1
|
Guest JD, Santamaria AJ, Solano JP, de Rivero Vaccari JP, Dietrich WD, Pearse DD, Khan A, Levi AD. Challenges in advancing Schwann cell transplantation for spinal cord injury repair. Cytotherapy 2025; 27:36-50. [PMID: 39387736 DOI: 10.1016/j.jcyt.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND AIMS In this article we aimed to provide an expert synthesis of the current status of Schwann cell (SC)therapeutics and potential steps to increase their clinical utility. METHODS We provide an expert synthesis based on preclinical, clinical and manufacturing experience. RESULTS Schwann cells (SCs) are essential for peripheral nerve regeneration and are of interest in supporting axonal repair after spinal cord injury (SCI). SCs can be isolated and cultivated in tissue culture from adult nerve biopsies or generated from precursors and neural progenitors using specific differentiation protocols leading to expanded quantities. In culture, they undergo dedifferentiation to a state similar to "repair" SCs. The known repertoire of SC functions is increasing beyond axon maintenance, myelination, and axonal regeneration to include immunologic regulation and the release of potentially therapeutic extracellular vesicles. Recently, autologous human SC cultures purified under cGMP conditions have been tested in both nerve repair and subacute and chronic SCI clinical trials. Although the effects of SCs to support nerve regeneration are indisputable, their efficacy for clinical SCI has been limited according to the outcomes examined. CONCLUSIONS This review discusses the current limitations of transplanted SCs within the damaged spinal cord environment. Limitations include limited post-transplant cell survival, the inability of SCs to migrate within astrocytic parenchyma, and restricted axonal regeneration out of SC-rich graft regions. We describe steps to amplify the survival and integration of transplanted SCs and to expand the repertoire of uses of SCs, including SC-derived extracellular vesicles. The relative merits of transplanting autologous versus allogeneic SCs and the role that endogenous SCs play in spinal cord repair are described. Finally, we briefly describe the issues requiring solutions to scale up SC manufacturing for commercial use.
Collapse
Affiliation(s)
- James D Guest
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Andrea J Santamaria
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan P Solano
- Pediatric Critical Care, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan P de Rivero Vaccari
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - William D Dietrich
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Aisha Khan
- The Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Allan D Levi
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
2
|
Yang Z, Liang Z, Rao J, Xie H, Zhou M, Xu X, Lin Y, Lin F, Wang C, Chen C. Hypoxic-preconditioned mesenchymal stem cell-derived small extracellular vesicles promote the recovery of spinal cord injury by affecting the phenotype of astrocytes through the miR-21/JAK2/STAT3 pathway. CNS Neurosci Ther 2024; 30:e14428. [PMID: 37641874 PMCID: PMC10915983 DOI: 10.1111/cns.14428] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Secondary injury after spinal cord injury (SCI) is a major obstacle to their neurological recovery. Among them, changes in astrocyte phenotype regulate secondary injury dominated by neuroinflammation. Hypoxia-preconditioned mesenchymal stem cells (MSCs)-derived extracellular vesicle (H-EV) plays a multifaceted role in secondary injury by interacting with cellular components and signaling pathways. They possess anti-inflammatory properties, regulate oxidative stress, and modulate apoptotic pathways, promoting cell survival and reducing neuronal loss. Given the unique aspects of secondary injury, H-EV shows promise as a therapeutic approach to mitigate its devastating consequences. Our study aimed to determine whether H-EV could promote SCI repair by altering the phenotype of astrocytes. METHODS Rat bone marrow MSCs (BMSCs) and EVs secreted by them were extracted and characterized. After the SCI model was successfully constructed, EV and H-EV were administered into the tail vein of the rats, respectively, and then their motor function was evaluated by the Basso-Beattie-Bresnahan (BBB) score, Catwalk footprint analysis, and electrophysiological monitoring. The lesion size of the spinal cord was evaluated by hematoxylin-eosin (HE) staining. The key point was to use glial fibrillary acidic protein (GFAP) as a marker of reactive astrocytes to co-localize with A1-type marker complement C3 and A2-type marker S100A10, respectively, to observe phenotypic changes in astrocytes within tissues. The western blot (WB) of the spinal cord was also used to verify the results. We also compared the efficacy differences in apoptosis and inflammatory responses using terminal deoxynucleotidyl transferase dUTP terminal labeling (TUNEL) assay, WB, and enzyme-linked immunosorbent assay (ELISA). Experiments in vitro were also performed to verify the results. Subsequently, we performed microRNA (miRNA) sequencing analysis of EV and H-EV and carried out a series of knockdown and overexpression experiments to further validate the mechanism by which miRNA in H-EV plays a role in promoting astrocyte phenotypic changes, as well as the regulated signaling pathways, using WB both in vivo and in vitro. RESULTS Our findings suggest that H-EV is more effective than EV in the recovery of motor function, anti-apoptosis, and anti-inflammatory effects after SCI, both in vivo and in vitro. More importantly, H-EV promoted the conversion of A1 astrocytes into A2 astrocytes more than EV. Moreover, miR-21, which was found to be highly expressed in H-EV by miRNA sequencing results, was also demonstrated to influence changes in astrocyte phenotype through a series of knockdown and overexpression experiments. At the same time, we also found that H-EV might affect astrocyte phenotypic alterations by delivering miR-21 targeting the JAK2/STAT3 signaling pathway. CONCLUSION H-EV exerts neuroprotective effects by delivering miR-21 to promote astrocyte transformation from the A1 phenotype to the A2 phenotype, providing new targets and ideas for the treatment of SCI.
Collapse
Affiliation(s)
- Zhelun Yang
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Zeyan Liang
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Jian Rao
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Haishu Xie
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Maochao Zhou
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Xiongjie Xu
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Yike Lin
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Fabin Lin
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Chunhua Wang
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Chunmei Chen
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| |
Collapse
|
3
|
Yang Z, Liang Z, Rao J, Lin F, Lin Y, Xu X, Wang C, Chen C. Mesenchymal stem cell-derived extracellular vesicles therapy in traumatic central nervous system diseases: a systematic review and meta-analysis. Neural Regen Res 2023; 18:2406-2412. [PMID: 37282470 PMCID: PMC10360088 DOI: 10.4103/1673-5374.371376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Although there are challenges in treating traumatic central nervous system diseases, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have recently proven to be a promising non-cellular therapy. We comprehensively evaluated the efficacy of mesenchymal stem cell-derived extracellular vesicles in traumatic central nervous system diseases in this meta-analysis based on preclinical studies. Our meta-analysis was registered at PROSPERO (CRD42022327904, May 24, 2022). To fully retrieve the most relevant articles, the following databases were thoroughly searched: PubMed, Web of Science, The Cochrane Library, and Ovid-Embase (up to April 1, 2022). The included studies were preclinical studies of mesenchymal stem cell-derived extracellular vesicles for traumatic central nervous system diseases. The Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE)'s risk of bias tool was used to examine the risk of publication bias in animal studies. After screening 2347 studies, 60 studies were included in this study. A meta-analysis was conducted for spinal cord injury (n = 52) and traumatic brain injury (n = 8). The results indicated that mesenchymal stem cell-derived extracellular vesicles treatment prominently promoted motor function recovery in spinal cord injury animals, including rat Basso, Beattie and Bresnahan locomotor rating scale scores (standardized mean difference [SMD]: 2.36, 95% confidence interval [CI]: 1.96-2.76, P < 0.01, I2 = 71%) and mouse Basso Mouse Scale scores (SMD = 2.31, 95% CI: 1.57-3.04, P = 0.01, I2 = 60%) compared with controls. Further, mesenchymal stem cell-derived extracellular vesicles treatment significantly promoted neurological recovery in traumatic brain injury animals, including the modified Neurological Severity Score (SMD = -4.48, 95% CI: -6.12 to -2.84, P < 0.01, I2 = 79%) and Foot Fault Test (SMD = -3.26, 95% CI: -4.09 to -2.42, P = 0.28, I2 = 21%) compared with controls. Subgroup analyses showed that characteristics may be related to the therapeutic effect of mesenchymal stem cell-derived extracellular vesicles. For Basso, Beattie and Bresnahan locomotor rating scale scores, the efficacy of allogeneic mesenchymal stem cell-derived extracellular vesicles was higher than that of xenogeneic mesenchymal stem cell-derived extracellular vesicles (allogeneic: SMD = 2.54, 95% CI: 2.05-3.02, P = 0.0116, I2 = 65.5%; xenogeneic: SMD: 1.78, 95%CI: 1.1-2.45, P = 0.0116, I2 = 74.6%). Mesenchymal stem cell-derived extracellular vesicles separated by ultrafiltration centrifugation combined with density gradient ultracentrifugation (SMD = 3.58, 95% CI: 2.62-4.53, P < 0.0001, I2 = 31%) may be more effective than other EV isolation methods. For mouse Basso Mouse Scale scores, placenta-derived mesenchymal stem cell-derived extracellular vesicles worked better than bone mesenchymal stem cell-derived extracellular vesicles (placenta: SMD = 5.25, 95% CI: 2.45-8.06, P = 0.0421, I2 = 0%; bone marrow: SMD = 1.82, 95% CI: 1.23-2.41, P = 0.0421, I2 = 0%). For modified Neurological Severity Score, bone marrow-derived MSC-EVs worked better than adipose-derived MSC-EVs (bone marrow: SMD = -4.86, 95% CI: -6.66 to -3.06, P = 0.0306, I2 = 81%; adipose: SMD = -2.37, 95% CI: -3.73 to -1.01, P = 0.0306, I2 = 0%). Intravenous administration (SMD = -5.47, 95% CI: -6.98 to -3.97, P = 0.0002, I2 = 53.3%) and dose of administration equal to 100 μg (SMD = -5.47, 95% CI: -6.98 to -3.97, P < 0.0001, I2 = 53.3%) showed better results than other administration routes and doses. The heterogeneity of studies was small, and sensitivity analysis also indicated stable results. Last, the methodological quality of all trials was mostly satisfactory. In conclusion, in the treatment of traumatic central nervous system diseases, mesenchymal stem cell-derived extracellular vesicles may play a crucial role in promoting motor function recovery.
