/2023]
Abstract
A synthetic monomeric peptide triple receptor agonist, termed "Triagonist" that incorporates glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon (Gcg) actions, was previously developed to improve upon metabolic and glucose regulatory benefits of single and dual receptor agonists in rodent models of diet-induced obesity and type 2 diabetes. In the current study, the neurotrophic and neuroprotective actions of this Triagonist were probed in cellular and mouse models of mild traumatic brain injury (mTBI), a prevalent cause of neurodegeneration in both the young and elderly. Triagonist dose- and time-dependently elevated cyclic AMP levels in cultured human SH-SY5Y neuronal cells, and induced neurotrophic and neuroprotective actions, mitigating oxidative stress and glutamate excitotoxicity. These actions were inhibited only by the co-administration of antagonists for all three receptor types, indicating the balanced co-involvement of GLP-1, GIP and Gcg receptors. To evaluate physiological relevance, a clinically translatable dose of Triagonist was administered subcutaneously, once daily for 7 days, to mice following a 30 g weight drop close head injury. Triagonist fully mitigated mTBI-induced visual and spatial memory deficits, evaluated at 7 and 30 days post injury. These results establish Triagonist as a novel neurotrophic/protective agent worthy of further evaluation as a TBI treatment strategy.
Collapse
Affiliation(s)
- Yazhou Li
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Elliot J Glotfelty
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Inbar Namdar
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - Chagi G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
9
|
Glotfelty EJ, Delgado TE, Tovar-y-Romo LB, Luo Y, Hoffer BJ, Olson L, Karlsson TE, Mattson MP, Harvey BK, Tweedie D, Li Y, Greig NH. Incretin Mimetics as Rational Candidates for the Treatment of Traumatic Brain Injury. ACS Pharmacol Transl Sci 2019; 2:66-91. [PMID: 31396586 PMCID: PMC6687335 DOI: 10.1021/acsptsci.9b00003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is becoming an increasing public health issue. With an annually estimated 1.7 million TBIs in the United States (U.S) and nearly 70 million worldwide, the injury, isolated or compounded with others, is a major cause of short- and long-term disability and mortality. This, along with no specific treatment, has made exploration of TBI therapies a priority of the health system. Age and sex differences create a spectrum of vulnerability to TBI, with highest prevalence among younger and older populations. Increased public interest in the long-term effects and prevention of TBI have recently reached peaks, with media attention bringing heightened awareness to sport and war related head injuries. Along with short-term issues, TBI can increase the likelihood for development of long-term neurodegenerative disorders. A growing body of literature supports the use of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and glucagon (Gcg) receptor (R) agonists, along with unimolecular combinations of these therapies, for their potent neurotrophic/neuroprotective activities across a variety of cellular and animal models of chronic neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and acute cerebrovascular disorders (stroke). Mild or moderate TBI shares many of the hallmarks of these conditions; recent work provides evidence that use of these compounds is an effective strategy for its treatment. Safety and efficacy of many incretin-based therapies (GLP-1 and GIP) have been demonstrated in humans for the treatment of type 2 diabetes mellitus (T2DM), making these compounds ideal for rapid evaluation in clinical trials of mild and moderate TBI.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas E. Delgado
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Luis B. Tovar-y-Romo
- Division
of Neuroscience, Institute of Cellular Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yu Luo
- Department
of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Barry J. Hoffer
- Department
of Neurosurgery, Case Western Reserve University
School of Medicine, Cleveland, Ohio 44106, United States
| | - Lars Olson
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Mark P. Mattson
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Brandon K. Harvey
- Molecular
Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience
Department, National Institute on Drug Abuse,
National Institutes of Health, Baltimore, Maryland 21224, United States
| | - David Tweedie
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Yazhou Li
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Nigel H. Greig
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
10
|
Abu-Fanne R, Stepanova V, Litvinov RI, Abdeen S, Bdeir K, Higazi M, Maraga E, Nagaswami C, Mukhitov AR, Weisel JW, Cines DB, Higazi AAR. Neutrophil α-defensins promote thrombosis in vivo by altering fibrin formation, structure, and stability. Blood 2019; 133:481-493. [PMID: 30442678 PMCID: PMC6356988 DOI: 10.1182/blood-2018-07-861237] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammation and thrombosis are integrated, mutually reinforcing processes, but the interregulatory mechanisms are incompletely defined. Here, we examined the contribution of α-defensins (α-defs), antimicrobial proteins released from activated human neutrophils, on clot formation in vitro and in vivo. Activation of the intrinsic pathway of coagulation stimulates release of α-defs from neutrophils. α-Defs accelerate fibrin polymerization, increase fiber density and branching, incorporate into nascent fibrin clots, and impede fibrinolysis in vitro. Transgenic mice (Def++) expressing human α-Def-1 developed larger, occlusive, neutrophil-rich clots after partial inferior vena cava (IVC) ligation than those that formed in wild-type (WT) mice. IVC thrombi extracted from Def++ mice were composed of a fibrin meshwork that was denser and contained a higher proportion of tightly packed compressed polyhedral erythrocytes than those that developed in WT mice. Def++ mice were resistant to thromboprophylaxis with heparin. Inhibiting activation of the intrinsic pathway of coagulation, bone marrow transplantation from WT mice or provision of colchicine to Def++ mice to inhibit neutrophil degranulation decreased plasma levels of α-defs, caused a phenotypic reversion characterized by smaller thrombi comparable to those formed in WT mice, and restored responsiveness to heparin. These data identify α-defs as a potentially important and tractable link between innate immunity and thrombosis.
