1
|
Laurencin C, Poujois A, Bonjour M, Demily C, Klinger H, Roze E, Leclert V, Danaila T, Langlois-Jacques C, Couchonnal E, Woimant F, Obadia MA, Perez G, Pernon M, Blanchet L, Broussolle E, Vidailhet M, Kassai B, Moro E, Karachi C, Polo G, Grabli D, Portefaix A, Thobois S. Deep brain stimulation for severe dystonia associated with Wilson disease: A prospective multicenter meta-analysis of an N-of-1 trial. Eur J Neurol 2024:e16524. [PMID: 39468897 DOI: 10.1111/ene.16524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND AND PURPOSE Disabling dystonia despite optimal medical treatment is common in Wilson disease (WD). No controlled study has evaluated the effect of deep brain stimulation (DBS) on dystonia related to WD. This study was undertaken to evaluate the efficacy of DBS on dystonia related to WD. METHODS A meta-analysis of an N-of-1 prospective, randomized, double-blind, multicenter DBS study was conducted at two French WD reference centers. Main inclusion criteria were patients with WD, stabilized for at least 6 months with significant disability due to dystonia despite optimized medical treatment. The subthalamic nucleus (STN) was targeted for bradykinetic patients with tonic dystonia, and the internal globus pallidus (GPi) was chosen for patients with hyperkinetic dystonia. Each patient underwent two periods of DBS "on" and two periods of DBS "off," each lasting 4 months. The order of stimulation conditions was randomized. The primary outcome was the change in the Canadian Occupational Performance Measure Performance (COPM-P) and Satisfaction scores after each 4-month period. Secondary outcomes were changes in the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) severity and disability scores and Unified Wilson's Disease Rating Scale (UWDRS) scores. RESULTS Between 12 May 2016 and 7 October 2022, three patients were included. Two patients received bilateral GPi DBS, and one received bilateral STN DBS. There was no change of COPM-P (p = 0.956), BFMDRS, and UWDRS scores. No serious adverse events were reported. CONCLUSIONS STN or GPi DBS are ineffective on dystonia related to WD.
Collapse
Affiliation(s)
- Chloé Laurencin
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, PATH-PARK Team, University Lyon 1, Lyon, France
- National Reference Center for Wilson Disease and Other Copper-Related Rare Diseases, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron, France
| | - Aurelia Poujois
- National Reference Center for Wilson Disease and Other Copper-Related Rare Diseases, Neurology Department, Rothschild Foundation Hospital, Paris, France
| | - Maxime Bonjour
- Department of Biostatistics, Hospices Civils de Lyon, Lyon, France
- Laboratoire de Biométrie et Biologie Évolutive, University Lyon 1, Villeurbanne, France
- Faculté de Médecine Lyon Est, University Lyon 1, Lyon, France
| | - Caroline Demily
- Reference Center for Rare Diseases With Psychiatric Phenotype Génopsy, Le Vinatier Hospital, Bron, France
| | - Hélène Klinger
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France
| | - Emmanuel Roze
- Sorbonne University, INSERM, CNRS, Paris, France
- Brain Institute, Assistance Publique Hôpitaux de Paris, Salpêtrière Hospital, Paris, France
| | - Victoire Leclert
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France
| | - Teodor Danaila
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France
| | - Carole Langlois-Jacques
- Department of Biostatistics, Hospices Civils de Lyon, Lyon, France
- Laboratoire de Biométrie et Biologie Évolutive, University Lyon 1, Villeurbanne, France
- Faculté de Médecine Lyon Est, University Lyon 1, Lyon, France
| | - Eduardo Couchonnal
- National Reference Center for Wilson Disease and Other Copper-Related Rare Diseases, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron, France
| | - France Woimant
- National Reference Center for Wilson Disease and Other Copper-Related Rare Diseases, Neurology Department, Rothschild Foundation Hospital, Paris, France
| | - Mickael Alexandre Obadia
- National Reference Center for Wilson Disease and Other Copper-Related Rare Diseases, Neurology Department, Rothschild Foundation Hospital, Paris, France
| | - Gwennaelle Perez
- National Reference Center for Wilson Disease and Other Copper-Related Rare Diseases, Neurology Department, Rothschild Foundation Hospital, Paris, France
| | - Michaela Pernon
- National Reference Center for Wilson Disease and Other Copper-Related Rare Diseases, Neurology Department, Rothschild Foundation Hospital, Paris, France
| | - Laurianne Blanchet
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France
| | - Emmanuel Broussolle
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France
| | - Marie Vidailhet
- Sorbonne University, INSERM, CNRS, Paris, France
- Brain Institute, Assistance Publique Hôpitaux de Paris, Salpêtrière Hospital, Paris, France
| | - Behrouz Kassai
- Centre d'Investigation Clinique 1407, Hospices Civils de Lyon, Louis Pradel Hospital, Bron, France
| | - Elena Moro
- Division of Neurology CHU Grenoble Alpes, Grenoble Institute of Neurosciences, INSERM U1216, Grenoble Alpes University, Grenoble, France
| | - Carine Karachi
- Neurosurgery Department, Hôpital de la Salpêtrière, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gustavo Polo
- Neurosurgery Department A, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Bron, France
| | - David Grabli
- Sorbonne University, INSERM, CNRS, Paris, France
- Brain Institute, Assistance Publique Hôpitaux de Paris, Salpêtrière Hospital, Paris, France
| | - Aurélie Portefaix
- Centre d'Investigation Clinique 1407, Hospices Civils de Lyon, Louis Pradel Hospital, Bron, France
| | - Stéphane Thobois
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, PATH-PARK Team, University Lyon 1, Lyon, France
| |
Collapse
|
2
|
Hong G, Zhang Z, Wang P, Li G, Zhang W, Zou H, Luo X. Case report: Asymmetric bilateral deep brain stimulation for the treatment of pantothenate kinase-associated neurodegeneration in a patient: a unique case of atypical PKAN with a novel heterozygous PANK2 mutation. Front Hum Neurosci 2024; 18:1448606. [PMID: 39479227 PMCID: PMC11521929 DOI: 10.3389/fnhum.2024.1448606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Pantothenate kinase-associated neurodegeneration (PKAN) is a rare autosomal recessive hereditary neurodegenerative disorder, usually caused by mutations in the pantothenate kinase 2 (PANK2) gene. We report a young female patient with atypical PKAN, harboring a novel heterozygous PANK2 mutation, diagnosed through clinical imaging and genetic analysis. The patient presented with dystonia and motor dysfunction after onset, but early brain MRI showed normal findings. Due to progressive symptom deterioration, her MRI was reevaluated and the characteristic "eye of the tiger" sign was identified. Further genetic testing revealed that she was a carrier of two heterozygous PANK2 mutations, one being a known pathogenic variant and the other unknown. Given the patient's clinical presentation, progressive symptoms, and poor response to medication, we boldly attempted asymmetric bilateral deep brain stimulation (abDBS). Postoperative outcomes showed significant symptom improvement. This study suggests that early brain MRI in PKAN patients may not exhibit typical radiological features, leading to potential diagnostic omissions. Furthermore, it highlights the potential therapeutic effect of abDBS in atypical PKAN, particularly in patients with novel heterozygous PANK2 mutations. Asymmetric bilateral deep brain stimulation may represent a promising treatment approach.
Collapse
Affiliation(s)
- Guo Hong
- Department of Neurology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, Shenzhen, China
| | - Zhongwen Zhang
- Department of Neurology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Peiyi Wang
- Department of Anesthesiology, Luohu District People’s Hospital, Shenzhen, China
| | - Guoyang Li
- Department of Neurology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, Shenzhen, China
| | - Wenli Zhang
- Department of Neurology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, Shenzhen, China
| | - Huahui Zou
- Department of Neurology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, Shenzhen, China
| | - Xiaoguang Luo
- Department of Neurology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, Shenzhen, China
| |
Collapse
|
3
|
Altamirano JM, Salinas‐Barboza K. Pallidal and Thalamic Deep Brain Stimulation in the Treatment of Unilateral Dystonia: A Prospective Assessment. Mov Disord Clin Pract 2024; 11:1274-1280. [PMID: 39092579 PMCID: PMC11489622 DOI: 10.1002/mdc3.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/07/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The complexities of unilateral dystonia have led to exploring simultaneous (dual) globus pallidus internus (GPi) and motor ventral thalamus (Vim/Vop) deep brain stimulation (DBS), yet detailed assessments are lacking. OBJECTIVES To assess the efficacy of GPi, Vim/Vop, and dual DBS in unilateral dystonia. METHODS Three patients with unilateral dystonia (two idiopathic, one acquired), implanted with two DBS electrodes targeting ipsilateral Vim/Vop and GPi, were included. Three stimulation modalities were assessed. First, one electrode was activated, then the other, and finally, both electrodes were activated simultaneously. RESULTS DBS yielded substantial symptomatic reductions in all three evaluated stimulation modalities. Patients exhibited varying responses regarding quality-of-life and depressive symptoms. Treatment satisfaction didn't align with clinical improvements, potentially affected by unrealistic expectations. CONCLUSIONS This study contributes critical insights into GPi, Vim/Vop and simultaneous stimulation for unilateral dystonia. The safety of the procedure underscores the promise of this approach.
Collapse
|
4
|
Geng X, Quan Z, Zhang R, Zhu G, Nie Y, Wang S, Rolls E, Zhang J, Hu L. Subthalamic and pallidal oscillations and their couplings reflect dystonia severity and improvements by deep brain stimulation. Neurobiol Dis 2024; 199:106581. [PMID: 38936434 DOI: 10.1016/j.nbd.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) targeting the globus pallidus internus (GPi) and subthalamic nucleus (STN) is employed for the treatment of dystonia. Pallidal low-frequency oscillations have been proposed as a pathophysiological marker for dystonia. However, the role of subthalamic oscillations and STN-GPi coupling in relation to dystonia remains unclear. OBJECTIVE We aimed to explore oscillatory activities within the STN-GPi circuit and their correlation with the severity of dystonia and efficacy achieved by DBS treatment. METHODS Local field potentials were recorded simultaneously from the STN and GPi from 13 dystonia patients. Spectral power analysis was conducted for selected frequency bands from both nuclei, while power correlation and the weighted phase lag index were used to evaluate power and phase couplings between these two nuclei, respectively. These features were incorporated into generalized linear models to assess their associations with dystonia severity and DBS efficacy. RESULTS The results revealed that pallidal theta power, subthalamic beta power and subthalamic-pallidal theta phase coupling and beta power coupling all correlated with clinical severity. The model incorporating all selected features predicts empirical clinical scores and DBS-induced improvements, whereas the model relying solely on pallidal theta power failed to demonstrate significant correlations. CONCLUSIONS Beyond pallidal theta power, subthalamic beta power, STN-GPi couplings in theta and beta bands, play a crucial role in understanding the pathophysiological mechanism of dystonia and developing optimal strategies for DBS.
Collapse
Affiliation(s)
- Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhaoyu Quan
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Ruili Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tian-Tan Hospital, Beijing Neurosurgical Institute, Capital Medical University, China
| | - Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Edmund Rolls
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Oxford Centre for Computational Neuroscience, University of Oxford, Oxford, UK
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tian-Tan Hospital, Beijing Neurosurgical Institute, Capital Medical University, China.
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Wu J, Zhu G, Gan Y, Meng F, Yang A, Zhang J. Pallidal Versus Subthalamic Deep-Brain Stimulation for Generalized Isolated Dystonia: A Retrospective Study. J Clin Med 2024; 13:4902. [PMID: 39201044 PMCID: PMC11355894 DOI: 10.3390/jcm13164902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Objectives: Deep-brain stimulation (DBS) has been used for the treatment of medically refractory dystonia with excellent results. In this study, we compared in detail the therapeutic advantages of two DBS targets for generalized isolated dystonia. Methods: In this retrospective study, we recruited 29 patients with generalized isolated dystonia who had undergone DBS treatment targeting either the globus pallidus interna (GPi) or the subthalamic nucleus (STN) in the Department of Functional Neurosurgery at Tiantan Hospital, Beijing, China, between January 2016 and December 2021. The movement and disability subscales of the Burke-Fahn-Marsden dystonia rating scale (BFMDRS) were used to assess the severity of their dystonic symptoms and their activities of daily living, respectively. SF-36 was used to evaluate the patients' health-related quality of life. Results: The percentage improvement in the BFMDRS-M score at 6 months relative to the baseline score was clearly higher in the STN group (63.91%) than in the GPi group (38.36%). At the 3-, 6-, and 12-month follow-ups, the percentage improvement in arm symptoms was significantly higher after DBS of the STN (70.64%, 80.66%, and 76.89%, respectively) than after stimulation of the GPi (36.75%, 34.21%, and 38.47%, respectively). At 12 months after surgery, patient quality of life had improved on all SF-36 subscales in both groups. Conclusions: STN-DBS may have more advantages than GPi-DBS in patients with obvious arm dystonia. STN-DBS had a better clinical effect than GPi-DBS within 6 months after surgery.
