1
|
Peña-Casanova J, Sánchez-Benavides G, Sigg-Alonso J. Updating functional brain units: Insights far beyond Luria. Cortex 2024; 174:19-69. [PMID: 38492440 DOI: 10.1016/j.cortex.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
This paper reviews Luria's model of the three functional units of the brain. To meet this objective, several issues were reviewed: the theory of functional systems and the contributions of phylogenesis and embryogenesis to the brain's functional organization. This review revealed several facts. In the first place, the relationship/integration of basic homeostatic needs with complex forms of behavior. Secondly, the multi-scale hierarchical and distributed organization of the brain and interactions between cells and systems. Thirdly, the phylogenetic role of exaptation, especially in basal ganglia and cerebellum expansion. Finally, the tripartite embryogenetic organization of the brain: rhinic, limbic/paralimbic, and supralimbic zones. Obviously, these principles of brain organization are in contradiction with attempts to establish separate functional brain units. The proposed new model is made up of two large integrated complexes: a primordial-limbic complex (Luria's Unit I) and a telencephalic-cortical complex (Luria's Units II and III). As a result, five functional units were delineated: Unit I. Primordial or preferential (brainstem), for life-support, behavioral modulation, and waking regulation; Unit II. Limbic and paralimbic systems, for emotions and hedonic evaluation (danger and relevance detection and contribution to reward/motivational processing) and the creation of cognitive maps (contextual memory, navigation, and generativity [imagination]); Unit III. Telencephalic-cortical, for sensorimotor and cognitive processing (gnosis, praxis, language, calculation, etc.), semantic and episodic (contextual) memory processing, and multimodal conscious agency; Unit IV. Basal ganglia systems, for behavior selection and reinforcement (reward-oriented behavior); Unit V. Cerebellar systems, for the prediction/anticipation (orthometric supervision) of the outcome of an action. The proposed brain units are nothing more than abstractions within the brain's simultaneous and distributed physiological processes. As function transcends anatomy, the model necessarily involves transition and overlap between structures. Beyond the classic approaches, this review includes information on recent systemic perspectives on functional brain organization. The limitations of this review are discussed.
Collapse
Affiliation(s)
- Jordi Peña-Casanova
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Program, Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Test Barcelona Services, Teià, Barcelona, Spain.
| | | | - Jorge Sigg-Alonso
- Department of Behavioral and Cognitive Neurobiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Queretaro, Mexico
| |
Collapse
|
2
|
Linn W, Barrios‐Martinez J, Fernandes‐Cabral D, Jacquesson T, Nuñez M, Gomez R, Anania Y, Fernandez‐Miranda J, Yeh F. Probabilistic coverage of the frontal aslant tract in young adults: Insights into individual variability, lateralization, and language functions. Hum Brain Mapp 2024; 45:e26630. [PMID: 38376145 PMCID: PMC10878181 DOI: 10.1002/hbm.26630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
The frontal aslant tract (FAT) is a crucial neural pathway of language and speech, but little is known about its connectivity and segmentation differences across populations. In this study, we investigate the probabilistic coverage of the FAT in a large sample of 1065 young adults. Our primary goal was to reveal individual variability and lateralization of FAT and its structure-function correlations in language processing. The study utilized diffusion MRI data from 1065 subjects obtained from the Human Connectome Project. Automated tractography using DSI Studio software was employed to map white matter bundles, and the results were examined to study the population variation of the FAT. Additionally, anatomical dissections were performed to validate the fiber tracking results. The tract-to-region connectome, based on Human Connectome Project-MMP parcellations, was utilized to provide population probability of the tract-to-region connections. Our results showed that the left anterior FAT exhibited the most substantial individual differences, particularly in the superior and middle frontal gyrus, with greater variability in the superior than the inferior region. Furthermore, we found left lateralization in FAT, with a greater difference in coverage in the inferior and posterior portions. Additionally, our analysis revealed a significant positive correlation between the left FAT inferior coverage area and the performance on the oral reading recognition (p = .016) and picture vocabulary (p = .0026) tests. In comparison, fractional anisotropy of the right FAT exhibited marginal significance in its correlation (p = .056) with Picture Vocabulary Test. Our findings, combined with the connectivity patterns of the FAT, allowed us to segment its structure into anterior and posterior segments. We found significant variability in FAT coverage among individuals, with left lateralization observed in both macroscopic shape measures and microscopic diffusion metrics. Our findings also suggested a potential link between the size of the left FAT's inferior coverage area and language function tests. These results enhance our understanding of the FAT's role in brain connectivity and its potential implications for language and executive functions.
Collapse
Affiliation(s)
- Wen‐Jieh Linn
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | | | - Timothée Jacquesson
- CHU de Lyon – Hôpital Neurologique et Neurochirurgical Pierre WertheimerLyonFrance
| | - Maximiliano Nuñez
- Department of Neurological SurgeryHospital El CruceBuenos AiresArgentina
| | - Ricardo Gomez
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Yury Anania
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Fang‐Cheng Yeh
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
3
|
Slušná D, Kohli JS, Hau J, Álvarez-Linera Prado J, Linke AC, Hinzen W. Functional dysregulation of the auditory cortex in bilateral perisylvian polymicrogyria: Multiparametric case analysis of the absent speech phenotype. Cortex 2024; 171:423-434. [PMID: 38109835 DOI: 10.1016/j.cortex.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 12/20/2023]
Abstract
The absence of speech is a clinical phenotype seen across neurodevelopmental syndromes, offering insights for neural language models. We present a case of bilateral perisylvian polymicrogyria (BPP) and complete absence of speech with considerable language comprehension and production difficulties. We extensively characterized the auditory speech perception and production circuitry by employing a multimodal neuroimaging approach. Results showed extensive cortical thickening in motor and auditory-language regions. The auditory cortex lacked sensitivity to speech stimuli despite relatively preserved thalamic projections yet had no intrinsic functional organization. Subcortical structures implicated in early stages of processing exhibited heightened sensitivity to speech. The arcuate fasciculus, a suggested marker of language in BPP, showed similar volume and integrity to a healthy control. The frontal aslant tract, linked to oromotor function, was partially reconstructed. These findings highlight the importance of assessing the auditory cortex beyond speech production structures to understand absent speech in BPP. Despite profound cortical alterations, the intrinsic motor network and motor-speech pathways remained largely intact. This case underscores the need for comprehensive phenotyping using multiple MRI modalities to uncover causes of severe disruption in language development.
Collapse
Affiliation(s)
- Dominika Slušná
- Department of Translation and Language Sciences, Campus Poblenou, Pompeu Fabra University, Barcelona, Spain.
| | - Jiwandeep S Kohli
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Janice Hau
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | | | - Annika C Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Wolfram Hinzen
- Department of Translation and Language Sciences, Campus Poblenou, Pompeu Fabra University, Barcelona, Spain; Institució Catalana de Recerca I Estudis Avancats, ICREA, Barcelona, Spain
| |
Collapse
|
4
|
Stipa G, Muti M, Ciampini A, Frondizi D, Rossi V, Fanelli C, Conti C. Persistent hemiplegia with normal intraoperative neurophysiological monitoring in supratentorial neurosurgery: a case report and review of literature. Neurol Sci 2024; 45:119-127. [PMID: 37615875 DOI: 10.1007/s10072-023-07022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
Intraoperative neurophysiological monitoring (IONM) is needed for evaluating and demonstrating the integrity of the central and peripheral nervous system during surgical manoeuvres that take place in proximity to eloquent motor and somatosensory nervous structures. The integrity of the monitored motor pathways is not always followed by consistent clinical normality, particularly in the first hours/days following surgery, when surgical resection involves brain structures such as the supplementary motor areas (SMA). We report the case of a patient who underwent surgical excision of a right frontal glioblastoma with normal preoperative, intraoperative (IONM), and postoperative central motor conduction, but with persistent postoperative hemiplegia (> 6 months). The literature regarding SMA syndrome and its diagnosis and prognosis is reviewed.
