1
|
Shi J, Lu D, Wei P, Yang Y, Dong H, Jin L, Sander JW, Shan Y, Zhao G. Comparative Efficacy of Neuromodulatory Strategies for Drug-Resistant Epilepsy: A Systematic Review and Meta-Analysis. World Neurosurg 2024:S1878-8750(24)01633-4. [PMID: 39321920 DOI: 10.1016/j.wneu.2024.09.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE The study aims to evaluate the efficacy of neuromodulatory strategies for people who have drug-resistant epilepsy (DRE). METHODS We searched electronic repositories, including PubMed, Web of Science, Embase, and the Cochrane Library, for randomized controlled trials, their ensuing open-label extension studies, and prospective studies focusing on surgical or neuromodulation interventions for people with DRE. We used seizure frequency reduction as the primary outcome. A single-arm meta-analysis synthesized data across all studies to assess treatment effectiveness at multiple time points. A network meta-analysis evaluated the efficacy of diverse therapies in randomized controlled trials. Grading of Recommendations, Assessment, Development, and Evaluations was applied to evaluate the overall quality of the evidence. RESULTS Twenty-eight studies representing 2936 individuals underwent 10 treatments were included. Based on the cumulative ranking in the network meta-analysis, the top 3 neuromodulatory options were deep brain stimulation (DBS) with 27% probability, responsive neurostimulation (RNS) with 22.91%, and transcranial direct current stimulation with 24.31%. In the single-arm meta-analysis, in the short-to-medium term, seizure control is more effective with RNS than with invasive vagus nerve stimulation (inVNS), which in turn is slightly more effective than DBS, though the differences are minimal. However, in the long term, inVNS appears to be less effective than both DBS and RNS. Trigeminal nerve stimulation, transcranial magnetic stimulation, and transcranial alternating current stimulation did not demonstrate significant seizure frequency reduction. CONCLUSIONS Regarding long-term efficacy, RNS and DBS outperformed inVNS. While transcranial direct current stimulation and transcutaneous auricular VNS showed promise for treating DRE, further studies are needed to confirm their long-term efficacy.
Collapse
Affiliation(s)
- Jianwei Shi
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China
| | - Dafeng Lu
- Department of Public Health, Nanjing Medical University, Nanjing, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China
| | - Yanfeng Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China
| | - Hengxin Dong
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China
| | - Lei Jin
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China
| | - Josemir W Sander
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG & Chalfont Centre for Epilepsy, London, UK; Neurology Department, West China Hospital of Sichuan University, Chengdu, China; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China.
| |
Collapse
|
2
|
Jha R, Blitz SE, Chua MMJ, Warren AEL, Lee JW, Rolston JD. Surgical management of status epilepticus: A systematic review. Epilepsia Open 2024; 9:850-864. [PMID: 38456595 PMCID: PMC11145616 DOI: 10.1002/epi4.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/07/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Status Epilepticus (SE), unresponsive to medical management, is associated with high morbidity and mortality. Surgical management is typically considered in these refractory cases. The best surgical approach for affected patients remains unclear; however, given the lack of controlled trials exploring the role of surgery. We performed a systematic review according to PRIMSA guidelines, including case reports and series describing surgical interventions for patients in SE. Cases (157 patients, median age 12.9 years) were followed for a median of 12 months. Patients were in SE for a median of 21 days before undergoing procedures including: focal resection (36.9%), functional hemispherectomy (21%), lobar resection (12.7%), vagus nerve stimulation (VNS) (12.7%), deep brain stimulation (DBS) (6.4%), multiple subpial transection (MST) (3.8%), responsive neurostimulation (RNS) (1.9%), and cortical stimulator placement (1.27%), with 24 patients undergoing multiple procedures. Multiple SE semiologies were identified. 47.8% of patients had focal seizures, and 65% of patients had focal structural abnormalities on MRI. SE persisted for 36.8 ± 47.7 days prior to surgical intervention. SE terminated following surgery in 81.5%, terminated with additional adjuncts in 10.2%, continued in 1.9%, and was not specified in 6.4% of patients. Long-term seizure outcomes were favorable, with the majority improved and 51% seizure-free. Eight patients passed away in follow-up, of which three were in SE. Seizures emerging from one hemisphere were both more likely to immediately terminate (OR 4.7) and lead to long-term seizure-free status (OR 3.9) compared to nonunilateral seizures. No other predictors, including seizure focality, SE duration, or choice of surgical procedure, were predictors of SE termination. Surgical treatment of SE can be effective in terminating SE and leading to sustained seizure freedom, with many different procedures showing efficacy if matched appropriately with SE semiology and etiology. PLAIN LANGUAGE SUMMARY: Patients with persistent seizures (Status Epilepticus) that do not stop following medications can be treated effectively with surgery. Here, we systematically review the entirety of existing literature on surgery for treating status epilepticus to better identify how and when surgery is used and what patients do after surgery.
Collapse
Affiliation(s)
- Rohan Jha
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurosurgery, Harvard Medical SchoolBrigham and Women's HospitalBostonMassachusettsUSA
| | - Sarah E. Blitz
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurosurgery, Harvard Medical SchoolBrigham and Women's HospitalBostonMassachusettsUSA
| | - Melissa M. J. Chua
- Department of Neurosurgery, Harvard Medical SchoolBrigham and Women's HospitalBostonMassachusettsUSA
| | - Aaron E. L. Warren
- Department of Neurosurgery, Harvard Medical SchoolBrigham and Women's HospitalBostonMassachusettsUSA
| | - Jong Woo Lee
- Department of Neurology, Harvard Medical SchoolBrigham and Women's HospitalBostonMassachusettsUSA
| | - John D. Rolston
- Department of Neurosurgery, Harvard Medical SchoolBrigham and Women's HospitalBostonMassachusettsUSA
| |
Collapse
|
3
|
Chua MMJ, Vissani M, Liu DD, Schaper FLWVJ, Warren AEL, Caston R, Dworetzky BA, Bubrick EJ, Sarkis RA, Cosgrove GR, Rolston JD. Initial case series of a novel sensing deep brain stimulation device in drug-resistant epilepsy and consistent identification of alpha/beta oscillatory activity: A feasibility study. Epilepsia 2023; 64:2586-2603. [PMID: 37483140 DOI: 10.1111/epi.17722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE Here, we report a retrospective, single-center experience with a novel deep brain stimulation (DBS) device capable of chronic local field potential (LFP) recording in drug-resistant epilepsy (DRE) and explore potential electrophysiological biomarkers that may aid DBS programming and outcome tracking. METHODS Five patients with DRE underwent thalamic DBS, targeting either the bilateral anterior (n = 3) or centromedian (n = 2) nuclei. Postoperative electrode lead localizations were visualized in Lead-DBS software. Local field potentials recorded over 12-18 months were tracked, and changes in power were associated with patient events, medication changes, and stimulation. We utilized a combination of lead localization, in-clinic broadband LFP recordings, real-time LFP response to stimulation, and chronic recordings to guide DBS programming. RESULTS Four patients (80%) experienced a >50% reduction in seizure frequency, whereas one patient had no significant reduction. Peaks in the alpha and/or beta frequency range were observed in the thalamic LFPs of each patient. Stimulation suppressed these LFP peaks in a dose-dependent manner. Chronic timeline data identified changes in LFP amplitude associated with stimulation, seizure occurrences, and medication changes. We also noticed a circadian pattern of LFP amplitudes in all patients. Button-presses during seizure events via a mobile application served as a digital seizure diary and were associated with elevations in LFP power. SIGNIFICANCE We describe an initial cohort of patients with DRE utilizing a novel sensing DBS device to characterize potential LFP biomarkers of epilepsy that may be associated with seizure control after DBS in DRE. We also present a new workflow utilizing the Percept device that may optimize DBS programming using real-time and chronic LFP recording.
