1
|
Omo-Lamai S, Nong J, Savalia K, Kelley BJ, Wu J, Esteves-Reyes S, Chase LS, Muzykantov VR, Marcos-Contreras OA, Dollé JP, Smith DH, Brenner JS. Targeting of nanoparticles to the cerebral vasculature after traumatic brain injury. PLoS One 2024; 19:e0297451. [PMID: 38857220 PMCID: PMC11164327 DOI: 10.1371/journal.pone.0297451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/04/2024] [Indexed: 06/12/2024] Open
Abstract
Traumatic brain injury has faced numerous challenges in drug development, primarily due to the difficulty of effectively delivering drugs to the brain. However, there is a potential solution in targeted drug delivery methods involving antibody-drug conjugates or nanocarriers conjugated with targeting antibodies. Following a TBI, the blood-brain barrier (BBB) becomes permeable, which can last for years and allow the leakage of harmful plasma proteins. Consequently, an appealing approach for TBI treatment involves using drug delivery systems that utilize targeting antibodies and nanocarriers to help restore BBB integrity. In our investigation of this strategy, we examined the efficacy of free antibodies and nanocarriers targeting a specific endothelial surface marker called vascular cell adhesion molecule-1 (VCAM-1), which is known to be upregulated during inflammation. In a mouse model of TBI utilizing central fluid percussion injury, free VCAM-1 antibody did not demonstrate superior targeting when comparing sham vs. TBI brain. However, the administration of VCAM-1-targeted nanocarriers (liposomes) exhibited a 10-fold higher targeting specificity in TBI brain than in sham control. Flow cytometry and confocal microscopy analysis confirmed that VCAM-1 liposomes were primarily taken up by brain endothelial cells post-TBI. Consequently, VCAM-1 liposomes represent a promising platform for the targeted delivery of therapeutics to the brain following traumatic brain injury.
Collapse
Affiliation(s)
- Serena Omo-Lamai
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jia Nong
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Krupa Savalia
- Departments of Neurology & Neurological Surgery, University of California—Davis, Sacramento, California, United States of America
| | - Brian J. Kelley
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jichuan Wu
- Department of Medicine, Division of Pulmonary Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sahily Esteves-Reyes
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Liam S. Chase
- Department of Medicine, Division of Pulmonary Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Oscar A. Marcos-Contreras
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jean-Pierre Dollé
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Douglas H. Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jacob S. Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Division of Pulmonary Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Mokbel AY, Burns MP, Main BS. The contribution of the meningeal immune interface to neuroinflammation in traumatic brain injury. J Neuroinflammation 2024; 21:135. [PMID: 38802931 PMCID: PMC11131220 DOI: 10.1186/s12974-024-03122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of disability and mortality worldwide, particularly among the elderly, yet our mechanistic understanding of what renders the post-traumatic brain vulnerable to poor outcomes, and susceptible to neurological disease, is incomplete. It is well established that dysregulated and sustained immune responses elicit negative consequences after TBI; however, our understanding of the neuroimmune interface that facilitates crosstalk between central and peripheral immune reservoirs is in its infancy. The meninges serve as the interface between the brain and the immune system, facilitating important bi-directional roles in both healthy and disease settings. It has been previously shown that disruption of this system exacerbates neuroinflammation in age-related neurodegenerative disorders such as Alzheimer's disease; however, we have an incomplete understanding of how the meningeal compartment influences immune responses after TBI. In this manuscript, we will offer a detailed overview of the holistic nature of neuroinflammatory responses in TBI, including hallmark features observed across clinical and animal models. We will highlight the structure and function of the meningeal lymphatic system, including its role in immuno-surveillance and immune responses within the meninges and the brain. We will provide a comprehensive update on our current knowledge of meningeal-derived responses across the spectrum of TBI, and identify new avenues for neuroimmune modulation within the neurotrauma field.
Collapse
Affiliation(s)
- Alaa Y Mokbel
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Mark P Burns
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Bevan S Main
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA.