Collapse
Affiliation(s)
- Zhelun Yang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Zeyan Liang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Jian Rao
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Fabin Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Yike Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Xiongjie Xu
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Chunhua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Chunmei Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
4
|
Yang ZL, Rao J, Lin FB, Liang ZY, Xu XJ, Lin YK, Chen XY, Wang CH, Chen CM. The Role of Exosomes and Exosomal Noncoding RNAs From Different Cell Sources in Spinal Cord Injury. Front Cell Neurosci 2022; 16:882306. [PMID: 35518647 PMCID: PMC9062236 DOI: 10.3389/fncel.2022.882306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) not only affects the quality of life of patients but also poses a heavy burden on their families. Therefore, it is essential to prevent the occurrence of SCI; for unpreventable SCI, it is critical to develop effective treatments. In recent years, various major breakthroughs have been made in cell therapy to protect and regenerate the damaged spinal cord via various mechanisms such as immune regulation, paracrine signaling, extracellular matrix (ECM) modification, and lost cell replacement. Nevertheless, many recent studies have shown that the cell therapy has many disadvantages, such as tumorigenicity, low survival rate, and immune rejection. Because of these disadvantages, the clinical application of cell therapy is limited. In recent years, the role of exosomes in various diseases and their therapeutic potential have attracted much attention. The same is true for exosomal noncoding RNAs (ncRNAs), which do not encode proteins but affect transcriptional and translational processes by targeting specific mRNAs. This review focuses on the mechanism of action of exosomes obtained from different cell sources in the treatment of SCI and the regulatory role and therapeutic potential of exosomal ncRNAs. This review also discusses the future opportunities and challenges, proposing that exosomes and exosomal ncRNAs might be promising tools for the treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chun-Hua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chun-Mei Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
5
|
Mesenchymal Stem Cells in the Treatment of Human Spinal Cord Injury: The Effect on Individual Values of pNF-H, GFAP, S100 Proteins and Selected Growth Factors, Cytokines and Chemokines. Curr Issues Mol Biol 2022; 44:578-596. [PMID: 35723326 PMCID: PMC8929137 DOI: 10.3390/cimb44020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/21/2022] Open
Abstract
At present, there is no effective way to treat the consequences of spinal cord injury (SCI). SCI leads to the death of neural and glial cells and widespread neuroinflammation with persisting for several weeks after the injury. Mesenchymal stem cells (MSCs) therapy is one of the most promising approaches in the treatment of this injury. The aim of this study was to characterize the expression profile of multiple cytokines, chemokines, growth factors, and so-called neuromarkers in the serum of an SCI patient treated with autologous bone marrow-derived MSCs (BM-MSCs). SCI resulted in a significant increase in the levels of neuromarkers and proteins involved in the inflammatory process. BM-MSCs administration resulted in significant changes in the levels of neuromarkers (S100, GFAP, and pNF-H) as well as changes in the expression of proteins and growth factors involved in the inflammatory response following SCI in the serum of a patient with traumatic SCI. Our preliminary results encouraged that BM-MSCs with their neuroprotective and immunomodulatory effects could affect the repair process after injury.
Collapse
|
6
|
Xia Q, Yuan H, Wang T, Xiong L, Xin Z. Application and progress of three-dimensional bioprinting in spinal cord injury. IBRAIN 2021; 7:325-336. [PMID: 37786558 PMCID: PMC10528796 DOI: 10.1002/ibra.12005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/05/2023]
Abstract
Spinal cord injury (SCI) is a central nervous system disorder that can lead to sensory and motor dysfunction, which can seriously increase pressure and economic burden on families and societies. The current SCI treatment is mainly to stabilize the spine, prevent secondary damage, and control inflammation. Drug treatment is limited to early, large-scale use of steroids to reduce the effects of edema after SCI. In short, there is no direct treatment for SCI. Recent 3D bioprinting development provides a new solution for SCI treatment: a series of spinal cord bionic scaffolds are being developed to improve spinal cord function after injury. This paper reviews the pathophysiological characteristics of SCI, current treatment methods, and the progress of 3D bioprinting in SCI. Finally, its challenges and prospects in SCI treatment are summarized.
Collapse
Affiliation(s)
| | - Hao Yuan
- Department of Orthopaedic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Institute of Neuroscience and Animal Zoology DepartmentKunming Medical UniversityKunmingYunnanChina
| | - Ting‐Hua Wang
- Institute of Neuroscience and Animal Zoology DepartmentKunming Medical UniversityKunmingYunnanChina
- Jinzhou Medical UniversityJinzhouLiaoningChina
- Department of Anesthesiology, Translational Neuroscience Center, Institute of Neurological Disease, West China HospitalSichuan UniversityChengduSichuanChina
| | - Liu‐Lin Xiong
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhi‐Jun Xin
- Department of Orthopaedic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
7
|
Mehrotra P, Tseropoulos G, Bronner ME, Andreadis ST. Adult tissue-derived neural crest-like stem cells: Sources, regulatory networks, and translational potential. Stem Cells Transl Med 2019; 9:328-341. [PMID: 31738018 PMCID: PMC7031649 DOI: 10.1002/sctm.19-0173] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
Neural crest (NC) cells are a multipotent stem cell population that give rise to a diverse array of cell types in the body, including peripheral neurons, Schwann cells (SC), craniofacial cartilage and bone, smooth muscle cells, and melanocytes. NC formation and differentiation into specific lineages takes place in response to a set of highly regulated signaling and transcriptional events within the neural plate border. Premigratory NC cells initially are contained within the dorsal neural tube from which they subsequently emigrate, migrating to often distant sites in the periphery. Following their migration and differentiation, some NC‐like cells persist in adult tissues in a nascent multipotent state, making them potential candidates for autologous cell therapy. This review discusses the gene regulatory network responsible for NC development and maintenance of multipotency. We summarize the genes and signaling pathways that have been implicated in the differentiation of a postmigratory NC into mature myelinating SC. We elaborate on the signals and transcription factors involved in the acquisition of immature SC fate, axonal sorting of unmyelinated neuronal axons, and finally the path toward mature myelinating SC, which envelope axons within myelin sheaths, facilitating electrical signal propagation. The gene regulatory events guiding development of SC in vivo provides insights into means for differentiating NC‐like cells from adult human tissues into functional SC, which have the potential to provide autologous cell sources for the treatment of demyelinating and neurodegenerative disorders.
Collapse
Affiliation(s)
- Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York.,Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York.,Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| |
Collapse
|
8
|
Sugiyama K, Nagashima K, Miwa T, Shimizu Y, Kawaguchi T, Iida K, Tamaoki N, Hatakeyama D, Aoki H, Abe C, Morita H, Kunisada T, Shibata T, Fukumitsu H, Tezuka KI. FGF2-responsive genes in human dental pulp cells assessed using a rat spinal cord injury model. J Bone Miner Metab 2019; 37:467-474. [PMID: 30187276 DOI: 10.1007/s00774-018-0954-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
Abstract
The central nervous system in adult mammals does not heal spontaneously after spinal cord injury (SCI). However, SCI treatment has been improved recently following the development of cell transplantation therapy. We recently reported that fibroblast growth factor (FGF) 2-pretreated human dental pulp cells (hDPCs) can improve recovery in a rat model of SCI. This study aimed to investigate mechanisms underlying the curative effect of SCI enhanced via FGF2 pretreatment; we selected three hDPC lines upon screening for the presence of mesenchymal stem cell markers and of their functionality in a rat model of SCI, as assessed using the Basso, Beattie, and Bresnahan score of locomotor functional scale, electrophysiological tests, and morphological analyses. We identified FGF2-responsive genes via gene expression analyses in these lines. FGF2 treatment upregulated GABRB1, MMP1, and DRD2, which suggested to contribute to SCI or central the nervous system. In an expanded screening of additional lines, GABRB1 displayed rather unique and interesting behavior; two lines with the lowest sensitivity of GABRB1 to FGF2 treatment displayed an extremely minor effect in the SCI model. These findings provide insights into the role of FGF2-responsive genes, especially GABRB1, in recovery from SCI, using hDPCs treated with FGF2.
Collapse
Affiliation(s)
- Ken Sugiyama
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Kosuke Nagashima
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, Gifu, 501-1196, Japan
| | - Takahiro Miwa
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, Gifu, 501-1196, Japan
| | - Yuta Shimizu
- Department of Periodontology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Tomoko Kawaguchi
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Kazuki Iida
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Naritaka Tamaoki
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Daijiro Hatakeyama
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Toshiyuki Shibata
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Hidefumi Fukumitsu
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, Gifu, 501-1196, Japan
| | - Ken-Ichi Tezuka
- Department of Tissue and Organ Development, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.
- Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu, Japan.
| |
Collapse
|
9
|
Zammit V, Brincat MR, Cassar V, Muscat-Baron Y, Ayers D, Baron B. MiRNA influences in mesenchymal stem cell commitment to neuroblast lineage development. Noncoding RNA Res 2018; 3:232-242. [PMID: 30533571 PMCID: PMC6257889 DOI: 10.1016/j.ncrna.2018.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal Stem Cells (MSCs) are widely used in therapeutic applications. Their plasticity and predisposition to differentiate into a variety of cell types, including those of the neuronal lineage, makes them ideal to study whether a selection of miRNAs may direct the differentiation of MSCs into neuroblasts or neuroblastoma to mature neurons. Following a short-listing, miR-107, 124 and 381 were selected as the most promising candidates for this differentiation. MSCs differentiated into cells of the neural lineage (Conditioned Cells) upon addition of conditioned medium (rich in microvesicles containing miRNAs) obtained from cultured SH-SY5Y neuroblastoma cells. Characterisation of stemness (including SOX2, OCT4, Nanog and HCG) and neural markers (including Nestin, MASH1, TUBB3 and NeuN1) provided insight regarding the neuronal state of each cell type. This was followed by transfection of the three miRNA antagonists and mimics, and quantification of their respective target genes. MiRNA target gene expression following transfection of MSCs with miRNA inhibitors and mimics demonstrated that these three miRNAs were not sufficient to induce differentiation. In conditioned cells the marginal changes in the miRNA target expression levels reflected potential for the modulation of intermediate neural progenitors and immature neuron cell types. Transfection of various combinations of miRNA inhibitors and/or mimics revealed more promise. Undoubtedly, a mix of biomolecules is being released by the SH-SY5Y in culture that induce MSCs to differentiate. Screening for those biomolecules acting synergistically with specific miRNAs will allow further combinatorial testing to elucidate the role of miRNA modulation.
Collapse
Affiliation(s)
- Vanessa Zammit
- National Blood Transfusion Service, St. Luke's Hospital, G'Mangia, PTA1010, Malta.,School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | - Mark R Brincat
- Dept. of Obstetrics & Gynaecology, Mater Dei Hospital, Msida, MSD2090, Malta
| | - Viktor Cassar
- Dept. of Obstetrics & Gynaecology, Mater Dei Hospital, Msida, MSD2090, Malta
| | - Yves Muscat-Baron
- Dept. of Obstetrics & Gynaecology, Mater Dei Hospital, Msida, MSD2090, Malta
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta.,School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta
| |
Collapse
|
10
|
Santamaría AJ, Benavides FD, DiFede DL, Khan A, Pujol MV, Dietrich WD, Marttos A, Green BA, Hare JM, Guest JD. Clinical and Neurophysiological Changes after Targeted Intrathecal Injections of Bone Marrow Stem Cells in a C3 Tetraplegic Subject. J Neurotrauma 2018; 36:500-516. [PMID: 29790404 DOI: 10.1089/neu.2018.5716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
High-level quadriplegia is a devastating condition with limited treatment options. Bone marrow derived stem cells (BMSCs) are reported to have immunomodulatory and neurotrophic effects in spinal cord injury (SCI). We report a subject with complete C2 SCI who received three anatomically targeted intrathecal infusions of BMSCs under a single-patient expanded access investigational new drug (IND). She underwent intensive physical therapy and was followed for >2 years. At end-point, her American Spinal Injury Association Impairment Scale (AIS) grade improved from A to B, and she recovered focal pressure touch sensation over several body areas. We conducted serial neurophysiological testing to monitor changes in residual connectivity. Motor, sensory, and autonomic system testing included motor evoked potentials (MEPs), somatosensory evoked potentials (SSEPs), electromyography (EMG) recordings, F waves, galvanic skin responses, and tilt-table responses. The quality and magnitude of voluntary EMG activations increased over time, but remained below the threshold of clinically obvious movement. Unexpectedly, at 14 months post-injury, deep inspiratory maneuvers triggered respiratory-like EMG bursting in the biceps and several other muscles. This finding means that connections between respiratory neurons and motor neurons were newly established, or unmasked. We also report serial analysis of MRI, International Standards for Neurological Classification of SCI (ISNCSCI), pulmonary function, pain scores, cerebrospinal fluid (CSF) cytokines, and bladder assessment. As a single case, the linkage of the clinical and neurophysiological changes to either natural history or to the BMSC infusions cannot be resolved. Nevertheless, such detailed neurophysiological assessment of high cervical SCI patients is rarely performed. Our findings indicate that electrophysiology studies are sensitive to define both residual connectivity and new plasticity.
Collapse
Affiliation(s)
- Andrea J Santamaría
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | - Francisco D Benavides
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | - Darcy L DiFede
- 2 Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Aisha Khan
- 2 Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Marietsy V Pujol
- 2 Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - W Dalton Dietrich
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida.,3 Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Antonio Marttos
- 4 Surgical Critical Care, University of Miami, Miller School of Medicine, Miami, Florida
| | - Barth A Green
- 3 Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- 2 Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - James D Guest
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida.,3 Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
11
|
Derakhshanrad N, Saberi H, Yekaninejad MS, Joghataei MT, Sheikhrezaei A. Granulocyte-colony stimulating factor administration for neurological improvement in patients with postrehabilitation chronic incomplete traumatic spinal cord injuries: a double-blind randomized controlled clinical trial. J Neurosurg Spine 2018; 29:97-107. [DOI: 10.3171/2017.11.spine17769] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVEGranulocyte-colony stimulating factor (G-CSF) is a major growth factor for activation and differentiation of granulocyte colonies in the bone marrow. This cytokine has been widely and safely employed in different conditions over many years. The purpose of this study was to investigate the efficacy of G-CSF administration for traumatic spinal cord injury (TSCI).METHODSThis double-blind parallel randomized, placebo-controlled, clinical trial, a phase III study, was performed from June 2013 to June 2016 in the Brain and Spinal Cord Injury Research (BASIR) center at Tehran University of Medical Sciences (TUMS). It included 120 patients with incomplete chronic TSCI, American Spinal Injury Association (ASIA) Impairment Scale (AIS) B, C, or D, of at least 6 months’ duration. Sixty patients were allocated into the treatment group and 60 patients into the control group. All the patients had completed an outpatient rehabilitation program in the postacute period and were in a neurological and functional plateau. Patients were assessed with the ASIA grading system, the Spinal Cord Independence Measure (SCIM-III), and the International Association of Neurorestoratology-Spinal Cord Injury Functional Rating Scale (IANR-SCIFRS) just before intervention and at 1, 3, and 6 months after 7 subcutaneous administrations of 300 μg/day of G-CSF in the treatment group and placebo in the control group (administered once per day over the course of 1 week). Randomization was performed with randomized block design, and the patients and evaluators were blinded regarding the treatment groups. One patient did not receive the entire allocated intervention and 5 patients were lost to follow-up. Thus data from 114 patients were included in the analysis.RESULTSOne hundred twenty patients were randomized and allocated into the study groups. Among them, 56 patients (93.3%) in the G-CSF group and 58 patients (96.6%) in the placebo group completed the study protocol. After 6 months of follow-up, AIS in the placebo group remained unchanged, whereas in the G-CSF group, 1 patient improved from AIS B to C, and 4 patients improved from AIS C to D. The mean (± SE) improvement in ASIA motor score in the G-CSF group was 5.5 ± 0.62, which was significantly more than in the placebo group (0.77 ± 0.20) (p < 0.001). The mean light touch and pinprick sensory scores, respectively, increased by 6.1 ± 1.1 and 8.7 ± 1.5 in the G-CSF group and by 1.3 ± 0.52 and 0.89 ± 0.44 scores in the placebo group (p < 0.001). Evaluation of functional improvement by the IANR-SCIFRS instrument revealed significantly more improvement in the G-CSF group (3.5 ± 0.37) than in the placebo group (0.41 ± 0.12) (p < 0.001). Also, a significant difference was observed in functional improvement between the 2 groups as measured by SCIM-III instrument (7.5 ± 0.95 vs 2.1 ± 0.51, p < 0.001).CONCLUSIONSAdministration of G-CSF for incomplete chronic spinal cord injuries is associated with significant motor, sensory, and functional improvement.Clinical trial registration no.: IRCT201108297441N1 (www.irct.ir)
Collapse
Affiliation(s)
- Nazi Derakhshanrad
- 1Brain and Spinal Cord Injury Research Center (BASIR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences
| | - Hooshang Saberi
- 1Brain and Spinal Cord Injury Research Center (BASIR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences
- 2Department of Neurosurgery, Imam Khomeini Hospital, Tehran University of Medical Sciences
| | - Mir Saeed Yekaninejad
- 3Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences; and
| | - Mohammad Taghi Joghataei
- 4Cellular and Molecular Research Center and
- 5Neuroscience Department, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Sheikhrezaei
- 2Department of Neurosurgery, Imam Khomeini Hospital, Tehran University of Medical Sciences
| |
Collapse
|
12
|
Luzzi S, Crovace AM, Lacitignola L, Valentini V, Francioso E, Rossi G, Invernici G, Galzio RJ, Crovace A. Engraftment, neuroglial transdifferentiation and behavioral recovery after complete spinal cord transection in rats. Surg Neurol Int 2018; 9:19. [PMID: 29497572 PMCID: PMC5806420 DOI: 10.4103/sni.sni_369_17] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/13/2017] [Indexed: 12/26/2022] Open
Abstract
Background: Proof of the efficacy and safety of a xenogeneic mesenchymal stem cell (MSCs) transplant for spinal cord injury (SCI) may theoretically widen the spectrum of possible grafts for neuroregeneration. Methods: Twenty rats were submitted to complete spinal cord transection. Ovine bone marrow MSCs, retrovirally transfected with red fluorescent protein and not previously induced for neuroglial differentiation, were applied in 10 study rats (MSCG). Fibrin glue was injected in 10 control rats (FGG). All rats were evaluated on a weekly basis and scored using the Basso–Beattie–Bresnahan (BBB) locomotor scale for 10 weeks, when the collected data were statistically analyzed. The spinal cords were then harvested and analyzed with light microscopy, immunohistochemistry, and immunofluorescence. Results: Ovine MSCs culture showed positivity for Nestin. MSCG had a significant and durable recovery of motor functions (P <.001). Red fluorescence was found at the injury sites in MSCG. Positivity for Nestin, tubulin βIII, NG2 glia, neuron-specific enolase, vimentin, and 200 kD neurofilament were also found at the same sites. Conclusions: Xenogeneic ovine bone marrow MSCs proved capable of engrafting into the injured rat spinal cord. Transdifferentiation into a neuroglial phenotype was able to support partial functional recovery.