Collapse
Affiliation(s)
- Melissa M J Chua
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matteo Vissani
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David D Liu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Frederic L W V J Schaper
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron E L Warren
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rose Caston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Barbara A Dworetzky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ellen J Bubrick
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rani A Sarkis
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Ernst LD, Steffan PJ, Srikanth P, Wiedrick J, Spencer DC, Datta P, Joseph NM, Wernovsky M, Becker DA. Electrocorticography Analysis in Patients With Dual Neurostimulators Supports Desynchronization as a Mechanism of Action for Acute Vagal Nerve Stimulator Stimulation. J Clin Neurophysiol 2023; 40:37-44. [PMID: 34009846 DOI: 10.1097/wnp.0000000000000847] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Both vagal nerve stimulation (VNS) and responsive neurostimulation (RNS System) are treatment options for medically refractory focal epilepsy. The mechanism of action of both devices remains poorly understood. Limited prior evidence suggests that acute VNS stimulation may reduce epileptiform activity and cause EEG desynchronization on electrocorticography (ECoG). Our study aims to isolate effects of VNS on ECoG as recorded by RNS System in patients who have both devices, by comparing ECoG samples with and without acute VNS stimulation. METHODS Ten 60-second ECoGs each from 22 individuals at 3 epilepsy centers were obtained-5 ECoGs with VNS "off" and 5 ECoGs with VNS "on." Electrocorticograps containing seizures or loss of telemetry connection artifact were excluded from analysis (total of 169 ECoGs were included). Electrocorticographs were analyzed for differences in spectral content by generating average spectrograms for "on" and "off" states and using a linear mixed-effects model to isolate effects of VNS stimulation. RESULTS Acute VNS stimulation reduced average power in the theta band by 4.9%, beta band by 3.8%, and alpha band by 2.5%. The reduction in theta power reached statistical significance with a P value of <0.05. CONCLUSIONS Our results provide evidence that acute VNS stimulation results in desynchronization of specific frequency bands (salient decrease in theta and beta bands, smaller decrease in alpha band) in ECoGs recorded by the RNS device in patients with dual (VNS and RNS) neurostimulators. This finding offers support for desynchronization as a theorized mechanism of action of VNS. Further research may lead to future improved neurostimulator efficacy by informing optimal stimulation programming parameters.
Collapse
Affiliation(s)
- Lia D Ernst
- Department of Neurology, Oregon Health & Science University (OHSU), Portland, Oregon, U.S.A
| | - Paul J Steffan
- Department of Neurology, Oregon Health & Science University (OHSU), Portland, Oregon, U.S.A
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, U.S.A
| | - Priya Srikanth
- Department of Biostatistics, Oregon Health & Science University (OHSU), Portland, Oregon, U.S.A
| | - Jack Wiedrick
- Department of Biostatistics, Oregon Health & Science University (OHSU), Portland, Oregon, U.S.A
| | - David C Spencer
- Department of Neurology, Oregon Health & Science University (OHSU), Portland, Oregon, U.S.A
| | - Proleta Datta
- Department of Neurology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A.; and
| | - Navya M Joseph
- Department of Neurology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A.; and
| | - Magda Wernovsky
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Danielle A Becker
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
5
|
Riestenberg RA, Sherman AE, Clark AJS, Shahlaie K, Zwienenberg M, Alden T, Bandt SK. Patient-Specific Characteristics Associated with Favorable Response to Vagus Nerve Stimulation. World Neurosurg 2022; 161:e608-e624. [PMID: 35202878 DOI: 10.1016/j.wneu.2022.02.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The expansion in treatments for medically refractory epilepsy heightens the importance of identifying patients who are likely to benefit from vagus nerve stimulation (VNS). Here, we identify predictors with a positive VNS response. METHODS We present a retrospective analysis of 158 patients with medically refractory epilepsy. Patients were categorized as VNS responders or nonresponders. Baseline characteristics and time to VNS response were recorded. Univariate and multivariate Cox regression were used to identify predictors of response. Recursive partitioning analysis was used to identify likely VNS responders. RESULTS Eighty-nine (56.3%) patients achieved ≥50% seizure frequency reduction. Left-hand dominance (hazard ratio [HR] 1.703, P = 0.038), age at epilepsy onset ≥15 years (HR 2.029, P = 0.005), duration of epilepsy ≥8 years (HR 1.968, P = 0.007) and age at implantation ≥35 years (HR 1.809, P = 0.020), and baseline seizure frequency <5/month (HR 1.569, P = 0.044) were significant univariate predictors of VNS response. Following multivariate Cox regression, left-hand dominance, age at epilepsy onset ≥15 years, and duration of epilepsy ≥8 years remained significant. With recursive partitioning analysis, patients with either age at epilepsy onset ≥15 years, left-hand dominance, or baseline seizure frequency <5/month were stratified into Group A and had a 73.9% responder rate; the remaining patients stratified into Group B had a 43.8% responder rate. CONCLUSIONS Patients with age at epilepsy onset ≥15 years, left-hand dominance, or baseline seizure frequency <5/month are ideal candidates for VNS.
Collapse
Affiliation(s)
- Robert A Riestenberg
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Neurological Surgery, University of California, Davis, Sacramento, California, USA.
| | - Alain E Sherman
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Austin J S Clark
- Department of Neurological Surgery, University of California, Davis, Sacramento, California, USA
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California, Davis, Sacramento, California, USA
| | - Marike Zwienenberg
- Department of Neurological Surgery, University of California, Davis, Sacramento, California, USA
| | - Tord Alden
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - S Kathleen Bandt
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
6
|
Brown MG, Sillau S, McDermott D, Ernst LD, Spencer DC, Englot DJ, González HFJ, Datta P, Karakis I, Becker D, Rolston JD, Arain A, Rao VR, Doherty M, Urban A, Drees C. Concurrent brain-responsive and vagus nerve stimulation for treatment of drug-resistant focal epilepsy. Epilepsy Behav 2022; 129:108653. [PMID: 35305525 PMCID: PMC9339206 DOI: 10.1016/j.yebeh.2022.108653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/12/2022] [Accepted: 02/26/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Clinical trials of a brain-responsive neurostimulator, RNS® System (RNS), excluded patients with a vagus nerve stimulator, VNS® System (VNS). The goal of this study was to evaluate seizure outcomes and safety of concurrent RNS and VNS stimulation in adults with drug-resistant focal-onset seizures. METHODS A retrospective multicenter chart review was performed on all patients with an active VNS and RNS who were treated for a minimum of 6 months with both systems concurrently. Frequency of disabling seizures at baseline before RNS, at 1 year after RNS placement, and at last follow-up were used to calculate the change in seizure frequency after treatment. Data on adverse events and complications related to each device were collected. RESULTS Sixty-four patients from 10 epilepsy centers met inclusion criteria. All but one patient received RNS after VNS. The median follow-up time after RNS implantation was 28 months. Analysis of the entire population of patients with active VNS and RNS systems revealed a median reduction in seizure frequency at 1 year post-RNS placement of 43% with a responder rate of 49%, and at last follow-up a 64% median reduction with a 67% responder rate. No negative interactions were reported from the concurrent use of VNS and RNS. Stimulation-related side-effects were reported more frequently in association with VNS (30%) than with RNS (2%). SIGNIFICANCE Our findings suggest that concurrent treatment with VNS and RNS is safe and that the addition of RNS to VNS can further reduce seizure frequency.
Collapse
Affiliation(s)
- Mesha-Gay Brown
- Centura Health Physician Group, Neuroscience and Spine, CO, United States
| | - Stefan Sillau
- University of Colorado, Department of Neurology, United States
| | | | - Lia D Ernst
- Oregon Health & Science University, Department of Neurology, United States
| | - David C Spencer
- Oregon Health & Science University, Department of Neurology, United States
| | - Dario J Englot
- Vanderbilt University Medical Center, Department of Neurological Surgery, United States
| | | | - Proleta Datta
- University of Nebraska Medical Center, Department of Neurology, United States
| | - Ioannis Karakis
- Emory University School of Medicine, Department of Neurology, United States
| | - Danielle Becker
- University of Pennsylvania, Department of Neurology, United States
| | - John D Rolston
- University of Utah, Departments of Neurosurgery and Biomedical Engineering, United States
| | - Amir Arain
- University of Utah, Department of Neurology, United States
| | - Vikram R Rao
- University of California, San Francisco, Department of Neurology and Weill Institute for Neurosciences, United States
| | - Michael Doherty
- Swedish Neuroscience Institute, Department of Neurology, Seattle, United States
| | - Alexandra Urban
- University of Pittsburgh, Department of Neurology, United States
| | - Cornelia Drees
- University of Colorado, Department of Neurology, United States; Mayo Clinic Arizona, Department of Neurology, United States.
