1
|
Guo Q, Zhu H, Xu X, Huang T, Pan Y, Gu X, Cui S, Xue C. Hybrid construction of tissue-engineered nerve graft using skin derived precursors induced neurons and Schwann cells to enhance peripheral neuroregeneration. Mater Today Bio 2024; 28:101196. [PMID: 39221212 PMCID: PMC11364897 DOI: 10.1016/j.mtbio.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Peripheral nerve injury is a major challenge in clinical treatment due to the limited intrinsic capacity for nerve regeneration. Tissue engineering approaches offer promising solutions by providing biomimetic scaffolds and cell sources to promote nerve regeneration. In the present work, we investigated the potential role of skin-derived progenitors (SKPs), which are induced into neurons and Schwann cells (SCs), and their extracellular matrix in tissue-engineered nerve grafts (TENGs) to enhance peripheral neuroregeneration. SKPs were induced to differentiate into neurons and SCs in vitro and incorporated into nerve grafts composed of a biocompatible scaffold including chitosan neural conduit and silk fibroin filaments. In vivo experiments using a rat model of peripheral nerve injury showed that TENGs significantly enhanced nerve regeneration compared to the scaffold control group, catching up with the autograft group. Histological analysis showed improved axonal regrowth, myelination and functional recovery in animals treated with these TENGs. In addition, immunohistochemical staining confirmed the presence of induced neurons and SCs within the regenerated nerve tissue. Our results suggest that SKP-induced neurons and SCs in tissue-engineered nerve grafts have great potential for promoting peripheral nerve regeneration and represent a promising approach for clinical translation in the treatment of peripheral nerve injury. Further optimization and characterization of these engineered constructs is warranted to improve their clinical applicability and efficacy.
Collapse
Affiliation(s)
- Qi Guo
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, The Third Bethune Hospital of Jilin University, Changchun, JL, 130033, PR China
| | - Hui Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, PR China
| | - Xi Xu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, JS, 226001, PR China
- Medical School of Nantong University, Nantong, JS, 226001, PR China
| | - Tianyi Huang
- Medical School of Nantong University, Nantong, JS, 226001, PR China
| | - Yulin Pan
- Medical School of Nantong University, Nantong, JS, 226001, PR China
| | - Xiaosong Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, PR China
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, The Third Bethune Hospital of Jilin University, Changchun, JL, 130033, PR China
| | - Chengbin Xue
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, PR China
| |
Collapse
|
2
|
Wei C, Guo Y, Ci Z, Li M, Zhang Y, Zhou Y. Advances of Schwann cells in peripheral nerve regeneration: From mechanism to cell therapy. Biomed Pharmacother 2024; 175:116645. [PMID: 38729050 DOI: 10.1016/j.biopha.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Peripheral nerve injuries (PNIs) frequently occur due to various factors, including mechanical trauma such as accidents or tool-related incidents, as well as complications arising from diseases like tumor resection. These injuries frequently result in persistent numbness, impaired motor and sensory functions, neuropathic pain, or even paralysis, which can impose a significant financial burden on patients due to outcomes that often fall short of expectations. The most frequently employed clinical treatment for PNIs involves either direct sutures of the severed ends or bridging the proximal and distal stumps using autologous nerve grafts. However, autologous nerve transplantation may result in sensory and motor functional loss at the donor site, as well as neuroma formation and scarring. Transplantation of Schwann cells/Schwann cell-like cells has emerged as a promising cellular therapy to reconstruct the microenvironment and facilitate peripheral nerve regeneration. In this review, we summarize the role of Schwann cells and recent advances in Schwann cell therapy in peripheral nerve regeneration. We summarize current techniques used in cell therapy, including cell injection, 3D-printed scaffolds for cell delivery, cell encapsulation techniques, as well as the cell types employed in experiments, experimental models, and research findings. At the end of the paper, we summarize the challenges and advantages of various cells (including ESCs, iPSCs, and BMSCs) in clinical cell therapy. Our goal is to provide the theoretical and experimental basis for future treatments targeting peripheral nerves, highlighting the potential of cell therapy and tissue engineering as invaluable resources for promoting nerve regeneration.
Collapse
Affiliation(s)
- Chuqiao Wei
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuanxin Guo
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhen Ci
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Mucong Li
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Krishnan A, Verge VMK, Zochodne DW. Hallmarks of peripheral nerve injury and regeneration. HANDBOOK OF CLINICAL NEUROLOGY 2024; 201:1-17. [PMID: 38697733 DOI: 10.1016/b978-0-323-90108-6.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Peripheral nerves are functional networks in the body. Disruption of these networks induces varied functional consequences depending on the types of nerves and organs affected. Despite the advances in microsurgical repair and understanding of nerve regeneration biology, restoring full functions after severe traumatic nerve injuries is still far from achieved. While a blunted growth response from axons and errors in axon guidance due to physical barriers may surface as the major hurdles in repairing nerves, critical additional cellular and molecular aspects challenge the orderly healing of injured nerves. Understanding the systematic reprogramming of injured nerves at the cellular and molecular levels, referred to here as "hallmarks of nerve injury regeneration," will offer better ideas. This chapter discusses the hallmarks of nerve injury and regeneration and critical points of failures in the natural healing process. Potential pharmacological and nonpharmacological intervention points for repairing nerves are also discussed.