Collapse
Affiliation(s)
- Jingchao Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300000, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yifei Gan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Fangang Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
6
|
Lefaucheur JP, Moro E, Shirota Y, Ugawa Y, Grippe T, Chen R, Benninger DH, Jabbari B, Attaripour S, Hallett M, Paulus W. Clinical neurophysiology in the treatment of movement disorders: IFCN handbook chapter. Clin Neurophysiol 2024; 164:57-99. [PMID: 38852434 PMCID: PMC11418354 DOI: 10.1016/j.clinph.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
In this review, different aspects of the use of clinical neurophysiology techniques for the treatment of movement disorders are addressed. First of all, these techniques can be used to guide neuromodulation techniques or to perform therapeutic neuromodulation as such. Neuromodulation includes invasive techniques based on the surgical implantation of electrodes and a pulse generator, such as deep brain stimulation (DBS) or spinal cord stimulation (SCS) on the one hand, and non-invasive techniques aimed at modulating or even lesioning neural structures by transcranial application. Movement disorders are one of the main areas of indication for the various neuromodulation techniques. This review focuses on the following techniques: DBS, repetitive transcranial magnetic stimulation (rTMS), low-intensity transcranial electrical stimulation, including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), and focused ultrasound (FUS), including high-intensity magnetic resonance-guided FUS (MRgFUS), and pulsed mode low-intensity transcranial FUS stimulation (TUS). The main clinical conditions in which neuromodulation has proven its efficacy are Parkinson's disease, dystonia, and essential tremor, mainly using DBS or MRgFUS. There is also some evidence for Tourette syndrome (DBS), Huntington's disease (DBS), cerebellar ataxia (tDCS), and axial signs (SCS) and depression (rTMS) in PD. The development of non-invasive transcranial neuromodulation techniques is limited by the short-term clinical impact of these techniques, especially rTMS, in the context of very chronic diseases. However, at-home use (tDCS) or current advances in the design of closed-loop stimulation (tACS) may open new perspectives for the application of these techniques in patients, favored by their easier use and lower rate of adverse effects compared to invasive or lesioning methods. Finally, this review summarizes the evidence for keeping the use of electromyography to optimize the identification of muscles to be treated with botulinum toxin injection, which is indicated and widely performed for the treatment of various movement disorders.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Clinical Neurophysiology Unit, Henri Mondor University Hospital, AP-HP, Créteil, France; EA 4391, ENT Team, Paris-Est Créteil University, Créteil, France.
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of Neuroscience, Grenoble, France
| | - Yuichiro Shirota
- Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Talyta Grippe
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil; Krembil Brain Institute, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Sanaz Attaripour
- Department of Neurology, University of California, Irvine, CA, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
7
|
Wu Y, Li Y, Li H, Wang T, Huang P, Wu Y, Sun B, Pan Y, Li D. Prediction of subthalamic stimulation efficacy on isolated dystonia via support vector regression. Heliyon 2024; 10:e31475. [PMID: 38818146 PMCID: PMC11137530 DOI: 10.1016/j.heliyon.2024.e31475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Deep brain stimulation (DBS) of subthalamic nucleus (STN) has been well-established and increasingly applied in patients with isolated dystonia. Nevertheless, the surgical efficacy varies among patients. This study aims to explore the factors affecting clinical outcomes of STN-DBS on isolated dystonia and establish a well-performed prediction model. Methods In this prospective study, thirty-two dystonia patients were recruited and received bilateral STN-DBS at our center. Their baseline characteristics and up to one-year follow-up outcomes were assessed. Implanted electrodes of each subject were reconstructed with their contact coordinates and activated volumes calculated. We explored correlations between distinct clinical characteristics and surgical efficacy. Those features were then trained for the model in outcome prediction via support vector regression (SVR) algorithm and testified through cross-validation. Results Patients demonstrated an average clinical improvement of 56 ± 25 % after STN-DBS, significantly affected by distinct symptom forms and activated volumes. The optimal targets and activated volumes were concentratedly located at the dorsal posterior region to STN. Most patients had a rapid response to STN-DBS, and their motor score improvement within one week was highly associated with long-term outcomes. The trained SVR model, contributed by distinct weights of features, could reach a maximum prediction accuracy with mean errors of 11 ± 7 %. Conclusion STN-DBS demonstrated significant and rapid therapeutic effects in patients with isolated dystonia, by possibly affecting the pallidofugal fibers. Early improvement highly indicates the ultimate outcomes. SVR proves valid in outcome prediction. Patients with predominant phasic and generalized symptoms, shorter disease duration, and younger onset age may be more favorable to STN-DBS in the long run.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxia Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Huang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Butenko K, Neudorfer C, Dembek TA, Hollunder B, Meyer GM, Li N, Oxenford S, Bahners BH, Al-Fatly B, Lofredi R, Gordon EM, Dosenbach NUF, Ganos C, Hallett M, Starr PA, Ostrem JL, Wu Y, Zhang C, Fox MD, Horn A. Engaging dystonia networks with subthalamic stimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.24.24307896. [PMID: 38903109 PMCID: PMC11188120 DOI: 10.1101/2024.05.24.24307896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Deep brain stimulation is a viable and efficacious treatment option for dystonia. While the internal pallidum serves as the primary target, more recently, stimulation of the subthalamic nucleus (STN) has been investigated. However, optimal targeting within this structure and its complex surroundings have not been studied in depth. Indeed, multiple historical targets that have been used for surgical treatment of dystonia are directly adjacent to the STN. Further, multiple types of dystonia exist, and outcomes are variable, suggesting that not all types would profit maximally from the exact same target. Therefore, a thorough investigation of the neural substrates underlying effects on dystonia symptoms is warranted. Here, we analyze a multi-center cohort of isolated dystonia patients with subthalamic implantations (N = 58) and relate their stimulation sites to improvement of appendicular and cervical symptoms as well as blepharospasm. Stimulation of the ventral oral posterior nucleus of thalamus and surrounding regions was associated with improvement in cervical dystonia, while stimulation of the dorsolateral STN was associated with improvement in limb dystonia and blepharospasm. This dissociation was also evident for structural connectivity, where the cerebellothalamic, corticospinal and pallidosubthalamic tracts were associated with improvement of cervical dystonia, while hyperdirect and subthalamopallidal pathways were associated with alleviation of limb dystonia and blepharospasm. Importantly, a single well-placed electrode may reach the three optimal target sites. On the level of functional networks, improvement of limb dystonia was correlated with connectivity to the corresponding somatotopic regions in primary motor cortex, while alleviation of cervical dystonia was correlated with connectivity to the recently described 'action-mode' network that involves supplementary motor and premotor cortex. Our findings suggest that different types of dystonia symptoms are modulated via distinct networks. Namely, appendicular dystonia and blepharospasm are improved with modulation of the basal ganglia, and, in particular, the subthalamic circuitry, including projections from the primary motor cortex. In contrast, cervical dystonia was more responsive when engaging the cerebello-thalamo-cortical circuit, including direct stimulation of ventral thalamic nuclei. These findings may inform DBS targeting and image-based programming strategies for patient-specific treatment of dystonia.
Collapse
Affiliation(s)
- Konstantin Butenko
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Barbara Hollunder
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ningfei Li
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simón Oxenford
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bahne H Bahners
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Bassam Al-Fatly
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Roxanne Lofredi
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Nico U F Dosenbach
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA
| | - Christos Ganos
- Movement Disorder Clinic, Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, University of Toronto, Toronto Western Hospital, Toronto, ON, Canada
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Jill L Ostrem
- Movement Disorders and Neuromodulation Centre, Department of Neurology, University of California, San Francisco, CA, USA
| | - Yiwen Wu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - ChenCheng Zhang
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiaotong University Schools of Medicine, Shanghai, China
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Mohamed AA, Faragalla S, Khan A, Flynn G, Rainone G, Johansen PM, Lucke-Wold B. Neurosurgical and pharmacological management of dystonia. World J Psychiatry 2024; 14:624-634. [PMID: 38808085 PMCID: PMC11129150 DOI: 10.5498/wjp.v14.i5.624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Dystonia characterizes a group of neurological movement disorders characterized by abnormal muscle movements, often with repetitive or sustained contraction resulting in abnormal posturing. Different types of dystonia present based on the affected body regions and play a prominent role in determining the potential efficacy of a given intervention. For most patients afflicted with these disorders, an exact cause is rarely identified, so treatment mainly focuses on symptomatic alleviation. Pharmacological agents, such as oral anticholinergic administration and botulinum toxin injection, play a major role in the initial treatment of patients. In more severe and/or refractory cases, focal areas for neurosurgical intervention are identified and targeted to improve quality of life. Deep brain stimulation (DBS) targets these anatomical locations to minimize dystonia symptoms. Surgical ablation procedures and peripheral denervation surgeries also offer potential treatment to patients who do not respond to DBS. These management options grant providers and patients the ability to weigh the benefits and risks for each individual patient profile. This review article explores these pharmacological and neurosurgical management modalities for dystonia, providing a comprehensive assessment of each of their benefits and shortcomings.
Collapse
Affiliation(s)
- Ali Ahmed Mohamed
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Steven Faragalla
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Asad Khan
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Garrett Flynn
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Gersham Rainone
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33606, United States
| | - Phillip Mitchell Johansen
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33606, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
10
|
Cavallieri F, Mulroy E, Moro E. The history of deep brain stimulation. Parkinsonism Relat Disord 2024; 121:105980. [PMID: 38161106 DOI: 10.1016/j.parkreldis.2023.105980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Deep brain stimulation (DBS) surgery is an established and effective treatment for several movement disorders (tremor, Parkinson's disease, and dystonia), and is under investigation in numerous other neurological and psychiatric disorders. However, the origins and development of this neurofunctional technique are not always well understood and recognized. In this mini-review, we review the history of DBS, highlighting important milestones and the most remarkable protagonists (neurosurgeons, neurologists, and neurophysiologists) who pioneered and fostered this therapy throughout the 20th and early 21st century. Alongside DBS historical markers, we also briefly discuss newer developments in the field, and the future challenges which accompany such progress.
Collapse
Affiliation(s)
- Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France.
| |
Collapse
|
11
|
Hao Q, Zheng W, Zhang Z, Liu Y, Ding H, OuYang J, Liu Z, Wu G, Liu R. Subthalamic nucleus deep brain stimulation in primary Meige syndrome: motor and non-motor outcomes. Eur J Neurol 2024; 31:e16121. [PMID: 37933887 PMCID: PMC11235968 DOI: 10.1111/ene.16121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/14/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND AND PURPOSE Deep brain stimulation (DBS) has emerged as a promising treatment for movement disorders. This prospective study aims to evaluate the effects of bilateral subthalamic nucleus DBS (STN-DBS) on motor and non-motor symptoms in patients with primary Meige syndrome. METHODS Thirty patients who underwent bilateral STN-DBS between April 2017 and June 2020 were included. Standardized and validated scales were utilized to assess the severity of dystonia, health-related quality of life, sleep, cognitive function and mental status at baseline and at 1 year and 3 years after neurostimulation. RESULTS The Burke-Fahn-Marsden Dystonia Rating Scale movement scores showed a mean improvement of 63.0% and 66.8% at 1 year and 3 years, respectively, after neurostimulation. Similarly, the Burke-Fahn-Marsden Dystonia Rating Scale disability scores improved by 60.8% and 63.3% at the same time points. Postoperative quality of life demonstrated a significant and sustained improvement throughout the follow-up period. However, cognitive function, mental status, sleep quality and other neuropsychological functions did not change after 3 years of neurostimulation. Eight adverse events occurred in six patients, but no deaths or permanent sequelae were reported. CONCLUSIONS Bilateral STN-DBS is a safe and effective alternative treatment for primary Meige syndrome, leading to improvements in motor function and quality of life. Nevertheless, it did not yield significant amelioration in cognitive, mental, sleep status and other neuropsychological functions after 3 years of neurostimulation.