Collapse
Affiliation(s)
- Sabino Luzzi
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy.,Department of Neurosurgery, San Salvatore City Hospital, L'Aquila, Italy
| | | | - Luca Lacitignola
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy
| | - Valerio Valentini
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy
| | - Edda Francioso
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy
| | - Giacomo Rossi
- Animal Pathology Section, School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Gloria Invernici
- Department of Neurology, Public Health and Disability, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Juan Galzio
- Department of Neurosurgery, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Antonio Crovace
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
13
|
Novikova LN, Kolar MK, Kingham PJ, Ullrich A, Oberhoffner S, Renardy M, Doser M, Müller E, Wiberg M, Novikov LN. Trimethylene carbonate-caprolactone conduit with poly-p-dioxanone microfilaments to promote regeneration after spinal cord injury. Acta Biomater 2018; 66:177-191. [PMID: 29174588 DOI: 10.1016/j.actbio.2017.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 11/25/2022]
Abstract
Spinal cord injury (SCI) is often associated with scarring and cavity formation and therefore bridging strategies are essential to provide a physical substrate for axonal regeneration. In this study we investigated the effects of a biodegradable conduit made from trimethylene carbonate and ε-caprolactone (TC) containing poly-p-dioxanone microfilaments (PDO) with longitudinal grooves on regeneration after SCI in adult rats. In vitro studies demonstrated that different cell types including astrocytes, meningeal fibroblasts, Schwann cells and adult sensory dorsal root ganglia neurons can grow on the TC and PDO material. For in vivo experiments, the TC/PDO conduit was implanted into a small 2-3 mm long cavity in the C3-C4 cervical segments immediately after injury (acute SCI) or at 2-5 months after initial surgery (chronic SCI). At 8 weeks after implantation into acute SCI, numerous 5HT-positive descending raphaespinal axons and sensory CGRP-positive axons regenerated across the conduit and were often associated with PDO microfilaments and migrated host cells. Implantation into chronically injured SCI induced regeneration mainly of the sensory CGRP-positive axons. Although the conduit had no effect on the density of OX42-positive microglial cells when compared with SCI control, the activity of GFAP-positive astrocytes was reduced. The results suggest that a TC/PDO conduit can support axonal regeneration after acute and chronic SCI even without addition of exogenous glial or stem cells. STATEMENT OF SIGNIFICANCE Biosynthetic conduits can support regeneration after spinal cord injury but often require addition of cell therapy and neurotrophic factors. This study demonstrates that biodegradable conduits made from trimethylene carbonate and ε-caprolactone with poly-p-dioxanone microfilaments alone can promote migration of different host cells and stimulate axonal regeneration after implantation into acute and chronic spinal cord injury. These results can be used to develop biosynthetic conduits for future clinical applications.
Collapse
|
14
|
De la Rosa MB, Kozik EM, Sakaguchi DS. Adult Stem Cell-Based Strategies for Peripheral Nerve Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:41-71. [PMID: 30151648 DOI: 10.1007/5584_2018_254] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peripheral nerve injuries (PNI) occur as the result of sudden trauma and can lead to life-long disability, reduced quality of life, and heavy economic and social burdens. Although the peripheral nervous system (PNS) has the intrinsic capacity to regenerate and regrow axons to a certain extent, current treatments frequently show incomplete recovery with poor functional outcomes, particularly for large PNI. Many surgical procedures are available to halt the propagation of nerve damage, and the choice of a procedure depends on the extent of the injury. In particular, recovery from large PNI gaps is difficult to achieve without any therapeutic intervention or some form of tissue/cell-based therapy. Autologous nerve grafting, considered the "gold standard" is often implemented for treatment of gap formation type PNI. Although these surgical procedures provide many benefits, there are still considerable limitations associated with such procedures as donor site morbidity, neuroma formation, fascicle mismatch, and scarring. To overcome such restrictions, researchers have explored various avenues to improve post-surgical outcomes. The most commonly studied methods include: cell transplantation, growth factor delivery to stimulate regenerating axons and implanting nerve guidance conduits containing replacement cells at the site of injury. Replacement cells which offer maximum benefits for the treatment of PNI, are Schwann cells (SCs), which are the peripheral glial cells and in part responsible for clearing out debris from the site of injury. Additionally, they release growth factors to stimulate myelination and axonal regeneration. Both primary SCs and genetically modified SCs enhance nerve regeneration in animal models; however, there is no good source for extracting SCs and the only method to obtain SCs is by sacrificing a healthy nerve. To overcome such challenges, various cell types have been investigated and reported to enhance nerve regeneration.In this review, we have focused on cell-based strategies aimed to enhance peripheral nerve regeneration, in particular the use of mesenchymal stem cells (MSCs). Mesenchymal stem cells are preferred due to benefits such as autologous transplantation, routine isolation procedures, and paracrine and immunomodulatory properties. Mesenchymal stem cells have been transplanted at the site of injury either directly in their native form (undifferentiated) or in a SC-like form (transdifferentiated) and have been shown to significantly enhance nerve regeneration. In addition to transdifferentiated MSCs, some studies have also transplanted ex-vivo genetically modified MSCs that hypersecrete growth factors to improve neuroregeneration.
Collapse
Affiliation(s)
- Metzere Bierlein De la Rosa
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.,Veterinary Specialty Center, Buffalo Grove, IL, USA
| | - Emily M Kozik
- Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Donald S Sakaguchi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA. .,Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA. .,Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA. .,Neuroscience Program, Iowa State University, Ames, IA, USA.
| |
Collapse
|
15
|
Theodore N, Hlubek R, Danielson J, Neff K, Vaickus L, Ulich TR, Ropper AE. First Human Implantation of a Bioresorbable Polymer Scaffold for Acute Traumatic Spinal Cord Injury: A Clinical Pilot Study for Safety and Feasibility. Neurosurgery 2017; 79:E305-12. [PMID: 27309344 DOI: 10.1227/neu.0000000000001283] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND IMPORTANCE A porous bioresorbable polymer scaffold has previously been tested in preclinical animal models of spinal cord contusion injury to promote appositional healing, spare white matter, decrease posttraumatic cysts, and normalize intraparenchymal tissue pressure. This is the first report of its human implantation in a spinal cord injury patient during a pilot study testing the safety and feasibility of this technique (ClinicalTrials.gov Identifier: NCT02138110). CLINICAL PRESENTATION A 25-year-old man had a T11-12 fracture dislocation sustained in a motocross accident that resulted in a T11 American Spinal Injury Association Impairment Scale (AIS) grade A traumatic spinal cord injury. He was treated with acute surgical decompression and spinal fixation with fusion, and enrolled in the spinal scaffold study. A 2 × 10 mm bioresorbable scaffold was placed in the spinal cord parenchyma at T12. The scaffold was implanted directly into the traumatic cavity within the spinal cord through a dorsal root entry zone myelotomy at the caudal extent of the contused area. By 3 months, his neurological examination improved to an L1 AIS grade C incomplete injury. At 6-month postoperative follow-up, there were no procedural complications or apparent safety issues related to the scaffold implantation. CONCLUSION Although longer-term follow-up and investigation are required, this case demonstrates that a polymer scaffold can be safely implanted into an acutely contused spinal cord. This is the first human surgical implantation, and future outcomes of other patients in this clinical trial will better elucidate the safety and possible efficacy profile of the scaffold. ABBREVIATIONS AIS, American Spinal Injury Association Impairment ScaleSCI, spinal cord injurytSCI, traumatic spinal cord injury.
Collapse
Affiliation(s)
- Nicholas Theodore
- *Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; ‡InVivo Therapeutics Corporation, Cambridge, Massachusetts; §akta Pharmaceutical Development, LLC, Boston, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
16
|
Nagashima K, Miwa T, Soumiya H, Ushiro D, Takeda-Kawaguchi T, Tamaoki N, Ishiguro S, Sato Y, Miyamoto K, Ohno T, Osawa M, Kunisada T, Shibata T, Tezuka KI, Furukawa S, Fukumitsu H. Priming with FGF2 stimulates human dental pulp cells to promote axonal regeneration and locomotor function recovery after spinal cord injury. Sci Rep 2017; 7:13500. [PMID: 29044129 PMCID: PMC5647367 DOI: 10.1038/s41598-017-13373-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 09/22/2017] [Indexed: 12/31/2022] Open
Abstract
Human dental pulp cells (DPCs), adherent cells derived from dental pulp tissues, are potential tools for cell transplantation therapy. However, little work has been done to optimize such transplantation. In this study, DPCs were treated with fibroblast growth factor-2 (FGF2) for 5-6 consecutive serial passages and were transplanted into the injury site immediately after complete transection of the rat spinal cord. FGF2 priming facilitated the DPCs to promote axonal regeneration and to improve locomotor function in the rat with spinal cord injury (SCI). Additional analyses revealed that FGF2 priming protected cultured DPCs from hydrogen-peroxide-induced cell death and increased the number of DPCs in the SCI rat spinal cord even 7 weeks after transplantation. The production of major neurotrophic factors was equivalent in FGF2-treated and untreated DPCs. These observations suggest that FGF2 priming might protect DPCs from the post-trauma microenvironment in which DPCs infiltrate and resident immune cells generate cytotoxic reactive oxygen species. Surviving DPCs could increase the availability of neurotrophic factors in the lesion site, thereby promoting axonal regeneration and locomotor function recovery.