Collapse
Affiliation(s)
- Anand Krishnan
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Cameco MS Neuroscience Research Centre (CMSNRC), Saskatoon, SK, Canada.
| | - Valerie M K Verge
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Cameco MS Neuroscience Research Centre (CMSNRC), Saskatoon, SK, Canada.
| | - Douglas W Zochodne
- Neuroscience and Mental Health Institute and Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
A Multi-Stage Bioprocess for the Expansion of Rodent Skin-Derived Schwann Cells in Computer-Controlled Bioreactors. Int J Mol Sci 2023; 24:ijms24065152. [PMID: 36982227 PMCID: PMC10049355 DOI: 10.3390/ijms24065152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Regenerative therapies for the treatment of peripheral nerve and spinal cord injuries can require hundreds of millions of autologous cells. Current treatments involve the harvest of Schwann cells (SCs) from nerves; however, this is an invasive procedure. Therefore, a promising alternative is using skin-derived Schwann cells (Sk-SCs), in which between 3–5 million cells can be harvested from a standard skin biopsy. However, traditional static planar culture is still inefficient at expanding cells to clinically relevant numbers. As a result, bioreactors can be used to develop reproducible bioprocesses for the large-scale expansion of therapeutic cells. Here, we present a proof-of-concept SC manufacturing bioprocess using rat Sk-SCs. With this integrated process, we were able to simulate a feasible bioprocess, taking into consideration the harvest and shipment of cells to a production facility, the generation of the final cell product, and the cryopreservation and shipment of cells back to the clinic and patient. This process started with 3 million cells and inoculated and expanded them to over 200 million cells in 6 days. Following the harvest and post-harvest cryopreservation and thaw, we were able to maintain 150 million viable cells that exhibited a characteristic Schwann cell phenotype throughout each step of the process. This process led to a 50-fold expansion, producing a clinically relevant number of cells in a 500 mL bioreactor in just 1 week, which is a dramatic improvement over current methods of expansion.
Collapse
|
5
|
Wang Q, Chen FY, Ling ZM, Su WF, Zhao YY, Chen G, Wei ZY. The Effect of Schwann Cells/Schwann Cell-Like Cells on Cell Therapy for Peripheral Neuropathy. Front Cell Neurosci 2022; 16:836931. [PMID: 35350167 PMCID: PMC8957843 DOI: 10.3389/fncel.2022.836931] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022] Open
Abstract
Peripheral neuropathy is a common neurological issue that leads to sensory and motor disorders. Over time, the treatment for peripheral neuropathy has primarily focused on medications for specific symptoms and surgical techniques. Despite the different advantages of these treatments, functional recovery remains less than ideal. Schwann cells, as the primary glial cells in the peripheral nervous system, play crucial roles in physiological and pathological conditions by maintaining nerve structure and functions and secreting various signaling molecules and neurotrophic factors to support both axonal growth and myelination. In addition, stem cells, including mesenchymal stromal cells, skin precursor cells and neural stem cells, have the potential to differentiate into Schwann-like cells to perform similar functions as Schwann cells. Therefore, accumulating evidence indicates that Schwann cell transplantation plays a crucial role in the resolution of peripheral neuropathy. In this review, we summarize the literature regarding the use of Schwann cell/Schwann cell-like cell transplantation for different peripheral neuropathies and the potential role of promoting nerve repair and functional recovery. Finally, we discuss the limitations and challenges of Schwann cell/Schwann cell-like cell transplantation in future clinical applications. Together, these studies provide insights into the effect of Schwann cells/Schwann cell-like cells on cell therapy and uncover prospective therapeutic strategies for peripheral neuropathy.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fang-Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhuo-Min Ling
- Medical School of Nantong University, Nantong, China
| | - Wen-Feng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ya-Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Gang Chen,
| | - Zhong-Ya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Zhong-Ya Wei,
| |
Collapse
|
6
|
Song L, Guo Q, Guo J, Xu X, Xu K, Li Y, Yang T, Gu X, Cao R, Cui S. Brachial plexus bridging with specific extracellular matrix modified chitosan/silk scaffold: a new expand of tissue engineered nerve graft. J Neural Eng 2022; 19. [PMID: 35259733 DOI: 10.1088/1741-2552/ac5b95] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/08/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Brachial plexus injuries result in serious dysfunction and are currently treated using autologous nerve graft (autograft) transplantation. With the development of tissue engineering, tissue engineered nerve grafts (TENGs) have emerged as promising alternatives to autografts but have not yet been widely applied to the treatment of brachial plexus injuries. Herein, we developed a TENG modified with extracellular matrix (ECM) generated by skin-derived precursor Schwann cells (SKP-SCs) and expand its application in upper brachial plexus defects in rats. APPROACH SKP-SCs were co-cultured with chitosan neural conduits or silk fibres and subjected to decellularization treatment. Ten bundles of silk fibres (five fibres per bundle) were placed into a conduit to obtain the TENG, which was used to bridge an 8 mm gap in the upper brachial plexus. The efficacy of this treatment was examined for TENG-, autograft- and scaffold-treated groups at several times after surgery using immunochemical staining, behavioural tests, electrophysiological measurements, and electron microscopy. MAIN RESULTS Histological analysis conducted two weeks after surgery showed that compared to scaffold bridging, TENG treatment enhanced the growth of regenerating axons. Behavioural tests conducted four weeks after surgery showed that TENG-treated rats performed similarly to autograft-treated ones, with a significant improvement observed in both cases compared with the scaffold treatment group. Electrophysiological and retrograde tracing characterisations revealed that the target muscles were reinnervated in both TENG and autograft groups, while transmission electron microscopy and immunohistochemical staining showed the occurrence of the superior myelination of regenerated axons in these groups. SIGNIFICANCE Treatment with the developed TENG allows the effective bridging of proximal nerve defects in the upper extremities, and the obtained results provide a theoretical basis for clinical transformation to expand the application scope of TENGs.