Collapse
Affiliation(s)
- Qing‐Pei Hao
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
| | - Wen‐Tao Zheng
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
| | - Zi‐Hao Zhang
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
| | - Ye‐Zu Liu
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
| | - Hu Ding
- Department of NeurologyPeking University People's HospitalBeijingChina
| | - Jia OuYang
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
- Functional Neurosurgery Research CenterPeking University Health Science CenterBeijingChina
| | - Zhi Liu
- Department of NeuropsychologyPeking University People's HospitalBeijingChina
| | - Guang‐Yong Wu
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
- Department of NeuropsychologyPeking University People's HospitalBeijingChina
- Department of NeurosurgeryBeijing Shunyi HospitalBeijingChina
| | - Ru‐En Liu
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
- Department of NeuropsychologyPeking University People's HospitalBeijingChina
| |
Collapse
|
12
|
Liu B, Xu J, Yang H, Yu X, Mao Z. PAllidal versus SubThalamic deep brain Stimulation for Cervical Dystonia (PASTS-CD): study protocol for a multicentre randomised controlled trial. BMJ Open 2023; 13:e073425. [PMID: 37832982 PMCID: PMC10582967 DOI: 10.1136/bmjopen-2023-073425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
INTRODUCTION Deep brain stimulation (DBS) has been validated as a safe and effective treatment for refractory cervical dystonia (CD). Globus pallidus internus (GPi) and subthalamic nucleus (STN) are the two main stimulating targets. However, there has been no prospective study to clarify which target is the better DBS candidate for CD. The objective of this trial is to compare directly the efficacy and safety of GPi-DBS and STN-DBS, thereby instructing the selection of DBS target in clinical practice. METHODS AND ANALYSIS This multicentre, prospective, randomised, controlled study plans to enrol 98 refractory CD patients. Eligible CD patients will be randomly allocated to GPi-DBS group or STN-DBS group, with the DBS electrodes implanted into the posteroventral portion of GPi or the dorsolateral portion of STN, respectively. The primary outcome will be the improvement of symptomatic severity, measured by the changes in the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) severity subscale and the Tsui scale at 3 months, 6 months and 12 months after surgery. The secondary outcomes include the improvement of the TWSTRS-disability subscale, TWSTRS-pain subscale, quality of life, mental and cognitive condition, as well as the differences in stimulation parameters and adverse effects. In addition, this study intends to identify certain predictors of DBS efficacy for CD. ETHICS AND DISSEMINATION The trial has been approved by the Medical Ethics Committee of Chinese PLA General Hospital (S2022-613-01). The results of this study will be published in international peer-reviewed journals and shared in professional medical conferences. TRIAL REGISTRATION NUMBER NCT05715138.
Collapse
Affiliation(s)
- Bin Liu
- Medical School, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junpeng Xu
- Medical School, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haonan Yang
- Medical School, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhiqi Mao
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Odorfer TM, Volkmann J. Deep Brain Stimulation for Focal or Segmental Craniocervical Dystonia in Patients Who Have Failed Botulinum Neurotoxin Therapy-A Narrative Review of the Literature. Toxins (Basel) 2023; 15:606. [PMID: 37888637 PMCID: PMC10611146 DOI: 10.3390/toxins15100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
(1) Background: The first-line treatment for patients with focal or segmental dystonia with a craniocervical distribution is still the intramuscular injection of botulinum neurotoxin (BoNT). However, some patients experience primary or secondary treatment failure from this potential immunogenic therapy. Deep brain stimulation (DBS) may then be used as a backup strategy in this situation. (2) Methods: Here, we reviewed the current study literature to answer a specific question regarding the efficacy and safety of the use of DBS, particularly for cervical dystonia (CD) and Meige syndrome (MS) in patients with documented treatment failure under BoNT. (3) Results: There are only two studies with the highest level of evidence in this area. Despite this clear limitation, in the context of the narrowly defined research question of this paper, it is possible to report 161 patients with CD or MS who were included in studies that were able to show a statistically significant reduction in dystonic symptoms using DBS. Safety and tolerability data appeared adequate. However, much of the information is based on retrospective observations. (4) Conclusions: The evidence base in this area is in need of further scientific investigation. Most importantly, more randomized, controlled and double-blind trials are needed, possibly including a head-to-head comparison of DBS and BoNT.
Collapse
Affiliation(s)
- Thorsten M. Odorfer
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | | |
Collapse
|
14
|
Lin S, Shu Y, Zhang C, Wang L, Huang P, Pan Y, Ding J, Sun B, Li D, Wu Y. Globus pallidus internus versus subthalamic nucleus deep brain stimulation for isolated dystonia: A 3-year follow-up. Eur J Neurol 2023; 30:2629-2640. [PMID: 37235703 DOI: 10.1111/ene.15895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND PURPOSE Bilateral deep brain stimulation (DBS) surgery targeting the globus pallidus internus (GPi) or the subthalamic nucleus (STN) is widely used in medication-refractory dystonia. However, evidence regarding target selection considering various symptoms remains limited. This study aimed to compare the effectiveness of these two targets in patients with isolated dystonia. METHODS This retrospective study evaluated 71 consecutive patients (GPi-DBS group, n = 32; STN-DBS group, n = 39) with isolated dystonia. Burke-Fahn-Marsden Dystonia Rating Scale scores and quality of life were evaluated preoperatively and at 1, 6, 12, and 36 months postoperatively. Cognition and mental status were assessed preoperatively and at 36 months postoperatively. RESULTS Targeting the STN (STN-DBS) yielded effects within 1 month (65% vs. 44%; p = 0.0076) and was superior at 1 year (70% vs. 51%; p = 0.0112) and 3 years (74% vs. 59%; p = 0.0138). For individual symptoms, STN-DBS was preferable for eye involvement (81% vs. 56%; p = 0.0255), whereas targeting the GPi (GPi-DBS) was better for axis symptoms, especially for the trunk (82% vs. 94%; p = 0.015). STN-DBS was also favorable for generalized dystonia at 36-month follow-up (p = 0.04) and required less electrical energy (p < 0.0001). Disability, quality of life, and depression and anxiety measures were also improved. Neither target influenced cognition. CONCLUSIONS We demonstrated that the GPi and STN are safe and effective targets for isolated dystonia. The STN has the benefits of fast action and low battery consumption, and is superior for ocular dystonia and generalized dystonia, while the GPi is better for trunk involvement. These findings may offer guidance for future DBS target selection for different types of dystonia.
Collapse
Affiliation(s)
- Suzhen Lin
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimei Shu
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingbing Wang
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Huang
- Department of Neurosurgery, Center for Functional Neurosurgery, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianqing Ding
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Wiest C, Morgante F, Torrecillos F, Pogosyan A, He S, Baig F, Bertaina I, Hart MG, Edwards MJ, Pereira EA, Tan H. Subthalamic Nucleus Stimulation-Induced Local Field Potential Changes in Dystonia. Mov Disord 2023; 38:423-434. [PMID: 36562479 PMCID: PMC7614354 DOI: 10.1002/mds.29302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Subthalamic nucleus (STN) stimulation is an effective treatment for Parkinson's disease and induced local field potential (LFP) changes that have been linked with clinical improvement. STN stimulation has also been used in dystonia although the internal globus pallidus is the standard target where theta power has been suggested as a physiomarker for adaptive stimulation. OBJECTIVE We aimed to explore if enhanced theta power was also present in STN and if stimulation-induced spectral changes that were previously reported for Parkinson's disease would occur in dystonia. METHODS We recorded LFPs from 7 patients (12 hemispheres) with isolated craniocervical dystonia whose electrodes were placed such that inferior, middle, and superior contacts covered STN, zona incerta, and thalamus. RESULTS We did not observe prominent theta power in STN at rest. STN stimulation induced similar spectral changes in dystonia as in Parkinson's disease, such as broadband power suppression, evoked resonant neural activity (ERNA), finely-tuned gamma oscillations, and an increase in aperiodic exponents in STN-LFPs. Both power suppression and ERNA localize to STN. Based on this, single-pulse STN stimulation elicits evoked neural activities with largest amplitudes in STN, which are relayed to the zona incerta and thalamus with changing characteristics as the distance from STN increases. CONCLUSIONS Our results show that STN stimulation-induced spectral changes are a nondisease-specific response to high-frequency stimulation, which can serve as placement markers for STN. This broadens the scope of STN stimulation and makes it an option for other disorders with excessive oscillatory peaks in STN. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Christoph Wiest
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Francesca Morgante
- Neurosciences Research CentreMolecular and Clinical Sciences Institute, St. George's, University of LondonLondonUnited Kingdom
| | - Flavie Torrecillos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Alek Pogosyan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Shenghong He
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Fahd Baig
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Neurosciences Research CentreMolecular and Clinical Sciences Institute, St. George's, University of LondonLondonUnited Kingdom
| | - Ilaria Bertaina
- Neurosciences Research CentreMolecular and Clinical Sciences Institute, St. George's, University of LondonLondonUnited Kingdom
| | - Michael G. Hart
- Neurosciences Research CentreMolecular and Clinical Sciences Institute, St. George's, University of LondonLondonUnited Kingdom
| | - Mark J. Edwards
- Institute of Psychiatry, Psychology and NeurosciencesKing's College LondonLondonUnited Kingdom
| | - Erlick A. Pereira
- Neurosciences Research CentreMolecular and Clinical Sciences Institute, St. George's, University of LondonLondonUnited Kingdom
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
16
|
Listik C, Lapa JD, Casagrande SCB, Barbosa ER, Iglesio R, Godinho F, Duarte KP, Teixeira MJ, Cury RG. Exploring clinical outcomes in patients with idiopathic/inherited isolated generalized dystonia and stimulation of the subthalamic region. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:263-270. [PMID: 37059436 PMCID: PMC10104753 DOI: 10.1055/s-0043-1764416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
BACKGROUND Deep Brain Stimulation (DBS) is an established treatment option for refractory dystonia, but the improvement among the patients is variable. OBJECTIVE To describe the outcomes of DBS of the subthalamic region (STN) in dystonic patients and to determine whether the volume of tissue activated (VTA) inside the STN or the structural connectivity between the area stimulated and different regions of the brain are associated with dystonia improvement. METHODS The response to DBS was measured by the Burke-Fahn-Marsden Dystonia Rating Scale (BFM) before and 7 months after surgery in patients with generalized isolated dystonia of inherited/idiopathic etiology. The sum of the two overlapping STN volumes from both hemispheres was correlated with the change in BFM scores to assess whether the area stimulated inside the STN affects the clinical outcome. Structural connectivity estimates between the VTA (of each patient) and different brain regions were computed using a normative connectome taken from healthy subjects. RESULTS Five patients were included. The baseline BFM motor and disability subscores were 78.30 ± 13.55 (62.00-98.00) and 20.60 ± 7.80 (13.00-32.00), respectively. Patients improved dystonic symptoms, though differently. No relationships were found between the VTA inside the STN and the BFM improvement after surgery (p = 0.463). However, the connectivity between the VTA and the cerebellum structurally correlated with dystonia improvement (p = 0.003). CONCLUSIONS These data suggest that the volume of the stimulated STN does not explain the variance in outcomes in dystonia. Still, the connectivity pattern between the region stimulated and the cerebellum is linked to outcomes of patients.
Collapse
Affiliation(s)
- Clarice Listik
- Universidade de São Paulo, Center for Movement Disorders, Faculty of Medicine, Department of Neurology, São Paulo SP, Brazil
| | - Jorge Dornellys Lapa
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | | | - Egberto Reis Barbosa
- Universidade de São Paulo, Center for Movement Disorders, Faculty of Medicine, Department of Neurology, São Paulo SP, Brazil
| | - Ricardo Iglesio
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | - Fabio Godinho
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | - Kleber Paiva Duarte
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | - Manoel Jacobsen Teixeira
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | - Rubens Gisbert Cury
- Universidade de São Paulo, Center for Movement Disorders, Faculty of Medicine, Department of Neurology, São Paulo SP, Brazil
| |
Collapse
|
17
|
Vergallo A, Cocco A, De Santis T, Lalli S, Albanese A. Eligibility criteria in clinical trials for cervical dystonia. Parkinsonism Relat Disord 2022; 104:110-114. [PMID: 36243553 DOI: 10.1016/j.parkreldis.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/10/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Cervical dystonia (CD) is the most common form of adult-onset focal dystonia. Because of a heterogeneous clinical presentation, the diagnosis rests on clinical opinion. During the last decades, several clinical trials have tested safety and efficacy of medical and surgical treatments for CD. We analyzed all the published CD trials and reviewed the strategies adopted for patient enrollment. METHODS The review included clinical trials in patients with CD published in PubMed. Studies were excluded if reviews, meta-analyses, post-hoc analyses on pooled data, or if not reporting a treatment for CD. RESULTS A total of 174 articles were identified; 134 studies met inclusion criteria. Diagnosis of CD varied among studies and in most cases was based on clinical judgement, using different descriptors such as "cervical dystonia" (37 studies), "idiopathic or isolated CD" (35), "primary CD" (13), and "torticollis" (40). Clinical judgement was supported by a phenomenological description of dystonia in four studies, and by a specific diagnostic strategy in other four. Finally, one study adopted general diagnostic criteria for dystonia. Inclusion and exclusion criteria proved heterogeneous across trials and were defined only in 108 studies, mainly considering age or the phenomenological pattern of muscle involvement. CONCLUSION The review showed lack of consolidated diagnostic criteria and non-uniformity of eligibility criteria for CD across clinical trials. There is need to move beyond clinical judgement as diagnostic criterion for selecting participants. New trials assessing specific CD patient subgroups or comparing medical and surgical procedures will need grounds that are more consistent.