Collapse
Affiliation(s)
- Giuseppe Stipa
- Neurophysiopathology Unit, Neuroscience Department, S. Maria University Hospital, Via Tristano Di Joannuccio 05100, Terni, Italy.
| | - Marco Muti
- Health Physic Unit, S. Maria University Hospital, Terni, Italy
| | - Alessandro Ciampini
- Neurosurgery Unit, Neuroscience Department, Santa Maria University Hospital, Terni, Italy
| | - Domenico Frondizi
- Neurophysiopathology Unit, Neuroscience Department, S. Maria University Hospital, Via Tristano Di Joannuccio 05100, Terni, Italy
| | - Vera Rossi
- Neurophysiopathology Unit, Neuroscience Department, S. Maria University Hospital, Via Tristano Di Joannuccio 05100, Terni, Italy
| | - Cinzia Fanelli
- Neurophysiopathology Unit, Neuroscience Department, S. Maria University Hospital, Via Tristano Di Joannuccio 05100, Terni, Italy
| | - Carlo Conti
- Neurosurgery Unit, Neuroscience Department, Santa Maria University Hospital, Terni, Italy
| |
Collapse
|
5
|
Sanker V, Srinivasan A, Emara M, Jagannath P, Mathew R. Atypical Presentations of Foix-Chavany-Marie Syndrome (FCMS) in Stroke. Cureus 2023; 15:e38030. [PMID: 37228548 PMCID: PMC10205966 DOI: 10.7759/cureus.38030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
Foix-Chavany-Marie syndrome (FCMS) presents with anarthria and bilateral (B/L) central facio-linguo-velo-pharyngo-masticatory paralysis with "autonomic voluntary dissociation." The most common cause of FCMS is cerebrovascular disease, while rarer causes include central nervous system infection, developmental disorders, epilepsy, and neurodegenerative disorders. Even though this syndrome is also referred to as (B/L) anterior operculum syndrome, patients with lesion in sites other than (B/L) opercular regions also can develop the syndrome. In this article we describe two such atypical cases. Case 1: A 66-year-old man with diabetes and hypertension who is a smoker had right-sided hemiplegia one year back developed the syndrome acutely two days before admission. CT brain showed left perisylvian infarct and right internal capsule anterior limb infarct. Case 2: A 48-year-old gentleman, who is a diabetic and hypertensive had right-sided hemiplegia one year back and developed the syndrome acutely two days before admission. CT brain showed (B/L) infarcts in the posterior limb of the internal capsule. Both patients had bifacial, lingual, and pharyngolaryngeal palsy thereby confirming the diagnosis of FCMS. None of them had the classical (B/L) opercular lesions on imaging and one patient did not even have a unilateral opercular lesion. Contrary to the common teaching, (B/L) opercular lesions are not always necessary to produce FCMS and can occur even without opercular lesions at all.
Collapse
Affiliation(s)
- Vivek Sanker
- General Surgery, Noorul Islam Institute of Medical Science (NIMS), Trivandrum, IND
| | - Aariya Srinivasan
- Internal Medicine, Saveetha Medical College and Hospital, Tamil Nadu, IND
| | - Mohamed Emara
- College of Medicine, University of Sharjah, Sharjah, ARE
| | | | - Robert Mathew
- Neurology, Sree Mookambika Institute of Medical Science, Trivandrum, IND
| |
Collapse
|
6
|
Gallet C, Clavreul A, Bernard F, Menei P, Lemée JM. Frontal aslant tract in the non-dominant hemisphere: A systematic review of anatomy, functions, and surgical applications. Front Neuroanat 2022; 16:1025866. [DOI: 10.3389/fnana.2022.1025866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022] Open
Abstract
Knowledge of both the spatial organization and functions of white-matter fiber tracts is steadily increasing. We report here the anatomy and functions of the frontal aslant tract (FAT) in the non-dominant hemisphere (usually the right hemisphere). Despite the structural symmetry between the right and left FAT, these two tracts seem to display functional asymmetry, with several brain functions in common, but others, such as visuospatial and social cognition, music processing, shifting attention or working memory, more exclusively associated with the right FAT. Further studies are required to determine whether damage to the right FAT causes permanent cognitive impairment. Such studies will constitute the best means of testing whether this tract is a critical pathway that must be taken into account during neurosurgical procedures and the essential tasks to be incorporated into intraoperative monitoring during awake craniotomy.
Collapse
|
7
|
Collée E, Vincent A, Dirven C, Satoer D. Speech and Language Errors during Awake Brain Surgery and Postoperative Language Outcome in Glioma Patients: A Systematic Review. Cancers (Basel) 2022; 14:cancers14215466. [PMID: 36358884 PMCID: PMC9658495 DOI: 10.3390/cancers14215466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Awake craniotomy with direct electrical stimulation (DES) is the standard treatment for patients with gliomas in eloquent areas. Even though language is monitored carefully during surgery, many patients suffer from postoperative aphasia, with negative effects on their quality of life. Some perioperative factors are reported to influence postoperative language outcome. However, the influence of different intraoperative speech and language errors on language outcome is not clear. Therefore, we investigate this relation. A systematic search was performed in which 81 studies were included, reporting speech and language errors during awake craniotomy with DES and postoperative language outcomes in adult glioma patients up until 6 July 2020. The frequencies of intraoperative errors and language status were calculated. Binary logistic regressions were performed. Preoperative language deficits were a significant predictor for postoperative acute (OR = 3.42, p < 0.001) and short-term (OR = 1.95, p = 0.007) language deficits. Intraoperative anomia (OR = 2.09, p = 0.015) and intraoperative production errors (e.g., dysarthria or stuttering; OR = 2.06, p = 0.016) were significant predictors for postoperative acute language deficits. Postoperatively, the language deficits that occurred most often were production deficits and spontaneous speech deficits. To conclude, during surgery, intraoperative anomia and production errors should carry particular weight during decision-making concerning the optimal onco-functional balance for a given patient, and spontaneous speech should be monitored. Further prognostic research could facilitate intraoperative decision-making, leading to fewer or less severe postoperative language deficits and improvement of quality of life.
Collapse
|
8
|
Huysman AS, Kostermans T, Cardoen S. Foix-Chavany-Marie syndrome due to bilateral opercular ischemic lesions. Acta Neurol Belg 2021; 121:1367-1369. [PMID: 34273088 DOI: 10.1007/s13760-021-01751-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022]
|
9
|
Das S, Postman W, Haboubi MA, Akca O, Remmel K, Carter AR, Zazulia A. A case of aphemia following non-dominant sub-insular stroke: unveiling the Foix-Chavany-Marie phenomenon. Neurocase 2021; 27:281-286. [PMID: 34176440 DOI: 10.1080/13554794.2021.1933541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Aphemia refers to the clinical syndrome of inability to orally produce speech with intact comprehension and written expression. Aphemia has been primarily reported in dominant frontal lobe strokes resulting in apraxia of speech (AoS), and in Foix-Chavany-Marie (FCM) syndrome where bilateral opercular or sub-opercular lesions result in anarthria due to deafferentation of brainstem nuclei supplying the oro-facio-lingual and pharyngeal musculature. Aphemia is not reported in non-dominant sub-insular strokes. Here, we present a case of aphemia following non-dominant sub-insular stroke in a patient who had previously recovered from a homologous dominant sub-insular stroke without any apparent residual deficits. We discuss the accepted definitions, theories and controversies in the use of the terminology - aphemia, apraxia of speech (AoS), anarthria related to FCM syndrome, a concomitant pathology - unilateral upper motor neuron (UUMN) dysarthria, and their neuro-anatomical bases. We also highlight the importance of attributing localization value to sequential homologous lesions of the brain that can unveil symptoms due to a "loss of compensation phenomenon" that we propose be termed as "FCM phenomenon." These pathological mechanisms may alone or in certain combinations contribute to the clinical syndrome of aphemia included in the diagnostic approach proposed here. The distinction between these mechanisms requires serial careful neurological examination and detailed speech evaluation including in the recovery phase.