Collapse
Affiliation(s)
- Lili Song
- China-Japan Union Hospital of Jilin University, Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China., Changchun, Jilin, 130031, CHINA
| | - Qi Guo
- China-Japan Union Hospital of Jilin University, Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China., Changchun, Jilin, 130031, CHINA
| | - Jin Guo
- China-Japan Union Hospital of Jilin University, Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China., Changchun, Jilin, 130031, CHINA
| | - Xiong Xu
- China-Japan Union Hospital of Jilin University, Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China., Changchun, Jilin, 130031, CHINA
| | - Ke Xu
- China-Japan Union Hospital of Jilin University, Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China., Changchun, Jilin, 130031, CHINA
| | - Yueying Li
- China-Japan Union Hospital of Jilin University, Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China., Changchun, Jilin, 130031, CHINA
| | - Tuo Yang
- China-Japan Union Hospital of Jilin University, Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China., Changchun, Jilin, 130031, CHINA
| | - Xiaosong Gu
- China-Japan Union Hospital of Jilin University, Key Laboratory of Neuroregeneration, Nantong University, Nantong, PR China., Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong., Changchun, Jilin, 130031, CHINA
| | - Rangjuan Cao
- China-Japan Union Hospital of Jilin University, Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China., Changchun, 130031, CHINA
| | - Shusen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China., Changchun, Jilin, 130031, CHINA
| |
Collapse
|
7
|
Peripheral Nerve Regeneration Using Different Germ Layer-Derived Adult Stem Cells in the Past Decade. Behav Neurol 2021; 2021:5586523. [PMID: 34539934 PMCID: PMC8448597 DOI: 10.1155/2021/5586523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve injuries (PNIs) are some of the most common types of traumatic lesions affecting the nervous system. Although the peripheral nervous system has a higher regenerative ability than the central nervous system, delayed treatment is associated with disturbances in both distal sensory and functional abilities. Over the past decades, adult stem cell-based therapies for peripheral nerve injuries have drawn attention from researchers. This is because various stem cells can promote regeneration after peripheral nerve injuries by differentiating into neural-line cells, secreting various neurotrophic factors, and regulating the activity of in situ Schwann cells (SCs). This article reviewed research from the past 10 years on the role of stem cells in the repair of PNIs. We concluded that adult stem cell-based therapies promote the regeneration of PNI in various ways.
Collapse
|
8
|
Cong M, Shen M, Wu X, Li Y, Wang L, He Q, Shi H, Ding F. Improvement of sensory neuron growth and survival via negatively regulating PTEN by miR-21-5p-contained small extracellular vesicles from skin precursor-derived Schwann cells. Stem Cell Res Ther 2021; 12:80. [PMID: 33494833 PMCID: PMC7831194 DOI: 10.1186/s13287-020-02125-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background Patients with peripheral nerve injury (PNI) often suffer from hypoxic ischemic impairments, in particular when combined with vascular damage, causing neuronal dysfunction and death. Increasing attention has been paid on skin precursor-derived Schwann cells (SKP-SCs), and previous study has shown that SKP-SCs could promote sensory recovery after cell therapy for PNI, resembling the effect of naive SCs, and SKP-SC-derived extracellular vesicles (SKP-SC-EVs) are putatively supposed to be promising therapeutic agents for neural regeneration. Methods SKPs were induced to differentiate towards SCs with cocktail factors (N2, neuregulin-1β, and forskolin) in vitro. SKP-SC-EVs were isolated by exoEasy Maxi Kit and characterized by morphology and phenotypic markers of EVs. Rat sensory neurons from dorsal root ganglions (DRGs) were primarily cultured in regular condition or exposed to oxygen-glucose-deprivation (OGD) condition. SKP-SC-EVs were applied to DRGs or sensory neurons, with LY294002 (a PI3K inhibitor) added; the effect on neurite outgrowth and cell survival was observed. Moreover, microRNA (miR) candidate contained in SKP-SC-EVs was screened out, and miR-mimics were transfected into DRG neurons; meanwhile, the negative regulation of PTEN/PI3K/Akt axis and downstream signaling molecules were determined. Results It was shown that SKP-SC-EVs could improve the neurite outgrowth of DRGs and sensory neurons. Furthermore, SKP-SC-EVs enhanced the survival of sensory neurons after OGD exposure by alleviating neuronal apoptosis and strengthening cell viability, and the expression of GAP43 (a neuron functional protein) in neurons was upregulated. Moreover, the neuro-reparative role of SKP-SC-EVs was implicated in the activation of PI3K/Akt, mTOR, and p70S6k, as well as the reduction of Bax/Bcl-2 ratio, that was compromised by LY294002 to some extent. In addition, transferring miR-21-5p mimics into sensory neurons could partly protect them from OGD-induced impairment. Conclusions Sum up, SKP-SC-EVs could improve neurite outgrowth of DRG sensory neurons in physiological and pathological condition. Moreover, the in vitro therapeutic potential of SKP-SC-EVs on the survival and restoration of OGD-injured sensory neurons was evidenced to be associated with miR-21-5p contained in the small EVs and miR-21-5p/PTEN/PI3K/Akt axis. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02125-4.