| |
Collapse
|
7
|
Touma L, Dansereau B, Chan AY, Jetté N, Kwon CS, Braun KPJ, Friedman D, Jehi L, Rolston JD, Vadera S, Wong-Kisiel LC, Englot DJ, Keezer MR. Neurostimulation in People with Drug-Resistant Epilepsy: Systematic Review and Meta-Analysis from the ILAE Surgical Therapies Commission. Epilepsia 2022; 63:1314-1329. [PMID: 35352349 DOI: 10.1111/epi.17243] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Summarize the current evidence on efficacy and tolerability of vagus nerve stimulation (VNS), responsive neurostimulation (RNS), and deep brain stimulation (DBS) through a systematic review and meta-analysis. METHODS We followed the PRISMA reporting standards and searched Ovid Medline, Ovid Embase, and the Cochrane Central Register of Controlled Trials. We included published randomized controlled trials (RCT) and their corresponding open-label extension studies, as well as prospective case series, with ≥ 20 participants (excluding studies limited to children). Our primary outcome was the mean (or median when unavailable) percentage decrease in frequency, as compared to baseline, of all epileptic seizures at last follow-up. Secondary outcomes included proportion of treatment responders and proportion with seizure freedom. RESULTS We identified 30 eligible studies, six of which were RCTs. At long-term follow-up (mean 1.3 years), five observational studies for VNS reported a pooled mean percentage decrease in seizure frequency of 34.7% (95% CI: -5.1, 74.5). In the open-label extension studies for RNS, the median seizure reduction was 53%, 66%, and 75% at two, five, and nine years of follow-up, respectively. For DBS, the median reduction was 56%, 65%, and 75% at two, five, and seven years, respectively. The proportion of individuals with seizure freedom at last follow-up increased significantly over time for DBS and RNS while a positive trend was observed for VNS. Quality of life was improved in all modalities. The most common complications included hoarseness, cough and throat pain for VNS and implant site pain, headache, and dysesthesia for DBS and RNS. SIGNIFICANCE Neurostimulation modalities are an effective treatment option for drug resistant epilepsy, with improving outcomes over time and few major complications. Seizure reduction rates among the three therapies were similar during the initial blinded phase. Recent long-term follow-up studies are encouraging for RNS and DBS but are lacking for VNS.
Collapse
Affiliation(s)
- Lahoud Touma
- Research Centre of the Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Bénédicte Dansereau
- Research Centre of the Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Alvin Y Chan
- Department of Neurological Surgery, School of Medicine, University of California, Irvine, Orange, CA, USA
| | - Nathalie Jetté
- Department of Neurosurgery and Neurology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Churl-Su Kwon
- Department of Neurosurgery and Neurology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Kees P J Braun
- Department of Child Neurology, University Medical Center Utrecht, member of ERN EpiCARE, Utrecht, Netherlands
| | - Daniel Friedman
- Department of Neurology, New York University Langone Health, NY, USA
| | - Lara Jehi
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John D Rolston
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Sumeet Vadera
- Department of Neurological Surgery, School of Medicine, University of California, Irvine, Orange, CA, USA
| | | | - Dario J Englot
- Departments of Neurological Surgery, Neurology, Radiological, Electrical Engineering, and Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark R Keezer
- Research Centre of the Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Department of Neurosciences, Université de Montréal, Montréal, QC, Canada.,Honorary Researcher, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.,School of Public Health, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
8
|
Shlobin NA, Campbell JM, Rosenow JM, Rolston JD. Ethical considerations in the surgical and neuromodulatory treatment of epilepsy. Epilepsy Behav 2022; 127:108524. [PMID: 34998267 PMCID: PMC10184316 DOI: 10.1016/j.yebeh.2021.108524] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
Surgical resection and neuromodulation are well-established treatments for those with medically refractory epilepsy. These treatments entail important ethical considerations beyond those which extend to the treatment of epilepsy generally. In this paper, the authors explore these unique considerations through a framework that relates foundational principles of bioethics to features of resective epilepsy surgery and neuromodulation. The authors conducted a literature review to identify ethical considerations for a variety of epilepsy surgery procedures and to examine how foundational principles in bioethics may inform treatment decisions. Healthcare providers should be cognizant of how an increased prevalence of somatic and psychiatric comorbidities, the dynamic nature of symptom burden over time, the individual and systemic barriers to treatment, and variable sociocultural contexts constitute important ethical considerations regarding the use of surgery or neuromodulation for the treatment of epilepsy. Moreover, careful attention should be paid to how resective epilepsy surgery and neuromodulation relate to notions of patient autonomy, safety and privacy, and the shared responsibility for device management and maintenance. A three-tiered approach-(1) gathering information and assessing the risks and benefits of different treatment options, (2) clear communication with patient or proxy with awareness of patient values and barriers to treatment, and (3) long-term decision maintenance through continued identification of gaps in understanding and provision of information-allows for optimal treatment of the individual person with epilepsy while minimizing disparities in epilepsy care.
Collapse
Affiliation(s)
- Nathan A Shlobin
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Justin M Campbell
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA; Department of Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Joshua M Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John D Rolston
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
9
|
Schmid A, Tokuda T, Ker MD. Editorial: Microelectronic Implants for Central and Peripheral Nervous System: Overview of Circuit and System Technology. Front Neurosci 2021; 15:794944. [PMID: 34867181 PMCID: PMC8639854 DOI: 10.3389/fnins.2021.794944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alexandre Schmid
- Biomedical and Neuromorphic Microelectronic Systems BNMS, SCI-STI-AXS Station 11, Swiss Federal Institute of Technology EPFL, Lausanne, Switzerland
| | - Takashi Tokuda
- Institute of Innovative Research (IIR), Tokyo Institute of Technology (Tokyo Tech), Tokyo, Japan
| | - Ming-Dou Ker
- Biomedical Electronics Translational Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
10
|
Merola A, Singh J, Reeves K, Changizi B, Goetz S, Rossi L, Pallavaram S, Carcieri S, Harel N, Shaikhouni A, Sammartino F, Krishna V, Verhagen L, Dalm B. New Frontiers for Deep Brain Stimulation: Directionality, Sensing Technologies, Remote Programming, Robotic Stereotactic Assistance, Asleep Procedures, and Connectomics. Front Neurol 2021; 12:694747. [PMID: 34367055 PMCID: PMC8340024 DOI: 10.3389/fneur.2021.694747] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022] Open
Abstract
Over the last few years, while expanding its clinical indications from movement disorders to epilepsy and psychiatry, the field of deep brain stimulation (DBS) has seen significant innovations. Hardware developments have introduced directional leads to stimulate specific brain targets and sensing electrodes to determine optimal settings via feedback from local field potentials. In addition, variable-frequency stimulation and asynchronous high-frequency pulse trains have introduced new programming paradigms to efficiently desynchronize pathological neural circuitry and regulate dysfunctional brain networks not responsive to conventional settings. Overall, these innovations have provided clinicians with more anatomically accurate programming and closed-looped feedback to identify optimal strategies for neuromodulation. Simultaneously, software developments have simplified programming algorithms, introduced platforms for DBS remote management via telemedicine, and tools for estimating the volume of tissue activated within and outside the DBS targets. Finally, the surgical accuracy has improved thanks to intraoperative magnetic resonance or computerized tomography guidance, network-based imaging for DBS planning and targeting, and robotic-assisted surgery for ultra-accurate, millimetric lead placement. These technological and imaging advances have collectively optimized DBS outcomes and allowed “asleep” DBS procedures. Still, the short- and long-term outcomes of different implantable devices, surgical techniques, and asleep vs. awake procedures remain to be clarified. This expert review summarizes and critically discusses these recent innovations and their potential impact on the DBS field.
Collapse
Affiliation(s)
- Aristide Merola
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jaysingh Singh
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Kevin Reeves
- Department of Psychiatry, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Barbara Changizi
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Steven Goetz
- Medtronic PLC Neuromodulation, Minneapolis, MN, United States
| | | | | | | | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Ammar Shaikhouni
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Francesco Sammartino
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Vibhor Krishna
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Leo Verhagen
- Movement Disorder Section, Department of Neurological Sciences, Rush University, Chicago, IL, United States
| | - Brian Dalm
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
11
|
Parihar J, Agrawal M, Samala R, Chandra PS, Tripathi M. Role of Neuromodulation for Treatment of Drug-Resistant Epilepsy. Neurol India 2021; 68:S249-S258. [PMID: 33318359 DOI: 10.4103/0028-3886.302476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The choice of neuromodulation techniques has greatly increased over the past two decades. While vagal nerve stimulation (VNS) has become established, newer variations of VNS have been introduced. Following the SANTE's trial, deep brain stimulation (DBS) is now approved for clinical use. In addition, responsive neurostimulation (RNS) has provided exciting new opportunities for treatment of drug-resistant epilepsy. While neuromodulation mostly offers only a 'palliative' measure, it still provides a significant reduction of frequency and intensity of epilepsy. We provide an overview of all the techniques of neuromodulation which are available, along with long-term outcomes. Further research is required to delineate the exact mechanism of action, the indications and the stimulation parameters to extract the maximum clinical benefit from these techniques.