Collapse
Affiliation(s)
- Saurav Das
- Vascular Neurology Fellow, Washington University School of Medicine, St. Louis, MO, USA
| | - Whitney Postman
- Director of Neurorehabilitation and Language Laboratory, Department of Communication Sciences and Disorders, Saint Louis University, St. Louis, MO, USA
| | - Michael A Haboubi
- Comprehensive Stroke Center and Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Ozan Akca
- Vice Chair for Research and Professor, Department of Anesthesiology and Perioperative Medicine, Director, Stroke ICU, Comprehensive Stroke Center Clinical Research Program (CSCRP, University of Louisville, Louisville, Kentucky, USA
| | - Kerri Remmel
- Chair, Department of Neurology, University of Louisville; Director, Comprehensive Stroke Center, Comprehensive Stroke Center Clinical Research Program (CSCRP, University of Louisville Hospital, Louisville, Kentucky, USA
| | - Alexandre R Carter
- Division of Neurorehabilitation, Washington University School of Medicine, St. Louis, MO, USA
| | - Allyson Zazulia
- Neurology and Radiology, Associate Dean for Continuing Medical Education, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Burkhardt E, Kinoshita M, Herbet G. Functional anatomy of the frontal aslant tract and surgical perspectives. J Neurosurg Sci 2021; 65:566-580. [PMID: 33870673 DOI: 10.23736/s0390-5616.21.05344-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The frontal aslant tract (FAT) is an intralobar white matter fasciculus providing dense connections between the medial part of the superior frontal gyrus, in particular the pre-supplementary motor area (SMA) and the SMA proper, and the lateral part of the frontal lobe, especially the inferior frontal gyrus. Although this tract has been characterized belatedly, it has received important attention in recent years due notably to its increasingly evidenced role in the speech and language networks. As cerebral tumors frequently affect the frontal lobe, an improved knowledge of the functional anatomy of the FAT is mandatory to refine the way neurosurgeries are performed and to give the patients the best opportunities to recover after surgery. In this work, we first describe the spatial arrangement of the FAT and detail its cortical projections. We then provide a comprehensive review of the functions supposedly mediated by this transverse frontal connectivity. It is structured following a tripartite organization where the linguistic (i.e. speech and language), supralinguistic (i.e. functions that interact with speech and language: executive functions, working memory, and social communication) and extralinguistic implications (i.e. functions outside the linguistic domain: visuospatial processing, praxis and motor skills) are successively addressed. We lastly discussed this knowledge in the context of wide-awake neurosurgeries for brain tumors. We emphasize the need to evaluate thoroughly the functions conveyed by FAT by means of longitudinally-designed studies to first estimate its plasticity potential and then to determine which tasks should be selected to avoid lasting impairments due to its disconnective breakdown.
Collapse
Affiliation(s)
- Eléonor Burkhardt
- Praxiling, CNRS UMR 5267, Paul Valéry Montpellier 3 University, Montpellier, France
| | - Masashi Kinoshita
- Department of Neurosurgery, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Guillaume Herbet
- University of Montpellier, CNRS UMR5203, INSERM U1191, Institute of Functional Genomics, Montpellier, France - .,Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| |
Collapse
|
11
|
La Corte E, Eldahaby D, Greco E, Aquino D, Bertolini G, Levi V, Ottenhausen M, Demichelis G, Romito LM, Acerbi F, Broggi M, Schiariti MP, Ferroli P, Bruzzone MG, Serrao G. The Frontal Aslant Tract: A Systematic Review for Neurosurgical Applications. Front Neurol 2021; 12:641586. [PMID: 33732210 PMCID: PMC7959833 DOI: 10.3389/fneur.2021.641586] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
The frontal aslant tract (FAT) is a recently identified white matter tract connecting the supplementary motor complex and lateral superior frontal gyrus to the inferior frontal gyrus. Advancements in neuroimaging and refinements to anatomical dissection techniques of the human brain white matter contributed to the recent description of the FAT anatomical and functional connectivity and its role in the pathogenesis of several neurological, psychiatric, and neurosurgical disorders. Through the application of diffusion tractography and intraoperative electrical brain stimulation, the FAT was shown to have a role in speech and language functions (verbal fluency, initiation and inhibition of speech, sentence production, and lexical decision), working memory, visual–motor activities, orofacial movements, social community tasks, attention, and music processing. Microstructural alterations of the FAT have also been associated with neurological disorders, such as primary progressive aphasia, post-stroke aphasia, stuttering, Foix–Chavany–Marie syndrome, social communication deficit in autism spectrum disorders, and attention–deficit hyperactivity disorder. We provide a systematic review of the current literature about the FAT anatomical connectivity and functional roles. Specifically, the aim of the present study relies on providing an overview for practical neurosurgical applications for the pre-operative, intra-operative, and post-operative assessment of patients with brain tumors located around and within the FAT. Moreover, some useful tests are suggested for the neurosurgical evaluation of FAT integrity to plan a safer surgery and to reduce post-operative deficits.
Collapse
Affiliation(s)
- Emanuele La Corte
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Eldahaby
- San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Greco
- San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Domenico Aquino
- Neuroradiology Department, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giacomo Bertolini
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Vincenzo Levi
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Malte Ottenhausen
- Department of Neurological Surgery, University Medical Center Mainz, Mainz, Germany
| | - Greta Demichelis
- Neuroradiology Department, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luigi Michele Romito
- Parkinson's Disease and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Morgan Broggi
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Paolo Schiariti
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Department, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Graziano Serrao
- San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Rivas K, Pan J, Chen A, Gutiérrez B, Julayanont P. Foix-Chavany-Marie syndrome due to unilateral anterior opercular infarction with leukoaraiosis. Proc (Bayl Univ Med Cent) 2021; 34:389-390. [PMID: 33953472 DOI: 10.1080/08998280.2021.1878976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Foix-Chavany-Marie syndrome (FCMS) is a cortical-subcortical pseudobulbar palsy characterized by automatic voluntary dissociation of facio-masticatory-pharyngo-glosso-laryngeal movements. FCMS is typically caused by vascular insults on the bilateral anterior opercular or adjacent subcortical areas. Acute onset of FCMS secondary to a unilateral lesion is extremely rare. Herein we present a case of FCMS caused by acute unilateral anterior opercular infarction with preexisting bilateral leukoaraiosis. Our case shows that an acute unilateral anterior opercular lesion can decompensate preexisting corticobulbar-subcortical lesions and cause the typical features of FCMS.
Collapse
Affiliation(s)
- Katherine Rivas
- School of Medical Sciences, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | - Jie Pan
- Department of Neurology, Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas
| | - Angela Chen
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Bailey Gutiérrez
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Parunyou Julayanont
- Department of Neurology, Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas
| |
Collapse
|
13
|
Gerbella M, Pinardi C, Di Cesare G, Rizzolatti G, Caruana F. Two Neural Networks for Laughter: A Tractography Study. Cereb Cortex 2020; 31:899-916. [DOI: 10.1093/cercor/bhaa264] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Abstract
Laughter is a complex motor behavior occurring in both emotional and nonemotional contexts. Here, we investigated whether the different functions of laughter are mediated by distinct networks and, if this is the case, which are the white matter tracts sustaining them. We performed a multifiber tractography investigation placing seeds in regions involved in laughter production, as identified by previous intracerebral electrical stimulation studies in humans: the pregenual anterior cingulate (pACC), ventral temporal pole (TPv), frontal operculum (FO), presupplementary motor cortex, and ventral striatum/nucleus accumbens (VS/NAcc). The primary motor cortex (M1) and two subcortical territories were also studied to trace the descending projections. Results provided evidence for the existence of two relatively distinct networks. A first network, including pACC, TPv, and VS/NAcc, is interconnected through the anterior cingulate bundle, the accumbofrontal tract, and the uncinate fasciculus, reaching the brainstem throughout the mamillo-tegmental tract. This network is likely involved in the production of emotional laughter. A second network, anchored to FO and M1, projects to the brainstem motor nuclei through the internal capsule. It is most likely the neural basis of nonemotional and conversational laughter. The two networks interact throughout the pre-SMA that is connected to both pACC and FO.