Collapse
Affiliation(s)
- Meng Cong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Xia Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Yan Li
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Liting Wang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Haiyan Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China. .,Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, China.
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China. .,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China.
| |
Collapse
|
9
|
Balakrishnan A, Belfiore L, Chu TH, Fleming T, Midha R, Biernaskie J, Schuurmans C. Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. Front Mol Neurosci 2021; 13:608442. [PMID: 33568974 PMCID: PMC7868393 DOI: 10.3389/fnmol.2020.608442] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries arising from trauma or disease can lead to sensory and motor deficits and neuropathic pain. Despite the purported ability of the peripheral nerve to self-repair, lifelong disability is common. New molecular and cellular insights have begun to reveal why the peripheral nerve has limited repair capacity. The peripheral nerve is primarily comprised of axons and Schwann cells, the supporting glial cells that produce myelin to facilitate the rapid conduction of electrical impulses. Schwann cells are required for successful nerve regeneration; they partially “de-differentiate” in response to injury, re-initiating the expression of developmental genes that support nerve repair. However, Schwann cell dysfunction, which occurs in chronic nerve injury, disease, and aging, limits their capacity to support endogenous repair, worsening patient outcomes. Cell replacement-based therapeutic approaches using exogenous Schwann cells could be curative, but not all Schwann cells have a “repair” phenotype, defined as the ability to promote axonal growth, maintain a proliferative phenotype, and remyelinate axons. Two cell replacement strategies are being championed for peripheral nerve repair: prospective isolation of “repair” Schwann cells for autologous cell transplants, which is hampered by supply challenges, and directed differentiation of pluripotent stem cells or lineage conversion of accessible somatic cells to induced Schwann cells, with the potential of “unlimited” supply. All approaches require a solid understanding of the molecular mechanisms guiding Schwann cell development and the repair phenotype, which we review herein. Together these studies provide essential context for current efforts to design glial cell-based therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lauren Belfiore
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tak-Ho Chu
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Taylor Fleming
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Meena P, Kakkar A, Kumar M, Khatri N, Nagar RK, Singh A, Malhotra P, Shukla M, Saraswat SK, Srivastava S, Datt R, Pandey S. Advances and clinical challenges for translating nerve conduit technology from bench to bed side for peripheral nerve repair. Cell Tissue Res 2020; 383:617-644. [PMID: 33201351 DOI: 10.1007/s00441-020-03301-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Injuries to the peripheral nervous system remain a large-scale clinical problem. These injuries often lead to loss of motor and/or sensory function that significantly affects patients' quality of life. The current neurosurgical approach for peripheral nerve repair involves autologous nerve transplantation, which often leads to clinical complications. The most pressing need is to increase the regenerative capacity of existing tubular constructs in the repair of large nerve gaps through development of tissue-engineered approaches that can surpass the performance of autografts. To fully realize the clinical potential of nerve conduit technology, there is a need to reconsider design strategies, biomaterial selection, fabrication techniques and the various potential modifications to optimize a conduit microenvironment that can best mimic the natural process of regeneration. In recent years, a significant progress has been made in the designing and functionality of bioengineered nerve conduits to bridge long peripheral nerve gaps in various animal models. However, translation of this work from lab to commercial scale has not been achieve. The current review summarizes recent advances in the development of tissue engineered nerve guidance conduits (NGCs) with regard to choice of material, novel fabrication methods, surface modifications and regenerative cues such as stem cells and growth factors to improve regeneration performance. Also, the current clinical potential and future perspectives to achieve therapeutic benefits of NGCs will be discussed in context of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Poonam Meena
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Anupama Kakkar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Mukesh Kumar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Nitin Khatri
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Rakesh Kumar Nagar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Aarti Singh
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Poonam Malhotra
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Manish Shukla
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Sumit Kumar Saraswat
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Supriya Srivastava
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Rajan Datt
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Siddharth Pandey
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India.