| |
Collapse
|
3
|
Liang Y, Wang Y, Sun C, Xiang Y, Deng Y. Deferoxamine reduces endothelial ferroptosis and protects cerebrovascular function after experimental traumatic brain injury. Brain Res Bull 2024; 207:110878. [PMID: 38218407 DOI: 10.1016/j.brainresbull.2024.110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Cerebrovascular dysfunction resulting from traumatic brain injury (TBI) significantly contributes to poor patient outcomes. Recent studies revealed the involvement of iron metabolism in neuronal survival, yet its effect on vasculature remains unclear. This study aims to explore the impact of endothelial ferroptosis on cerebrovascular function in TBI. A Controlled Cortical Impact (CCI) model was established in mice, resulting in a significant increase in iron-related proteins such as TfR1, FPN1, and FTH, as well as oxidative stress biomarker 4HNE. This was accompanied by a decline in expression of the ferroptosis inhibitor GPX4. Moreover, Perls' staining and nonhemin iron content assay showed iron overload in brain microvascular endothelial cells (BMECs) and the ipsilateral cortex. Immunofluorescence staining revealed more FTH-positive cerebral endothelial cells, consistent with impaired perfusion vessel density and cerebral blood flow. As a specific iron chelator, deferoxamine (DFO) treatment inhibited such ferroptotic proteins expression and the accumulation of lipid-reactive oxygen species following CCI, enhancing glutathione peroxidase (GPx) activity. DFO treatment significantly reduced iron deposition in BMECs and brain tissue, and increased density of the cerebral capillaries as well. Consequently, DFO treatment led to improvements in cerebral blood flow (as measured by laser speckle imaging) and behavioral performance (as measured by the neurological severity scores, rotarod test, and Morris water maze test). Taken together, our results indicated that TBI induces remarkable iron disorder and endothelial ferroptosis, and DFO treatment may help maintain iron homeostasis and protect vascular function. This may provide a novel therapeutic strategy to prevent cerebrovascular dysfunction following TBI.
Collapse
Affiliation(s)
- Yidan Liang
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Yanglingxi Wang
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Chao Sun
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Yi Xiang
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China.
| |
Collapse
|
4
|
Reddy P, Izzetoglu K, Shewokis PA, Sangobowale M, Diaz-Arrastia R. Differences in time-frequency characteristics between healthy controls and TBI patients during hypercapnia assessed via fNIRS. Neuroimage Clin 2023; 40:103504. [PMID: 37734166 PMCID: PMC10518610 DOI: 10.1016/j.nicl.2023.103504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
Damage to the cerebrovascular network is a universal feature of traumatic brain injury (TBI). This damage is present during different phases of the injury and can be non-invasively assessed using functional near infrared spectroscopy (fNIRS). fNIRS signals are influenced by partial arterial carbon dioxide (PaCO2), neurogenic, Mayer waves, respiratory and cardiac oscillations, whose characteristics vary in time and frequency and may differ in the presence of TBI. Therefore, this study aims to investigate differences in time-frequency characteristics of these fNIRS signal components between healthy controls and TBI patients and characterize the changes in their characteristics across phases of the injury. Data from 11 healthy controls and 21 TBI patients were collected during the hypercapnic protocol. Results demonstrated significant differences in low-frequency oscillations between healthy controls and TBI patients, with the largest differences observed in Mayer wave band (0.06 to 0.15 Hz), followed by the PaCO2 band (0.012 to 0.02 Hz). The effects within these bands were opposite, with (i) Mayer wave activity being lower in TBI patients during acute phase of the injury (d = 0.37 [0.16, 0.57]) and decreasing further during subacute (d = 0.66 [0.44, 0.87]) and postacute (d = 0.75 [0.50, 0.99]) phases; (ii) PaCO2 activity being lower in TBI patients only during acute phase of the injury (d = 0.36 [0.15, 0.56]) and stabilizing to healthy levels by the subacute phase. These findings demonstrate that TBI patients have impairments in low frequency oscillations related to different mechanisms and that these impairments evolve differently over the course of injury.
Collapse
Affiliation(s)
- Pratusha Reddy
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| | - Kurtulus Izzetoglu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| | - Patricia A Shewokis
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; Nutrition Sciences Department, Health Sciences Division of College of Nursing and Health Professions, Drexel University, Philadelphia, PA 19104, USA
| | - Michael Sangobowale
- Clinical TBI Research Center and Department of Neurology at University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ramon Diaz-Arrastia
- Clinical TBI Research Center and Department of Neurology at University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Zhao ZA, Yan L, Wen J, Satyanarayanan SK, Yu F, Lu J, Liu YU, Su H. Cellular and molecular mechanisms in vascular repair after traumatic brain injury: a narrative review. BURNS & TRAUMA 2023; 11:tkad033. [PMID: 37675267 PMCID: PMC10478165 DOI: 10.1093/burnst/tkad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/01/2023] [Accepted: 05/26/2023] [Indexed: 09/08/2023]
Abstract
Traumatic brain injury (TBI) disrupts normal brain function and is associated with high morbidity and fatality rates. TBI is characterized as mild, moderate or severe depending on its severity. The damage may be transient and limited to the dura matter, with only subtle changes in cerebral parenchyma, or life-threatening with obvious focal contusions, hematomas and edema. Blood vessels are often injured in TBI. Even in mild TBI, dysfunctional cerebral vascular repair may result in prolonged symptoms and poor outcomes. Various distinct types of cells participate in vascular repair after TBI. A better understanding of the cellular response and function in vascular repair can facilitate the development of new therapeutic strategies. In this review, we analyzed the mechanism of cerebrovascular impairment and the repercussions following various forms of TBI. We then discussed the role of distinct cell types in the repair of meningeal and parenchyma vasculature following TBI, including endothelial cells, endothelial progenitor cells, pericytes, glial cells (astrocytes and microglia), neurons, myeloid cells (macrophages and monocytes) and meningeal lymphatic endothelial cells. Finally, possible treatment techniques targeting these unique cell types for vascular repair after TBI are discussed.