Collapse
Affiliation(s)
- Andrea Vergallo
- Department of Neurology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Antoniangela Cocco
- Department of Neurology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Tiziana De Santis
- Department of Neurology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Stefania Lalli
- Department of Neurology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Alberto Albanese
- Department of Neurology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy.
| |
Collapse
|
18
|
Lin S, Wang L, Shu Y, Guo S, Wang T, Li H, Zhang C, Sun B, Li D, Wu Y. Rescue procedure for isolated dystonia after the secondary failure of globus pallidus internus deep brain stimulation. Front Neurosci 2022; 16:924617. [PMID: 36061614 PMCID: PMC9434021 DOI: 10.3389/fnins.2022.924617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionGlobus pallidus internus (GPi) deep brain stimulation (DBS) is widely used in patients with dystonia. However, 10–20% of patients receive insufficient benefits. The objectives of this study are to evaluate the effectiveness of bilateral subthalamic nucleus (STN) DBS along with unilateral posteroventral pallidotomy (PVP) in patients with dystonia who experienced unsatisfactory GPi-DBS and to address the reported rescue procedures after suboptimal DBS or lesion surgery in dystonia patients.MethodsSix patients with isolated dystonia who had previously undergone bilateral GPi-DBS with suboptimal improvement were included. Standardized assessments of dystonia using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and quality of life using SF-36 were evaluated before surgery and 1, 6 months, and last follow-up (LFU) after surgery. STN bilateral OFF (bi-OFF), unilateral ON (uni-ON), and bilateral ON (bi-ON) states were recorded at LFU. Specific items were used to find publications published before 10 April 2022 regarding rescue procedures after suboptimal DBS or lesion surgery in patients with dystonia for reference. Eleven original studies including case reports/series were identified for discussion.ResultsSubstantial clinical benefits were achieved in all six patients. Significant amelioration was achieved during the 1-month (6.5 ± 7.45; p = 0.0049), 6-month (5.67 ± 6.3; p = 0.0056) follow-ups, and at LFU (4.67 ± 4.72; p = 0.0094) when compared with the baseline (LFU of GPi DBS with on status) (17.33 ± 11.79) assessed by BFMDRS. The percentage of improvement reached 70.6, 74.67, and 77.05%, respectively. At LFU, significant differences were found between the stimulation bi-OFF and uni-ON (11.08 ± 8.38 vs. 9 ± 8.52, p = 0.0191), and between the stimulation bi-OFF and bi-ON (11.08 ± 8.38 vs. 4.67 ± 4.72, p = 0.0164). Trends depicting a better improvement in stimulation bi-ON compared with uni-ON (4.67 ± 4.72 vs. 9 ± 8.52, p = 0.0538) were observed.ConclusionOur results suggest that bilateral STN-DBS plus unilateral PVP may be an effective rescue procedure for patients with isolated dystonia who experienced suboptimal movement improvement following GPi-DBS. However, given the heterogeneity of patients and the small sample size, these findings should be interpreted with caution.
Collapse
Affiliation(s)
- Suzhen Lin
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingbing Wang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimei Shu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunyu Guo
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxia Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Dianyou Li,
| | - Yiwen Wu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yiwen Wu,
| |
Collapse
|
19
|
Characterizing the trends in patient demographics, complications, and short-term outcomes after deep brain stimulation procedures. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2021.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Chung M, Huh R. Neuromodulation for trigeminal neuralgia. J Korean Neurosurg Soc 2022; 65:640-651. [PMID: 35574582 PMCID: PMC9452392 DOI: 10.3340/jkns.2022.0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/16/2022] [Indexed: 11/27/2022] Open
|
21
|
Liu Y, Zhang Q, Wang J, Liu J, Yang W, Yan X, Ouyang Y, Yang H. Both subthalamic and pallidal deep brain stimulation are effective for GNAO1-associated dystonia: three case reports and a literature review. Ther Adv Neurol Disord 2022; 15:17562864221093507. [PMID: 35509770 PMCID: PMC9058460 DOI: 10.1177/17562864221093507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Mutations in the G-protein subunit alpha o1 (GNAO1) gene have recently been shown to be involved in the pathogenesis of early infantile epileptic encephalopathy and movement disorders. The clinical manifestations of GNAO1-associated movement disorders are highly heterogeneous. However, the genotype-phenotype correlations in this disease remain unclear, and the treatments for GNAO1-associated movement disorders are still limited. Objective The objective of this study was to explore diagnostic and therapeutic strategies for GNAO1-associated movement disorders. Methods This study describes the cases of three Chinese patients who had shown severe and progressive dystonia in the absence of epilepsy since early childhood. We performed genetic analyses in these patients. Patients 1 and 2 underwent globus pallidus internus (GPi) deep brain stimulation (DBS) implantation, and Patient 3 underwent subthalamic nucleus (STN) DBS implantation. In addition, on the basis of a literature review, we summarized and discussed the clinical characteristics and outcomes after DBS surgery for all reported patients with GNAO1-associated movement disorders. Results Whole-exome sequencing (WES) analysis revealed de novo variants in the GNAO1 gene for all three patients, including a splice-site variant (c.724-8G > A) in Patients 1 and 3 and a novel heterozygous missense variant (c.124G > A; p. Gly42Arg) in Patient 2. Both GPi and STN DBS were effective in improving the dystonia symptoms of all three patients. Conclusion DBS is effective in ameliorating motor symptoms in patients with GNAO1-associated movement disorders, and both STN DBS and GPi DBS should be considered promptly for patients with sustained refractory GNAO1-associated dystonia.
Collapse
Affiliation(s)
- Ye Liu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Qingping Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jun Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Jiyuan Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Wuyang Yang
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xuejing Yan
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Yi Ouyang
- Department of Neurology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Haibo Yang
- Department of Pediatric Surgery, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
22
|
Høck AN, Jensen SR, Sværke KW, Brennum J, Jespersen B, Bergdal O, Karlsborg M, Hjermind LE, Løkkegaard A. A randomised double-blind controlled study of Deep Brain Stimulation for dystonia in STN or GPi – A long term follow-up after up to 15 years. Parkinsonism Relat Disord 2022; 96:74-79. [DOI: 10.1016/j.parkreldis.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/17/2022] [Accepted: 02/05/2022] [Indexed: 12/25/2022]
|
23
|
Fan H, Zheng Z, Yin Z, Zhang J, Lu G. Deep Brain Stimulation Treating Dystonia: A Systematic Review of Targets, Body Distributions and Etiology Classifications. Front Hum Neurosci 2021; 15:757579. [PMID: 34899219 PMCID: PMC8663760 DOI: 10.3389/fnhum.2021.757579] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Deep brain stimulation (DBS) is a typical intervention treating drug-refractory dystonia. Currently, the selection of the better target, the GPi or STN, is debatable. The outcomes of DBS treating dystonia classified by body distribution and etiology is also a popular question. Objective: To comprehensively compare the efficacy, quality of life, mood, and adverse effects (AEs) of GPi-DBS vs. STN-DBS in dystonia as well as in specific types of dystonia classified by body distribution and etiology. Methods: PubMed, Embase, the Cochrane Library, and Google Scholar were searched to identify studies of GPi-DBS and STN-DBS in populations with dystonia. The efficacy, quality of life, mood, and adverse effects were quantitatively compared. Meta-regression analyses were also performed. This analysis has been registered in PROSPERO under the number CRD42020146145. Results: Thirty five studies were included in the main analysis, in which 319 patients underwent GPI-DBS and 113 patients underwent STN-DBS. The average follow-up duration was 12.48 months (range, 3–49 months). The GPI and STN groups were equivalent in terms of efficacy, quality of life, mood, and occurrence of AEs. The focal group demonstrated significantly better disability symptom improvement (P = 0.012) than the segmental and generalized groups but showed less SF-36 enhancement than the segmental group (P < 0.001). The primary groups exhibited significantly better movement and disability symptom improvements than the secondary non-hereditary group (P < 0.005), which demonstrated only disability symptom improvement compared with the secondary hereditary group (P < 0.005). The primary hereditary and idiopathic groups had a significantly lower frequency of AEs than the secondary non-hereditary group (P < 0.005). The correlation between disability symptom improvement and movement symptom improvement was also significant (P < 0.05). Conclusion: GPi-DBS and STN-DBS were both safe and resulted in excellent improvement in efficacy and quality of life in patients with dystonia. Compared with patients with segmental dystonia, patients with focal dystonia demonstrated better improvement in dystonia symptoms but less enhancement of quality of life. Those with primary dystonia had a better response to DBS in terms of efficacy than those with secondary dystonia. Patients who exhibit a significant improvement in movement symptoms might also exhibit excellent improvement in disability symptoms.
Collapse
Affiliation(s)
- Houyou Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zijian Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
24
|
da Silva Lapa JD, Godinho FLF, Teixeira MJ, Listik C, Iglesio RF, Duarte KP, Cury RG. Should the Globus Pallidus Targeting Be Refined in Dystonia? J Neurol Surg A Cent Eur Neurosurg 2021; 83:361-367. [PMID: 34808675 DOI: 10.1055/s-0041-1735856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND STUDY AIMS Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is a highly effective therapy for primary generalized and focal dystonias, but therapeutic success is compromised by a nonresponder rate of up to 20%. Variability in electrode placement and in tissue stimulated inside the GPi may explain in part different outcomes among patients. Refinement of the target within the pallidal area could be helpful for surgery planning and clinical outcomes. The objective of this study was to discuss current and potential methodological (somatotopy, neuroimaging, and neurophysiology) aspects that might assist neurosurgical targeting of the GPi, aiming to treat generalized or focal dystonia. METHODS We selected published studies by searching electronic databases and scanning the reference lists for articles that examined the anatomical and electrophysiologic aspects of the GPi in patients with idiopathic/inherited dystonia who underwent functional neurosurgical procedures. RESULTS The sensorimotor sector of the GPi was the best target to treat dystonic symptoms, and was localized at its lateral posteroventral portion. The effective volume of tissue activated (VTA) to treat dystonia had a mean volume of 153 mm3 in the posterior GPi area. Initial tractography studies evaluated the close relation between the electrode localization and pallidothalamic tract to control dystonic symptoms.Regarding the somatotopy, the more ventral, lateral, and posterior areas of the GPi are associated with orofacial and cervical representation. In contrast, the more dorsal, medial, and anterior areas are associated with the lower limbs; between those areas, there is the representation of the upper limb. Excessive pallidal synchronization has a peak at the theta band of 3 to 8 Hz, which might be responsible for generating dystonic symptoms. CONCLUSIONS Somatotopy assessment of posteroventral GPi contributes to target-specific GPi sectors related to segmental body symptoms. Tractography delineates GPi output pathways that might guide electrode implants, and electrophysiology might assist in pointing out areas of excessive theta synchronization. Finally, the identification of oscillatory electrophysiologic features that correlate with symptoms might enable closed-loop approaches in the future.
Collapse
Affiliation(s)
- Jorge Dornellys da Silva Lapa
- Neurosurgery Unit, Fundação de Beneficiência Hospital de Cirurgia, Cirurgia, Aracaju, Sergipe, Brazil.,Division of Functional Neurosurgery, Department of Neurology, University of São Paulo, School of Medicine, Sao Paulo, São Paulo, Brazil
| | - Fábio Luiz Franceschi Godinho
- Division of Functional Neurosurgery, Department of Neurology, University of São Paulo, School of Medicine, Sao Paulo, São Paulo, Brazil
| | | | - Clarice Listik
- Movement Disorders Center, Department of Neurology, School of Medicine, University of Sao Paulo, Sao Paulo, São Paulo, Brazil
| | - Ricardo Ferrareto Iglesio
- Division of Functional Neurosurgery, Department of Neurology, University of São Paulo, School of Medicine, Sao Paulo, São Paulo, Brazil
| | - Kleber Paiva Duarte
- Division of Functional Neurosurgery, Department of Neurology, University of São Paulo, School of Medicine, Sao Paulo, São Paulo, Brazil
| | - Rubens Gisbert Cury
- Movement Disorders Center, Department of Neurology, School of Medicine, University of Sao Paulo, Sao Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Mulroy E, Vijiaratnam N, De Roquemaurel A, Bhatia KP, Zrinzo L, Foltynie T, Limousin P. A practical guide to troubleshooting pallidal deep brain stimulation issues in patients with dystonia. Parkinsonism Relat Disord 2021; 87:142-154. [PMID: 34074583 DOI: 10.1016/j.parkreldis.2021.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
High frequency deep brain stimulation (DBS) of the internal portion of the globus pallidus has, in the last two decades, become a mainstream therapy for the management of medically-refractory dystonia syndromes. Such increasing uptake places an onus on movement disorder physicians to become familiar with this treatment modality, in particular optimal patient selection for the procedure and how to troubleshoot problems relating to sub-optimal efficacy and therapy-related side effects. Deep brain stimulation for dystonic conditions presents some unique challenges. For example, the frequent lack of immediate change in clinical status following stimulation alterations means that programming often relies on personal experience and local practice rather than real-time indicators of efficacy. Further, dystonia is a highly heterogeneous disorder, making the development of unifying guidelines and programming algorithms for DBS in this population difficult. Consequently, physicians may feel less confident in managing DBS for dystonia as compared to other indications e.g. Parkinson's disease. In this review, we integrate our years of personal experience of the programming of DBS systems for dystonia with a critical appraisal of the literature to produce a practical guide for troubleshooting common issues encountered in patients with dystonia treated with DBS, in the hope of improving the care for these patients.