Collapse
Affiliation(s)
- Rami Abu-Fanne
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | | | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Suhair Abdeen
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | - Khalil Bdeir
- Department of Pathology and Laboratory Medicine and
| | - Mohamed Higazi
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | - Emad Maraga
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | - Chandrasekaran Nagaswami
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| | - Alexander R Mukhitov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| | | | - Abd Al-Roof Higazi
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
- Department of Pathology and Laboratory Medicine and
| |
Collapse
|
11
|
Lazard D, Vardi P, Bloch K. Anti-diabetic and neuroprotective effects of pancreatic islet transplantation into the central nervous system. Diabetes Metab Res Rev 2016; 32:11-20. [PMID: 25708430 DOI: 10.1002/dmrr.2644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/19/2015] [Indexed: 12/19/2022]
Abstract
During the last decades, the central nervous system (CNS) was intensively tested as a site for islet transplantation in different animal models of diabetes. Immunoprivilege properties of intracranial and intrathecal sites were found to delay and reduce rejection of transplanted allo-islets and xeno-islets, especially in the form of dispersed single cells. Insulin released from islets grafted in CNS was shown to cross the blood-brain barrier and to act as a regulator of peripheral glucose metabolism. In diabetic animals, sufficient nutrition and oxygen supply to islets grafted in the CNS provide adequate insulin response to increase glucose level resulting in rapid normoglycemia. In addition to insulin, pancreatic islets produce and secrete several other hormones, as well as neurotrophic and angiogenic factors with potential neuroprotective properties. Recent experimental studies and clinical trials provide a strong support for delivery of islet-derived macromolecules to CNS as a promising strategy to treat various brain disorders. This review article focuses mainly on analysis of current status of intracranial and intrathecal islet transplantations for treatment of experimental diabetes and discusses the possible neuroprotective properties of grafted islets into CNS as a novel therapeutic approach to brain disorders with cognitive dysfunctions characterized by impaired brain insulin signalling. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier
- Brain
- Central Nervous System
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/surgery
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/surgery
- Diabetic Neuropathies/prevention & control
- Disease Models, Animal
- Humans
- Hyperglycemia/prevention & control
- Hypoglycemia/prevention & control
- Insulin/metabolism
- Insulin Resistance
- Insulin Secretion
- Islets of Langerhans Transplantation/adverse effects
- Spinal Cord
- Subarachnoid Space
- Transplantation, Heterologous/adverse effects
- Transplantation, Heterotopic/adverse effects
Collapse
Affiliation(s)
- Daniel Lazard
- Laboratory of Diabetes and Obesity Research, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Pnina Vardi
- Laboratory of Diabetes and Obesity Research, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Konstantin Bloch
- Laboratory of Diabetes and Obesity Research, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva, Israel
| |
Collapse
|
12
|
Glucose administration after traumatic brain injury exerts some benefits and no adverse effects on behavioral and histological outcomes. Brain Res 2015; 1614:94-104. [PMID: 25911580 DOI: 10.1016/j.brainres.2015.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 11/22/2022]
Abstract