| |
Collapse
|
11
|
Raza C, Riaz HA, Anjum R, Shakeel NUA. Repair strategies for injured peripheral nerve: Review. Life Sci 2020; 243:117308. [PMID: 31954163 DOI: 10.1016/j.lfs.2020.117308] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/27/2022]
Abstract
Compromised functional regains in about half of the patients following surgical nerve repair pose a serious socioeconomic burden to the society. Although surgical strategies such as end-to-end neurorrhaphy, nerve grafting and nerve transfer are widely applied in distal injuries leading to optimal recovery; however in proximal nerve defects functional outcomes remain unsatisfactory. Biomedical engineering approaches unite the efforts of the surgeons, engineers and biologists to develop regeneration facilitating structures such as extracellular matrix based supportive polymers and tubular nerve guidance channels. Such polymeric structures provide neurotrophic support from injured nerve stumps, retard the fibrous tissue infiltration and guide regenerating axons to appropriate targets. The development and application of nerve guidance conduits (NGCs) to treat nerve gap injuries offer clinically relevant and feasible solutions. Enhanced understanding of the nerve regeneration processes and advances in NGCs design, polymers and fabrication strategies have led to developing modern NGCs with superior regeneration-conducive capacities. Current review focuses on the advances in surgical and engineering approaches to treat peripheral nerve injuries. We suggest the incorporation of endothelial cell growth promoting cues and factors into the NGC interior for its possible enhancement effects on the axonal regeneration process that may result in substantial functional outcomes.
Collapse
Affiliation(s)
- Chand Raza
- Department of Zoology, Government College University, Lahore 54000, Pakistan.
| | - Hasib Aamir Riaz
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Rabia Anjum
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Noor Ul Ain Shakeel
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
12
|
Mehrotra P, Tseropoulos G, Bronner ME, Andreadis ST. Adult tissue-derived neural crest-like stem cells: Sources, regulatory networks, and translational potential. Stem Cells Transl Med 2019; 9:328-341. [PMID: 31738018 PMCID: PMC7031649 DOI: 10.1002/sctm.19-0173] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
Neural crest (NC) cells are a multipotent stem cell population that give rise to a diverse array of cell types in the body, including peripheral neurons, Schwann cells (SC), craniofacial cartilage and bone, smooth muscle cells, and melanocytes. NC formation and differentiation into specific lineages takes place in response to a set of highly regulated signaling and transcriptional events within the neural plate border. Premigratory NC cells initially are contained within the dorsal neural tube from which they subsequently emigrate, migrating to often distant sites in the periphery. Following their migration and differentiation, some NC‐like cells persist in adult tissues in a nascent multipotent state, making them potential candidates for autologous cell therapy. This review discusses the gene regulatory network responsible for NC development and maintenance of multipotency. We summarize the genes and signaling pathways that have been implicated in the differentiation of a postmigratory NC into mature myelinating SC. We elaborate on the signals and transcription factors involved in the acquisition of immature SC fate, axonal sorting of unmyelinated neuronal axons, and finally the path toward mature myelinating SC, which envelope axons within myelin sheaths, facilitating electrical signal propagation. The gene regulatory events guiding development of SC in vivo provides insights into means for differentiating NC‐like cells from adult human tissues into functional SC, which have the potential to provide autologous cell sources for the treatment of demyelinating and neurodegenerative disorders.
Collapse
Affiliation(s)
- Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York.,Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York.,Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| |
Collapse
|
13
|
Kokubu N, Tsujii M, Akeda K, Iino T, Sudo A. BMP-7/Smad expression in dedifferentiated Schwann cells during axonal regeneration and upregulation of endogenous BMP-7 following administration of PTH (1-34). J Orthop Surg (Hong Kong) 2019; 26:2309499018812953. [PMID: 30442072 DOI: 10.1177/2309499018812953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE: To determine the expression and distribution of bone morphogenetic protein (BMP)-7 and related molecules during peripheral nerve regeneration and to assess whether administration of parathyroid hormone (PTH) drug (1-34) potentiates the intrinsic upregulation of BMP-7/Smad signaling. METHODS: The rat sciatic nerves were crushed with an aneurysm clip resulting in axonal degeneration. In the normal nerve, and at 1, 2, 4, and 8 weeks after injury, BMP-7, BMP receptors, p-Smad 1/5/8, and Noggin, the endogenous BMP antagonist, were evaluated. Additionally, the distribution of BMP-7 was assessed by fluorescent double immunostaining. In vitro studies were also performed to examine the effect of BMP-7 and PTH (1-34) administration on rat Schwann cells (SCs). RESULTS: Aneurysm clip made reliable animal model of the nerve injury with recovery at 8 weeks after the injury. BMP-7/Smad protein and mRNA were significantly upregulated on axon-SCs units at 1 week after injury, and this upregulated expression was maintained for 4 weeks. Besides, significant upregulation of Noggin's expression was observed on axon-SCs units at 2 weeks after injury. Moreover, fluorescent double immunostaining showed co-localization between expression of BMP-7 and p75NTR during axonal regeneration. In the in vitro study, administration of BMP-7 induced significant proliferation of SCs. Application of PTH (1-34) upregulated BMP-7 on SCs. DISCUSSION/CONCLUSION: BMPs were reported to be involved in protection and recovery after injury as well as in neurogenesis. Our current study showed that BMP/Smad signaling molecules were upregulated on dedifferentiated SCs after peripheral nerve injury and that administration of BMP-7 increased SC viability in vitro. These results suggested that axonal regeneration could be induced via upregulation of endogenous BMP-7 on SCs by PTH (1-34) administration.