Collapse
Affiliation(s)
- M Gerbella
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy
| | - C Pinardi
- Neuroradiology Department, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - G Di Cesare
- Cognitive Architecture for Collaborative Technologies Unit, Italian Institute of Technology, Genova 16163, Italy
| | - G Rizzolatti
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy
- Institute of Neuroscience, Italian National Research Council (CNR), Parma 43125, Italy
| | - F Caruana
- Institute of Neuroscience, Italian National Research Council (CNR), Parma 43125, Italy
| |
Collapse
|
14
|
de la Peña MJ, Gil-Robles S, de Vega VM, Aracil C, Acevedo A, Rodríguez MR. A Practical Approach to Imaging of the Supplementary Motor Area and Its Subcortical Connections. Curr Neurol Neurosci Rep 2020; 20:50. [PMID: 32930895 DOI: 10.1007/s11910-020-01070-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW First, an anatomical and functional review of these cortical areas and subcortical connections with T-fMRI and tractography techniques; second, to demonstrate the value of this approach in neurosurgical planning in a series of patients with tumors close to the SMA. RECENT FINDINGS Implications in language and cognitive networks with a clear hemispheric lateralization of these SMA/pre-SMA. The recommendation of the use of the advanced neuroimaging studies for surgical planning and preservation of these areas. The SMA/pre-SMA and their subcortical connections are functional areas to be taken into consideration in neurosurgical planning. These areas would be involved in the control/inhibition of movement, in verbal expression and fluency and in tasks of cognitive control capacity. Its preservation is key to the patient's postsurgical cognitive and functional evolution.
Collapse
Affiliation(s)
- Mar Jiménez de la Peña
- Department of Radiology, Hospital Universitario QuironSalud Madrid, C/ Diego de Velázquez 1, Pozuelo de Alarcón, 28223, Madrid, Spain.
| | - Santiago Gil-Robles
- Department of Neurosurgery, Hospital Universitario QuironSalud Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Vicente Martínez de Vega
- Department of Radiology, Hospital Universitario QuironSalud Madrid, C/ Diego de Velázquez 1, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Cristina Aracil
- Department of Neurosurgery, Hospital Universitario QuironSalud Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Agustín Acevedo
- Department of Pathology, Hospital Universitario QuironSalud Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Manuel Recio Rodríguez
- Department of Radiology, Hospital Universitario QuironSalud Madrid, C/ Diego de Velázquez 1, Pozuelo de Alarcón, 28223, Madrid, Spain
| |
Collapse
|
15
|
Keser Z, Hillis AE, Schulz PE, Hasan KM, Nelson FM. Frontal aslant tracts as correlates of lexical retrieval in MS. Neurol Res 2020; 42:805-810. [PMID: 32552566 DOI: 10.1080/01616412.2020.1781454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Previous studies reveal that a newly described white matter pathway, the frontal aslant tract (FAT), connecting inferior and superior frontal gyri has a role in speech and language functions. We explored the role of this tract in a phonemic and semantic fluency tasks in a cohort of multiple sclerosis patients diagnosed with cognitive impairment. METHODS Thirty-five MS patients with varying degrees of cognitive impairment underwent diffusion tensor imaging and the Controlled Associated Word Test. Fractional anisotropy (FA) of FAT and arcuate fasciculus (AF) were obtained through a supervised, atlas-based tissue segmentation and parcellation method. Phonemic and semantic fluency scores were obtained from COWAT. We ran a multivariate regression model, and partial correlation analyses adjusted for age, education, and lesion load, and corrected for multiple comparisons. False discovery rate (FDR) was used for the correction of multiple comparisons. RESULTS Bilateral FAT FA showed significant association with phonemic verbal fluency task (Left; r = 0.46, p = 0.0058 and right; r = 0.46, p = 0.0059) but not semantic fluency task and this relation remained significant after FDR correction (p = 0.02 bilaterally). Although left AF showed some significant association with phonemic fluency task, this relation was insignificant after FDR correction. CONCLUSION We show that bilateral FAT are correlates of phonemic verbal fluency task but not semantic in an MS cohort with cognitive impairment. This finding suggests that FAT is more specialized in lexical retrieval function as semantic fluency test encompasses all the functions except the lexical retrieval.
Collapse
Affiliation(s)
- Zafer Keser
- Department of Neurology, The University of Texas Health Science Center, McGovern Medical School , Houston, TX, USA
| | - Argye E Hillis
- Department of Neurology, The Johns Hopkins Medical School , Baltimore, MD, USA
| | - Paul E Schulz
- Department of Neurology, The University of Texas Health Science Center, McGovern Medical School , Houston, TX, USA
| | - Khader M Hasan
- Department of Diagnostic and Interventional Radiology, McGovern Medical School, The University of Texas Health Science Center at Houston , Houston, TX, USA
| | - Flavia M Nelson
- Department of Neurology, University of Minnesota , Minneapolis, MN, USA
| |
Collapse
|
16
|
Briggs RG, Conner AK, Rahimi M, Sali G, Baker CM, Burks JD, Glenn CA, Battiste JD, Sughrue ME. A Connectomic Atlas of the Human Cerebrum-Chapter 14: Tractographic Description of the Frontal Aslant Tract. Oper Neurosurg (Hagerstown) 2019; 15:S444-S449. [PMID: 30260440 DOI: 10.1093/ons/opy268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/18/2018] [Indexed: 01/21/2023] Open
Abstract
In this supplement, we show a comprehensive anatomic atlas of the human cerebrum demonstrating all 180 distinct regions comprising the cerebral cortex. The location, functional connectivity, and structural connectivity of these regions are outlined, and where possible a discussion is included of the functional significance of these areas. In this chapter, we specifically address the regions integrating to form the frontal aslant tract.
Collapse
Affiliation(s)
- Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Meherzad Rahimi
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Goksel Sali
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Cordell M Baker
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Joshua D Burks
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Chad A Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - James D Battiste
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michael E Sughrue
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| |
Collapse
|
17
|
Chernoff BL, Sims MH, Smith SO, Pilcher WH, Mahon BZ. Direct electrical stimulation of the left frontal aslant tract disrupts sentence planning without affecting articulation. Cogn Neuropsychol 2019; 36:178-192. [PMID: 31210568 PMCID: PMC6744286 DOI: 10.1080/02643294.2019.1619544] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 02/22/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
Abstract
Sentence production involves mapping from deep structures that specify meaning and thematic roles to surface structures that specify the order and sequencing of production ready elements. We propose that the frontal aslant tract is a key pathway for sequencing complex actions with deep hierarchical structure. In the domain of language, and primarily with respect to the left FAT, we refer to this as the 'Syntagmatic Constraints On Positional Elements' (SCOPE) hypothesis. One prediction made by the SCOPE hypothesis is that disruption of the frontal aslant tract should disrupt sentence production at grammatical phrase boundaries, with no disruption of articulatory processes. We test this prediction in a patient undergoing direct electrical stimulation mapping of the frontal aslant tract during an awake craniotomy to remove a left frontal brain tumor. We found that stimulation of the left FAT prolonged inter-word durations at the start of grammatical phrases, while inter-word durations internal to noun phrases were unaffected, and there was no effect on intra-word articulatory duration. These results provide initial support for the SCOPE hypothesis, and motivate novel directions for future research to explore the functions of this recently discovered component of the language system.