The impact of hyperglycemia after traumatic brain injury (TBI), and even the administration of glucose-containing solutions to head injured patients, remains controversial. In the current study adult male Sprague-Dawley rats were tested on behavioral tasks and then underwent surgery to induce sham injury or unilateral controlled cortical impact (CCI) injury followed by injections (i.p.) with either a 50% glucose solution (Glc; 2g/kg) or an equivalent volume of either 0.9% or 8% saline (Sal) at 0, 1, 3 and 6h post-injury. The type of saline treatment did not significantly affect any outcome measures, so these data were combined. Rats with CCI had significant deficits in beam-walking traversal time and rating scores (p's < 0.001 versus sham) that recovered over test sessions from 1 to 13 days post-injury (p's < 0.001), but these beam-walking deficits were not affected by Glc versus Sal treatments. Persistent post-CCI deficits in forelimb contraflexion scores and forelimb tactile placing ability were also not differentially affected by Glc or Sal treatments. However, deficits in latency to retract the right hind limb after limb extension were significantly attenuated in the CCI-Glc group (p < 0.05 versus CCI-Sal). Both CCI groups were significantly impaired in a plus maze test of spatial working memory on days 4, 9 and 14 post-surgery (p < 0.001 versus sham), and there was no effect of Glc versus Sal on this cognitive outcome measure. At 15 days post-surgery the loss of cortical tissue volume (p < 0.001 versus sham) was significantly less in the CCI-Glc group (30.0%; p < 0.05) compared to the CCI-Sal group (35.7%). Counts of surviving hippocampal hilar neurons revealed a significant (~40%) loss ipsilateral to CCI (p < 0.001 versus sham), but neuronal loss in the hippocampus was not different in the CCI-Sal and CCI-Glc groups. Taken together, these results indicate that an early elevation of blood glucose may improve some neurological outcomes and, importantly, the induction of hyperglycemia after isolated TBI did not adversely affect any sensorimotor, cognitive or histological outcomes.
Collapse
|
13
|
Endogenous plasminogen activators mediate progressive intracerebral hemorrhage after traumatic brain injury in mice. Blood 2015; 125:2558-67. [PMID: 25673638 DOI: 10.1182/blood-2014-08-588442] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/15/2015] [Indexed: 12/11/2022] Open
Abstract
Persistent intracerebral hemorrhage (ICH) is a major cause of death and disability after traumatic brain injury (TBI) for which no medical treatment is available. Delayed bleeding is often ascribed to consumptive coagulopathy initiated by exposed brain tissue factor. We examined an alternative hypothesis, namely, that marked release of tissue-type plasminogen activator (tPA) followed by delayed synthesis and release of urokinase plasminogen activator (uPA) from injured brain leads to posttraumatic bleeding by causing premature clot lysis. Using a murine model of severe TBI, we found that ICH is reduced in tPA(-/-) and uPA(-/-) mice but increased in PAI-1(-/-) mice compared with wild-type (WT) mice. tPA(-/-), but not uPA(-/-), mice developed a systemic coagulopathy post-TBI. Tranexamic acid inhibited ICH expansion in uPA(-/-)mice but not in tPA(-/-) mice. Catalytically inactive tPA-S(481)A inhibited plasminogen activation by tPA and uPA, attenuated ICH, lowered plasma d-dimers, lessened thrombocytopenia, and improved neurologic outcome in WT, tPA(-/-), and uPA(-/-) mice. ICH expansion was also inhibited by tPA-S(481)A in WT mice anticoagulated with warfarin. These data demonstrate that protracted endogenous fibrinolysis induced by TBI is primarily responsible for persistent ICH and post-TBI coagulopathy in this model and offer a novel approach to interrupt bleeding.