Collapse
Affiliation(s)
- Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| | - Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexis De Roquemaurel
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
26
|
Kim HJ, Jeon B. Arching deep brain stimulation in dystonia types. J Neural Transm (Vienna) 2021; 128:539-547. [PMID: 33740122 DOI: 10.1007/s00702-021-02304-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/11/2020] [Indexed: 12/29/2022]
Abstract
Although medical treatment including botulinum toxic injection is the first-line treatment for dystonia, response is insufficient in many patients. In these patients, deep brain stimulation (DBS) can provide significant clinical improvement. Mounting evidence indicates that DBS is an effective and safe treatment for dystonia, especially for idiopathic and inherited isolated generalized/segmental dystonia, including DYT-TOR1A. Other inherited dystonia and acquired dystonia also respond to DBS to varying degrees. For Meige syndrome (craniofacial dystonia), other focal dystonia, and some rare inherited dystonia, further evidences are still needed to evaluate the role of DBS. Because short disease duration at DBS surgery and absence of fixed musculoskeletal deformity are associated with better outcome, DBS should be considered as early as possible when indicated after careful evaluation including genetic work-up. This review will focus on the factors to be considered in DBS for patients with dystonia and the outcome of DBS in the different types of dystonia.
Collapse
Affiliation(s)
- Han-Joon Kim
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Beomseok Jeon
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
27
|
He W, Li H, Lai Y, Wu Y, Wu Y, Ramirez-Zamora A, Yi W, Zhang C. Weight Change After Subthalamic Nucleus Deep Brain Stimulation in Patients With Isolated Dystonia. Front Neurol 2021; 12:632913. [PMID: 33716933 PMCID: PMC7944092 DOI: 10.3389/fneur.2021.632913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose: Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an effective treatment method for advanced Parkinson's disease (PD) and isolated dystonia and provides marked improvement of major motor symptoms. In addition, non-motor effects have been reported including weight gain (WG) in patients with PD after STN-DBS. However, it is still unclear whether patients with isolated dystonia also experience WG. Methods: Data from 47 patients with isolated dystonia who underwent bilateral STN-DBS surgery between October 2012 and June 2019 were retrospectively collected. The severity of dystonia was assessed via the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). Changes in the body mass index (BMI) and BFMDRS score were analyzed using paired Student's t-tests. Regression analysis was performed to identify factors that affected the BMI after surgery. Results: Postoperative WG was observed in 78.7% of patients. The percentage of overweight and obese patients increased from 25.5% (before STN-DBS) to 48.9% (at the last follow-up). The mean BMI and mean percentage change in BMI increased by 1.32 ± 1.83 kg/m2 (P < 0.001) and 6.28 ± 8.34%, respectively. BMI increased more in female than in male patients. At the last follow-up, BFMDRS movement and disability scores improved by 69.76 ± 33.23% and 65.66 ± 31.41%, respectively (both P < 0.001). The final regression model analysis revealed that sex and preoperative BMI alone were independently associated with BMI change (P < 0.05). Conclusions: STN-DBS is associated with postoperative WG with patients with isolated dystonia. WG is more prominent in female patients and is associated with preoperative weight but not with the efficacy of STN-DBS on motor symptoms.
Collapse
Affiliation(s)
- Weibin He
- Department of Neurosurgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Hongxia Li
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijie Lai
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunhao Wu
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Adolfo Ramirez-Zamora
- Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Wei Yi
- Department of Neurosurgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Chencheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Hariz GM, Fredricks A, Stenmark-Persson R, Hariz M, Forsgren L, Blomstedt P. Blinded Versus Unblinded Evaluations of Motor Scores in Patients with Parkinson's Disease Randomized to Deep Brain Stimulation or Best Medical Therapy. Mov Disord Clin Pract 2021; 8:286-287. [PMID: 33553497 PMCID: PMC7853190 DOI: 10.1002/mdc3.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 11/07/2022] Open
Affiliation(s)
- Gun-Marie Hariz
- Unit of Deep Brain Stimulation, Department of Clinical Science, Neuroscience Umeå University Umeå Sweden
| | - Anna Fredricks
- Unit of Deep Brain Stimulation, Department of Clinical Science, Neuroscience Umeå University Umeå Sweden
| | - Rasmus Stenmark-Persson
- Unit of Deep Brain Stimulation, Department of Clinical Science, Neuroscience Umeå University Umeå Sweden.,Department of Clinical Science, Neuroscience Umeå University Umeå Sweden
| | - Marwan Hariz
- Unit of Deep Brain Stimulation, Department of Clinical Science, Neuroscience Umeå University Umeå Sweden.,UCL Institute of Neurology Queen Square, London UK
| | - Lars Forsgren
- Department of Clinical Science, Neuroscience Umeå University Umeå Sweden
| | - Patric Blomstedt
- Unit of Deep Brain Stimulation, Department of Clinical Science, Neuroscience Umeå University Umeå Sweden
| |
Collapse
|
29
|
Parameters for subthalamic deep brain stimulation in patients with dystonia: a systematic review. J Neurol 2021; 269:197-204. [PMID: 33385242 DOI: 10.1007/s00415-020-10372-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Deep brain stimulation (DBS) is used for treating dystonia, commonly targeting the subthalamic nucleus (STN). Optimal stimulation parameters are required to achieve satisfying results. However, recommended parameters for STN-DBS remain to be identified. In this review, we aimed to assess the optimal stimulation parameters by analyzing previously published STN-DBS data of patients with dystonia. METHODS We examined the STN-DBS stimulation parameters used in studies on dystonia selected on the PubMed/Medline database. RESULTS Of the 86 publications retrieved from the PubMed/Medline database, we included 24, which consisted of data from 94 patients and 160 electrodes. Overall, the following average stimulation parameters were observed: amplitude, 2.59 ± 0.67 V; pulse width, 83.87 ± 34.70 μs; frequency, 142.08 ± 37.81 Hz. The average improvement rate was 64.72 ± 24.74%. The improvement rate and stimulation parameters were linearly dependent. The average improvement rate increased by 3.58% at each 10-Hz increase in frequency. In focal and segmental dystonia, the improvement rate and stimulation parameters were linearly dependent. The improvement rate increased by 6.06% and decreased by 2.14% at each 10-Hz increase in frequency and pulse width, respectively. Seventeen publications (83 patients) mentioned stimulation-related adverse effects, including dyskinesia (17), depression (8), transient dysarthria (5), weight gain (4), transient dysphasia (3), transient paresthesia (2), and sustained hyperkinesia (2). CONCLUSIONS The optimal stimulation parameter for STN-DBS varies across patients. Our findings may be useful for DBS programming based on the specific dystonia subtypes, especially for patients with focal and segmental dystonia.
Collapse
|
30
|
Listik C, Listik E, Cury RG, Barbosa ER, Teixeira MJ, Andrade DCD. Deep brain stimulation treatment in dystonia: a bibliometric analysis. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 78:586-592. [PMID: 33053012 DOI: 10.1590/0004-282x20200016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/27/2020] [Indexed: 08/11/2023]
Abstract
BACKGROUND Dystonia is a heterogeneous disorder that, when refractory to medical treatment, may have a favorable response to deep brain stimulation (DBS). A practical way to have an overview of a research domain is through a bibliometric analysis, as it makes it more accessible for researchers and others outside the field to have an idea of its directions and needs. OBJECTIVE To analyze the 100 most cited articles in the use of DBS for dystonia treatment in the last 30 years. METHODS The research protocol was performed in June 2019 in Elsevier's Scopus database, by retrieving the most cited articles regarding DBS in dystonia. We analyzed authors, year of publication, country, affiliation, and targets of DBS. RESULTS Articles are mainly published in Movement Disorders (19%), Journal of Neurosurgery (9%), and Neurology (9%). European countries offer significant contributions (57% of our sample). France (192.5 citations/paper) and Germany (144.1 citations/paper) have the highest citation rates of all countries. The United States contributes with 31% of the articles, with 129.8 citations/paper. The publications are focused on General outcomes (46%), followed by Long-term outcomes (12.5%), and Complications (11%), and the leading type of dystonia researched is idiopathic or inherited, isolated, segmental or generalized dystonia, with 27% of articles and 204.3 citations/paper. CONCLUSIONS DBS in dystonia research is mainly published in a handful of scientific journals and focused on the outcomes of the surgery in idiopathic or inherited, isolated, segmental or generalized dystonia, and with globus pallidus internus as the main DBS target.
Collapse
Affiliation(s)
- Clarice Listik
- Universidade de São Paulo, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| | - Eduardo Listik
- Universidade Federal de São Paulo, Departamento de Bioquímica, São Paulo SP, Brazil
| | - Rubens Gisbert Cury
- Universidade de São Paulo, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| | - Egberto Reis Barbosa
- Universidade de São Paulo, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| | | | - Daniel Ciampi de Andrade
- Universidade de São Paulo, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil.,Instituto do Câncer do Estado de São Paulo, Centro de Dor, São Paulo SP, Brazil
| |
Collapse
|
31
|
Li H, Wang T, Zhang C, Su D, Lai Y, Sun B, Li D, Wu Y. Asleep Deep Brain Stimulation in Patients With Isolated Dystonia: Stereotactic Accuracy, Efficacy, and Safety. Neuromodulation 2020; 24:272-278. [PMID: 33325608 DOI: 10.1111/ner.13341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Lead placement for deep brain stimulation (DBS) is routinely performed using neuroimaging or microelectrode recording (MER). Recent studies have demonstrated that DBS under general anesthesia using an imaging-guided target technique ("asleep" DBS) can be performed accurately and effectively with lower surgery complication rates than the MER-guided target method under local anesthesia ("awake" DBS). This suggests that asleep DBS may be a more acceptable method. However, there is limited direct evidence focused on isolated dystonia using this method. Therefore, this study aimed to investigate the clinical outcomes and targeting accuracy in patients with dystonia who underwent asleep DBS. MATERIALS AND METHODS We examined 56 patients (112 leads) with isolated dystonia who underwent asleep DBS targeting in the globus pallidus internus (GPi) and subthalamic nucleus (STN). The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) scores were assessed preoperatively and at 12-month follow-up (12 m-FU). The lead accuracy was evaluated by comparing the coordinates of the preoperative plan with those of the final electrode implantation location. Other measures analyzed included stimulation parameters and adverse events (AEs). RESULTS For both GPi and STN cohorts, mean BFMDRS motor scores were significantly lower at 12 m-FU (8.9 ± 10.9 and 4.6 ± 5.7 points) than at baseline (22.6 ± 16.4 and 16.1 ± 14.1 points, p < 0.001). The mean difference between the planned target and the distal contact of the leads was 1.33 ± 0.54 mm for the right brain electrodes and 1.50 ± 0.57 mm for the left, determined by Euclidian distance. No perioperative complications or AEs related to the device were observed during the complete follow-up. However, AEs associated with stimulation occurred in 12 and 6 patients in the GPi and STN groups, respectively. CONCLUSIONS Asleep DBS may be an accurate, effective, and safe method for treating patients with isolated dystonia regardless of the stimulation target.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daoqing Su
- Department of Neurosurgery, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, China
| | - Yijie Lai
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Sharma VD, Bezchlibnyk YB, Isbaine F, Naik KB, Cheng J, Gale JT, Miocinovic S, Buetefisch C, Factor SA, Willie JT, Boulis NM, Wichmann T, DeLong MR, Gross RE. Clinical outcomes of pallidal deep brain stimulation for dystonia implanted using intraoperative MRI. J Neurosurg 2020; 133:1582-1594. [PMID: 31604331 DOI: 10.3171/2019.6.jns19548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/27/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Lead placement for deep brain stimulation (DBS) using intraoperative MRI (iMRI) relies solely on real-time intraoperative neuroimaging to guide electrode placement, without microelectrode recording (MER) or electrical stimulation. There is limited information, however, on outcomes after iMRI-guided DBS for dystonia. The authors evaluated clinical outcomes and targeting accuracy in patients with dystonia who underwent lead placement using an iMRI targeting platform. METHODS Patients with dystonia undergoing iMRI-guided lead placement in the globus pallidus pars internus (GPi) were identified. Patients with a prior ablative or MER-guided procedure were excluded from clinical outcomes analysis. Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) scores and Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) scores were assessed preoperatively and at 6 and 12 months postoperatively. Other measures analyzed include lead accuracy, complications/adverse events, and stimulation parameters. RESULTS A total of 60 leads were implanted in 30 patients. Stereotactic lead accuracy in the axial plane was 0.93 ± 0.12 mm from the intended target. Nineteen patients (idiopathic focal, n = 7; idiopathic segmental, n = 5; DYT1, n = 1; tardive, n = 2; other secondary, n = 4) were included in clinical outcomes analysis. The mean improvement in BFMDRS score was 51.9% ± 9.7% at 6 months and 63.4% ± 8.0% at 1 year. TWSTRS scores in patients with predominant cervical dystonia (n = 13) improved by 53.3% ± 10.5% at 6 months and 67.6% ± 9.0% at 1 year. Serious complications occurred in 6 patients (20%), involving 8 of 60 implanted leads (13.3%). The rate of serious complications across all patients undergoing iMRI-guided DBS at the authors' institution was further reviewed, including an additional 53 patients undergoing GPi-DBS for Parkinson disease. In this expanded cohort, serious complications occurred in 11 patients (13.3%) involving 15 leads (10.1%). CONCLUSIONS Intraoperative MRI-guided lead placement in patients with dystonia showed improvement in clinical outcomes comparable to previously reported results using awake MER-guided lead placement. The accuracy of lead placement was high, and the procedure was well tolerated in the majority of patients. However, a number of patients experienced serious adverse events that were attributable to the introduction of a novel technique into a busy neurosurgical practice, and which led to the revision of protocols, product inserts, and on-site training.