Collapse
Affiliation(s)
| | - Max H. Sims
- Department of Neurology, University of Rochester, USA
| | - Susan O. Smith
- Department of Neurosurgery, University of Rochester Medical Center, USA
| | | | - Bradford Z. Mahon
- Department of Psychology, Carnegie Mellon University, USA
- Department of Neurology, University of Rochester, USA
- Department of Neurosurgery, University of Rochester Medical Center, USA
| |
Collapse
|
18
|
Briggs RG, Chakraborty AR, Anderson CD, Abraham CJ, Palejwala AH, Conner AK, Pelargos PE, O'Donoghue DL, Glenn CA, Sughrue ME. Anatomy and white matter connections of the inferior frontal gyrus. Clin Anat 2019; 32:546-556. [DOI: 10.1002/ca.23349] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Robert G. Briggs
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Arpan R. Chakraborty
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Christopher D. Anderson
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Carol J. Abraham
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Ali H. Palejwala
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Andrew K. Conner
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Panayiotis E. Pelargos
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Daniel L. O'Donoghue
- Department of Cell BiologyUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Chad A. Glenn
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Michael E. Sughrue
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| |
Collapse
|
19
|
Foix-Chavany-Marie syndrome secondary to bilateral traumatic operculum injury. Acta Neurochir (Wien) 2018; 160:2303-2305. [PMID: 30328523 PMCID: PMC6267693 DOI: 10.1007/s00701-018-3702-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/08/2018] [Indexed: 11/05/2022]
Abstract
This report describes a case of a 62-year-old man who developed Foix-Chavany-Marie syndrome subsequent to traumatic brain injury. The initial presentation of the syndrome was profound loss of voluntary control of orofacial muscles, causing a loss of speech and impairment of swallow. Over subsequent months, a remarkable recovery of these functions was observed. The natural history of FCMS in this case was favourable, with good improvement in function over months. Furthermore, the pattern of bilateral opercular injury was more readily recognised on MRI than on CT, supporting the role of MRI in cases of traumatic brain injury.
Collapse
|
20
|
Dick AS, Garic D, Graziano P, Tremblay P. The frontal aslant tract (FAT) and its role in speech, language and executive function. Cortex 2018; 111:148-163. [PMID: 30481666 DOI: 10.1016/j.cortex.2018.10.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/27/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Abstract
In this review, we examine the structural connectivity of a recently-identified fiber pathway, the frontal aslant tract (FAT), and explore its function. We first review structural connectivity studies using tract-tracing methods in non-human primates, and diffusion-weighted imaging and electrostimulation in humans. These studies suggest a monosynaptic connection exists between the lateral inferior frontal gyrus and the pre-supplementary and supplementary motor areas of the medial superior frontal gyrus. This connection is termed the FAT. We then review research on the left FAT's putative role in supporting speech and language function, with particular focus on speech initiation, stuttering and verbal fluency. Next, we review research on the right FAT's putative role supporting executive function, namely inhibitory control and conflict monitoring for action. We summarize the extant body of empirical work by suggesting that the FAT plays a domain general role in the planning, timing, and coordination of sequential motor movements through the resolution of competition among potential motor plans. However, we also propose some domain specialization across the hemispheres. On the left hemisphere, the circuit is proposed to be specialized for speech actions. On the right hemisphere, the circuit is proposed to be specialized for general action control of the organism, especially in the visuo-spatial domain. We close the review with a discussion of the clinical significance of the FAT, and suggestions for further research on the pathway.
Collapse
Affiliation(s)
| | - Dea Garic
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Paulo Graziano
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Pascale Tremblay
- Departement de Readaptation, Université Laval, Quebec City, Quebec, Canada; CERVO Brain Research Center, Quebec City, Canada
| |
Collapse
|
21
|
Dijkstra F, Guldolf K, Schotsmans K, Maréchal E, Hernalsteen D, Crols R. Foix-Chavany-Marie syndrome as the presenting sign of HIV-related PML. Neurol Clin Pract 2018; 8:537-540. [PMID: 30588384 DOI: 10.1212/cpj.0000000000000509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/22/2018] [Indexed: 11/15/2022]
Affiliation(s)
- Femke Dijkstra
- Department of Neurology and Memory Clinic (FD, KG, KS, EM, RC) and Department of Radiology (DH), Hospital Network Antwerp, Belgium
| | - Kaat Guldolf
- Department of Neurology and Memory Clinic (FD, KG, KS, EM, RC) and Department of Radiology (DH), Hospital Network Antwerp, Belgium
| | - Katlijn Schotsmans
- Department of Neurology and Memory Clinic (FD, KG, KS, EM, RC) and Department of Radiology (DH), Hospital Network Antwerp, Belgium
| | - Emke Maréchal
- Department of Neurology and Memory Clinic (FD, KG, KS, EM, RC) and Department of Radiology (DH), Hospital Network Antwerp, Belgium
| | - Danielle Hernalsteen
- Department of Neurology and Memory Clinic (FD, KG, KS, EM, RC) and Department of Radiology (DH), Hospital Network Antwerp, Belgium
| | - Roeland Crols
- Department of Neurology and Memory Clinic (FD, KG, KS, EM, RC) and Department of Radiology (DH), Hospital Network Antwerp, Belgium
| |
Collapse
|
22
|
Onder H, Evren Erdener S, Saka E. Progressive anterior operculum syndrome due to frontotemporal lobar degeneration. Neurol Sci 2017; 39:385-387. [DOI: 10.1007/s10072-017-3128-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/19/2017] [Indexed: 11/29/2022]
|
23
|
Koutsarnakis C, Liakos F, Kalyvas AV, Skandalakis GP, Komaitis S, Christidi F, Karavasilis E, Liouta E, Stranjalis G. The Superior Frontal Transsulcal Approach to the Anterior Ventricular System: Exploring the Sulcal and Subcortical Anatomy Using Anatomic Dissections and Diffusion Tensor Imaging Tractography. World Neurosurg 2017; 106:339-354. [DOI: 10.1016/j.wneu.2017.06.161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/24/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
|
24
|
Cross-Modal Recruitment of Auditory and Orofacial Areas During Sign Language in a Deaf Subject. World Neurosurg 2017; 105:1033.e1-1033.e5. [DOI: 10.1016/j.wneu.2017.05.170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 11/19/2022]
|
25
|
Berthier ML, De-Torres I, Paredes-Pacheco J, Roé-Vellvé N, Thurnhofer-Hemsi K, Torres-Prioris MJ, Alfaro F, Moreno-Torres I, López-Barroso D, Dávila G. Cholinergic Potentiation and Audiovisual Repetition-Imitation Therapy Improve Speech Production and Communication Deficits in a Person with Crossed Aphasia by Inducing Structural Plasticity in White Matter Tracts. Front Hum Neurosci 2017; 11:304. [PMID: 28659776 PMCID: PMC5470532 DOI: 10.3389/fnhum.2017.00304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
Donepezil (DP), a cognitive-enhancing drug targeting the cholinergic system, combined with massed sentence repetition training augmented and speeded up recovery of speech production deficits in patients with chronic conduction aphasia and extensive left hemisphere infarctions (Berthier et al., 2014). Nevertheless, a still unsettled question is whether such improvements correlate with restorative structural changes in gray matter and white matter pathways mediating speech production. In the present study, we used pharmacological magnetic resonance imaging to study treatment-induced brain changes in gray matter and white matter tracts in a right-handed male with chronic conduction aphasia and a right subcortical lesion (crossed aphasia). A single-patient, open-label multiple-baseline design incorporating two different treatments and two post-treatment evaluations was used. The patient received an initial dose of DP (5 mg/day) which was maintained during 4 weeks and then titrated up to 10 mg/day and administered alone (without aphasia therapy) during 8 weeks (Endpoint 1). Thereafter, the drug was combined with an audiovisual repetition-imitation therapy (Look-Listen-Repeat, LLR) during 3 months (Endpoint 2). Language evaluations, diffusion weighted imaging (DWI), and voxel-based morphometry (VBM) were performed at baseline and at both endpoints in JAM and once in 21 healthy control males. Treatment with DP alone and combined with LLR therapy induced marked improvement in aphasia and communication deficits as well as in selected measures of connected speech production, and phrase repetition. The obtained gains in speech production remained well-above baseline scores even 4 months after ending combined therapy. Longitudinal DWI showed structural plasticity in the right frontal aslant tract and direct segment of the arcuate fasciculus with both interventions. VBM revealed no structural changes in other white matter tracts nor in cortical areas linked by these tracts. In conclusion, cholinergic potentiation alone and combined with a model-based aphasia therapy improved language deficits by promoting structural plastic changes in right white matter tracts.