Collapse
|
14
|
Wang R, Ross CA, Cai H, Cong WN, Daimon CM, Carlson OD, Egan JM, Siddiqui S, Maudsley S, Martin B. Metabolic and hormonal signatures in pre-manifest and manifest Huntington's disease patients. Front Physiol 2014; 5:231. [PMID: 25002850 PMCID: PMC4066441 DOI: 10.3389/fphys.2014.00231] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/02/2014] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder typified by involuntary body movements, and psychiatric and cognitive abnormalities. Many HD patients also exhibit metabolic changes including progressive weight loss and appetite dysfunction. Here we have investigated metabolic function in pre-manifest and manifest HD subjects to establish an HD subject metabolic hormonal plasma signature. Individuals at risk for HD who have had predictive genetic testing showing the cytosine-adenine-guanine (CAG) expansion causative of HD, but who do not yet present signs and symptoms sufficient for the diagnosis of manifest HD are said to be “pre-manifest.” Pre-manifest and manifest HD patients, as well as both familial and non-familial controls, were evaluated for multiple peripheral metabolism signals including circulating levels of hormones, growth factors, lipids, and cytokines. Both pre-manifest and manifest HD subjects exhibited significantly reduced levels of circulating growth factors, including growth hormone and prolactin. HD-related changes in the levels of metabolic hormones such as ghrelin, glucagon, and amylin were also observed. Total cholesterol, HDL-C, and LDL-C were significantly decreased in HD subjects. C-reactive protein was significantly elevated in pre-manifest HD subjects. The observation of metabolic alterations, even in subjects considered to be in the pre-manifest stage of HD, suggests that in addition, and prior, to overt neuronal damage, HD affects metabolic hormone secretion and energy regulation, which may shed light on pathogenesis, and provide opportunities for biomarker development.
Collapse
Affiliation(s)
- Rui Wang
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Departments of Neuroscience and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Huan Cai
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Wei-Na Cong
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Caitlin M Daimon
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Olga D Carlson
- Diabetes Section, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Josephine M Egan
- Diabetes Section, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Sana Siddiqui
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Stuart Maudsley
- VIB Department of Molecular Genetics, University of Antwerp Antwerpen, Belgium
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| |
Collapse
|
15
|
Investigation of PACAP Fragments and Related Peptides in Chronic Retinal Hypoperfusion. J Ophthalmol 2014; 2014:563812. [PMID: 24900914 PMCID: PMC4036611 DOI: 10.1155/2014/563812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/24/2014] [Indexed: 12/05/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) has neuroprotective effects in different neuronal and retinal injuries. Retinal ischemia can be effectively modelled by permanent bilateral common carotid artery occlusion (BCCAO), which causes chronic hypoperfusion-induced degeneration in the entire rat retina. The retinoprotective effect of PACAP 1-38 and VIP is well-established in ischemic retinopathy. However, little is known about the effects of related peptides and PACAP fragments in ischemic retinopathy. The aim of the present study was to investigate the potential retinoprotective effects of different PACAP fragments (PACAP 4-13, 4-22, 6-10, 6-15, 11-15, and 20-31) and related peptides (secretin, glucagon) in BCCAO-induced ischemic retinopathy. Wistar rats (3-4 months old) were used in the experiment. After performing BCCAO, the right eyes of the animals were treated with PACAP fragments or related peptides intravitreal (100 pM), while the left eyes were injected with saline serving as control eyes. Sham-operated (without BCCAO) rats received the same treatment. Routine histology was performed 2 weeks after the surgery; cells were counted and the thickness of retinal layers was compared. Our results revealed significant neuroprotection by PACAP 1-38 but did not reveal retinoprotective effect of the PACAP fragments or related peptides. These results suggest that PACAP 1-38 has the greatest efficacy in ischemic retinopathy.
Collapse
|
16
|
Boyko M, Gruenbaum SE, Gruenbaum BF, Shapira Y, Zlotnik A. Brain to blood glutamate scavenging as a novel therapeutic modality: a review. J Neural Transm (Vienna) 2014; 121:971-9. [PMID: 24623040 DOI: 10.1007/s00702-014-1181-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/11/2014] [Indexed: 12/27/2022]
Abstract
It is well known that abnormally elevated glutamate levels in the brain are associated with secondary brain injury following acute and chronic brain insults. As such, a tight regulation of brain glutamate concentrations is of utmost importance in preventing the neurodegenerative effects of excess glutamate. There has been much effort in recent years to better understand the mechanisms by which glutamate is reduced in the brain to non-toxic concentrations, and in how to safely accelerate these mechanisms. Blood glutamate scavengers such as oxaloacetate, pyruvate, glutamate-oxaloacetate transaminase, and glutamate-pyruvate transaminase have been shown to reduce blood glutamate concentrations, thereby increasing the driving force of the brain to blood glutamate efflux and subsequently reducing brain glutamate levels. In the past decade, blood glutamate scavengers have gained increasing international interest, and its uses have been applied to a wide range of experimental contexts in animal models of traumatic brain injury, ischemic stroke, subarachnoid hemorrhage, epilepsy, migraine, and malignant gliomas. Although glutamate scavengers have not yet been used in humans, there is increasing evidence that their use may provide effective and exciting new therapeutic modalities. Here, we review the laboratory evidence for the use of blood glutamate scavengers. Other experimental neuroprotective treatments thought to scavenge blood glutamate, including estrogen and progesterone, beta-adrenergic activation, hypothermia, insulin and glucagon, and hemodialysis and peritoneal dialysis are also discussed. The evidence reviewed here will hopefully pave the way for future clinical trials.