Collapse
Affiliation(s)
- Kosuke Nagashima
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Takahiro Miwa
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Hitomi Soumiya
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Daisuke Ushiro
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Tomoko Takeda-Kawaguchi
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Naritaka Tamaoki
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Saho Ishiguro
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Yumi Sato
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Kei Miyamoto
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
- Department of Orthopaedic Surgery and Spine Center, Gifu Municipal Hospital, 7-1 Kashima, Gifu, 500-8323, Japan
| | - Takatoshi Ohno
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
- Department of Orthopaedic Surgery, Gifu Red Cross Hospital, 3-36 Iwakura, Gifu, 502-0844, Japan
| | - Masatake Osawa
- Department of Regeneration Technology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Toshiyuki Shibata
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Ken-Ichi Tezuka
- Department of Tissue and Organ Development, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Shoei Furukawa
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Hidefumi Fukumitsu
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan.
| |
Collapse
|
17
|
Ghobrial GM, Anderson KD, Dididze M, Martinez-Barrizonte J, Sunn GH, Gant KL, Levi AD. Human Neural Stem Cell Transplantation in Chronic Cervical Spinal Cord Injury: Functional Outcomes at 12 Months in a Phase II Clinical Trial. Neurosurgery 2017; 64:87-91. [DOI: 10.1093/neuros/nyx242] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- George M. Ghobrial
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami MILLER School of Medicine, Miami, Florida
| | - Kim D. Anderson
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami MILLER School of Medicine, Miami, Florida
| | - Marine Dididze
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami MILLER School of Medicine, Miami, Florida
| | - Jasmine Martinez-Barrizonte
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami MILLER School of Medicine, Miami, Florida
| | - Gabriel H. Sunn
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami MILLER School of Medicine, Miami, Florida
| | - Katie L. Gant
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami MILLER School of Medicine, Miami, Florida
| | - Allan D. Levi
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami MILLER School of Medicine, Miami, Florida
| |
Collapse
|
18
|
Lin CC, Lai SR, Shao YH, Chen CL, Lee KZ. The Therapeutic Effectiveness of Delayed Fetal Spinal Cord Tissue Transplantation on Respiratory Function Following Mid-Cervical Spinal Cord Injury. Neurotherapeutics 2017; 14:792-809. [PMID: 28097486 PMCID: PMC5509620 DOI: 10.1007/s13311-016-0509-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Respiratory impairment due to damage of the spinal respiratory motoneurons and interruption of the descending drives from brainstem premotor neurons to spinal respiratory motoneurons is the leading cause of morbidity and mortality following cervical spinal cord injury. The present study was designed to evaluate the therapeutic effectiveness of delayed transplantation of fetal spinal cord (FSC) tissue on respiratory function in rats with mid-cervical spinal cord injury. Embryonic day-14 rat FSC tissue was transplanted into a C4 spinal cord hemilesion cavity in adult male rats at 1 week postinjury. The histological results showed that FSC-derived grafts can survive, fill the lesion cavity, and differentiate into neurons and astrocytes at 8 weeks post-transplantation. Some FSC-derived graft neurons exhibited specific neurochemical markers of neurotransmitter (e.g., serotonin, noradrenalin, or acetylcholine). Moreover, a robust expression of glutamatergic and γ-aminobutyric acid-ergic fibers was observed within FSC-derived grafts. Retrograde tracing results indicated that there was a connection between FSC-derived grafts and host phrenic nucleus. Neurophysiological recording of the phrenic nerve demonstrated that phrenic burst amplitude ipsilateral to the lesion was significantly greater in injured animals that received FSC transplantation than in those that received buffer transplantation under high respiratory drives. These results suggest that delayed FSC transplantation may have the potential to repair the injured spinal cord and promote respiratory functional recovery after mid-cervical spinal cord injury.
Collapse
Affiliation(s)
- Chia-Ching Lin
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Sih-Rong Lai
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Han Shao
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan.
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan.
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
19
|
Abstract
Traumatic spinal cord injury (SCI) has devastating consequences for the physical, social and vocational well-being of patients. The demographic of SCIs is shifting such that an increasing proportion of older individuals are being affected. Pathophysiologically, the initial mechanical trauma (the primary injury) permeabilizes neurons and glia and initiates a secondary injury cascade that leads to progressive cell death and spinal cord damage over the subsequent weeks. Over time, the lesion remodels and is composed of cystic cavitations and a glial scar, both of which potently inhibit regeneration. Several animal models and complementary behavioural tests of SCI have been developed to mimic this pathological process and form the basis for the development of preclinical and translational neuroprotective and neuroregenerative strategies. Diagnosis requires a thorough patient history, standardized neurological physical examination and radiographic imaging of the spinal cord. Following diagnosis, several interventions need to be rapidly applied, including haemodynamic monitoring in the intensive care unit, early surgical decompression, blood pressure augmentation and, potentially, the administration of methylprednisolone. Managing the complications of SCI, such as bowel and bladder dysfunction, the formation of pressure sores and infections, is key to address all facets of the patient's injury experience.
Collapse
|
20
|
Nagoshi N, Okano H. Applications of induced pluripotent stem cell technologies in spinal cord injury. J Neurochem 2017; 141:848-860. [PMID: 28199003 DOI: 10.1111/jnc.13986] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 12/14/2022]
Abstract
Numerous basic research studies have suggested the potential efficacy of neural precursor cell (NPC) transplantation in spinal cord injury (SCI). However, in most such studies, the origin of the cells used was mainly fetal tissue or embryonic stem cells, both of which carry potential ethical concerns with respect to clinical use. The development of induced pluripotent stem cells (iPSCs) opened a new path toward regenerative medicine for SCI. iPSCs can be generated from somatic cells by induction of transcription factors, and induced to differentiate into NPCs with characteristics of cells of the central nervous system. The beneficial effect of iPSC-derived NPC transplantation has been reported from our group and others working in rodent and non-human primate models. These promising results facilitate the application of iPSCs for clinical applications in SCI patients. However, iPSCs also have issues, such as genetic/epigenetic abnormalities and tumorigenesis because of the artificial induction method, that must be addressed prior to clinical use. The selection of somatic cells, generation of integration-free iPSCs, and characterization of differentiated NPCs with thorough quality management are all needed to address these potential risks. To enhance the efficacy of the transplanted iPSC-NPCs, especially at chronic phase of SCI, administration of a chondroitinase or semaphorin3A inhibitor represents a potentially important means of promoting axonal regeneration through the lesion site. The combined use of rehabilitation with such cell therapy approaches is also important, as repetitive training enhances neurite outgrowth of transplanted cells and strengthens neural circuits at central pattern generators. Our group has already evaluated clinical grade iPSC-derived NPCs, and we look forward to initiating clinical testing as the next step toward determining whether this approach is safe and effective for clinical use. This article is part of the mini review series "60th Anniversary of the Japanese Society for Neurochemistry".
Collapse
Affiliation(s)
- Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Altinova H, Möllers S, Deumens R, Gerardo-Nava J, Führmann T, van Neerven SGA, Bozkurt A, Mueller CA, Hoff HJ, Heschel I, Weis J, Brook GA. Functional recovery not correlated with axon regeneration through olfactory ensheathing cell-seeded scaffolds in a model of acute spinal cord injury. Tissue Eng Regen Med 2016; 13:585-600. [PMID: 30603440 DOI: 10.1007/s13770-016-9115-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/03/2016] [Accepted: 02/18/2016] [Indexed: 12/18/2022] Open
Abstract
The implantation of bioengineered scaffolds into lesion-induced gaps of the spinal cord is a promising strategy for promoting functional tissue repair because it can be combined with other intervention strategies. Our previous investigations showed that functional improvement following the implantation of a longitudinally microstructured collagen scaffold into unilateral mid-cervical spinal cord resection injuries of adult Lewis rats was associated with only poor axon regeneration within the scaffold. In an attempt to improve graft-host integration as well as functional recovery, scaffolds were seeded with highly enriched populations of syngeneic, olfactory bulb-derived ensheathing cells (OECs) prior to implantation into the same lesion model. Regenerating neurofilament-positive axons closely followed the trajectory of the donor OECs, as well as that of the migrating host cells within the scaffold. However, there was only a trend for increased numbers of regenerating axons above that supported by non-seeded scaffolds or in the untreated lesions. Nonetheless, significant functional recovery in skilled forelimb motor function was observed following the implantation of both seeded and non-seeded scaffolds which could not be correlated to the extent of axon regeneration within the scaffold. Mechanisms other than simple bridging of axon regeneration across the lesion must be responsible for the improved motor function.
Collapse
Affiliation(s)
- Haktan Altinova
- Department of Neurosurgery, Evangelic Hospital Bethel, Bielefeld, Germany.,2Institute of Neuropathology, Uniklinik RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance-Translational Brain Medicine (JARA Brain), Jülich, Germany.,4Department of Neurosurgery, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Sven Möllers
- 5Charité Stem Cell Facility, Charité University Hospital, Berlin, Germany
| | - Ronald Deumens
- 2Institute of Neuropathology, Uniklinik RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance-Translational Brain Medicine (JARA Brain), Jülich, Germany.,6Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Jose Gerardo-Nava
- 2Institute of Neuropathology, Uniklinik RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance-Translational Brain Medicine (JARA Brain), Jülich, Germany
| | - Tobias Führmann
- 7Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Ontario, Canada
| | | | - Ahmet Bozkurt
- 8Department of Plastic, Reconstructive and Hand Surgery, Burn Centre, Uniklinik RWTH Aachen University, Aachen, Germany.,9Department of Plastic and Aesthetic, Reconstructive and Hand Surgery, Center for Reconstructive Microsurgery and Peripheral Nerve Surgery (ZEMPEN), Agaplesion Markus Hospital Frankfurt, Academic Hospital of Johann Wolfgang von Goethe University, Frankfurt, Germany
| | | | - Hans Joachim Hoff
- Department of Neurosurgery, Evangelic Hospital Bethel, Bielefeld, Germany
| | | | - Joachim Weis
- 2Institute of Neuropathology, Uniklinik RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance-Translational Brain Medicine (JARA Brain), Jülich, Germany
| | - Gary Anthony Brook
- 2Institute of Neuropathology, Uniklinik RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance-Translational Brain Medicine (JARA Brain), Jülich, Germany
| |
Collapse
|
22
|
Neuronal Differentiation of Human Mesenchymal Stem Cells Using Exosomes Derived from Differentiating Neuronal Cells. PLoS One 2015; 10:e0135111. [PMID: 26248331 PMCID: PMC4527703 DOI: 10.1371/journal.pone.0135111] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/17/2015] [Indexed: 12/17/2022] Open
Abstract
Exosomes deliver functional proteins and genetic materials to neighboring cells, and have potential applications for tissue regeneration. One possible mechanism of exosome-promoted tissue regeneration is through the delivery of microRNA (miRNA). In this study, we hypothesized that exosomes derived from neuronal progenitor cells contain miRNAs that promote neuronal differentiation. We treated mesenchymal stem cells (MSCs) daily with exosomes derived from PC12 cells, a neuronal cell line, for 1 week. After the treatment with PC12-derived exosomes, MSCs developed neuron-like morphology, and gene and protein expressions of neuronal markers were upregulated. Microarray analysis showed that the expression of miR-125b, which is known to play a role in neuronal differentiation of stem cells, was much higher in PC12-derived exosomes than in exosomes from B16-F10 melanoma cells. These results suggest that the delivery of miRNAs contained in PC12-derived exosomes is a possible mechanism explaining the neuronal differentiation of MSC.