Collapse
Affiliation(s)
- Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain
| | - Irene De-Torres
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Unit of Physical Medicine and Rehabilitation, Regional University Hospital, MalagaMalaga, Spain
| | - José Paredes-Pacheco
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of MalagaMalaga, Spain
| | - Núria Roé-Vellvé
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of MalagaMalaga, Spain
| | - Karl Thurnhofer-Hemsi
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of MalagaMalaga, Spain.,Department of Computer Languages and Computer Science, Superior Technical School of Engineering in Informatics, University of MalagaMalaga, Spain
| | - María J Torres-Prioris
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of MalagaMalaga, Spain
| | - Francisco Alfaro
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of MalagaMalaga, Spain
| | - Ignacio Moreno-Torres
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Department of Spanish Language I, University of MalagaMalaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of MalagaMalaga, Spain
| | - Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of MalagaMalaga, Spain
| |
Collapse
|
26
|
The role of the frontal aslant tract and premotor connections in visually guided hand movements. Neuroimage 2016; 146:419-428. [PMID: 27829166 DOI: 10.1016/j.neuroimage.2016.10.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/28/2016] [Accepted: 10/31/2016] [Indexed: 11/20/2022] Open
Abstract
Functional neuroimaging and brain lesion studies demonstrate that secondary motor areas of the frontal lobe play a crucial role in the cortical control of hand movements. However, no study so far has examined frontal white matter connections of the secondary motor network, namely the frontal aslant tract, connecting the supplementary motor complex and the posterior inferior frontal regions, and the U-shaped dorsal and ventral premotor fibers running through the middle frontal gyrus. The aim of the current study is to explore the involvement of the short frontal lobe connections in reaching and reach-to-grasp movements in 32 right-handed healthy subjects by correlating tractography data based on spherical deconvolution approach with kinematical data. We showed that individual differences in the microstructure of the bilateral frontal aslant tract, bilateral ventral and left dorsal premotor tracts were associated with kinematic features of hand actions. Furthermore, bilateral ventral premotor connections were also involved in the closing grip phase necessary for determining efficient and stable grasping of the target object. This work suggests for the first time that hand kinematics and visuomotor processing are associated with the anatomy of the short frontal lobe connections.
Collapse
|
27
|
Kinoshita M, Miyashita K, Tsutsui T, Furuta T, Nakada M. Critical Neural Networks in Awake Surgery for Gliomas. Neurol Med Chir (Tokyo) 2016; 56:674-686. [PMID: 27250817 PMCID: PMC5221778 DOI: 10.2176/nmc.ra.2016-0069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
From the embarrassing character commonly infiltrating eloquent brain regions, the surgical resection of glioma remains challenging. Owing to the recent development of in vivo visualization techniques for the human brain, white matter regions can be delineated using diffusion tensor imaging (DTI) as a routine clinical practice in neurosurgery. In confirmation of the results of DTI tractography, a direct electrical stimulation (DES) substantially influences the investigation of cortico-subcortical networks, which can be identified via specific symptoms elicited in the concerned white matter tracts (eg., the arcuate fascicle, superior longitudinal fascicles, inferior fronto-occipital fascicle, inferior longitudinal fascicle, frontal aslant tract, sensori-motor tracts, optic radiation, and so forth). During awake surgery for glioma using DES, it is important to identify the anatomo-functional structure of white matter tracts to identify the surgical boundaries of brain regions not only to achieve maximal resection of the glioma but also to maximally preserve quality of life. However, the risk exists that neurosurgeons may be misled by the inability of DTI to visualize the actual anatomy of the white matter fibers, resulting in inappropriate decisions regarding surgical boundaries. This review article provides information of the critical neuronal network that is necessary to identify and understand in awake surgery for glioma, with special references to white matter tracts and the author's experiences.
Collapse
|
28
|
Silveri MC, Incordino F, Lo Monaco R, Bizzarro A, Masullo C, Piludu F, Colosimo C. Neural substrates of the 'low-level' system for speech articulation: Evidence from primary opercular syndrome. J Neuropsychol 2016; 11:450-457. [PMID: 26852905 DOI: 10.1111/jnp.12099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/28/2015] [Indexed: 11/30/2022]
Abstract
We describe a patient with progressive disorder of speech, without language impairment (opercular syndrome). Morphometric analysis confirmed asymmetric volume reduction of the precentral areas (>left). Diffusion imaging showed significant white matter changes in the left frontal lobe, with specific involvement of the left corticobulbar tract and connections between supplementary/pre-supplementary motor areas and the frontal operculum (frontal aslant tract). We suggest that the organization of expressive language includes a 'low level' motor system principally distributed in the left hemisphere that shows specific susceptibility to neurodegeneration, distinct from neural systems subtending praxic, and cognitive aspects of language.
Collapse
Affiliation(s)
| | | | - Rita Lo Monaco
- Centre for Medicine of Ageing, Catholic University, Rome, Italy
| | | | - Carlo Masullo
- Institute of Neurology, Catholic University, Rome, Italy
| | | | - Cesare Colosimo
- Department of Neuroimaging, Catholic University, Rome, Italy
| |
Collapse
|
29
|
Bernal B, Ardila A, Rosselli M. The Network of Brodmanns Area 22 in Lexico-semantic Processing: A Pooling-data Connectivity Study. AIMS Neurosci 2016. [DOI: 10.3934/neuroscience.2016.3.306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Berthier ML, Dávila G, Moreno-Torres I, Beltrán-Corbellini Á, Santana-Moreno D, Roé-Vellvé N, Thurnhofer-Hemsi K, Torres-Prioris MJ, Massone MI, Ruiz-Cruces R. Loss of regional accent after damage to the speech production network. Front Hum Neurosci 2015; 9:610. [PMID: 26594161 PMCID: PMC4633569 DOI: 10.3389/fnhum.2015.00610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022] Open
Abstract
Lesion-symptom mapping studies reveal that selective damage to one or more components of the speech production network can be associated with foreign accent syndrome, changes in regional accent (e.g., from Parisian accent to Alsatian accent), stronger regional accent, or re-emergence of a previously learned and dormant regional accent. Here, we report loss of regional accent after rapidly regressive Broca's aphasia in three Argentinean patients who had suffered unilateral or bilateral focal lesions in components of the speech production network. All patients were monolingual speakers with three different native Spanish accents (Cordobés or central, Guaranítico or northeast, and Bonaerense). Samples of speech production from the patient with native Córdoba accent were compared with previous recordings of his voice, whereas data from the patient with native Guaranítico accent were compared with speech samples from one healthy control matched for age, gender, and native accent. Speech samples from the patient with native Buenos Aires's accent were compared with data obtained from four healthy control subjects with the same accent. Analysis of speech production revealed discrete slowing in speech rate, inappropriate long pauses, and monotonous intonation. Phonemic production remained similar to those of healthy Spanish speakers, but phonetic variants peculiar to each accent (e.g., intervocalic aspiration of /s/ in Córdoba accent) were absent. While basic normal prosodic features of Spanish prosody were preserved, features intrinsic to melody of certain geographical areas (e.g., rising end F0 excursion in declarative sentences intoned with Córdoba accent) were absent. All patients were also unable to produce sentences with different emotional prosody. Brain imaging disclosed focal left hemisphere lesions involving the middle part of the motor cortex, the post-central cortex, the posterior inferior and/or middle frontal cortices, insula, anterior putamen and supplementary motor area. Our findings suggest that lesions affecting the middle part of the left motor cortex and other components of the speech production network disrupt neural processes involved in the production of regional accent features.