Collapse
Affiliation(s)
- Matthew Boyko
- Department of Anesthesiology and Critical Care, Faculty of Health Sciences, Soroka Medical Center Ben Gurion University of the Negev, Beer Sheba, Israel
| | | | | | | | | |
Collapse
|
17
|
Moro N, Ghavim S, Harris NG, Hovda DA, Sutton RL. Glucose administration after traumatic brain injury improves cerebral metabolism and reduces secondary neuronal injury. Brain Res 2013; 1535:124-36. [PMID: 23994447 DOI: 10.1016/j.brainres.2013.08.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 01/08/2023]
Abstract
Clinical studies have indicated an association between acute hyperglycemia and poor outcomes in patients with traumatic brain injury (TBI), although optimal blood glucose levels needed to maximize outcomes for these patients' remain under investigation. Previous results from experimental animal models suggest that post-TBI hyperglycemia may be harmful, neutral, or beneficial. The current studies determined the effects of single or multiple episodes of acute hyperglycemia on cerebral glucose metabolism and neuronal injury in a rodent model of unilateral controlled cortical impact (CCI) injury. In Experiment 1, a single episode of hyperglycemia (50% glucose at 2 g/kg, i.p.) initiated immediately after CCI was found to significantly attenuate a TBI-induced depression of glucose metabolism in cerebral cortex (4 of 6 regions) and subcortical regions (2 of 7) as well as to significantly reduce the number of dead/dying neurons in cortex and hippocampus at 24 h post-CCI. Experiment 2 examined effects of more prolonged and intermittent hyperglycemia induced by glucose administrations (2 g/kg, i.p.) at 0, 1, 3 and 6h post-CCI. The latter study also found significantly improved cerebral metabolism (in 3 of 6 cortical and 3 of 7 subcortical regions) and significant neuroprotection in cortex and hippocampus 1 day after CCI and glucose administration. These results indicate that acute episodes of post-TBI hyperglycemia can be beneficial and are consistent with other recent studies showing benefits of providing exogenous energy substrates during periods of increased cerebral metabolic demand.
Collapse
Affiliation(s)
- Nobuhiro Moro
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7039, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, Box 957039, Los Angeles, CA 90095-7039, USA.
| | | | | | | | | |
Collapse
|
18
|
Armstead WM, Bohman LE, Riley J, Yarovoi S, Higazi AAR, Cines DB. tPA-S(481)A prevents impairment of cerebrovascular autoregulation by endogenous tPA after traumatic brain injury by upregulating p38 MAPK and inhibiting ET-1. J Neurotrauma 2013; 30:1898-907. [PMID: 23731391 DOI: 10.1089/neu.2013.2962] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with loss of cerebrovascular autoregulation, which leads to cerebral hypoperfusion. Mitogen activated protein kinase (MAPK) isoforms ERK, p38, and JNK and endothelin-1 (ET-1) are mediators of impaired cerebral hemodynamics after TBI. Excessive tissue plasminogen activator (tPA) released after TBI may cause loss of cerebrovascular autoregulation either by over-activating N-methyl-D-aspartate receptors (NMDA-Rs) or by predisposing to intracranial hemorrhage. Our recent work shows that a catalytically inactive tPA variant (tPA-S(481)A) that competes with endogenous wild type (wt) tPA for binding to NMDA-R through its receptor docking site but that cannot activate it, prevents activation of ERK by wt tPA and impairment of autoregulation when administered 30 min after fluid percussion injury (FPI). We investigated the ability of variants that lack proteolytic activity but bind/block activation of NMDA-Rs by wt tPA (tPA-S(481)A), do not bind/block activation of NMDA-Rs but are proteolytic (tPA-A(296-299)), or neither bind/block NMDA-Rs nor are proteolytic (tPA-A(296-299)S(481)A) to prevent impairment of autoregulation after TBI and the role of MAPK and ET-1 in such effects. Results show that tPA-S(481)A given 3 h post-TBI, but not tPA-A(296-299) or tPA-A(296-299)S(481)A prevents impaired autoregulation by upregulating p38 and inhibiting ET-1, suggesting that tPA-S(481)A has a realistic therapeutic window and focuses intervention on NMDA-Rs to improve outcome.