Collapse
Affiliation(s)
- Jasmine Parihar
- Department of Neurology, Lady Harding Medical College, New Delhi, India
| | | | - Raghu Samala
- Department of Neurosurgery, AIIMS, New Delhi, India
| | | | | |
Collapse
|
12
|
Ye VC, Mansouri A, Warsi NM, Ibrahim GM. Atonic seizures in children: a meta-analysis comparing corpus callosotomy to vagus nerve stimulation. Childs Nerv Syst 2021; 37:259-267. [PMID: 32529546 DOI: 10.1007/s00381-020-04698-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/21/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Atonic seizures are associated with a particularly poor response to medical treatment. We performed a systematic review and meta-analysis to compare the efficacy of corpus callosotomy (CC) and vagus nerve stimulation (VNS) in the management of atonic seizures in the pediatric population. METHODS A literature search was performed in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and recommendations, focusing on atonic seizures, CC, and VNS in pediatric populations. Pertinent clinical data were extracted and analyzed. Pooled effects between groups were calculated as standardized error (SE) with 95% confidence intervals (CIs). To assess for statistical significance, the Z-test was performed, using the pooled effect size (ES) and 95% CI for each intervention. RESULTS A total of 31 studies met the inclusion criteria, with 24 studies encompassing 425 children treated with CC and 7 studies encompassing 108 children treated with VNS. Twenty-four studies were included in a meta-analysis. There was a statistically significant difference in the primary outcome of atonic seizure control in favor of CC (overall effect size (ES) 0.73, 95% CI 0.69-0.77 for CC, ES 0.4, 95% CI 0.28-0.51 for VNS, p = 0.003). There was a higher rate of complications requiring reoperation in the CC cohort (6.6% vs. 3.8%) and a 14% rate of symptomatic disconnection syndrome. CONCLUSIONS While both techniques are safe, CC provides a much higher chance of effectively managing this morbid seizure type albeit with a higher risk of re-operation and disconnection syndrome.
Collapse
Affiliation(s)
- Vincent C Ye
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Alireza Mansouri
- Department of Neurosurgery, Pennsylvania State University, Hershey, PA, USA
| | - Nebras M Warsi
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - George M Ibrahim
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Canada.
- Division of Neurosurgery, The Hospital for Sick Children, University of Toronto, Toronto, Canada.
- Program in Neurosciences and Mental Health Research Institute, Department of Surgery, Institute of Biomaterials and Biomedical Engineering, The University of Toronto, Toronto, Canada.
| |
Collapse
|
13
|
Adonias GL, Siljak H, Barros MT, Marchetti N, White M, Balasubramaniam S. Reconfigurable Filtering of Neuro-Spike Communications Using Synthetically Engineered Logic Circuits. Front Comput Neurosci 2020; 14:556628. [PMID: 33178001 PMCID: PMC7593240 DOI: 10.3389/fncom.2020.556628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/28/2020] [Indexed: 01/13/2023] Open
Abstract
High-frequency firing activity can be induced either naturally in a healthy brain as a result of the processing of sensory stimuli or as an uncontrolled synchronous activity characterizing epileptic seizures. As part of this work, we investigate how logic circuits that are engineered in neurons can be used to design spike filters, attenuating high-frequency activity in a neuronal network that can be used to minimize the effects of neurodegenerative disorders such as epilepsy. We propose a reconfigurable filter design built from small neuronal networks that behave as digital logic circuits. We developed a mathematical framework to obtain a transfer function derived from a linearization process of the Hodgkin-Huxley model. Our results suggest that individual gates working as the output of the logic circuits can be used as a reconfigurable filtering technique. Also, as part of the analysis, the analytical model showed similar levels of attenuation in the frequency domain when compared to computational simulations by fine-tuning the synaptic weight. The proposed approach can potentially lead to precise and tunable treatments for neurological conditions that are inspired by communication theory.
Collapse
Affiliation(s)
- Geoflly L Adonias
- Telecommunications Software & Systems Group, Waterford Institute of Technology, Waterford, Ireland
| | - Harun Siljak
- CONNECT Centre, Trinity College Dublin, Dublin, Ireland
| | - Michael Taynnan Barros
- CBIG at Biomeditech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | | | - Mark White
- Research, Innovation & Graduate Studies, Waterford Institute of Technology, Waterford, Ireland
| | | |
Collapse
|
14
|
Different modalities of invasive neurostimulation for epilepsy. Neurol Sci 2020; 41:3527-3536. [PMID: 32740896 DOI: 10.1007/s10072-020-04614-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/19/2020] [Indexed: 01/12/2023]
Abstract
Epilepsy affects 1% of the general population, about one-third of which is pharmacologically resistant. Uncontrolled seizures are associated with an increased risk of traumatic injury and sudden unexpected death of epilepsy. There is a considerable psychological and financial burden on caregivers of patients with epilepsy, particularly among pediatric patients. Epilepsy surgery, when indicated, is the most promising cure for epilepsy. However, when surgery is contraindicated or refused by the patient, neurostimulation is an alternative palliative approach, albeit with a lower chance of entirely curing patients of seizures. There are many options for neurostimulation. The three most commonly used invasive neurostimulation procedures that consistently show evidence of being safe and efficacious are vagal nerve stimulation, responsive neuro stimulation, or anterior thalamic nucleus deep brain stimulation. The goal of this review is to summarize the current evidence supporting the use of these three techniques, which are approved by most regulatory bodies, and discuss different factors that may enable epilepsy surgeons to choose the most appropriate modality for each patient.
Collapse
|
15
|
Kimberley TJ, Prudente CN, Engineer ND, Pierce D, Tarver B, Cramer SC, Dickie DA, Dawson J. Study protocol for a pivotal randomised study assessing vagus nerve stimulation during rehabilitation for improved upper limb motor function after stroke. Eur Stroke J 2019; 4:363-377. [PMID: 31903435 PMCID: PMC6921938 DOI: 10.1177/2396987319855306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/15/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Vagus nerve stimulation (VNS) paired with a motor task improves motor outcome in rat stroke models. It is hypothesised that VNS delivered during rehabilitation will improve upper limb function compared to control rehabilitation therapy. Two pilot clinical studies demonstrated acceptable safety and feasibility of VNS paired with rehabilitation for improved upper limb function after stroke. Participants who received rehabilitation paired with VNS demonstrated clinically meaningful improvements in motor function that exceed gains seen among controls who received similar rehabilitation without VNS. These preliminary data support a larger pivotal trial. METHODS VNS-REHAB (VNS-Rehabilitation) is a pivotal, multi-site, double-blinded, randomised trial designed to evaluate safety and efficacy of VNS paired with upper limb rehabilitation after ischaemic stroke. The study will include up to 120 participants with upper limb weakness due to stroke nine months to 10 years prior. All participants will be implanted with a VNS device and randomised to receive either Active (0.8 mA) or Control VNS (0.0 mA) paired with upper limb rehabilitation. All participants receive 18 sessions of in-clinic therapy for six weeks, followed by a home-based therapy for three months. The rehabilitation therapy involves progressive, functionally based and intensive practice of hand and arm tasks. VNS is delivered during each movement repetition. After blinded follow-up is completed, the Active vagus nerve stimulation group continues with home-based Active VNS and the Control group receive six weeks of in-clinic therapy with Active VNS followed by home-based Active VNS. The primary efficacy endpoint will be the difference in Fugl-Meyer assessment-upper extremity scores between the Active VNS and Control VNS groups at the end of six weeks of in-clinic therapy. Additional secondary endpoints will also be measured. Safety will be assessed with analysis of adverse events and device complications during study participation. DISCUSSION This pivotal trial will determine whether VNS paired with rehabilitation is a safe and effective treatment for improving arm function after stroke.Trial Registration: ClinicalTrials.gov, NCT03131960. Registered on 27 April 2017.