Collapse
Affiliation(s)
- Marcelo L. Berthier
- Cognitive Neurology and Aphasia Unit and Cathedra Foundation Morera and Vallejo of Aphasia, Centro de Investigaciones Médico-Sanitarias, University of MalagaMalaga, Spain
| | - Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit and Cathedra Foundation Morera and Vallejo of Aphasia, Centro de Investigaciones Médico-Sanitarias, University of MalagaMalaga, Spain
- Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of MalagaMalaga, Spain
| | - Ignacio Moreno-Torres
- Cognitive Neurology and Aphasia Unit and Cathedra Foundation Morera and Vallejo of Aphasia, Centro de Investigaciones Médico-Sanitarias, University of MalagaMalaga, Spain
- Department of Spanish Language I, University of MalagaMalaga, Spain
| | - Álvaro Beltrán-Corbellini
- Cognitive Neurology and Aphasia Unit and Cathedra Foundation Morera and Vallejo of Aphasia, Centro de Investigaciones Médico-Sanitarias, University of MalagaMalaga, Spain
| | - Daniel Santana-Moreno
- Cognitive Neurology and Aphasia Unit and Cathedra Foundation Morera and Vallejo of Aphasia, Centro de Investigaciones Médico-Sanitarias, University of MalagaMalaga, Spain
| | - Núria Roé-Vellvé
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of MalagaMalaga, Spain
| | - Karl Thurnhofer-Hemsi
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of MalagaMalaga, Spain
- Department of Applied Mathematics, Superior Technical School of Engineering in Informatics, University of MalagaMalaga, Spain
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit and Cathedra Foundation Morera and Vallejo of Aphasia, Centro de Investigaciones Médico-Sanitarias, University of MalagaMalaga, Spain
| | - María Ignacia Massone
- Centro de Investigaciones en Antropología Filosófica y Cultural, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Rafael Ruiz-Cruces
- Cognitive Neurology and Aphasia Unit and Cathedra Foundation Morera and Vallejo of Aphasia, Centro de Investigaciones Médico-Sanitarias, University of MalagaMalaga, Spain
| |
Collapse
|
31
|
Bernal B, Ardila A, Rosselli M. Broca's area network in language function: a pooling-data connectivity study. Front Psychol 2015; 6:687. [PMID: 26074842 PMCID: PMC4440904 DOI: 10.3389/fpsyg.2015.00687] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/10/2015] [Indexed: 01/23/2023] Open
Abstract
Background and Objective: Modern neuroimaging developments have demonstrated that cognitive functions correlate with brain networks rather than specific areas. The purpose of this paper was to analyze the connectivity of Broca’s area based on language tasks. Methods: A connectivity modeling study was performed by pooling data of Broca’s activation in language tasks. Fifty-seven papers that included 883 subjects in 84 experiments were analyzed. Analysis of Likelihood Estimates of pooled data was utilized to generate the map; thresholds at p < 0.01 were corrected for multiple comparisons and false discovery rate. Resulting images were co-registered into MNI standard space. Results: A network consisting of 16 clusters of activation was obtained. Main clusters were located in the frontal operculum, left posterior temporal region, supplementary motor area, and the parietal lobe. Less common clusters were seen in the sub-cortical structures including the left thalamus, left putamen, secondary visual areas, and the right cerebellum. Conclusion: Broca’s area-44-related networks involved in language processing were demonstrated utilizing a pooling-data connectivity study. Significance, interpretation, and limitations of the results are discussed.
Collapse
Affiliation(s)
- Byron Bernal
- Brain Institute-Department of Radiology, fMRI and Neuroconnectivity, Miami Children's Hospital Miami, FL, USA
| | - Alfredo Ardila
- Department of Communication Sciences and Disorders, Florida International University Miami, FL, USA
| | | |
Collapse
|
32
|
Sierpowska J, Gabarrós A, Fernandez-Coello A, Camins À, Castañer S, Juncadella M, de Diego-Balaguer R, Rodríguez-Fornells A. Morphological derivation overflow as a result of disruption of the left frontal aslant white matter tract. BRAIN AND LANGUAGE 2015; 142:54-64. [PMID: 25658634 DOI: 10.1016/j.bandl.2015.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/22/2014] [Accepted: 01/02/2015] [Indexed: 06/04/2023]
Abstract
The frontal aslant tract (FAT) is a recently described major connection between the preSMA and Broca's area, whose functional role remains undefined. In this study we examined a patient presenting a morphological overregularization strategy in a verb generation task during awake surgery. This specific language deficit coincided with brain tumor resection at the level of the left FAT. During the task execution the patient formed the non-existent verbs by applying a morphological derivation rule to the given nouns, instead of retrieving the appropriate verbs. DTI results confirmed left FAT damage. Neuropsychological follow-up showed that this morphological derivation impairment partially persisted after surgery, whereas the results on a wide spectrum of other language-related tasks remained satisfactory. Additionally, we compared the pre- and the post-operational fMRI activation maps for the same verb generation task. We discuss the potential role of the left FAT in the morphological derivation process and in lexical retrieval.
Collapse
Affiliation(s)
- Joanna Sierpowska
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute - IDIBELL], 08097 L'Hospitalet de Llobregat, Barcelona, Spain; Dept. of Basic Psychology, Campus Bellvitge, University of Barcelona, 08097 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Andreu Gabarrós
- Hospital Universitari de Bellvitge (HUB), Neurosurgery Section, Campus Bellvitge, University of Barcelona - IDIBELL, 08097 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alejandro Fernandez-Coello
- Hospital Universitari de Bellvitge (HUB), Neurosurgery Section, Campus Bellvitge, University of Barcelona - IDIBELL, 08097 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Àngels Camins
- Institut de Diagnòstic per la Imatge, Centre Bellvitge, Hospital Universitari de Bellvitge, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Castañer
- Institut de Diagnòstic per la Imatge, Centre Bellvitge, Hospital Universitari de Bellvitge, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Montserrat Juncadella
- Hospital Universitari de Bellvitge (HUB), Neurology Section, Campus Bellvitge, University of Barcelona - IDIBELL, 08097 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ruth de Diego-Balaguer
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute - IDIBELL], 08097 L'Hospitalet de Llobregat, Barcelona, Spain; Dept. of Basic Psychology, Campus Bellvitge, University of Barcelona, 08097 L'Hospitalet de Llobregat, Barcelona, Spain; Catalan Institution for Research and Advanced Studies, ICREA, 08010 Barcelona, Spain
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute - IDIBELL], 08097 L'Hospitalet de Llobregat, Barcelona, Spain; Dept. of Basic Psychology, Campus Bellvitge, University of Barcelona, 08097 L'Hospitalet de Llobregat, Barcelona, Spain; Catalan Institution for Research and Advanced Studies, ICREA, 08010 Barcelona, Spain.
| |
Collapse
|
33
|
Krestel H, Weisstanner C, Hess CW, Bassetti CL, Nirkko A, Wiest R. Insular and caudate lesions release abnormal yawning in stroke patients. Brain Struct Funct 2015; 220:803-12. [PMID: 24337237 PMCID: PMC4341028 DOI: 10.1007/s00429-013-0684-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 12/02/2013] [Indexed: 12/15/2022]
Abstract
Abnormal yawning is an underappreciated phenomenon in patients with ischemic stroke. We aimed at identifying frequently affected core regions in the supratentorial brain of stroke patients with abnormal yawning and contributing to the anatomical network concept of yawning control. Ten patients with acute anterior circulation stroke and ≥3 yawns/15 min without obvious cause were analyzed. The NIH stroke scale (NIHSS), Glasgow Coma Scale (GCS), symptom onset, period with abnormal yawning, blood oxygen saturation, glucose, body temperature, blood pressure, heart rate, and modified Rankin scale (mRS) were assessed for all patients. MRI lesion maps were segmented on diffusion-weighted images, spatially normalized, and the extent of overlap between the different stroke patterns was determined. Correlations between the period with abnormal yawning and the apparent diffusion coefficient (ADC) in the overlapping regions, total stroke volume, NIHSS and mRS were performed. Periods in which patients presented with episodes of abnormal yawning lasted on average for 58 h. Average GCS, NIHSS, and mRS scores were 12.6, 11.6, and 3.5, respectively. Clinical parameters were within normal limits. Ischemic brain lesions overlapped in nine out of ten patients: in seven patients in the insula and in seven in the caudate nucleus. The decrease of the ADC within the lesions correlated with the period with abnormal yawing (r = -0.76, Bonferroni-corrected p = 0.02). The stroke lesion intensity of the common overlapping regions in the insula and the caudate nucleus correlates with the period with abnormal yawning. The insula might be the long sought-after brain region for serotonin-mediated yawning.