Collapse
Affiliation(s)
- William M Armstead
- 1 Department of Anesthesiology and Critical Care, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
19
|
Yokobori S, Mazzeo AT, Hosein K, Gajavelli S, Dietrich WD, Bullock MR. Preconditioning for traumatic brain injury. Transl Stroke Res 2012; 4:25-39. [PMID: 24323189 DOI: 10.1007/s12975-012-0226-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/23/2012] [Accepted: 10/29/2012] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury have been shown to induce consequent protection against post-TBI neuronal death. This concept termed "preconditioning" is achieved by exposure to different pre-injury stressors to achieve the induction of "tolerance" to the effect of the TBI. However, the precise mechanisms underlying this "tolerance" phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review, we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditioning studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible future clinical situations, in which pre-TBI preconditioning could be considered.
Collapse
Affiliation(s)
- Shoji Yokobori
- Department of Neurosurgery, Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA,
| | | | | | | | | | | |
Collapse
|
20
|
Leibowitz A, Boyko M, Shapira Y, Zlotnik A. Blood glutamate scavenging: insight into neuroprotection. Int J Mol Sci 2012; 13:10041-10066. [PMID: 22949847 PMCID: PMC3431845 DOI: 10.3390/ijms130810041] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/18/2012] [Accepted: 07/30/2012] [Indexed: 11/16/2022] Open
Abstract
Brain insults are characterized by a multitude of complex processes, of which glutamate release plays a major role. Deleterious excess of glutamate in the brain's extracellular fluids stimulates glutamate receptors, which in turn lead to cell swelling, apoptosis, and neuronal death. These exacerbate neurological outcome. Approaches aimed at antagonizing the astrocytic and glial glutamate receptors have failed to demonstrate clinical benefit. Alternatively, eliminating excess glutamate from brain interstitial fluids by making use of the naturally occurring brain-to-blood glutamate efflux has been shown to be effective in various animal studies. This is facilitated by gradient driven transport across brain capillary endothelial glutamate transporters. Blood glutamate scavengers enhance this naturally occurring mechanism by reducing the blood glutamate concentration, thus increasing the rate at which excess glutamate is cleared. Blood glutamate scavenging is achieved by several mechanisms including: catalyzation of the enzymatic process involved in glutamate metabolism, redistribution of glutamate into tissue, and acute stress response. Regardless of the mechanism involved, decreased blood glutamate concentration is associated with improved neurological outcome. This review focuses on the physiological, mechanistic and clinical roles of blood glutamate scavenging, particularly in the context of acute and chronic CNS injury. We discuss the details of brain-to-blood glutamate efflux, auto-regulation mechanisms of blood glutamate, natural and exogenous blood glutamate scavenging systems, and redistribution of glutamate. We then propose different applied methodologies to reduce blood and brain glutamate concentrations and discuss the neuroprotective role of blood glutamate scavenging.
Collapse
Affiliation(s)
- Akiva Leibowitz
- Author to whom correspondence should be addressed; E-Mail: ; Tel: +972-8-6400262; Fax: +972-8-6403795
| | | | - Yoram Shapira
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Ben-Gurion University, Beer Sheva 84894, Israel; E-Mails: (M.B.); (Y.S.); (A.Z.)
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Ben-Gurion University, Beer Sheva 84894, Israel; E-Mails: (M.B.); (Y.S.); (A.Z.)