Collapse
|
23
|
Engrafted Neural Stem/Progenitor Cells Promote Functional Recovery through Synapse Reorganization with Spared Host Neurons after Spinal Cord Injury. Stem Cell Reports 2015; 5:264-77. [PMID: 26190527 PMCID: PMC4618657 DOI: 10.1016/j.stemcr.2015.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/26/2022] Open
Abstract
Neural stem/progenitor cell (NSPC) transplantation is a promising therapeutic strategy for spinal cord injury (SCI). However, the efficacy of NSPC transplantation on severe SCI is poorly understood. We herein show that NSPC transplantation promotes functional recovery after mild and moderate SCI, but not after severe SCI. In severe SCI mice, there were few remaining host neurons within the range of NSPC engraftment; thus, we examined whether the co-distribution of transplant and host is a contributory factor for functional improvement. A cellular selective analysis using laser microdissection revealed that drug-induced host neuronal ablation considerably decreased the synaptogenic potential of the engrafted NSPCs. Furthermore, following host neuronal ablation, neuronal retrograde tracing showed less propriospinal relay connections bridging the lesion after NSPC transplantation. Our findings suggest that the interactive synaptic reorganization between engrafted NSPCs and spared host neurons is crucial for functional recovery, providing significant insight for establishing therapeutic strategies for severe SCI.
Collapse
|
24
|
Takeda YS, Xu Q. Synthetic and nature-derived lipid nanoparticles for neural regeneration. Neural Regen Res 2015; 10:689-90. [PMID: 26109932 PMCID: PMC4468749 DOI: 10.4103/1673-5374.156946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yuji S Takeda
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
25
|
|
26
|
Therapeutical Strategies for Spinal Cord Injury and a Promising Autologous Astrocyte-Based Therapy Using Efficient Reprogramming Techniques. Mol Neurobiol 2015; 53:2826-2842. [DOI: 10.1007/s12035-015-9157-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/19/2015] [Indexed: 01/01/2023]
|
27
|
Rela L, Piantanida AP, Bordey A, Greer CA. Voltage-dependent K+ currents contribute to heterogeneity of olfactory ensheathing cells. Glia 2015; 63:1646-59. [PMID: 25856239 DOI: 10.1002/glia.22834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 03/24/2015] [Indexed: 02/03/2023]
Abstract
The olfactory nerve is permissive for axon growth throughout life. This has been attributed in part to the olfactory ensheathing glial cells that encompass the olfactory sensory neuron fascicles. Olfactory ensheathing cells (OECs) also promote axon growth in vitro and when transplanted in vivo to sites of injury. The mechanisms involved remain largely unidentified owing in part to the limited knowledge of the physiological properties of ensheathing cells. Glial cells rely for many functions on the properties of the potassium channels expressed; however, those expressed in ensheathing cells are unknown. Here we show that OECs express voltage-dependent potassium currents compatible with inward rectifier (Kir ) and delayed rectifier (KDR ) channels. Together with gap junction coupling, these contribute to the heterogeneity of membrane properties observed in OECs. The relevance of K(+) currents expressed by ensheathing cells is discussed in relation to plasticity of the olfactory nerve.
Collapse
Affiliation(s)
- Lorena Rela
- Departments of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut.,Systems Neuroscience Section, Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Argentina.,Institute of Physiology and Biophysics Bernardo Houssay (IFIBIO Houssay-CONICET), Buenos Aires, Argentina
| | - Ana Paula Piantanida
- Systems Neuroscience Section, Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Argentina.,Institute of Physiology and Biophysics Bernardo Houssay (IFIBIO Houssay-CONICET), Buenos Aires, Argentina
| | - Angelique Bordey
- Departments of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut.,Yale University School of Medicine, Departments of Cellular and Molecular Physiology, New Haven, Connecticut
| | - Charles A Greer
- Departments of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut.,Yale University School of Medicine, Departments of Neurobiology, New Haven, Connecticut
| |
Collapse
|
28
|
Papastefanaki F, Matsas R. From demyelination to remyelination: the road toward therapies for spinal cord injury. Glia 2015; 63:1101-25. [PMID: 25731941 DOI: 10.1002/glia.22809] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022]
Abstract
Myelin integrity is crucial for central nervous system (CNS) physiology while its preservation and regeneration after spinal cord injury (SCI) is key to functional restoration. Disturbance of nodal organization acutely after SCI exposes the axon and triggers conduction block in the absence of overt demyelination. Oligodendrocyte (OL) loss and myelin degradation follow as a consequence of secondary damage. Here, we provide an overview of the major biological events and underlying mechanisms leading to OL death and demyelination and discuss strategies to restrain these processes. Another aspect which is critical for SCI repair is the enhancement of endogenously occurring spontaneous remyelination. Recent findings have unveiled the complex roles of innate and adaptive immune responses in remyelination and the immunoregulatory potential of the glial scar. Moreover, the intimate crosstalk between neuronal activity, oligodendrogenesis and myelination emphasizes the contribution of rehabilitation to functional recovery. With a view toward clinical applications, several therapeutic strategies have been devised to target SCI pathology, including genetic manipulation, administration of small therapeutic molecules, immunomodulation, manipulation of the glial scar and cell transplantation. The implementation of new tools such as cellular reprogramming for conversion of one somatic cell type to another or the use of nanotechnology and tissue engineering products provides additional opportunities for SCI repair. Given the complexity of the spinal cord tissue after injury, it is becoming apparent that combinatorial strategies are needed to rescue OLs and myelin at early stages after SCI and support remyelination, paving the way toward clinical translation.
Collapse
Affiliation(s)
- Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | | |
Collapse
|
29
|
Nagoshi N, Fehlings MG. Investigational drugs for the treatment of spinal cord injury: review of preclinical studies and evaluation of clinical trials from Phase I to II. Expert Opin Investig Drugs 2015; 24:645-58. [PMID: 25645889 DOI: 10.1517/13543784.2015.1009629] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Efforts in basic research have clarified mechanisms involved in spinal cord injury (SCI), and resulted in positive findings using experimental treatments including cell transplantation and drug administration preclinically. Based on accumulated results, various clinical trials have begun for human SCI. AREAS COVERED In this review, the authors focus on five investigational drugs: riluzole, minocycline, Rho protein antagonist, magnesium chloride in polyethylene glycol formulation, and basic fibroblast growth factor. All drugs have established safety and tolerability from Phase I clinical trials, and are now in Phase II. They have been proven to have neuroprotective and/or neuroregenerative effects in animal models of SCI. EXPERT OPINION To date, diverse drugs have been translated into clinical trials, but none have reached clinical application. A key gap was the lack of reliable biomarkers for SCI to fast-track Phase I/II trials. Furthermore, problems were often due to lack of adequate outcome assessments for both animal models and SCI patients. In order to advance clinical trials more quickly and with greater success, more clinically relevant animal models should be used in basic research. Clinically, it is indispensable to use appropriate outcome measurements and to construct a wide network among clinical centers to validate the efficacy of drugs.
Collapse
Affiliation(s)
- Narihito Nagoshi
- University Health Network, Toronto Western Hospital, Krembil Neuroscience Center , Toronto, ON M5T 2S8 , Canada +1 416 603 5229 ; +1 416 603 6274 ;
| | | |
Collapse
|
30
|
Gesundheit B, Ashwood P, Keating A, Naor D, Melamed M, Rosenzweig JP. Therapeutic properties of mesenchymal stem cells for autism spectrum disorders. Med Hypotheses 2014; 84:169-77. [PMID: 25592283 DOI: 10.1016/j.mehy.2014.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022]
Abstract
Recent studies of autism spectrum disorders (ASD) highlight hyperactivity of the immune system, irregular neuronal growth and increased size and number of microglia. Though the small sample size in many of these studies limits extrapolation to all individuals with ASD, there is mounting evidence of both immune and nervous system related pathogenesis in at least a subset of patients with ASD. Given the disturbing rise in incidence rates for ASD, and the fact that no pharmacological therapy for ASD has been approved by the Food and Drug Administration (FDA), there is an urgent need for new therapeutic options. Research in the therapeutic effects of mesenchymal stem cells (MSC) for other immunological and neurological conditions has shown promising results in preclinical and even clinical studies. MSC have demonstrated the ability to suppress the immune system and to promote neurogenesis with a promising safety profile. The working hypothesis of this paper is that the potentially synergistic ability of MSC to modulate a hyperactive immune system and its ability to promote neurogenesis make it an attractive potential therapeutic option specifically for ASD. Theoretical mechanisms of action will be suggested, but further research is necessary to support these hypothetical pathways. The choice of tissue source, type of cell, and most appropriate ages for therapeutic intervention remain open questions for further consideration. Concern over poor regulatory control of stem cell studies or treatment, and the unique ethical challenges that each child with ASD presents, demands that future research be conducted with particular caution before widespread use of the proposed therapeutic intervention is implemented.