Collapse
Affiliation(s)
| | | | | | | | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
14
|
Sayad-Fathi S, Nasiri E, Zaminy A. Advances in stem cell treatment for sciatic nerve injury. Expert Opin Biol Ther 2019; 19:301-311. [PMID: 30700166 DOI: 10.1080/14712598.2019.1576630] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The sciatic nerve is one of the peripheral nerves that is most prone to injuries. After injury, the connection between the nervous system and the distal organs is disrupted, and delayed treatment results in distal organ atrophy and total disability. Regardless of great advances in the fields of neurosurgery, biological sciences, and regenerative medicine, total functional recovery is yet to be achieved. AREAS COVERED Cell-based therapy for the treatment of peripheral nerve injuries (PNIs) has brought a new perspective to the field of regenerative medicine. Having the ability to differentiate into neural and glial cells, stem cells enhance neural regeneration after PNIs. Augmenting axonal regeneration, remyelination, and muscle mass preservation are the main mechanisms underlying stem cells' beneficial effects on neural regeneration. EXPERT OPINION Despite the usefulness of employing stem cells for the treatment of PNIs in pre-clinical settings, further assessments are still needed in order to translate this approach into clinical settings. Mesenchymal stem cells, especially adipose-derived stem cells, with the ability of autologous transplantation, as well as easy harvesting procedures, are speculated to be the most promising source to be used in the treatment of PNIs.
Collapse
Affiliation(s)
- Sara Sayad-Fathi
- a Neuroscience Research Center, Faculty of Medicine , Guilan University of Medical Sciences , Rasht , Iran
| | - Ebrahim Nasiri
- a Neuroscience Research Center, Faculty of Medicine , Guilan University of Medical Sciences , Rasht , Iran
| | - Arash Zaminy
- a Neuroscience Research Center, Faculty of Medicine , Guilan University of Medical Sciences , Rasht , Iran
| |
Collapse
|
15
|
Zhu C, Huang J, Xue C, Wang Y, Wang S, Bao S, Chen R, Li Y, Gu Y. Skin derived precursor Schwann cell-generated acellular matrix modified chitosan/silk scaffolds for bridging rat sciatic nerve gap. Neurosci Res 2018; 135:21-31. [DOI: 10.1016/j.neures.2017.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/24/2017] [Accepted: 12/25/2017] [Indexed: 12/12/2022]
|
16
|
Li Y, Li X, Xiong L, Tang J, Li L. Comparison of phenotypes and transcriptomes of mouse skin-derived precursors and dermal mesenchymal stem cells. Differentiation 2018; 102:30-39. [PMID: 30056221 DOI: 10.1016/j.diff.2018.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/05/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023]
Abstract
Both skin-derived precursors (SKPs) and dermal mesenchymal stem cells (dMSCs) are promising candidates for cellular therapy and regenerative medicine. To date the comparison of phenotypes and transcriptomes of mouse SKPs (mSKPs) and dMSCs has never been reported. Here we characterized and compared the biological properties and transcriptomes of mSKP and dMSCs from the same mouse dermis sample. Firstly, we analyzed mSKPs and dMSCs by use of immunocytochemistry, cell cycle analysis, and CD antigen expression. Then we conducted the osteogenic, adipogenic, and chondrogenic induced differentiation for both cell types. Lastly, we compared their genomic profiles by RNA-sequencing (RNA-Seq), and verified the results of RNA-Seq by quantitative real time reverse transcription PCR (qRT-PCR). The results suggested that mSKPs and dMSCs shared similarities in certain positive stem cells markers expression, but demonstrated difference in Nanog and Oct4 expression. mSKPs and dMSCs demonstrated similar cell cycle distribution and CD antigen expression. Both types of cells could be induced differentiated into osteocytes, adipocytes, and chondrocytes. However, RNA-Seq and qRT-PCR results indicated that mSKPs and dMSCs had distinct transcriptome profiles. The majority of enriched differentially expressed genes (DEGs) from mSKPs was immune-related, while the majority of enriched DEGs from dMSCs was differentiation/development/disease-related. Transcriptome profiles suggested that mSKPs and dMSCs might have potential usage in the relevant morbidity management. These results may indicate a molecular basis for novel stem cell-based therapeutic strategies.