Collapse
Affiliation(s)
- Teresa J Kimberley
- Department of Physical Therapy, School of Health and
Rehabilitation Sciences, Massachusetts General Hospital, Institute for Health
Professions, Boston, USA
| | | | | | | | | | - Steven C Cramer
- Department of Neurology, University of California, Irvine,
USA
| | - David Alexander Dickie
- Institute of Cardiovascular and Medical Sciences, College of
Medical, Veterinary & Life Sciences, University of Glasgow, Queen Elizabeth
University Hospital, Glasgow, UK
| | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, College of
Medical, Veterinary & Life Sciences, University of Glasgow, Queen Elizabeth
University Hospital, Glasgow, UK
| |
Collapse
|
16
|
Rolston JD, Deng H, Wang DD, Englot DJ, Chang EF. Multiple Subpial Transections for Medically Refractory Epilepsy: A Disaggregated Review of Patient-Level Data. Neurosurgery 2019. [PMID: 28637175 DOI: 10.1093/neuros/nyx311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Multiple subpial transections (MST) are a treatment for seizure foci in nonresectable eloquent areas. OBJECTIVE To systematically review patient-level data regarding MST. METHODS Studies describing patient-level data for MST procedures were extracted from the Medline and PubMed databases, yielding a synthetic cohort of 212 patients from 34 studies. Data regarding seizure outcome, patient demographics, seizure type, surgery type, and complications were extracted and analyzed. RESULTS Seizure freedom was achieved in 55.2% of patients undergoing MST combined with resection, and 23.9% of patients undergoing MST alone. Significant predictors for seizure freedom were a temporal lobe focus (odds ratio 4.9; 95% confidence interval 1.71, 14.3) and resection of portions of the focus, when feasible (odds ratio 3.88; 95% confidence interval 2.02, 7.45). Complications were frequent, with transient mono- or hemiparesis affecting 19.8% of patients, transient dysphasia 12.3%, and permanent paresis or dysphasia in 6.6% and 1.9% of patients, respectively. CONCLUSION MST is an effective treatment for refractory epilepsy in eloquent cortex, with greater chances of seizure freedom when portions of the focus are resected in tandem with MST. The reported rates of seizure freedom with MST are higher than those of existing neuromodulatory therapies, such as vagus nerve stimulation, deep brain stimulation, and responsive neurostimulation, though these latter therapies are supported by randomized-controlled trials, while MST is not. The reported complication rate of MST is higher than that of resection and neuromodulatory therapies. MST remains a viable option for the treatment of eloquent foci, provided a careful risk-benefit analysis is conducted.
Collapse
Affiliation(s)
- John D Rolston
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Hansen Deng
- School of Medicine, University of California, San Francisco, California
| | - Doris D Wang
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Dario J Englot
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California
| |
Collapse
|
17
|
Markert MS, Fisher RS. Neuromodulation - Science and Practice in Epilepsy: Vagus Nerve Stimulation, Thalamic Deep Brain Stimulation, and Responsive NeuroStimulation. Expert Rev Neurother 2018; 19:17-29. [DOI: 10.1080/14737175.2019.1554433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Matthew S. Markert
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert S. Fisher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
18
|
Gigliotti MJ, Mao G, Dupré DA, Wilberger J. Vagal Nerve Stimulation: Indications for Revision in Adult Refractory Epilepsy. World Neurosurg 2018; 120:e1047-e1053. [DOI: 10.1016/j.wneu.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 11/26/2022]
|
19
|
Zhao X, Lhatoo SD. Seizure detection: do current devices work? And when can they be useful? Curr Neurol Neurosci Rep 2018; 18:40. [PMID: 29796939 DOI: 10.1007/s11910-018-0849-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The unpredictability and apparent randomness of epileptic seizures is one of the most vexing aspects of epilepsy. Methods or devices capable of detecting seizures may help prevent injury or even death and significantly improve quality of life. Here, we summarize and evaluate currently available, unimodal, or polymodal detection systems for epileptic seizures, mainly in the ambulatory setting. RECENT FINDINGS There are two broad categories of detection devices: EEG-based and non-EEG-based systems. Wireless wearable EEG devices are now available both in research and commercial arenas. Neuro-stimulation devices are currently evolving and initial experiences of these show potential promise. As for non-EEG devices, different detecting systems show different sensitivity according to the different patient and seizure types. Regardless, when used in combination, these modalities may complement each other to increase positive predictive value. Although some devices with high sensitivity are promising, practical widespread use of such detection systems is still some way away. More research and experience are needed to evaluate the most efficient and integrated systems, to allow for better approaches to detection and prediction of seizures. The concept of closed-loop systems and prompt intervention may substantially improve quality of life for patients and carers.
Collapse
Affiliation(s)
- Xiuhe Zhao
- Epilepsy Center, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH, 44106, USA.,Neurology Department, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
| | - Samden D Lhatoo
- Epilepsy Center, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH, 44106, USA. .,NIH/NINDS Center for SUDEP Research, Boston, MA, USA.
| |
Collapse
|
20
|
Englot DJ, Rolston JD, Wright CW, Hassnain KH, Chang EF. Rates and Predictors of Seizure Freedom With Vagus Nerve Stimulation for Intractable Epilepsy. Neurosurgery 2017; 79:345-53. [PMID: 26645965 PMCID: PMC4884552 DOI: 10.1227/neu.0000000000001165] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. BACKGROUND: Neuromodulation-based treatments have become increasingly important in epilepsy treatment. Most patients with epilepsy treated with neuromodulation do not achieve complete seizure freedom, and, therefore, previous studies of vagus nerve stimulation (VNS) therapy have focused instead on reduction of seizure frequency as a measure of treatment response. OBJECTIVE: To elucidate rates and predictors of seizure freedom with VNS. METHODS: We examined 5554 patients from the VNS therapy Patient Outcome Registry, and also performed a systematic review of the literature including 2869 patients across 78 studies. RESULTS: Registry data revealed a progressive increase over time in seizure freedom after VNS therapy. Overall, 49% of patients responded to VNS therapy 0 to 4 months after implantation (≥50% reduction seizure frequency), with 5.1% of patients becoming seizure-free, while 63% of patients were responders at 24 to 48 months, with 8.2% achieving seizure freedom. On multivariate analysis, seizure freedom was predicted by age of epilepsy onset >12 years (odds ratio [OR], 1.89; 95% confidence interval [CI], 1.38-2.58), and predominantly generalized seizure type (OR, 1.36; 95% CI, 1.01-1.82), while overall response to VNS was predicted by nonlesional epilepsy (OR, 1.38; 95% CI, 1.06-1.81). Systematic literature review results were consistent with the registry analysis: At 0 to 4 months, 40.0% of patients had responded to VNS, with 2.6% becoming seizure-free, while at last follow-up, 60.1% of individuals were responders, with 8.0% achieving seizure freedom. CONCLUSION: Response and seizure freedom rates increase over time with VNS therapy, although complete seizure freedom is achieved in a small percentage of patients. ABBREVIATIONS: AED, antiepileptic drug VNS, vagus nerve stimulation
Collapse
Affiliation(s)
- Dario J Englot
- *UCSF Comprehensive Epilepsy Center, University of California, San Francisco, California; ‡Department of Neurological Surgery, University of California, San Francisco, California; §Cyberonics, Inc., Houston, Texas
| | | | | | | | | |
Collapse
|
21
|
Anderson I, Sivakumar G, Chumas P. The role of the neurosurgeon in the treatment of epilepsy. Br J Hosp Med (Lond) 2017; 78:C41-C44. [PMID: 28277754 DOI: 10.12968/hmed.2017.78.3.c41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ian Anderson
- Specialist Neurosurgical Registrar, Department of Neurosurgery, Leeds General Infirmary, Leeds LS1 3EX
| | | | - Paul Chumas
- Consultant Neurosurgeon, Department of Neurosurgery, Leeds General Infirmary, Leeds
| |
Collapse
|
22
|
Englot DJ, Hassnain KH, Rolston JD, Harward SC, Sinha SR, Haglund MM. Quality-of-life metrics with vagus nerve stimulation for epilepsy from provider survey data. Epilepsy Behav 2017; 66:4-9. [PMID: 27974275 PMCID: PMC5258831 DOI: 10.1016/j.yebeh.2016.10.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Drug-resistant epilepsy is a devastating disorder associated with diminished quality of life (QOL). Surgical resection leads to seizure freedom and improved QOL in many epilepsy patients, but not all individuals are candidates for resection. In these cases, neuromodulation-based therapies such as vagus nerve stimulation (VNS) are often used, but most VNS studies focus exclusively on reduction of seizure frequency. QOL changes and predictors with VNS remain poorly understood. METHOD Using the VNS Therapy Patient Outcome Registry, we examined 7 metrics related to QOL after VNS for epilepsy in over 5000 patients (including over 3000 with ≥12months follow-up), as subjectively assessed by treating physicians. Trends and predictors of QOL changes were examined and related to post-operative seizure outcome and likelihood of VNS generator replacement. RESULTS After VNS therapy, physicians reported patient improvement in alertness (58-63%, range over follow-up period), post-ictal state (55-62%), cluster seizures (48-56%), mood change (43-49%), verbal communication (38-45%), school/professional achievements (29-39%), and memory (29-38%). Predictors of net QOL improvement included shorter time to implant (odds ratio [OR], 1.3; 95% confidence interval [CI], 1.1-1.6), generalized seizure type (OR, 1.2; 95% CI, 1.0-1.4), female gender (OR, 1.2; 95% CI, 1.0-1.4), and Caucasian ethnicity (OR, 1.3; 95% CI, 1.0-1.5). No significant trends were observed over time. Patients with net QOL improvement were more likely to have favorable seizure outcomes (chi square [χ2]=148.1, p<0.001) and more likely to undergo VNS generator replacement (χ2=68.9, p<0.001) than those with worsened/unchanged QOL. SIGNIFICANCE VNS for drug-resistant epilepsy is associated with improvement on various QOL metrics subjectively rated by physicians. QOL improvement is associated with favorable seizure outcome and a higher likelihood of generator replacement, suggesting satisfaction with therapy. It is important to consider QOL metrics in neuromodulation for epilepsy, given the deleterious effects of seizures on patient QOL.