Collapse
Affiliation(s)
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California Davis, USA; Department of Medical Microbiology and Immunology, and the MIND Institute, University of California Davis, USA.
| | - Armand Keating
- Division of Hematology, University of Toronto, Cell Therapy Program, Princess Margaret Hospital, Toronto, Canada.
| | - David Naor
- Lautenberg Center for General and Tumor Immunology, Hebrew University, Hadassah Medical School, Jerusalem, Israel.
| | - Michal Melamed
- Lautenberg Center for General and Tumor Immunology, Hebrew University, Hadassah Medical School, Jerusalem, Israel.
| | | |
Collapse
|
31
|
Does extracorporeal shock wave introduce alteration of microenvironment in cell therapy for chronic spinal cord injury? Spine (Phila Pa 1976) 2014; 39:E1553-9. [PMID: 25271504 DOI: 10.1097/brs.0000000000000626] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Animal experimental study. OBJECTIVE To present experimental evidence for cell therapy for spinal cord injury (SCI). SUMMARY OF BACKGROUND DATA In chronic SCI, the efficacy of cell engraftment has been known to be low due to its distinct pathology. Alteration of microenvironment was tried using extracorporeal shock waves (ESW) for chronic SCI, and the efficacy of cell therapy was investigated. METHODS A chronic contusive SCI model was made in 36 Sprague-Dawley rats. The rats were allocated into (1) control group (SCI only), (2) ESW control group (SCI + ESW), (3) IV group (SCI + intravenous transplantation of mesenchymal stem cells; MSCs), and (4) ESW + IV group (SCI + MSCs IV transplantation after ESW). ESW were applied at the energy determined by our preliminary trials. Engraftment of the cells and expressions of growth factors (brain-derived neurotrophic factor, neuronal growth factor) and cytokines (SDF-1, CXCR4, VEGF) at the epicenter were assessed. The Basso, Beattie, and Bresnahan locomotor scale was used for the clinical assessment. RESULTS The mean numbers of engrafted cells were higher in the ESW+ IV than that in the IV with a statistical significance. The expression of SDF-1 was higher in the ESW groups than that in the control or IV group. CXCR4 was highly expressed in the transplanted groups. The expressions of growth factors in the treated group were higher in the treated group than those in the control group. However, various statistical significances were noted. The improvement of locomotor was higher in the transplanted groups than that in the control and ESW only group. CONCLUSION At a given energy level, ESW presented more engraftment of the transplanted MSCs without any clinical deterioration in a chronic SCI. Based on this promising result and possible explanations, ESW may cause an alteration of the microenvironment for the cell therapy in chronic SCI. LEVEL OF EVIDENCE N/A.
Collapse
|
32
|
Saberi H, Derakhshanrad N, Yekaninejad MS. Comparison of neurological and functional outcomes after administration of granulocyte-colony-stimulating factor in motor-complete versus motor-incomplete postrehabilitated, chronic spinal cord injuries: a phase I/II study. Cell Transplant 2014; 23 Suppl 1:S19-23. [PMID: 25302604 DOI: 10.3727/096368914x684943] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Granulocyte-colony-stimulating factor (G-CSF) is a major growth factor in the activation and differentiation of granulocytes. This cytokine has been widely and safely employed in different disease conditions over many years. The administration of the growth factors in spinal cord injury (SCI) has been reported elsewhere; here we have tried to see the effect of SCI severity on the neurological outcomes after neuroprotective treatment for SCI with G-CSF. Seventy-four consecutive patients with SCI of at least 6 months' duration, with stable neurological status in the last 3 months, having informed consent for the treatment were included in the study. All the patients had undergone at least 3 months of standard rehabilitation. Patients were assessed by the American Spinal Injury Association (ASIA) scale, Spinal Cord Independence Measure (SCIM) III, and International Association of Neurorestoratology-Spinal Cord Injury Functional Rating Scale (IANR-SCIFRS) just before intervention and periodically until 6 months after subcutaneous administration of 5 µg/kg per day of G-CSF for 7 consecutive days. Multiple linear regression models were performed for statistical evaluation of lesion completeness and level of injury on changes in ASIA motor, light touch, pinprick, IANR-SCIFRS, and SCIM III scores, as a phase I/II comparative study. The study consisted of 52 motor-complete and 22 motor-incomplete SCI patients. There was no significant difference regarding age and sex, chronicity, and level of SCI between the two groups. Motor-incomplete patients had significantly more improvement in ASIA motor score compared to the motor-complete patients (7.68 scores, p < 0.001); also they had significant improvement in light touch (6.42 scores, p = 0.003) and pinprick sensory scores (4.89 scores, p = 0.011). Therefore, G-CSF administration in motor-incomplete SCIs is associated with significantly higher motor improvement, and also the higher the initial ASIA Impairment Scale (AIS) grade, the less would be the final AIS change, and incomplete cases are more welcome into the future studies. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.
Collapse
Affiliation(s)
- Hooshang Saberi
- Brain and Spinal Injuries Research Center (BASIR), Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
33
|
Cherry JF, Bennett NK, Schachner M, Moghe PV. Engineered N-cadherin and L1 biomimetic substrates concertedly promote neuronal differentiation, neurite extension and neuroprotection of human neural stem cells. Acta Biomater 2014; 10:4113-26. [PMID: 24914828 DOI: 10.1016/j.actbio.2014.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/26/2014] [Accepted: 06/01/2014] [Indexed: 02/05/2023]
Abstract
We investigated the design of neurotrophic biomaterial constructs for human neural stem cells, guided by neural developmental cues of N-cadherin and L1 adhesion molecules. Polymer substrates fabricated either as two-dimensional (2-D) films or three-dimensional (3-D) microfibrous scaffolds were functionalized with fusion chimeras of N-cadherin-Fc alone and in combination with L1-Fc, and the effects on differentiation, neurite extension and survival of H9 human-embryonic-stem-cell-derived neural stem cells (H9-NSCs) were quantified. Combinations of N-cadherin and L1-Fc co-operatively enhanced neuronal differentiation profiles, indicating the critical nature of the two complementary developmental cues. Notably, substrates presenting low levels of N-cadherin-Fc concentrations, combined with proportionately higher L1-Fc concentration, most enhanced neurite outgrowth and the degree of MAP2+ and neurofilament-M+ H9-NSCs. Low N-cadherin-Fc alone promoted improved cell survival following oxidative stress, compared to higher concentrations of N-cadherin-Fc alone or combinations with L1-Fc. Pharmacological and antibody blockage studies revealed that substrates presenting low levels of N-cadherin are functionally competent so long as they elicit a threshold signal mediated by homophilic N-cadherin and fibroblast growth factor signaling. Overall, these studies highlight the ability of optimal combinations of N-cadherin and L1 to recapitulate a "neurotrophic" microenvironment that enhances human neural stem cell differentiation and neurite outgrowth. Additionally, 3-D fibrous scaffolds presenting low N-cadherin-Fc further enhanced the survival of H9-NSCs compared to equivalent 2-D films. This indicates that similar biofunctionalization approaches based on N-cadherin and L1 can be translated to 3-D "transplantable" scaffolds with enhanced neurotrophic behaviors. Thus, the insights from this study have fundamental and translational impacts for neural-stem-cell-based regenerative medicine.
Collapse
Affiliation(s)
- Jocie F Cherry
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Neal K Bennett
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Melitta Schachner
- W.M. Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA; Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou 515041, People's Republic of China
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA; Department of Chemical and Biochemical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
34
|
Kunisada T, Tezulka KI, Aoki H, Motohashi T. The stemness of neural crest cells and their derivatives. ACTA ACUST UNITED AC 2014; 102:251-62. [DOI: 10.1002/bdrc.21079] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/22/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine, 1-1, Yanagido; Gifu 501-1194 Japan
| | - Ken-Ichi Tezulka
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine, 1-1, Yanagido; Gifu 501-1194 Japan
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine, 1-1, Yanagido; Gifu 501-1194 Japan
| | - Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine, 1-1, Yanagido; Gifu 501-1194 Japan
| |
Collapse
|
35
|
Li Y, Alam M, Guo S, Ting KH, He J. Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals. J Neuroeng Rehabil 2014; 11:107. [PMID: 24990580 PMCID: PMC4094416 DOI: 10.1186/1743-0003-11-107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/20/2014] [Indexed: 01/08/2023] Open
Abstract
Background Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural “intent”. A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of “intent” may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. Methods We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called “Motolink”, which detects these neural patterns and triggers a “spinal” stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for “Motolink” hardware. Results We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the “Motolink” system to detect the neural “intent” of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. Conclusion We present a direct cortical “intent”-driven electronic spinal bridge to restore hindlimb locomotion after complete spinal cord injury.
Collapse
Affiliation(s)
| | | | | | | | - Jufang He
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
36
|
Oliveira JT, Mostacada K, de Lima S, Martinez AMB. Bone marrow mesenchymal stem cell transplantation for improving nerve regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 108:59-77. [PMID: 24083431 DOI: 10.1016/b978-0-12-410499-0.00003-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the peripheral nervous system has an inherent capacity for regeneration, injuries to nerves still result in considerable disabilities. The persistence of these disabilities along with the underlying problem of nerve reconstruction has motivated neuroscientists worldwide to seek additional therapeutic strategies. In recent years, cell-based therapy has emerged as a promising therapeutic tool. Schwann cells (SCs) are the main supportive cells for peripheral nerve regeneration; however, there are several technical limitations regarding its application for cell-based therapy. In this context, bone marrow mesenchymal stem cells (BM-MSCs) have been used as alternatives to SCs for treating peripheral neuropathies, showing great promise. Several studies have been trying to shed light on the mechanisms behind the nerve regeneration-promotion potential of BM-MSCs. Although not completely clarified, understanding how BM-MSCs exert tissue repair effects will facilitate their development as therapeutic agents before they become a clinically viable tool for encouraging peripheral nerve regeneration.