Collapse
Affiliation(s)
| | - Yarema B Bezchlibnyk
- 3Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
- 4Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, Florida; and
| | - Faical Isbaine
- 3Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Kushal B Naik
- 6Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Jennifer Cheng
- 3Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
- 5Neurosurgery, University of Kansas Medical Center, Kansas City, Kansas
| | - John T Gale
- 3Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | | | | | | | - Jon T Willie
- Departments of1Neurology and
- 3Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Nicholas M Boulis
- 3Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | | | | | - Robert E Gross
- Departments of1Neurology and
- 3Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
33
|
Ghanchi H, Bernstein JE, Taka TM, Patchana T, Kashyap S, Hariri OR, Jamshidi AO, Ananda AK. Generalized Dystonia Treated With Deep Brain Stimulator: An Institutional Single Surgeon Experience. Cureus 2020; 12:e10992. [PMID: 33209548 PMCID: PMC7668228 DOI: 10.7759/cureus.10992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Dystonia can cause severe disability when left untreated. Once a patient has exhausted medical management, surgical intervention may be the only treatment option. Although not curative, deep brain stimulation has been shown to be beneficial for patients affected by this condition. Our study sought to review patients undergoing deep brain stimulation for medically refractory dystonia to assess outcomes. Methods Our institution's operative database was reviewed retrospectively for all patients undergoing deep brain stimulator placement over the last six years. These medical records were reviewed for the severity of dystonia preoperatively and followed postoperatively for 24 months, focusing on the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). Patients with less than two-year postoperative follow-up were excluded from the study. The patients were further stratified by age into Group A, consisting of patients less than 40 years old, and Group B, patients greater than or equal to 40 years old. Other attributes such as age, sex, age of disease onset, disease duration at the time of surgery, genetic tests for dystonia-related genes, and any complication associated with surgery were also reviewed. Results Four hundred fifty-five operative cases for deep brain stimulator placement were reviewed, and 16 patients met inclusion criteria for the study. The mean age for our patient cohort was 43.75 years, with four males and 12 females. The average time from the age of disease onset to time of surgery was 9.7 years for Group A and 10.8 years for Group B; the overall average was 10.3 years. All patients had globus pallidus interna (GPi) as their surgical target. The first incidence of a statistically significant decrease in BFMDRS score was noted at three months postoperatively (p<0.001) when compared to preoperative values. Fourteen patients in our cohort underwent preoperative genetic testing for DYT gene mutations, out of which four were found to have a mutation. Conclusion Our review of outcomes for primary generalized dystonia at our institution found that deep brain stimulator targeting the GPi is safe and effective. We found an overall 88% response rate with younger patients (< 40-year-old) showing a better response at two years than older patients.
Collapse
Affiliation(s)
- Hammad Ghanchi
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Jacob E Bernstein
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Taha M Taka
- Neurosurgery, University of California Riverside, Riverside, USA
| | - Tye Patchana
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Samir Kashyap
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Omid R Hariri
- Neurosurgery, Kaiser Permanente-Orange County, Anaheim, USA
| | | | | |
Collapse
|
34
|
Tambirajoo K, Furlanetti L, Samuel M, Ashkan K. Subthalamic Nucleus Deep Brain Stimulation in Post-Infarct Dystonia. Stereotact Funct Neurosurg 2020; 98:386-398. [DOI: 10.1159/000509317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022]
Abstract
Dystonia secondary to cerebral infarcts presents months to years after the initial insult, is usually unilateral and causes significant morbidity. Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is established as the most frequent target in the management of the dystonic symptoms. We report our experience with subthalamic nucleus (STN) DBS in 3 patients with post-infarct dystonia, in whom GPi DBS was not confidently possible due to the presence of striatal infarcts. Two patients had unilateral STN DBS implantation, whereas the third patient had bilateral STN DBS implantation for bilateral dystonic symptoms. Prospectively collected preoperative and postoperative functional assessment data including imaging, medication and neuropsychology evaluations were analyzed with regard to symptom improvement. Median follow-up period was 38.3 months (range 26–43 months). All patients had clinically valuable improvements in dystonic symptoms and pain control despite variable improvements in the Burke-Fahn-Marsden dystonia rating scores. In our series, we have demonstrated that STN DBS could be an alternative in the management of post-infarct dystonia in patients with abnormal striatal anatomy which precludes GPi DBS. A multidisciplinary team-based approach is essential for patient selection and management.
Collapse
|
35
|
Gupta A. Subthalamic stimulation for cervical dystonia. Acta Neurochir (Wien) 2020; 162:1879-1881. [PMID: 32034497 DOI: 10.1007/s00701-020-04253-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/28/2020] [Indexed: 11/28/2022]
Abstract
The globus pallidus internus (GPi) has been the primary target for deep brain stimulation (DBS) to treat severe medication-refractory dystonia. Some patients with primary cervical dystonia do not respond adequately to GPi stimulation. Subthalamic nucleus (STN) DBS may provide an alternative choice for treating this dystonia. In this study, we analysed the effect of bilateral STN DBS on two patients of medically refractory primary cervical dystonia. The severity of the dystonia was measured using the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) preoperatively, and 1, 3, 6 and 12 months postoperatively and yearly follow-up was performed. Any change in mental status was recorded using the Mini-Mental State Examination (MMSE) score. Surgery was performed using the Leksell stereotactic system and by fusing CT scan and MR images with neuronavigation and microelectrode recording. Both patients were followed for more than 3 years. STN DBS was well-tolerated by both patients with no adverse effects. The benefit seems to be immediate. The first patient showed 74% improvement, and the second patient showed 84.3% improvement in the overall TWSTRS score. No mental deterioration was observed in either of the cases, as the MMSE score remained unchanged in both patients. A prior bilateral pallidal lesion in the first case did not adversely affect the outcome. This study showed that bilateral STN DBS results in a very significant improvement in cervical dystonia with no mental worsening and suggests that STN DBS may be an alternative to GPi DBS for treating primary cervical dystonia.
Collapse
Affiliation(s)
- Alok Gupta
- Metro Heart Institute with Multispecialty, Sector 16A, Faridabad, Haryana, 121007, India.
| |
Collapse
|
36
|
Jiang H, Wang R, Zheng Z, Zhu J. Deep brain stimulation for the treatment of cerebral palsy: A review. BRAIN SCIENCE ADVANCES 2020. [DOI: 10.26599/bsa.2020.9050002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Deep brain stimulation (DBS) has been used as a safe and effective neuromodulation technique for treatment of various diseases. A large number of patients suffering from movement disorders such as dyskinesia may benefit from DBS. Cerebral palsy (CP) is a group of permanent disorders mainly involving motor impairment, and medical interventions are usually unsatisfactory or temporarily active, especially for dyskinetic CP. DBS may be another approach to the treatment of CP. In this review we discuss the targets for DBS and the mechanisms of action for the treatment of CP, and focus on presurgical assessment, efficacy for dystonia and other symptoms, safety, and risks.
Collapse
Affiliation(s)
- Hongjie Jiang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rui Wang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhe Zheng
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Junming Zhu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
37
|
Ouyang J, Hao Q, Zhu R, Wu G, Ding H, Wang D, Liu R. Subthalamic Nucleus Deep Brain Stimulation in Primary Meige Syndrome: A 1-Year Follow-Up Study. Neuromodulation 2020; 24:293-299. [PMID: 32476223 DOI: 10.1111/ner.13174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To investigate the efficacy of bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with Meige syndrome. MATERIALS AND METHODS Fifteen consecutive patients who underwent STN-DBS at the Peking University People's Hospital between September 2017 and June 2018 were included in this study. The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) movement score and the BFMDRS disability score were obtained prior to surgery, and at specific time points after surgery. Patients' sleep status was also assessed before and after surgery. RESULTS The BFMDRS movement scores decreased from 15.3 ± 4.6 to 5.2 ± 6.2 after STN-DBS, with a mean improvement of 68.6% (p < 0.05). The BFMDRS disability scores were also significantly decreased, from 6.9 ± 3.3 to 3.5 ± 2.9, with a mean improvement of 51.7% (p < 0.05). The eye, mouth, speech, and swallowing movement scores also decreased significantly after STN-DBS compared to baseline (p < 0.05). The sleep quality of the patients was also improved after surgery. CONCLUSIONS These findings demonstrate that the STN is an effective brain target for the treatment of patients with Meige syndrome. STN-DBS was not only able to improve patients' motor symptoms, but also their sleep status.
Collapse
Affiliation(s)
- Jia Ouyang
- Department of Neurosurgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Qingpei Hao
- Department of Neurosurgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Runze Zhu
- Department of Neurosurgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Guangyong Wu
- Department of Neurosurgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Hu Ding
- Department of Neurosurgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Dongliang Wang
- Department of Neurosurgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People's Hospital, Beijing, People's Republic of China
| |
Collapse
|
38
|
Wang X, Mao Z, Cui Z, Xu X, Pan L, Liang S, Ling Z, Yu X. Predictive factors for long-term clinical outcomes of deep brain stimulation in the treatment of primary Meige syndrome. J Neurosurg 2020; 132:1367-1375. [PMID: 30952124 DOI: 10.3171/2019.1.jns182555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/14/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Primary Meige syndrome is characterized by blepharospasm and orofacial-cervical dystonia. Deep brain stimulation (DBS) is recognized as an effective therapy for patients with this condition, but previous studies have focused on clinical effects. This study explored the predictors of clinical outcome in patients with Meige syndrome who underwent DBS. METHODS Twenty patients who underwent DBS targeting the bilateral subthalamic nucleus (STN) or globus pallidus internus (GPi) at the Chinese People's Liberation Army General Hospital from August 2013 to February 2018 were enrolled in the study. Their clinical outcomes were evaluated using the Burke-Fahn-Marsden Dystonia Rating Scale at baseline and at the follow-up visits; patients were accordingly divided into a good-outcome group and a poor-outcome group. Putative influential factors, such as age and course of disease, were examined separately, and the factors that reached statistical significance were subjected to logistic regression analysis to identify predictors of clinical outcomes. RESULTS Four factors showed significant differences between the good- and poor-outcome groups: 1) the DBS target (STN vs GPi); 2) whether symptoms first appeared at multiple sites or at a single site; 3) the sub-item scores of the mouth at baseline; and 4) the follow-up period (p < 0.05). Binary logistic regression analysis revealed that initial involvement of multiple sites and the mouth score were the only significant predictors of clinical outcome. CONCLUSIONS The severity of the disease in the initial stage and presurgical period was the only independent predictive factor of the clinical outcomes of DBS for the treatment of patients with Meige syndrome.
Collapse
Affiliation(s)
- Xin Wang
- 1School of Medicine, Nankai University, Tianjin; and
- 2Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zhiqi Mao
- 2Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zhiqiang Cui
- 2Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xin Xu
- 2Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Longsheng Pan
- 2Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Shuli Liang
- 2Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zhipei Ling
- 2Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xinguang Yu
- 1School of Medicine, Nankai University, Tianjin; and
- 2Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
39
|
Predictive factors of outcome in cervical dystonia following deep brain stimulation: an individual patient data meta-analysis. J Neurol 2020; 267:1780-1792. [PMID: 32140866 DOI: 10.1007/s00415-020-09765-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) therapy has been suggested to be a beneficial alternative in cervical dystonia (CD) for patients who failed nonsurgical treatments. This individual patient data meta-analysis compared the efficacy of DBS in the globus pallidus internus (GPi) versus subthalamic nucleus (STN) and identified possible predictive factors for CD. METHODS Three electronic databases (PubMed, Embase and Web of Science) were searched for studies with no publication date restrictions. The primary outcomes were normalized by calculating the relative change in TWSTRS total scores and subscale scores at the last follow-up. Data were analyzed mainly using Pearson's correlation coefficients and a stepwise multivariate regression analysis. RESULTS Thirteen studies (86 patients, 58 with GPi-DBS and 28 with STN-DBS) were eligible. Patients showed significant improvement in the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) (52.5 ± 11.6 vs 21.9 ± 14.9, P < 0.001) scores at the last follow-up (22.0 ± 14.3 months), compared with scores at baseline, with a mean improvement of 56.6% (P < 0.001) (54.9% in severity, 63.2% in disability, 41.7% in pain). There was no significant difference in the improvement (%) of the total TWSTRS scores in 3 years for the GPI and STN groups (58.1 ± 22.6 vs 47.5 ± 39.2, P > 0.05). Age at surgery and age at symptom onset were negatively correlated with the relative changes in TWSTRS scores at the last follow-up, while there was a positive correlation with preoperative TWSTRS scores. On the stepwise multivariate regression, only the age at surgery remained significant in the best predictive model. CONCLUSIONS GPi-DBS and STN-DBS both provided a common great improvement in the symptoms of CD patients in 3 years. Earlier age at surgery may probably indicate larger improvement. More randomized large-scale clinical trials are warranted in the future.