Collapse
Affiliation(s)
- Yiming Li
- Department of Dermatology and Venerology, Huaxi Hospital, Chengdu, Sichuan Province, PR China; Department of dermatology and venerology, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Ave, Xindu district, Chengdu, Sichuan Province, PR China
| | - Xiaohua Li
- Department of Dermatology and Venerology, Huaxi Hospital, Chengdu, Sichuan Province, PR China
| | - Lidan Xiong
- Department of Dermatology and Venerology, Huaxi Hospital, Chengdu, Sichuan Province, PR China
| | - Jie Tang
- Department of Dermatology and Venerology, Huaxi Hospital, Chengdu, Sichuan Province, PR China
| | - Li Li
- Department of Dermatology and Venerology, Huaxi Hospital, Chengdu, Sichuan Province, PR China.
| |
Collapse
|
17
|
Gonzalez-Perez F, Hernández J, Heimann C, Phillips JB, Udina E, Navarro X. Schwann cells and mesenchymal stem cells in laminin- or fibronectin-aligned matrices and regeneration across a critical size defect of 15 mm in the rat sciatic nerve. J Neurosurg Spine 2018; 28:109-118. [DOI: 10.3171/2017.5.spine161100] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVEArtificial nerve guides are being developed to substitute for autograft repair after peripheral nerve injuries. However, the use of conduits is limited by the length of the gap that needs to be bridged, with the success of regeneration highly compromised in long gaps. Addition of aligned proregenerative cells and extracellular matrix (ECM) components inside the conduit can be a good strategy to achieve artificial grafts that recreate the natural environment offered by a nerve graft. The purpose of this study was to functionalize chitosan devices with different cell types to support regeneration in limiting gaps in the rat peripheral nerve.METHODSThe authors used chitosan devices combined with proteins of the ECM and cells in a rat model of sciatic nerve injury. Combinations of fibronectin and laminin with mesenchymal stem cells (MSCs) or Schwann cells (SCs) were aligned within tethered collagen-based gels, which were placed inside chitosan tubes that were then used to repair a critical-size gap of 15 mm in the rat sciatic nerve. Electrophysiology and algesimetry tests were performed to analyze functional recovery during the 4 months after injury and repair. Histological analysis was performed at the midlevel and distal level of the tubes to assess the number of regenerated myelinated fibers.RESULTSFunctional analysis demonstrated that SC-aligned scaffolds resulted in 100% regeneration success in a 15-mm nerve defect in this rat model. In contrast, animals that underwent repair with MSC-aligned constructs had only 90% regeneration success, and those implanted with acellular bridges had only 75% regeneration success.CONCLUSIONSThese results indicate that the combination of chitosan conduits with ECM-enriched cellular gels represents a good alternative to the use of autografts for repairing long nerve gaps.
Collapse
Affiliation(s)
- Francisco Gonzalez-Perez
- 1Institute of Neurosciences and Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, and CIBERNED, Bellaterra, Spain
| | - Joaquim Hernández
- 1Institute of Neurosciences and Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, and CIBERNED, Bellaterra, Spain
| | | | - James B. Phillips
- 3Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, United Kingdom
| | - Esther Udina
- 1Institute of Neurosciences and Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, and CIBERNED, Bellaterra, Spain
| | - Xavier Navarro
- 1Institute of Neurosciences and Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, and CIBERNED, Bellaterra, Spain
| |
Collapse
|
18
|
Hlebokazov F, Dakukina T, Ihnatsenko S, Kosmacheva S, Potapnev M, Shakhbazau A, Goncharova N, Makhrov M, Korolevich P, Misyuk N, Dakukina V, Shamruk I, Slobina E, Marchuk S. Treatment of refractory epilepsy patients with autologous mesenchymal stem cells reduces seizure frequency: An open label study. Adv Med Sci 2017; 62:273-279. [PMID: 28500900 DOI: 10.1016/j.advms.2016.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/07/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Existing anti-epileptic drugs (AED) have limited efficiency in many patients, necessitating the search for alternative approaches such as stem cell therapy. We report the use of autologous patient-derived mesenchymal stem cells (MSC) as a therapeutic agent in symptomatic drug-resistant epilepsy in a Phase I open label clinical trial (registered as NCT02497443). PATIENTS AND METHODS The patients received either standard treatment with AED (control group), or AED supplemented with single intravenous administration of undifferentiated autologous MSC (target dose of 1×106cells/kg), followed by a single intrathecal injection of neurally induced autologous MSC (target dose of 0.1×106cells/kg). RESULTS MSC injections were well tolerated and did not cause any severe adverse effects. Seizure frequency was designated as the main outcome and evaluated at 1 year time point. 3 out of 10 patients in MSC therapy group achieved remission (no seizures for one year and more), and 5 additional patients became responders to AEDs, while only 2 out of 12 patients became responders in control group (difference significant, P=0.0135). CONCLUSIONS MSC possess unique immunomodulatory properties and are a safe and promising candidate for cell therapy in AED resistant epilepsy patients.