Collapse
Affiliation(s)
- Dario J. Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - John D. Rolston
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Stephen C. Harward
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Saurabh R. Sinha
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael M. Haglund
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
23
|
Seizure outcomes in nonresective epilepsy surgery: an update. Neurosurg Rev 2016; 40:181-194. [PMID: 27206422 DOI: 10.1007/s10143-016-0725-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/31/2016] [Accepted: 03/06/2016] [Indexed: 12/18/2022]
Abstract
In approximately 30 % of patients with epilepsy, seizures are refractory to medical therapy, leading to significant morbidity and increased mortality. Substantial evidence has demonstrated the benefit of surgical resection in patients with drug-resistant focal epilepsy, and in the present journal, we recently reviewed seizure outcomes in resective epilepsy surgery. However, not all patients are candidates for or amenable to open surgical resection for epilepsy. Fortunately, several nonresective surgical options are now available at various epilepsy centers, including novel therapies which have been pioneered in recent years. Ablative procedures such as stereotactic laser ablation and stereotactic radiosurgery offer minimally invasive alternatives to open surgery with relatively favorable seizure outcomes, particularly in patients with mesial temporal lobe epilepsy. For certain individuals who are not candidates for ablation or resection, palliative neuromodulation procedures such as vagus nerve stimulation, deep brain stimulation, or responsive neurostimulation may result in a significant decrease in seizure frequency and improved quality of life. Finally, disconnection procedures such as multiple subpial transections and corpus callosotomy continue to play a role in select patients with an eloquent epileptogenic zone or intractable atonic seizures, respectively. Overall, open surgical resection remains the gold standard treatment for drug-resistant epilepsy, although it is significantly underutilized. While nonresective epilepsy procedures have not replaced the need for resection, there is hope that these additional surgical options will increase the number of patients who receive treatment for this devastating disorder-particularly individuals who are not candidates for or who have failed resection.
Collapse
|
24
|
Gummadavelli A, Kundishora AJ, Willie JT, Andrews JP, Gerrard JL, Spencer DD, Blumenfeld H. Neurostimulation to improve level of consciousness in patients with epilepsy. Neurosurg Focus 2016; 38:E10. [PMID: 26030698 DOI: 10.3171/2015.3.focus1535] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When drug-resistant epilepsy is poorly localized or surgical resection is contraindicated, current neurostimulation strategies such as deep brain stimulation and vagal nerve stimulation can palliate the frequency or severity of seizures. However, despite medical and neuromodulatory therapy, a significant proportion of patients continue to experience disabling seizures that impair awareness, causing disability and risking injury or sudden unexplained death. We propose a novel strategy in which neuromodulation is used not only to reduce seizures but also to ameliorate impaired consciousness when the patient is in the ictal and postictal states. Improving or preventing alterations in level of consciousness may have an effect on morbidity (e.g., accidents, drownings, falls), risk for death, and quality of life. Recent studies may have elucidated underlying networks and mechanisms of impaired consciousness and yield potential novel targets for neuromodulation. The feasibility, benefits, and pitfalls of potential deep brain stimulation targets are illustrated in human and animal studies involving minimally conscious/vegetative states, movement disorders, depth of anesthesia, sleep-wake regulation, and epilepsy. We review evidence that viable therapeutic targets for impaired consciousness associated with seizures may be provided by key nodes of the consciousness system in the brainstem reticular activating system, hypothalamus, basal ganglia, thalamus, and basal forebrain.
Collapse
Affiliation(s)
| | | | - Jon T Willie
- 2Departments of Neurosurgery and Neurology, Emory University School of Medicine, Atlanta, Georgia
| | | | | | | | - Hal Blumenfeld
- Departments of 1Neurosurgery.,3Neurology, and.,4Neurobiology, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
25
|
Rolston JD, Englot DJ, Wang DD, Garcia PA, Chang EF. Corpus callosotomy versus vagus nerve stimulation for atonic seizures and drop attacks: A systematic review. Epilepsy Behav 2015; 51:13-7. [PMID: 26247311 PMCID: PMC5261864 DOI: 10.1016/j.yebeh.2015.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
Atonic seizures are debilitating and poorly controlled with antiepileptic medications. Two surgical options are primarily used to treat medically refractory atonic seizures: corpus callosotomy (CC) and vagus nerve stimulation (VNS). However, given the uncertainty regarding relative efficacy and surgical complications, the best approach for affected patients is unclear. The PubMed database was queried for all articles describing the treatment of atonic seizures and drop attacks with either corpus callosotomy or VNS. Rates of seizure freedom, >50% reduction in seizure frequency, and complications were compared across the two patient groups. Patients were significantly more likely to achieve a >50% reduction in seizure frequency with CC versus VNS (85.6% versus 57.6%; RR: 1.5; 95% CI: 1.1-2.1). Adverse events were more common with VNS, though typically mild (e.g., 22% hoarseness and voice changes), compared with CC, where the most common complication was the disconnection syndrome (13.2%). Both CC and VNS are well tolerated for the treatment of refractory atonic seizures. Existing studies suggest that CC is potentially more effective than VNS in reducing seizure frequency, though a direct study comparing these techniques is required before a definitive conclusion can be reached.
Collapse
Affiliation(s)
- John D. Rolston
- Department of Neurological Surgery, University of CA, San Francisco, USA,Corresponding author at: Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, Box 0112, San Francisco, CA 94143-0112, USA. Tel.: + 1 415 353 7500. (J.D. Rolston)
| | - Dario J. Englot
- Department of Neurological Surgery, University of CA, San Francisco, USA
| | - Doris D. Wang
- Department of Neurological Surgery, University of CA, San Francisco, USA
| | - Paul A. Garcia
- Department of Neurology, University of CA, San Francisco, USA
| | - Edward F. Chang
- Department of Neurological Surgery, University of CA, San Francisco, USA
| |
Collapse
|
26
|
Lee B, Zubair MN, Marquez YD, Lee DM, Kalayjian LA, Heck CN, Liu CY. A Single-Center Experience with the NeuroPace RNS System: A Review of Techniques and Potential Problems. World Neurosurg 2015; 84:719-26. [DOI: 10.1016/j.wneu.2015.04.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
|
27
|
Desai SA, Rolston JD, McCracken CE, Potter SM, Gross RE. Asynchronous Distributed Multielectrode Microstimulation Reduces Seizures in the Dorsal Tetanus Toxin Model of Temporal Lobe Epilepsy. Brain Stimul 2015; 9:86-100. [PMID: 26607483 DOI: 10.1016/j.brs.2015.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/09/2015] [Accepted: 08/14/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Electrical brain stimulation has shown promise for reducing seizures in drug-resistant epilepsy, but the electrical stimulation parameter space remains largely unexplored. New stimulation parameters, electrode types, and stimulation targets may be more effective in controlling seizures compared to currently available options. HYPOTHESIS We hypothesized that a novel electrical stimulation approach involving distributed multielectrode microstimulation at the epileptic focus would reduce seizure frequency in the tetanus toxin model of temporal lobe epilepsy. METHODS We explored a distributed multielectrode microstimulation (DMM) approach in which electrical stimulation was delivered through 15 33-µm-diameter electrodes implanted at the epileptic focus (dorsal hippocampus) in the rat tetanus toxin model of temporal lobe epilepsy. RESULTS We show that hippocampal theta (6-12 Hz brain oscillations) is decreased in this animal model during awake behaving conditions compared to control animals (p < 10(-4)). DMM with biphasic, theta-range (6-12 Hz/electrode) pulses delivered asynchronously on the 15 microelectrodes was effective in reducing seizures by 46% (p < 0.05). When theta pulses or sinusoidal stimulation was delivered synchronously and continuously on the 15 microelectrodes, or through a single macroelectrode, no effects on seizure frequency were observed. High frequency stimulation (>16.66 Hz/per electrode), in contrast, had a tendency to increase seizure frequency. CONCLUSIONS These results indicate that DMM could be a new effective approach to therapeutic brain stimulation for reducing seizures in epilepsy.