Collapse
|
40
|
Lin S, Wu Y, Li H, Zhang C, Wang T, Pan Y, He L, Shen R, Deng Z, Sun B, Ding J, Li D. Deep brain stimulation of the globus pallidus internus versus the subthalamic nucleus in isolated dystonia. J Neurosurg 2020; 132:721-732. [PMID: 30849756 DOI: 10.3171/2018.12.jns181927] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/03/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Surgical procedures involving deep brain stimulation (DBS) of the globus pallidus internus (GPi) or subthalamic nucleus (STN) are well-established treatments for isolated dystonia. However, selection of the best stimulation target remains a matter of debate. The authors' objective was to compare the effectiveness of DBS of the GPi and the STN in patients with isolated dystonia. METHODS In this matched retrospective cohort study, the authors searched an institutional database for data on all patients with isolated dystonia who had undergone bilateral implantation of DBS electrodes in either the GPi or STN in the period from January 30, 2014, to June 30, 2017. Standardized assessments of dystonia and health-related quality of life using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and SF-36 were conducted before and at 1, 6, and 12 months after surgery. No patients were lost to the 6-month follow-up; 5 patients were lost to the 12-month follow-up. RESULTS Both GPi (14 patients) and STN (16 patients) stimulation produced significant improvement in dystonia and quality of life in all 30 patients found in the database search. At the 1-month follow-up, however, the percentage improvement in the BFMDRS total movement score was significantly (p = 0.01) larger after STN DBS (64%) than after GPi DBS (48%). At the 12-month follow-up, the percentage improvement in the axis subscore was significantly (p = 0.03) larger after GPi DBS (93%) than after STN DBS (83%). Also, the total amount of electrical energy delivered was significantly (p = 0.008) lower with STN DBS than with GPi DBS (124 ± 52 vs 192 ± 65 μJ, respectively). CONCLUSIONS The GPi and STN are both effective targets in alleviating dystonia and improving quality of life. However, GPi stimulation may be better for patients with axial symptoms. Moreover, STN stimulation may produce a larger clinical response within 1 month after surgery and may have a potential economic advantage in terms of lower battery consumption.
Collapse
Affiliation(s)
- Suzhen Lin
- 1Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
- 2Laboratory of Neurodegenerative Diseases and Key Laboratory of Stem Cell Biology, Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai; and
| | - Yiwen Wu
- 1Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
- 2Laboratory of Neurodegenerative Diseases and Key Laboratory of Stem Cell Biology, Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai; and
| | - Hongxia Li
- 1Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Chencheng Zhang
- 3Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tao Wang
- 3Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yixin Pan
- 3Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lu He
- 1Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Ruinan Shen
- 1Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Zhengdao Deng
- 3Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Bomin Sun
- 3Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jianqing Ding
- 2Laboratory of Neurodegenerative Diseases and Key Laboratory of Stem Cell Biology, Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai; and
| | - Dianyou Li
- 3Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
41
|
Bellows S, Jankovic J. Treatment of dystonia and tics. Clin Park Relat Disord 2019; 2:12-19. [PMID: 34316614 PMCID: PMC8302199 DOI: 10.1016/j.prdoa.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 11/30/2022] Open
Abstract
Treatment of dystonia and tics continues to evolve. In dystonia, while oral agents such as benzodiazepines, baclofen and anticholinergics remain in use, botulinum toxin (BoNT) continues to be regarded as the treatment of choice for focal and segmental dystonia, but new preparations are being studied. While deep brain stimulation (DBS) has typically focused on targeting the globus pallidus internus (GPi) when treating dystonia, more recent research has expanded the targets to include subthalamic nucleus (STN) and other targets. In addition to DBS, thalamotomies continue to show therapeutic benefit in focal hand dystonias. Treatment of tics includes a growing armamentarium of options besides the three FDA-approved drugs, all dopamine receptor blockers (haloperidol, pimozide and aripiprazole). Because of lower risk of adverse effects, dopamine depleters (e.g. tetrabebazine, deutetrabenazine, and valbenazine), along with novel D1 receptor antagonists, are currently studied as treatment alternatives in patients with tics. Practice guidelines for the treatment of tics and Tourette syndrome have been recently updated. Data regarding the use of DBS in treatment of tics remains relatively sparse, but international registries have expanded our understanding of the effect of stimulation at several targets.
Collapse
Affiliation(s)
- Steven Bellows
- Parkinson's Disease Center, Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joseph Jankovic
- Parkinson's Disease Center, Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
42
|
Zhu GY, Geng XY, Zhang RL, Chen YC, Liu YY, Wang SY, Zhang JG. Deep brain stimulation modulates pallidal and subthalamic neural oscillations in Tourette's syndrome. Brain Behav 2019; 9:e01450. [PMID: 31647199 PMCID: PMC6908859 DOI: 10.1002/brb3.1450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/21/2019] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Previous studies found subthalamic nucleus deep brain stimulation (STN-DBS) has clinical effect on Parkinson's disease, dystonia, and obsessive compulsive disorder. It is noteworthy that only a few studies report the STN-DBS for Tourette's syndrome (TS). Globus pallidus interna (GPi)-DBS is the one of the most common targets for TS. So, this paper aims to investigate the neural oscillations in STN and GPi as well as the DBS effect between these two targets in same patients. METHODS The local field potentials (LFPs) were simultaneously recorded from the bilateral GPi and STN in four patients with TS. The LFPs were decomposed into neural oscillations, and the frequency and time-frequency characteristics of the neural oscillations were analyzed across the conditions of resting, poststimulation, and movement. RESULTS No difference of resting LFP was found between the two targets. The poststimulation period spectral power revealed the high beta and gamma oscillations were recovered after GPi-DBS but remained attenuated after STN-DBS. The STN beta oscillation has fewer changes during tics than voluntary movement, and the gamma oscillation was elevated when the tics appeared. CONCLUSION The high beta and gamma oscillations in GPi restored after GPi-DBS, but not STN-DBS. High beta and gamma oscillations may have physiological function in resisting tics in TS. The cortex compensation effect might be interfered by the STN-DBS due to the influence on the hyper-direct pathway but not GPi-DBS.
Collapse
Affiliation(s)
- Guan-Yu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin-Yi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Rui-Li Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Ying-Chuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Ye Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shou-Yan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Tsuboi T, Wong JK, Okun MS, Ramirez-Zamora A. Quality of life outcomes after deep brain stimulation in dystonia: A systematic review. Parkinsonism Relat Disord 2019; 70:82-93. [PMID: 31767450 DOI: 10.1016/j.parkreldis.2019.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
Dystonia is an incurable movement disorder which can cause not only physical but also mental problems, leading to impaired health-related quality of life (HRQoL). For patients with dystonia refractory to medical treatment, deep brain stimulation (DBS) is a well-established surgical treatment. The objective of this systematic review is to provide a better understanding of HRQoL outcomes after DBS for dystonia. A search of the literature was conducted using Medline (PubMed), Embase, and Cochrane Library databases in May 2019. HRQoL outcomes after DBS along with motor outcomes were reported in a total of 36 articles involving 610 patients: 21 articles on inherited or idiopathic isolated dystonia, 5 on tardive dystonia, 3 on cerebral palsy, 2 on myoclonus-dystonia, 1 on X-linked dystonia-parkinsonism, and 3 on mixed cohorts of different dystonia subtypes. DBS improved motor symptoms in various subtypes of dystonia. Most studies on patients with inherited or idiopathic isolated dystonia showed significant improvement in physical QoL, whereas gains in mental QoL were less robust and likely related to the complexity of associated neuropsychiatric problems. HRQoL outcomes beyond 5 years remain scarce. Although the studies on patients with other subtypes of dystonia also demonstrated improvement in HRQoL after DBS, the interpretation is difficult because of a limited number of articles with small cohorts. Most articles employed generic measures (e.g. Short Form Health Survey-36) and this highlights the critical need to develop and to utilize sensitive and disease-specific HRQoL measures. Finally, long-term HRQoL outcomes and predictors of HRQoL should also be clarified.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Joshua K Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
44
|
Wang X, Zhang Z, Mao Z, Yu X. Deep brain stimulation for Meige syndrome: a meta-analysis with individual patient data. J Neurol 2019; 266:2646-2656. [PMID: 31302747 DOI: 10.1007/s00415-019-09462-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) is an effective intervention for Meige syndrome, a type of dystonia characterized by blepharospasm, facial, and oromandibular dystonia. This individual patient-level data meta-analysis was to identify the potential outcome predictors, compare the stimulation targets and summarize the efficacy of DBS for Meige syndrome. METHODS Three electronic databases (PubMed, Web of Science and Embase) were searched with no publication data restriction to identify studies regarding DBS for Meige syndrome. The primary outcome was the improvement in BFMDRS-M score. Pearson's correlation coefficients and a stepwise multivariate regression analysis were used to identify the potential prognostic factors. RESULTS Twenty-three studies (115 patients, 94 with pallidal stimulation and 21 with subthalamic stimulation) were eligible. Patients showed significant improvement in Burke-Fahn-Marsden Dystonia Rating Scale movement (BFMDRS-M) (21.5 ± 11.0 vs 8.6 ± 6.9, P < 0.001) and disability (BFMDRS-D) (6.4 ± 5.1 vs 2.9 ± 2.4, P < 0.001) scores at the last follow-up visit (31.9 ± 30.7 months), compared with scores at baseline. Preoperative BFMDRS-M and BFMDRS-D scores were positively correlated with the relative changes in BFMDRS-M score at the last follow-up visit. On the stepwise multivariate regression, only the preoperative BFMDRS remained significant in the best predictive model. CONCLUSIONS Based on the existing evidence, pallidal/subthalamic stimulation is an effective therapy for even the refractory Meige syndrome. Higher preoperative scores probably indicate larger improvement. Stimulation targets or other clinical factors do not constitute the outcome predictive factors.
Collapse
Affiliation(s)
- Xin Wang
- School of Medicine, Nankai University, 94 Weijin Road, Naikai District, Tianjin, 300071, China
- Department of Neurosurgery, The First Medical Center of Chinese, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhibin Zhang
- School of Medicine, Nankai University, 94 Weijin Road, Naikai District, Tianjin, 300071, China
- Department of Neurosurgery, The First Medical Center of Chinese, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhiqi Mao
- Department of Neurosurgery, The First Medical Center of Chinese, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xinguang Yu
- School of Medicine, Nankai University, 94 Weijin Road, Naikai District, Tianjin, 300071, China.