| |
Collapse
|
21
|
Armstead WM, Riley J, Yarovoi S, Cines DB, Smith DH, Higazi AAR. tPA-S481A prevents neurotoxicity of endogenous tPA in traumatic brain injury. J Neurotrauma 2012; 29:1794-802. [PMID: 22435890 PMCID: PMC3360893 DOI: 10.1089/neu.2012.2328] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) is associated with loss of autoregulation due to impaired responsiveness to cerebrovascular dilator stimuli, which leads to cerebral hypoperfusion and neuronal impairment or death. Upregulation of tissue plasminogen activator (tPA) post-TBI exacerbates loss of cerebral autoregulation and NMDA-receptor-mediated impairment of cerebral hemodynamics, and enhances excitotoxic neuronal death. However, the relationship between NMDA-receptor activation, loss of autoregulation, and neurological dysfunction is unclear. Here, we evaluated the potential therapeutic efficacy of a catalytically inactive tPA variant, tPA S481A, that acts by competing with wild-type tPA for binding, cleavage, and activation of NMDA receptors. Lateral fluid percussion brain injury was produced in anesthetized piglets. Pial artery reactivity was measured via a closed cranial window, and cerebrospinal fluid (CSF) extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) was quantified by enzyme-linked immunosorbent assay (ELISA). tPA-S481A prevented impairment of cerebral autoregulation and reduced histopathologic changes after TBI by inhibiting upregulation of the ERK isoform of MAPK. Treatment with this tPA variant provides a novel approach for limiting neuronal toxicity caused by untoward NMDA-receptor activation mediated by increased tPA and glutamate following TBI.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Armstead WM, Riley J, Cines DB, Higazi AAR. Combination therapy with glucagon and a novel plasminogen activator inhibitor-1-derived peptide enhances protection against impaired cerebrovasodilation during hypotension after traumatic brain injury through inhibition of ERK and JNK MAPK. Neurol Res 2012; 34:530-7. [PMID: 22642975 DOI: 10.1179/1743132812y.0000000039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Outcome of traumatic brain injury (TBI) is impaired by hypotension and glutamate, and TBI-associated release of endogenous tissue plasminogen activator (tPA) impairs cerebral autoregulation. Glucagon decreases central nervous system glutamate, lessens neuronal cell injury, and improves neurological score in mice after TBI. Glucagon partially protects against impaired cerebrovasodilation during hypotension after TBI in piglets by upregulating cAMP which decreases release of tPA. Pial artery dilation during hypotension is due to release of cAMP-dependent dilator prostaglandins (PG), such as PGE2 and PGI2. TBI impairs PGE2 and PGI2-mediated pial artery dilation, which contributes to disturbed cerebral autoregulation post-insult, by upregulating mitogen-activated protein kinase (MAPK). This study was designed to investigate relationships between tPA, prostaglandins, and MAPK as a mechanism to improve the efficacy of glucagon-mediated preservation of cerebrovasodilation during hypotension after TBI. METHODS Lateral fluid percussion brain injury (FPI) was induced in piglets equipped with a closed cranial window. ERK and JNK MAPK concentrations in cerebrospinal fluid were quantified by enzyme-linked immunosorbent assay. RESULTS Cerebrospinal fluid JNK MAPK was increased by FPI, but blunted by glucagon and the novel plasminogen activator inhibitor-1-derived peptide (PAI-1DP), Ac-RMAPEEIIMDRPFLYVVR-amide. FPI modestly increased, while glucagon and PAI-1DP decreased ERK MAPK. PGE2, PGI2, N-methyl-D-aspartate, and hypotension-induced pial artery dilation was blunted after FPI, partially protected by glucagon, and fully protected by glucagon+PAI-1DP, glucagon+JNK antagonist SP600125 or glucagon+ERK inhibitor U 0126. DISCUSSION Glucagon+PAI-1DP act in concert to protect against impairment of cerebrovasodilation during hypotension after TBI via inhibition of ERK and JNK MAPK.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
23
|
The effects of insulin, glucagon, glutamate, and glucose infusion on blood glutamate and plasma glucose levels in naive rats. J Neurosurg Anesthesiol 2012; 23:323-8. [PMID: 21836527 DOI: 10.1097/ana.0b013e3182299b15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Elevated levels of glutamate in brain fluids, in the context of several neurodegenerative conditions, are associated with a worsened neurological outcome. Because there is a clear relationship between brain glutamate levels and glutamate levels in the blood, and an association of the latter with stress, the purpose of this study was to investigate the effects of glucose, insulin, and glucagon on rat blood glutamate levels. METHODS Rats received either 1 mL/100 g of rat body weight (BW) intravenous isotonic saline (control), 150 mg/1 mL/100 g BW intravenous glucose, 75 mg/1 mL/100 g BW intravenous glutamate, 50 g/100 g BW intraparitoneal glucagon, or 0.2 UI/100 g BW intraparitoneal insulin. Blood samples were subsequently drawn at 0, 30, 60, 90, and 120 minutes for determination of blood glutamate and glucose levels. RESULTS We observed a significant decrease in blood glutamate levels at 30 minutes after injection of glucose (P<0.05), at 30 and 60 minutes after injection of insulin (P<0.05), and at 90 and 120 minutes after injection of glucagon. Plasma glucose levels were elevated after infusion of glutamate and glucose but were decreased after injection of insulin. CONCLUSIONS The results of this study demonstrate that glucose, insulin, and glucagon significantly reduce blood glutamate levels. The effect of insulin is immediate and transient, whereas the effect of glucagon is delayed but longer lasting, suggesting that the sensitivity of pancreatic glucagon and insulin-secreting cells to glutamate is dependent on glucose concentration. The results of this study provide insight into blood glutamate homeostasis and may assist in the implementation of new therapies for brain neuroprotection from excess glutamate.