Collapse
Affiliation(s)
- Sharanya Arcot Desai
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA; Laboratory for Neuroengineering, Georgia Institute of Technology, Atlanta, USA
| | - John D Rolston
- Department of Neurological Surgery, University of California, San Francisco, USA
| | | | - Steve M Potter
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA; Laboratory for Neuroengineering, Georgia Institute of Technology, Atlanta, USA
| | - Robert E Gross
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA; Department of Neurosurgery, Emory University School of Medicine, Atlanta, USA.
| |
Collapse
|
28
|
DeGiorgio CM, Miller PR, Harper R, Gornbein J, Schrader L, Soss J, Meymandi S. Fish oil (n-3 fatty acids) in drug resistant epilepsy: a randomised placebo-controlled crossover study. J Neurol Neurosurg Psychiatry 2015; 86:65-70. [PMID: 25201887 DOI: 10.1136/jnnp-2014-307749] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND n-3 fatty acids inhibit neuronal excitability and reduce seizures in animal models. High-dose fish oil has been explored in two randomised trials in drug resistant epilepsy with negative results. We performed a phase II randomised controlled crossover trial of low-dose and high-dose fish oil in participants with drug resistant epilepsy to explore whether low-dose or high-dose fish oil reduces seizures or improves cardiovascular health. METHODS Randomised placebo-controlled trial of low-dose and high-dose fish oil versus placebo (corn oil, linoleic acid) in 24 participants with drug resistant epilepsy. A three-period crossover design was utilised lasting 42 weeks, with three 10-week treatment periods and two 6-week washout periods. All participants were randomised in double-blind fashion to receive placebo, high dose or low dose in different sequences. The primary outcome was per cent change in total seizure frequency. FINDINGS Low-dose fish oil (3 capsules/day, 1080 mg eicosapentaenoic acid+docosahexaenoic acid) was associated with a 33.6% reduction in seizure frequency compared with placebo. Low-dose fish oil was also associated with a mild but significant reduction in blood pressure. High-dose fish oil was no different than placebo in reducing seizures or improving cardiac risk factors. INTERPRETATION In this phase II randomised crossover trial, low-dose fish oil was effective in reducing seizures compared with placebo. The magnitude of improvement is similar to that of recent antiepileptic drug trials in drug resistant epilepsy (DRE). The results indicate that low-dose fish oil may reduce seizures and improve the health of people with epilepsy. These findings justify a large multicentre randomised trial of low-dose fish oil (n-3 fatty acids <1080 mg/day) in drug resistant epilepsy. TRIAL REGISTRATION NUMBER NCT00871377.
Collapse
Affiliation(s)
- Christopher M DeGiorgio
- Departments of Neurology, Cardiology and Neurobiology, UCLA School of Medicine, Los Angeles, California, USA
| | - Patrick R Miller
- Departments of Neurology, Cardiology and Neurobiology, UCLA School of Medicine, Los Angeles, California, USA
| | - Ronald Harper
- Departments of Neurology, Cardiology and Neurobiology, UCLA School of Medicine, Los Angeles, California, USA
| | - Jeffrey Gornbein
- Departments of Neurology, Cardiology and Neurobiology, UCLA School of Medicine, Los Angeles, California, USA
| | - Lara Schrader
- Departments of Neurology, Cardiology and Neurobiology, UCLA School of Medicine, Los Angeles, California, USA
| | - Jason Soss
- Departments of Neurology, Cardiology and Neurobiology, UCLA School of Medicine, Los Angeles, California, USA
| | - Sheba Meymandi
- Departments of Neurology, Cardiology and Neurobiology, UCLA School of Medicine, Los Angeles, California, USA
| |
Collapse
|
29
|
A prospective long-term study of external trigeminal nerve stimulation for drug-resistant epilepsy. Epilepsy Behav 2015; 42:44-7. [PMID: 25499162 DOI: 10.1016/j.yebeh.2014.10.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND External trigeminal nerve stimulation (eTNS) is an emerging noninvasive therapy for drug-resistant epilepsy (DRE). We report the long-term safety and efficacy of eTNS after completion of a phase II randomized controlled clinical trial for drug-resistant epilepsy. METHODS This was a prospective open-label long-term study. Subjects who completed the phase II randomized controlled trial of eTNS for DRE were offered long-term follow-up for 1year. Subjects who were originally randomized to control settings were crossed over to effective device parameters (30s on, 30s off, pulse duration of 250s, frequency of 120Hz). Efficacy was assessed using last observation carried forward or parametric imputation methods for missing data points. Outcomes included change in median seizure frequency, RRATIO, and 50% responder rate. RESULTS Thirty-five of 50 subjects from the acute double-blind randomized controlled study continued in the long-term study. External trigeminal nerve stimulation was well tolerated. No serious device-related adverse events occurred through 12months of long-term treatment. At six and twelve months, the median seizure frequency for the original treatment group decreased by -2.39 seizures per month at 6 months (-27.4%) and -3.03 seizures per month at 12 months (-34.8%), respectively, from the initial baseline (p<0.05, signed-rank test). The 50% responder rates at three, six, and twelve months were 36.8% for the treatment group and 30.6% for all subjects. CONCLUSION The results provide long-term evidence that external trigeminal nerve stimulation is a safe and promising long-term treatment for drug-resistant epilepsy.
Collapse
|
30
|
Gummadavelli A, Motelow JE, Smith N, Zhan Q, Schiff ND, Blumenfeld H. Thalamic stimulation to improve level of consciousness after seizures: evaluation of electrophysiology and behavior. Epilepsia 2014; 56:114-24. [PMID: 25442843 DOI: 10.1111/epi.12872] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Understanding the neural mechanisms that support human consciousness is an important frontier in neuroscience and medicine. We previously developed a rodent model of temporal lobe seizures that recapitulates the human electroencephalography (EEG) signature of ictal and postictal neocortical slow waves associated with behavioral impairments in level of consciousness. The mechanism of slow-wave production in epilepsy may involve suppression of the subcortical arousal systems including the brainstem and intralaminar thalamic nuclei. We hypothesized that intralaminar thalamic stimulation may lead to electrophysiologic and functional rescue from postictal slow waves and behavioral arrest. METHODS We electrically stimulated the central lateral thalamic nucleus (a member of the intralaminar nuclei) under anesthesia and after electrically induced hippocampal seizures in anesthetized and in awake-behaving animal model preparations. RESULTS We demonstrated a proof-of-principle restoration of electrophysiologic and behavioral measures of consciousness by stimulating the intralaminar thalamic nuclei after seizures. We measured decreased cortical slow waves and increased desynchronization and multiunit activity in the cortex with thalamic stimulation following seizures. Functionally, thalamic stimulation produced resumption of exploratory behaviors in the postictal state. SIGNIFICANCE Targeting of nodes in the neural circuitry of consciousness has important medical implications. Impaired consciousness with epilepsy has dangerous consequences including decreased school/work performance, social stigmatization, and impaired airway protection. These data suggest a novel therapeutic approach for restoring consciousness after seizures. If paired with responsive neurostimulation, this may allow rapid implementation to improve level of consciousness in patients with epilepsy.