Collapse
|
19
|
Shakhbazau A, Potapnev M. Autologous mesenchymal stromal cells as a therapeutic in ALS and epilepsy patients: Treatment modalities and ex vivo neural differentiation. Cytotherapy 2016; 18:1245-55. [DOI: 10.1016/j.jcyt.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/07/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
|
20
|
Demyelination induces transport of ribosome-containing vesicles from glia to axons: evidence from animal models and MS patient brains. Mol Biol Rep 2016; 43:495-507. [DOI: 10.1007/s11033-016-3990-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/19/2016] [Indexed: 01/30/2023]
|
21
|
Adult skin-derived precursor Schwann cells exhibit superior myelination and regeneration supportive properties compared to chronically denervated nerve-derived Schwann cells. Exp Neurol 2016; 278:127-42. [DOI: 10.1016/j.expneurol.2016.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 01/09/2023]
|
22
|
Shakhbazau A, Mirfeizi L, Walsh T, Wobma HM, Kumar R, Singh B, Kallos MS, Midha R. Inter-microcarrier transfer and phenotypic stability of stem cell-derived Schwann cells in stirred suspension bioreactor culture. Biotechnol Bioeng 2016; 113:393-402. [PMID: 26301523 DOI: 10.1002/bit.25813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/20/2015] [Accepted: 08/17/2015] [Indexed: 11/10/2022]
Abstract
Emerging bioreactor technologies offer an effective way for scaled-up production of large numbers of cells for cell therapy applications. One of the clinical paradigms where cell therapy can be an asset is restorative neurosciences. Nerve repair can benefit from the injections of stem cells and/or Schwann cells, acting as a source for axon myelination, myelin debris clearance, and trophic support. We have adapted microcarrier-based suspension bioreactor culture for Schwann cells (SCs) differentiated from a new stem cell source - skin-derived precursors (SKPs). SKP-derived SCs attach and grow on different types of microcarriers in both static and stirred culture, with Cytodex 3 and CultiSpher-S found most effective. Inter-microcarrier migration of SKP-SCs represents a key mechanism for rapid expansion and colonization in stirred suspension culture. We have shown that microcarrier-expanded SKP-SCs cells express Schwann cell markers p75-NTR, GFAP and S100 and retain their key ability to myelinate axons both in vitro and in vivo. Scaled-up microcarrier-based production of SKP-SCs in suspension bioreactors appears feasible for timely generation of sufficient cell numbers for nerve repair strategies.
Collapse
Affiliation(s)
- Antos Shakhbazau
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Leila Mirfeizi
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Canada
| | - Tylor Walsh
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Canada
| | - Holly M Wobma
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Canada
| | - Ranjan Kumar
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Bhagat Singh
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Michael S Kallos
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Canada
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Canada
| | - Rajiv Midha
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
23
|
Zhan C, Ma CB, Yuan HM, Cao BY, Zhu JJ. Macrophage-derived microvesicles promote proliferation and migration of Schwann cell on peripheral nerve repair. Biochem Biophys Res Commun 2015; 468:343-8. [DOI: 10.1016/j.bbrc.2015.10.097] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 10/19/2015] [Indexed: 01/08/2023]
|
24
|
Vapniarsky N, Arzi B, Hu JC, Nolta JA, Athanasiou KA. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine. Stem Cells Transl Med 2015; 4:1187-98. [PMID: 26253713 DOI: 10.5966/sctm.2015-0084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/08/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. SIGNIFICANCE Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it provides analysis of the current state-of-the-art regenerative approaches using human-derived dermal stem cells, with consideration of current guidelines, to assist translation toward therapeutic use.
Collapse
Affiliation(s)
- Natalia Vapniarsky
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| | - Boaz Arzi
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| | - Jan A Nolta
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| |
Collapse
|
25
|
Shakhbazau A, Mishra M, Chu TH, Brideau C, Cummins K, Tsutsui S, Shcharbin D, Majoral JP, Mignani S, Blanchard-Desce M, Bryszewska M, Yong VW, Stys PK, van Minnen J. Fluorescent Phosphorus Dendrimer as a Spectral Nanosensor for Macrophage Polarization and Fate Tracking in Spinal Cord Injury. Macromol Biosci 2015; 15:1523-34. [DOI: 10.1002/mabi.201500150] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/29/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Antos Shakhbazau
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Manoj Mishra
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Tak-Ho Chu
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Craig Brideau
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Karen Cummins
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Shigeki Tsutsui
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | | | | | - Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique; Université Paris Descartes; Paris France
| | | | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection; University of Lodz; Lodz Poland
| | - V. Wee Yong
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Peter K. Stys
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Jan van Minnen
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| |
Collapse
|
26
|
Tian F, Ji XL, Xiao WA, Wang B, Wang F. WITHDRAWN: Macrophage-derived microvesicles promote proliferation and migration of Schwann cells on peripheral nerve repair. Pharmacotherapy 2015. [DOI: 10.1016/j.biopha.2015.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|