Collapse
Affiliation(s)
- Júlia Teixeira Oliveira
- Programa de Neurociência Básica e Clínica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
37
|
Biological Roles of Olfactory Ensheathing Cells in Facilitating Neural Regeneration: A Systematic Review. Mol Neurobiol 2014; 51:168-79. [DOI: 10.1007/s12035-014-8664-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
|
38
|
Leal MMT, Costa-Ferro ZSM, Souza BSDF, Azevedo CM, Carvalho TM, Kaneto CM, Carvalho RH, Dos Santos RR, Soares MBP. Early transplantation of bone marrow mononuclear cells promotes neuroprotection and modulation of inflammation after status epilepticus in mice by paracrine mechanisms. Neurochem Res 2013; 39:259-68. [PMID: 24343530 DOI: 10.1007/s11064-013-1217-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/29/2013] [Accepted: 12/07/2013] [Indexed: 12/13/2022]
Abstract
Status epilepticus (SE) is a severe clinical manifestation of epilepsy associated with intense neuronal loss and inflammation, two key factors involved in the pathophysiology of temporal lobe epilepsy. Bone marrow mononuclear cells (BMMC) attenuated the consequences of pilocarpine-induced SE, including neuronal loss, in addition to frequency and duration of seizures. Here we investigated the effects of BMMC transplanted early after the onset of SE in mice, as well as the involvement of soluble factors produced by BMMC in the effects of the cell therapy. Mice were injected with pilocarpine for SE induction and randomized into three groups: transplanted intravenously with 1 × 10(7) BMMC isolated from GFP transgenic mice, injected with BMMC lysate, and saline-treated controls. Cell tracking, neuronal counting in hippocampal subfields and cytokine analysis in the serum and brain were performed. BMMC were found in the brain 4 h following transplantation and their numbers progressively decreased until 24 h following transplantation. A reduction in hippocampal neuronal loss after SE was found in mice treated with live BMMC and BMMC lysate when compared to saline-treated, SE-induced mice. Moreover, the expression of inflammatory cytokines IL-1β, TNF-α, IL-6 was decreased after injection of live BMMC and to a lesser extent, of BMMC lysate, when compared to SE-induced controls. In contrast, IL-10 expression was increased. Analysis of markers for microglia activation demonstrated a reduction of the expression of genes related to type 1-activation. BMMC transplantation promotes neuroprotection and mediates anti-inflammatory effects following SE in mice, possibly through the secretion of soluble factors.
Collapse
|
39
|
Roloff F, Ziege S, Baumgärtner W, Wewetzer K, Bicker G. Schwann cell-free adult canine olfactory ensheathing cell preparations from olfactory bulb and mucosa display differential migratory and neurite growth-promoting properties in vitro. BMC Neurosci 2013; 14:141. [PMID: 24219805 PMCID: PMC3840578 DOI: 10.1186/1471-2202-14-141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 11/07/2013] [Indexed: 12/04/2022] Open
Abstract
Background Transplantation of olfactory ensheathing cells (OEC) and Schwann cells (SC) is a promising therapeutic strategy to promote axonal growth and remyelination after spinal cord injury. Previous studies mainly focused on the rat model though results from primate and porcine models differed from those in the rat model. Interestingly, canine OECs show primate-like in vitro characteristics, such as absence of early senescence and abundance of stable p75NTR expression indicating that this species represents a valuable translational species for further studies. So far, few investigations have tested different glial cell types within the same study under identical conditions. This makes it very difficult to evaluate contradictory or confirmatory findings reported in various studies. Moreover, potential contamination of OEC preparations with Schwann cells was difficult to exclude. Thus, it remains rather controversial whether the different glial types display distinct cellular properties. Results Here, we established cultures of Schwann cell-free OECs from olfactory bulb (OB-OECs) and mucosa (OM-OECs) and compared them in assays to Schwann cells. These glial cultures were obtained from a canine large animal model and used for monitoring migration, phagocytosis and the effects on in vitro neurite growth. OB-OECs and Schwann cells migrated faster than OM-OECs in a scratch wound assay. Glial cell migration was not modulated by cGMP and cAMP signaling, but activating protein kinase C enhanced motility. All three glial cell types displayed phagocytic activity in a microbead assay. In co-cultures with of human model (NT2) neurons neurite growth was maximal on OB-OECs. Conclusions These data provide evidence that OB- and OM-OECs display distinct migratory behavior and interaction with neurites. OB-OECs migrate faster and enhance neurite growth of human model neurons better than Schwann cells, suggesting distinct and inherent properties of these closely-related cell types. Future studies will have to address whether, and how, these cellular properties correlate with the in vivo behavior after transplantation.
Collapse
Affiliation(s)
| | | | | | | | - Gerd Bicker
- Division of Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173 Hannover, Germany.
| |
Collapse
|
40
|
Barker RA, de Beaufort I. Scientific and ethical issues related to stem cell research and interventions in neurodegenerative disorders of the brain. Prog Neurobiol 2013; 110:63-73. [DOI: 10.1016/j.pneurobio.2013.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 04/04/2013] [Accepted: 04/12/2013] [Indexed: 12/13/2022]
|
41
|
Fibroblasts isolated from human middle turbinate mucosa cause neural progenitor cells to differentiate into glial lineage cells. PLoS One 2013; 8:e76926. [PMID: 24204706 PMCID: PMC3804490 DOI: 10.1371/journal.pone.0076926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/04/2013] [Indexed: 01/09/2023] Open
Abstract
Transplantation of olfactory ensheathing cells (OECs) is a potential therapy for repair of spinal cord injury (SCI). Autologous transplantation of OECs has been reported in clinical trials. However, it is still controversial whether purified OECs or olfactory mucosa containing OECs, fibroblasts and other cells should be used for transplantation. OECs and fibroblasts were isolated from olfactory mucosa of the middle turbinate from seven patients. The percentage of OECs with p75NTR+ and GFAP+ ranged from 9.2% to 73.2%. Fibroblasts were purified and co-cultured with normal human neural progenitors (NHNPs). Based on immunocytochemical labeling, NHNPs were induced into glial lineage cells when they were co-cultured with the mucosal fibroblasts. These results demonstrate that OECs can be isolated from the mucosa of the middle turbinate bone as well as from the dorsal nasal septum and superior turbinates, which are the typical sites for harvesting OECs. Transplantation of olfactory mucosa containing fibroblasts into the central nervous system (CNS) needs to be further investigated before translation to clinical application.
Collapse
|
42
|
Abbasalizadeh S, Baharvand H. Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnol Adv 2013; 31:1600-23. [PMID: 23962714 DOI: 10.1016/j.biotechadv.2013.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/20/2013] [Accepted: 08/12/2013] [Indexed: 12/16/2022]
Abstract
Recent technological advances in the generation, characterization, and bioprocessing of human pluripotent stem cells (hPSCs) have created new hope for their use as a source for production of cell-based therapeutic products. To date, a few clinical trials that have used therapeutic cells derived from hESCs have been approved by the Food and Drug Administration (FDA), but numerous new hPSC-based cell therapy products are under various stages of development in cell therapy-specialized companies and their future market is estimated to be very promising. However, the multitude of critical challenges regarding different aspects of hPSC-based therapeutic product manufacturing and their therapies have made progress for the introduction of new products and clinical applications very slow. These challenges include scientific, technological, clinical, policy, and financial aspects. The technological aspects of manufacturing hPSC-based therapeutic products for allogeneic and autologous cell therapies according to good manufacturing practice (cGMP) quality requirements is one of the most important challenging and emerging topics in the development of new hPSCs for clinical use. In this review, we describe main critical challenges and highlight a series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing.
Collapse
Affiliation(s)
- Saeed Abbasalizadeh
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | |
Collapse
|
43
|
|
44
|
Awad BI, Carmody MA, Steinmetz MP. Potential role of growth factors in the management of spinal cord injury. World Neurosurg 2013; 83:120-31. [PMID: 23334003 DOI: 10.1016/j.wneu.2013.01.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 01/06/2013] [Accepted: 01/11/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To review central nervous system growth factors and their therapeutic potential and clinical translation into spinal cord injury (SCI), as well as the challenges that have been encountered during clinical development. METHODS A systemic review of the available current and historical literature regarding central nervous system growth factors and clinical trials regarding their use in spinal cord injury was conducted. RESULTS The effectiveness of administering growth factors as a potential therapeutic strategy for SCI has been tested with the use of brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, neurotrophin 3, and neurotrophin-4/5. Delivery of growth factors to injured SC has been tested by numerous methods. Unfortunately, most of clinical trials at this time are uncontrolled and have questionable results because of lack of efficacy and/or unacceptable side effects. CONCLUSIONS There is promise in the use of specific growth factors therapeutically for SCI. However, more studies involving neuronal regeneration and functional recovery are needed, as well the development of delivery methods that allow sufficient quantity of growth factors while restricting their distribution to target sites.
Collapse
Affiliation(s)
- Basem I Awad
- Department of Neurosurgery, Mansoura University School of Medicine, Mansoura, Egypt; Department of Neurosciences, MetroHealth Medical Center, Cleveland, Ohio, USA
| | - Margaret A Carmody
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael P Steinmetz
- Department of Neurosciences, MetroHealth Medical Center, Cleveland, Ohio, USA.
| |
Collapse
|