- Department of Neurosurgery, The First Medical Center of Chinese, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
45
|
Abstract
BACKGROUND Dystonia is a painful and disabling disorder, characterised by painful, involuntary posturing of the affected body region(s). Deep brain stimulation is an intervention typically reserved for severe and drug-refractory cases, although uncertainty exists regarding its efficacy, safety, and tolerability. OBJECTIVES To compare the efficacy, safety, and tolerability of deep brain stimulation (DBS) versus placebo, sham intervention, or best medical care, including botulinum toxin and resective or lesional surgery, in adults with dystonia. SEARCH METHODS We identified studies by searching the CENTRAL, MEDLINE, Embase, three other databases, four clinical trial registries, four grey literature databases, and reference lists of included articles. We ran the last search of all elements of the search strategy, with no language restrictions, on 29 May 2018. SELECTION CRITERIA Double-blind, parallel, randomised, controlled trials (RCTs) comparing DBS with sham stimulation, best medical care, or placebo in adults with dystonia. DATA COLLECTION AND ANALYSIS Two independent review authors assessed records, selected included studies, extracted data onto a standardised (or prespecified) data extraction form, and evaluated the risk of bias. We resolved disagreements by consensus or by consulting a third review author. We conducted meta-analyses using a random-effects model, to estimate pooled effects and corresponding 95% confidence intervals (95% CI). We assessed the quality of the evidence with GRADE methods. The primary efficacy outcome was symptom improvement on any validated symptomatic rating scale, and the primary safety outcome was adverse events. MAIN RESULTS We included two RCTs, enrolling a total of 102 participants. Both trials evaluated the effect of DBS on the internal globus pallidus nucleus, and assessed outcomes after three and six months of stimulation. One of the studies included participants with generalised and segmental dystonia; the other included participants with focal (cervical) dystonia. We assessed both studies at high risk for performance and for-profit bias. One study was retrospectively registered with a clinical trial register, we judged the second at high risk of detection bias.Low-quality evidence suggests that DBS of the internal globus pallidus nucleus may improve overall cervical dystonia-related symptoms (mean difference (MD) 9.8 units, 95% CI 3.52 to 16.08 units; 1 RCT, 59 participants), cervical dystonia-related functional capacity (MD 3.8 units, 95% CI 1.41 to 6.19; 1 RCT, 61 participants), and mood at three months (MD 3.1 units, 95% CI 0.73 to 5.47; 1 RCT, 61 participants).Low-quality evidence suggests that In people with cervical dystonia, DBS may slightly improve the overall clinical status (MD 2.3 units, 95% CI 1.15 to 3.45; 1 RCT, 61 participants). We are uncertain whether DBS improves quality of life in cervical dystonia (MD 3 units, 95% CI -7.71 to 13.71; 1 RCT, 57 participants; very low-quality evidence), or emotional state (MD 2.4 units, 95% CI -6.2 to 11.00; 1 RCT, 56 participants; very low-quality evidence).Low-quality evidence suggests that DBS of the internal globus pallidus nucleus may improve generalised or segmental dystonia-related symptoms (MD 14.4 units, 95% CI 8.0 to 20.8; 1 RCT, 40 participants), overall clinical status (MD 3.5 units, 95% CI 2.33 to 4.67; 1 RCT, 37 participants), physical functioning-related quality of life (MD 6.3 units, 95% CI 1.06 to 11.54; 1 RCT, 33 participants), and overall dystonia-related functional capacity at three months (MD 3.1 units, 95% CI 1.71 to 4.48; 1 RCT, 39 participants). We are uncertain whether DBS improves physical functioning-related quality of life (MD 5.0 units, 95% CI -2.14 to 12.14, 1 RCT, 33 participants; very low-quality evidence), or mental health-related quality of life (MD -4.6 units, 95% CI -11.26 to 2.06; 1 RCT, 30 participants; very low-quality evidence) in generalised or segmental dystonia.We pooled outcomes related to safety and tolerability, since both trials used the same intervention and comparison. We found very low-quality evidence of inconclusive results for risk of adverse events (relative risk (RR) 1.58, 95% 0.98 to 2.54; 2 RCTs, 102 participants), and tolerability (RR 1.86, 95% CI 0.16 to 21.57; 2 RCTs,102 participants). AUTHORS' CONCLUSIONS DBS of the internal globus pallidus nucleus may reduce symptom severity and improve functional capacity in adults with cervical, segmental or generalised moderate to severe dystonia (low-quality evidence), and may improve quality of life in adults with generalised or segmental dystonia (low-quality evidence). We are uncertain whether the procedure improves quality of life in cervical dystonia (very low-quality evidence). We are also uncertain about the safety and tolerability of the procedure in adults with either cervical and generalised, or segmental dystonia (very-low quality evidence).We could draw no conclusions for other populations with dystonia (i.e. children and adolescents, and adults with other types of dystonia), or for other DBS protocols (i.e. other target nuclei or stimulation paradigms). Further research is needed to establish the long-term efficacy and safety of DBS of the internal globus pallidus nucleus.
Collapse
Affiliation(s)
- Filipe B Rodrigues
- Laboratório de Farmacologia Clínica e Terapêutica, Faculdade de Medicina de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal, 1649-028
| | | | | | | | | |
Collapse
|
46
|
Girach A, Vinagre Aragon A, Zis P. Quality of life in idiopathic dystonia: a systematic review. J Neurol 2018; 266:2897-2906. [PMID: 30460447 PMCID: PMC6851210 DOI: 10.1007/s00415-018-9119-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/03/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Dystonia is characterised by sustained muscular contractions frequently producing repetitive, twisting and patterned movements. The primary aim of this systematic review was to establish how quality of life (QoL) is affected in idiopathic focal, multifocal and segmental dystonia. This review aimed to evaluate variations in QoL between different subtypes of dystonia, identify the determinants of QoL and assess the effects of different treatments on QoL. METHODOLOGY A systematic computer-based literature search was conducted using the PubMed database to search for papers on QoL in idiopathic focal, segmental, multifocal and generalized dystonia. We identified 75 studies meeting our inclusion criteria. Information was extracted regarding prevalence, demographics and response to treatment where indicated. RESULTS This review revealed QoL to be a significant yet often overlooked issue in idiopathic dystonia. Data consistently showed that dystonia has a negative effect on QoL in patients compared to healthy controls, when measured using disease-specific and generic QoL measures. The majority of studies (n = 25) involved patients with cervical dystonia, followed by benign-essential blepharospasm (n = 10). Along with the beneficial effect to the dystonia symptoms, treatment using Botulinum Toxin and Deep Brain Stimulation is also effective in improving overall QoL across the majority of subtypes. CONCLUSION The findings demonstrate that patients' QoL should routinely be assessed and monitored, as this may affect subsequent management. Further research will allow for more robust management of factors contributing to impaired QoL, aside from the physical defects found in dystonia.
Collapse
Affiliation(s)
- Ayesha Girach
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.
| | - Ana Vinagre Aragon
- Academic Department of Neurosciences, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
| | - Panagiotis Zis
- Academic Department of Neurosciences, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK.,Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
47
|
Ravindran K, Ganesh Kumar N, Englot DJ, Wilson TJ, Zuckerman SL. Deep Brain Stimulation Versus Peripheral Denervation for Cervical Dystonia: A Systematic Review and Meta-Analysis. World Neurosurg 2018; 122:e940-e946. [PMID: 30419402 DOI: 10.1016/j.wneu.2018.10.178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/26/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Cervical dystonia is a disabling medical condition that drastically decreases quality of life. Surgical treatment consists of peripheral nerve denervation procedures with or without myectomies or deep brain stimulation (DBS). The current objective was to compare the efficacy of peripheral denervation versus DBS in improving the severity of cervical dystonia through a systematic review and meta-analysis. METHODS A search of PubMed, MEDLINE, EMBASE, and Web of Science electronic databases was conducted in accordance with PRISMA guidelines. Preoperative and postoperative Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) total scores were used to generate standardized mean differences and 95% confidence intervals (CIs), which were combined in a random-effects model. Both mean percentage and absolute reduction in TWSTRS scores were calculated. Absolute reduction was used for forest plots. RESULTS Eighteen studies met the inclusion criteria, comprising 870 patients with 180 (21%) undergoing DBS and 690 (79%) undergoing peripheral denervation procedures. The mean follow-up time was 31.5 months (range, 12-38 months). In assessing the efficacy of each intervention, forest plots revealed significant absolute reduction in total postoperative TWSTRS scores for both peripheral denervation (standardized mean difference 1.54; 95% CI 1.42-1.66) and DBS (standardized mean difference 2.07; 95% CI 1.43-2.71). On subgroup analysis, DBS therapy was significantly associated with improvement in postoperative TWSTRS severity (standardized mean difference 2.08; 95% CI 1.66-2.50) and disability (standardized mean difference 2.12; 95% CI 1.57-2.68) but not pain (standardized mean difference 1.18; 95% CI 0.80-1.55). CONCLUSIONS Both peripheral denervation and DBS are associated with a significant reduction in absolute TWSTRS total score, with no significant difference in the magnitude of reduction observed between the 2 treatments. Further comparative data are needed to better evaluate the long-term results of both interventions.
Collapse
Affiliation(s)
- Krishnan Ravindran
- Department of Neurosurgery, Vanderbilt University Medical Center School, Nashville, Tennessee, USA
| | - Nishant Ganesh Kumar
- Department of Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Dario J Englot
- Department of Neurosurgery, Vanderbilt University Medical Center School, Nashville, Tennessee, USA
| | - Thomas J Wilson
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Scott L Zuckerman
- Department of Neurosurgery, Vanderbilt University Medical Center School, Nashville, Tennessee, USA.
| |
Collapse
|
48
|
The impact of deep brain stimulation on health related quality of life and disease-specific disability in Meige Syndrome (MS). Clin Neurol Neurosurg 2018; 171:53-57. [DOI: 10.1016/j.clineuro.2018.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/06/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
|
49
|
Weber J, Piroth T, Rijntjes M, Jung B, Reinacher PC, Weiller C, Coenen VA, Klebe S. Atypical Presentation of Rapid-onset Dystonia-parkinsonism (DYT12) Unresponsive to Deep Brain Stimulation of the Subthalamic Nucleus. Mov Disord Clin Pract 2018; 5:427-429. [PMID: 30838295 PMCID: PMC6336285 DOI: 10.1002/mdc3.12605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/16/2018] [Accepted: 02/02/2018] [Indexed: 11/06/2022] Open
Abstract
View Supplementary Video 1
Collapse
Affiliation(s)
- Juliane Weber
- Department of Neurology and Neuroscience, Medical Center – University of Freiburg, Medical FacultyUniversity of Freiburg, Breisacher Straße 64D‐79106, FreiburgGermany
| | - Tobias Piroth
- Department of Neurology and Neuroscience, Medical Center – University of Freiburg, Medical FacultyUniversity of Freiburg, Breisacher Straße 64D‐79106, FreiburgGermany
| | - Michel Rijntjes
- Department of Neurology and Neuroscience, Medical Center – University of Freiburg, Medical FacultyUniversity of Freiburg, Breisacher Straße 64D‐79106, FreiburgGermany
| | - Bernhard Jung
- Doctor's Office for Neurology and Psychiatry79312, EmmendingenGermany
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Medical FacultyUniversity of Freiburg, Breisacher Straße 64, D‐79106FreiburgGermany
| | - Cornelius Weiller
- Department of Neurology and Neuroscience, Medical Center – University of Freiburg, Medical FacultyUniversity of Freiburg, Breisacher Straße 64D‐79106, FreiburgGermany
| | - Volker A. Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Medical FacultyUniversity of Freiburg, Breisacher Straße 64, D‐79106FreiburgGermany
| | - Stephan Klebe
- Department of Neurology and Neuroscience, Medical Center – University of Freiburg, Medical FacultyUniversity of Freiburg, Breisacher Straße 64D‐79106, FreiburgGermany
- Department of NeurologyUniversity Hospital Essen, Hufelandstraße 55, 45147EssenGermany
| |
Collapse
|
50
|
Cury RG, Kalia SK, Shah BB, Jimenez-Shahed J, Prashanth LK, Moro E. Surgical treatment of dystonia. Expert Rev Neurother 2018; 18:477-492. [PMID: 29781334 DOI: 10.1080/14737175.2018.1478288] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Treatment of dystonia should be individualized and tailored to the specific needs of patients. Surgical treatment is an important option in medically refractory cases. Several issues regarding type of the surgical intervention, targets, and predict factors of benefit are still under debate. Areas covered: To date, several clinical trials have proven the benefit and safety of deep brain stimulation (DBS) for inherited and idiopathic isolated dystonia, whereas there is still insufficient evidence in combined and acquired dystonia. The globus pallidus internus (GPi) is the target with the best evidence, but data on the subthalamic nucleus seems also to be promising. Evidence suggests that younger patients with shorter disease duration experience greater benefit following DBS. Pallidotomy and thalamotomy are currently used in subset of carefully selected patients. The development of MRI-guided focused ultrasound might bring new options to ablation approach in dystonia. Expert commentary: GPi-DBS is effective and safe in isolated dystonia and should not be delayed when symptoms compromise quality of life and functionality. Identifying the best candidates to surgery on acquired and combined dystonias is still necessary. New insights about pathophysiology of dystonia and new technological advances will undoubtedly help to tailor surgery and optimize clinical effects.
Collapse
Affiliation(s)
- Rubens Gisbert Cury
- a Service de Neurologie, Centre Hospitalier Universitaire de Grenoble , Université Grenoble Alpes , Grenoble , France.,b Department of Neurology, School of Medicine , University of São Paulo , São Paulo , Brazil
| | - Suneil Kumar Kalia
- c Division of Neurosurgery and Krembil Research Institute, Department of Surgery , University of Toronto , Toronto , Canada
| | - Binit Bipin Shah
- d Parkinson's Disease and Movement Disorders Center, Department of Neurology , University of Virginia , Charlottesville , VA , USA
| | - Joohi Jimenez-Shahed
- e Parkinson's Disease Center and Movement Disorders Clinic , Baylor College of Medicine , Houston , TX , USA
| | | | - Elena Moro
- a Service de Neurologie, Centre Hospitalier Universitaire de Grenoble , Université Grenoble Alpes , Grenoble , France
| |
Collapse
|