Collapse
|
24
|
Fanne RA, Nassar T, Heyman SN, Hijazi N, Higazi AAR. Insulin and glucagon share the same mechanism of neuroprotection in diabetic rats: role of glutamate. Am J Physiol Regul Integr Comp Physiol 2011; 301:R668-73. [PMID: 21677268 DOI: 10.1152/ajpregu.00058.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In patients with acute ischemic stroke, diabetes and hyperglycemia are associated with increased infarct size, more profound neurologic deficits and higher mortality. Notwithstanding extensive clinical and experimental data, treatment of stroke-associated hyperglycemia with insulin is controversial. In addition to hyperglycemia, diabetes and even early prediabetic insulin resistance are associated with increased levels of amino acids, including the neurotoxic glutamate, in the circulation. The pleiotropic metabolic effects of insulin include a reduction in the concentration of amino acids in the circulation. In this article, we show that in diabetic rats exposed to transient middle cerebral artery occlusion, a decrease of plasma glutamate by insulin or glucagon reduces CSF glutamate, improves brain histology, and preserves neurologic function. The neuroprotective effect of insulin and glucagon was similar, notwithstanding their opposite effects on blood glucose. The therapeutic window of both hormones overlapped with the short duration (~30 min) of elevated brain glutamate following brain trauma in rodents. Similar neuroprotective effects were found after administration of the glutamate scavenger oxaloacetate, which does not affect glucose metabolism. These data indicate that insulin and glucagon exert a neuroprotective effect within a very brief therapeutic window that correlates with their capacity to reduce glutamate, rather than by modifying glucose levels.
Collapse
Affiliation(s)
- Rami Abu Fanne
- Department of Clinical Biochemistry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
25
|
Armstead WM, Kiessling JW, Cines DB, Higazi AAR. Glucagon protects against impaired NMDA-mediated cerebrovasodilation and cerebral autoregulation during hypotension after brain injury by activating cAMP protein kinase A and inhibiting upregulation of tPA. J Neurotrauma 2011; 28:451-7. [PMID: 21375400 DOI: 10.1089/neu.2010.1659] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Outcome of traumatic brain injury (TBI) is impaired by hyperglycemia, hypotension, and glutamate, and improved by insulin. Insulin reduces glutamate concentration, making it uncertain whether its beneficial effect accrues from euglycemia. Glucagon decreases CNS glutamate, lessens neuronal cell injury, and improves neurological scores in mice after TBI. In vitro, glucagon limits NMDA-mediated excitotoxicity by increasing cAMP and protein kinase A (PKA). NMDA receptor activation couples cerebral blood flow (CBF) to metabolism. Dilation induced by NMDA is impaired after fluid percussion brain injury (FPI) due to upregulation of endogenous tPA, which further disturbs cerebral autoregulation during hypotension after fluid percussion injury (FPI). We hypothesized that glucagon prevents impaired NMDA receptor-mediated dilation after FPI by upregulating cAMP, which decreases release of tPA. NMDA-induced pial artery dilation (PAD) was reversed to vasoconstriction after FPI. Glucagon 30 min before or 30 min after FPI blocked NMDA-mediated vasoconstriction and restored the response to vasodilation. PAD during hypotension was blunted after FPI, but protected by glucagon. Glucagon prevented FPI-induced reductions in CSF cAMP, yielding a net increase in cAMP, and blocked FPI-induced elevation of CSF tPA. Co-administration of the PKA antagonist Rp 8Br cAMPs prevented glucagon-mediated preservation of NMDA-mediated dilation after FPI. The pKA agonist Sp 8Br cAMPs prevented impairment of NMDA-induced dilation. These data indicate that glucagon protects against impaired cerebrovasodilation by upregulating cAMP, which decreases release of tPA, suggesting that it may provide neuroprotection when given after TBI, or prior to certain neurosurgical or cardiac interventions in which the incidence of perioperative ischemia is high.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|