Collapse
Affiliation(s)
- Heinz Krestel
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland,
| | | | | | | | | | | |
Collapse
|
34
|
Vergani F, Lacerda L, Martino J, Attems J, Morris C, Mitchell P, Thiebaut de Schotten M, Dell'Acqua F. White matter connections of the supplementary motor area in humans. J Neurol Neurosurg Psychiatry 2014; 85:1377-85. [PMID: 24741063 DOI: 10.1136/jnnp-2013-307492] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The supplementary motor area (SMA) is frequently involved by brain tumours (particularly WHO grade II gliomas). Surgery in this area can be followed by the 'SMA syndrome', characterised by contralateral akinesia and mutism. Knowledge of the connections of the SMA can provide new insights on the genesis of the SMA syndrome, and a better understanding of the challenges related to operating in this region. METHODS White matter connections of the SMA were studied with both postmortem dissection and advance diffusion imaging tractography. Postmortem dissections were performed according to the Klingler technique. 12 specimens were fixed in 10% formalin and frozen at -15°C for 2 weeks. After thawing, dissection was performed with blunt dissectors. For diffusion tractography, high-resolution diffusion imaging datasets from 10 adult healthy controls from the Human Connectome Project database were used. Whole brain tractography was performed using a spherical deconvolution approach. RESULTS Five main connections were identified in both postmortem dissections and tractography reconstructions: (1) U-fibres running in the precentral sulcus, connecting the precentral gyrus and the SMA; (2) U-fibres running in the cingulate sulcus, connecting the SMA with the cingulate gyrus; (3) frontal 'aslant' fascicle, directly connecting the SMA with the pars opercularis of the inferior frontal gyrus; (4) medial fibres connecting the SMA with the striatum; and (5) SMA callosal fibres. Good concordance was observed between postmortem dissections and diffusion tractography. CONCLUSIONS The SMA shows a wide range of white matter connections with motor, language and lymbic areas. Features of the SMA syndrome (akinesia and mutism) can be better understood on the basis of these findings.
Collapse
Affiliation(s)
- Francesco Vergani
- Department of Neurosurgery, Royal Victoria Infirmary, Newcastle upon Tyne, UK Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Luis Lacerda
- Natbrainlab, Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - Juan Martino
- Department of Neurological Surgery, Hospital Universitario Marqués de Valdecilla and Instituto de Formación e Investigación Marqués de Valdecilla (IFIMAV), Santander, Cantabria, Spain
| | - Johannes Attems
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher Morris
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick Mitchell
- Department of Neurosurgery, Royal Victoria Infirmary, Newcastle upon Tyne, UK Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Michel Thiebaut de Schotten
- Natbrainlab, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College London, London, UK Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM), UMRS 975, INSERM U 975, CNRS UMR, Paris, France
| | - Flavio Dell'Acqua
- Natbrainlab, Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, London, UK
| |
Collapse
|
35
|
Sá F, Menezes Cordeiro I, Mestre S, Nzwalo H. Unilateral opercular infarction presenting with Foix-Chavany-Marie syndrome. BMJ Case Rep 2014; 2014:bcr-2014-206439. [PMID: 25427932 DOI: 10.1136/bcr-2014-206439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Foix-Chavany-Marie syndrome (FCMS) also known as bilateral anterior opercular syndrome is a form of suprabulbar palsy defined by the presence of bilateral voluntary facial, pharyngeal, lingual and masticatory paralysis with automatic-voluntary movement dissociation. We report an extremely rare case of FCMS in a patient with a unilateral left opercular lesion associated with a chronic asymptomatic contralateral cerebellar lesion. Despite intensive rehabilitation, little improvement was noticed at hospital discharge.
Collapse
Affiliation(s)
- Francisca Sá
- Stroke Unit, Centro Hospitalar do Algarve, Portugal Neurology Department, Centro Hospitalar do Algarve, Portugal
| | - Inês Menezes Cordeiro
- Stroke Unit, Centro Hospitalar do Algarve, Portugal Neurology Department, Centro Hospitalar do Algarve, Portugal
| | - Susana Mestre
- Stroke Unit, Centro Hospitalar do Algarve, Portugal Department of Physical Medicine and Rehabilitation, Centro Hospitalar do Algarve, Portugal
| | - Hipólito Nzwalo
- Stroke Unit, Centro Hospitalar do Algarve, Portugal Neurology Department, Centro Hospitalar do Algarve, Portugal
| |
Collapse
|
36
|
Bucheli C, Mato D, Marco de Lucas E, García-Porrero JA, Vázquez-Barquero A, Martino J. Fascículos asociativos ínsulo-operculares: revisión de su anatomía y de las implicaciones para el abordaje transopercular a la ínsula. Neurocirugia (Astur) 2014; 25:268-74. [DOI: 10.1016/j.neucir.2014.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/05/2014] [Accepted: 07/08/2014] [Indexed: 12/27/2022]
|
37
|
Martino J, De Lucas EM. Subcortical anatomy of the lateral association fascicles of the brain: A review. Clin Anat 2014; 27:563-9. [PMID: 24453050 DOI: 10.1002/ca.22321] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 08/28/2013] [Indexed: 11/09/2022]
Abstract
Precise knowledge of the connectivities of the different white matter bundles is of great value for neuroscience research. Our knowledge of subcortical anatomy has improved exponentially during recent decades owing to the development of magnetic resonance diffusion tensor imaging tractography (DTI). Although DTI tractography has led to important progress in understanding white matter anatomy, the precise trajectory and cortical connections of the subcortical bundles remain poorly determined. The recent literature was extensively reviewed in order to analyze the trajectories and cortical terminations of the lateral association fibers of the brain.The anatomy of the following tracts is reviewed: superior longitudinal fasciculus, middle longitudinal fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, frontal aslant tract, and vertical occipital fasciculus. The functional role of a tract can be inferred from its topography within the brain. Knowing the functional roles of the cortical areas connected by a certain bundle, it is possible to develop new insights into the putative functional properties of such connections.
Collapse
Affiliation(s)
- Juan Martino
- Department of Neurological Surgery, Hospital Universitario Marqués de Valdecilla and Instituto de Formación e Investigación Marqués de Valdecilla (IFIMAV), Avda, Valdecilla s/n, Santander, Cantabria, Spain
| | | |
Collapse
|
38
|
Martino J, Gomez E, Bilbao JL, Dueñas JC, Vázquez-Barquero A. Cost-utility of maximal safe resection of WHO grade II gliomas within eloquent areas. Acta Neurochir (Wien) 2013; 155:41-50. [PMID: 23132374 DOI: 10.1007/s00701-012-1541-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Despite the growing use of intraoperative electrical stimulation (IES) mapping for resection of WHO grade II gliomas (GIIG) located within eloquent areas, some authors claim that this is a complex, time-consuming and expensive approach, and not well tolerated by patients, so they rely on other mapping techniques. Here we analyze the health related quality of life, direct and indirect costs of surgeries with and without intraoperative electrical stimulation (IES) mapping for resection of GIIG within eloquent areas. METHODS A cohort of 11 subjects with GIIG within eloquent areas who had IES while awake (group A) was matched by tumor side and location to a cohort of 11 subjects who had general anesthesia without IES (group B). Direct and indirect costs (measured as loss of labor productivity) and utility (measured in quality adjusted life years, QALYs), were compared between groups. RESULTS Total mean direct costs per patient were $38,662.70 (range $19,950.70 to $61,626.40) in group A, and $32,116.10 (range $22,764.50 to $46,222.50) in group B (p = 0.279). Total mean indirect costs per patient were $10,640.10 (range $3,010.10 to $86,940.70) in group A, and $48,804.70 (range $3,340.10 to $98,400.60) in group B (p = 0.035). Mean costs per QALY were $12,222.30 (range $3,801.10 to $47,422.90) in group A, and $31,927.10 (range $6,642.90 to $64,196.50) in group B (p = 0.023). CONCLUSIONS Asleep-awake-asleep craniotomies with IES are associated with an increase in direct costs. However, these initial expenses are ultimately offset by medium and long-term costs averted from a decrease in morbidity and preservation of the patient's professional life. The present study emphasizes the importance to switch to an aggressive and safer surgical strategy in GIIG within eloquent areas.
Collapse
|