Collapse
Affiliation(s)
- Abhijeet Gummadavelli
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, U.S.A
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Neurostimulation enables adjustable and reversible modulation of disease symptoms, including those of epilepsy. Two types of brain neuromodulation, comprising anterior thalamic deep brain stimulation and responsive neurostimulation at seizure foci, are supported by Class I evidence of effectiveness, and many other sites in the brain have been targeted in small trials of neurostimulation therapy for seizures. Animal studies have mainly assisted in the identification of potential neurostimulation sites and parameters, but much of the clinical work is only loosely based on fundamental principles derived from the laboratory, and the mechanisms by which brain neurostimulation reduces seizures remain poorly understood. The benefits of stimulation tend to increase over time, with maximal effect seen typically 1-2 years after implantation. Typical reductions of seizure frequency are approximately 40% acutely, and 50-69% after several years. Seizure intensity might also be reduced. Complications from brain neurostimulation are mainly associated with the implantation procedure and hardware, including stimulation-related paraesthesias, stimulation-site infections, electrode mistargeting and, in some patients, triggered seizures or even status epilepticus. Further preclinical and clinical experience with brain stimulation surgery should lead to improved outcomes by increasing our understanding of the optimal surgical candidates, sites and parameters.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room A343, Stanford, CA 94305-5235, USA
| | - Ana Luisa Velasco
- Clinica de Epilepsia, Hospital General de México OD, Calle Dr. Balmis No. 148, Col. Doctores, Cuauhtémoc, 06726 Mexico City, Mexico
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an evidence-based update on the neurostimulation options available for patients with drug-resistant epilepsy in the United States and in European countries. RECENT FINDINGS The field of neurostimulation for epilepsy has grown dramatically since 1997, when vagus nerve stimulation became the first device to be approved for epilepsy by the US Food and Drug Administration (FDA). New data from recently completed randomized controlled trials are available for deep brain stimulation of the anterior thalamus, responsive neurostimulation, and trigeminal nerve stimulation. Although vagus nerve stimulation is the only device currently approved in the United States, deep brain stimulation and responsive neurostimulation devices are awaiting FDA approval. Deep brain stimulation, trigeminal nerve stimulation, and transcutaneous vagus nerve stimulation are now approved for epilepsy in the European Union. In this article, the mechanisms of action, safety, and efficacy of new neurostimulation devices are reviewed, and the key advantages and disadvantages of each are discussed. SUMMARY The exponential growth of the field of neuromodulation for epilepsy is an exciting development; these new devices provide physicians with new options for patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Christopher M DeGiorgio
- Department of Neurology, David Geffen-UCLA School of Medicine, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
33
|
The Effects of Mozart’s Music on Interictal Activity in Epileptic Patients: Systematic Review and Meta-analysis of the Literature. Curr Neurol Neurosci Rep 2013; 14:420. [DOI: 10.1007/s11910-013-0420-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Martlé V, Van Ham L, Raedt R, Vonck K, Boon P, Bhatti S. Non-pharmacological treatment options for refractory epilepsy: an overview of human treatment modalities and their potential utility in dogs. Vet J 2013; 199:332-9. [PMID: 24309438 DOI: 10.1016/j.tvjl.2013.09.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 08/20/2013] [Accepted: 09/20/2013] [Indexed: 01/01/2023]
Abstract
Refractory epilepsy is a common disorder both in humans and dogs and treatment protocols are difficult to optimise. In humans, different non-pharmacological treatment modalities currently available include surgery, the ketogenic diet and neurostimulation. Surgery leads to freedom from seizures in 50-75% of patients, but requires strict patient selection. The ketogenic diet is indicated in severe childhood epilepsies, but efficacy is limited and long-term compliance can be problematic. In the past decade, various types of neurostimulation have emerged as promising treatment modalities for humans with refractory epilepsy. Currently, none of these treatment options are used in routine daily clinical practice to treat dogs with the condition. Since many dogs with poorly controlled seizures do not survive, the search for alternative treatment options for canine refractory epilepsy should be prioritised. This review provides an overview of non-pharmacological treatment options for human refractory epilepsy. The current knowledge and limitations of these treatments in canine refractory epilepsy is also discussed.
Collapse
Affiliation(s)
- Valentine Martlé
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium.
| | - Luc Van Ham
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Robrecht Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Department of Neurology, Ghent University Hospital, Ghent 9000, Belgium
| | - Kristl Vonck
- Laboratory for Clinical and Experimental Neurophysiology, Department of Neurology, Ghent University Hospital, Ghent 9000, Belgium
| | - Paul Boon
- Laboratory for Clinical and Experimental Neurophysiology, Department of Neurology, Ghent University Hospital, Ghent 9000, Belgium
| | - Sofie Bhatti
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| |
Collapse
|
35
|
Owen JA, Barreto E, Cressman JR. Controlling seizure-like events by perturbing ion concentration dynamics with periodic stimulation. PLoS One 2013; 8:e73820. [PMID: 24066075 PMCID: PMC3774776 DOI: 10.1371/journal.pone.0073820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/23/2013] [Indexed: 11/28/2022] Open
Abstract
We investigate the effects of adding periodic stimulation to a generic, conductance-based neuron model that includes ion concentration dynamics of sodium and potassium. Under conditions of high extracellular potassium, the model exhibits repeating, spontaneous, seizure-like bursting events associated with slow modulation of the ion concentrations local to the neuron. We show that for a range of parameter values, depolarizing and hyperpolarizing periodic stimulation pulses (including frequencies lower than 4 Hz) can stop the spontaneous bursting by interacting with the ion concentration dynamics. Stimulation can also control the magnitude of evoked responses to modeled physiological inputs. We develop an understanding of the nonlinear dynamics of this system by a timescale separation procedure that identifies effective nullclines in the ion concentration parameter space. Our results suggest that the manipulation of ion concentration dynamics via external or endogenous stimulation may play an important role in neuronal excitability, seizure dynamics, and control.
Collapse
Affiliation(s)
- Jeremy A. Owen
- King’s College, University of Cambridge, Cambridge, United Kingdom
| | - Ernest Barreto
- School of Physics, Astronomy, and Computational Sciences and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - John R. Cressman
- School of Physics, Astronomy, and Computational Sciences and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| |
Collapse
|
36
|
Responsive neurostimulation for the treatment of medically intractable epilepsy. Brain Res Bull 2013; 97:39-47. [PMID: 23735806 DOI: 10.1016/j.brainresbull.2013.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/10/2013] [Accepted: 05/16/2013] [Indexed: 01/17/2023]
Abstract
With an annual incidence of 50/100,000 people, nearly 1% of the population suffers from epilepsy. Treatment with antiepileptic medication fails to achieve seizure remission in 20-30% of patients. One treatment option for refractory epilepsy patients who would not otherwise be surgical candidates is electrical stimulation of the brain, which is a rapidly evolving and reversible adjunctive therapy. Therapeutic stimulation can involve direct stimulation of the brain nuclei or indirect stimulation of peripheral nerves. There are three stimulation modalities that have class I evidence supporting their uses: vagus nerve stimulation (VNS), stimulation of the anterior nuclei of the thalamus (ANT), and, the most recently developed, responsive neurostimulation (RNS). While the other treatment modalities outlined deliver stimulation regardless of neuronal activity, the RNS administers stimulation only if triggered by seizure activity. The lower doses of stimulation provided by such responsive devices can not only reduce power consumption, but also prevent adverse reactions caused by continuous stimulation, which include the possibility of habituation to long-term stimulation. RNS, as an investigational treatment for medically refractory epilepsy, is currently under review by the FDA. Eventually systems may be developed to enable activation by neurochemical triggers or to wirelessly transmit any information gathered. We review the mechanisms, the current status, the target options, and the prospects of RNS for the treatment of medically intractable epilepsy.
Collapse
|
37
|
Thompson A, Morishita T, Okun MS. DBS and electrical neuro-network modulation to treat neurological disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [PMID: 23206686 DOI: 10.1016/b978-0-12-404706-8.00014-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The use of neuromodulatory techniques in the treatment of neurological disorders is expanding and now includes devices targeting the motor cortex, basal ganglia, spinal cord, peripheral nervous system, and autonomic nervous system. In this chapter, we review and discuss the current and past literature as well as review indications for each of these devices in the ongoing management of many common neurological diseases including chronic pain, Parkinson's disease, tremor, dystonia, and epilepsy. We also discuss and update mechanisms of deep brain stimulation and electrical neuro-network modulation.
Collapse
Affiliation(s)
- Amanda Thompson
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, Florida, USA
| | | | | |
Collapse
|