Collapse
Affiliation(s)
- Zi-Ai Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
- Department of Neurology, General Hospital of Northern Theater Command, 83# Wen-Hua Road, Shenyang 110840, China
| | - Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Senthil Kumaran Satyanarayanan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Feng Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yong U Liu
- Laboratory of Neuroimmunology in Health and Disease Institute, Guangzhou First People’s Hospital School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 511400, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
6
|
Yin Q, Li P, Wang P, Zhang Z, Liu Q, Sun Z, Li W, Ma L, Wang X. Alectinib Together with Intracranial Therapies Improved Survival Outcomes in Untreated ALK-Positive Patients with Non-Small-Cell Lung Cancer and Symptomatic and Synchronic Brain Metastases: A Retrospective Study. Onco Targets Ther 2022; 14:5533-5542. [PMID: 35002258 PMCID: PMC8722687 DOI: 10.2147/ott.s345439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose The performance of alectinib and crizotinib in untreated anaplastic lymphoma kinase (ALK)-positive patients with non-small-cell lung cancer (NSCLC) and symptomatic and synchronic brain metastases is largely unknown. This retrospective study assessed the effectiveness of alectinib and crizotinib, together with intracranial therapies in a cohort of these patients. Patients and Methods This study included 34 previously untreated ALK-positive NSCLC patients with three or fewer intracranial metastases. Of these patients, 13 received oral alectinib 600 mg twice daily, and 21 received oral crizotinib 250 mg twice daily, until progressive disease, unacceptable toxicity, or death. All intracranial metastases were treated with craniotomy, CyberKnife, or both. Results Median overall progression-free survival (PFS) was 32.8 months (95% CI 24.4–41.2 months) in patients treated with alectinib and 8.0 months (95% CI 7.3–8.7 months) in patients treated with crizotinib. Median PFS of brain lesions was not yet reached with alectinib (95% CI 30.1 months–not estimated) and was 8.5 months (95% CI 7.2–12.3 months) with crizotinib. Median PFS of lung lesions was 38.5 months (95% CI 27.5–49.5 months) with alectinib and 9.2 months (95% CI 7.4–11.0 months) with crizotinib. Median overall survival was not yet reached with alectinib (95% CI 31.0 months–not estimated) and 30.3 months (95% CI 27.3–37.1 months) with crizotinib. Conclusion Compared with crizotinib, alectinib showed superior efficacy and lower toxicity in the treatment of ALK-positive patients with NSCLC and symptomatic and synchronic brain metastases. The inclusion of intracranial therapies such as craniotomy or CyberKnife further improved the brain PFS and overall survival of these patients.
Collapse
Affiliation(s)
- Qiang Yin
- Department of Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Peng Li
- Department of Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Peng Wang
- Department of Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Zhen Zhang
- Department of Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Qun Liu
- Department of Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Zengfeng Sun
- Department of Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Wenliang Li
- Department of Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Li Ma
- Department of Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Xiaoguang Wang
- Department of Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| |
Collapse
|
7
|
Blast-induced injury responsive relative gene expression of traumatic brain injury biomarkers in human brain microvascular endothelial cells. Brain Res 2021; 1770:147642. [PMID: 34474000 DOI: 10.1016/j.brainres.2021.147642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/28/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023]
Abstract
Disruption of the blood-brain barrier (BBB) is a critical component of traumatic brain injury (TBI) progression. However, further research into the mechanism of BBB disruption and its specific role in TBI pathophysiology is necessary. To help make progress in elucidating TBI affected BBB pathophysiology, we report herein relative gene expression of eleven TBI biomarkers and other factors of neuronal function in human brain microvascular cells (HBMVEC), one of the main cell types in the BBB. Our in-vitro blast TBI model employs a custom acoustic shock tube to deliver injuries of varying intensities to HBMVECs in culture. Each of the investigated genes exhibit a significant change in expression as a response to TBI, which is dependent on both the injury intensity and time following the injury. This data suggests that cell signaling of HBMVECs could be essential to understanding the interaction of the BBB and TBI pathophysiology, warranting future investigation.
Collapse
|
8
|
Zhang M, Hamblin MH, Yin KJ. Long non-coding RNAs mediate cerebral vascular pathologies after CNS injuries. Neurochem Int 2021; 148:105102. [PMID: 34153353 DOI: 10.1016/j.neuint.2021.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Central nervous system (CNS) injuries are one of the leading causes of morbidity and mortality worldwide, accompanied with high medical costs and a decreased quality of life. Brain vascular disorders are involved in the pathological processes of CNS injuries and might play key roles for their recovery and prognosis. Recently, increasing evidence has shown that long non-coding RNAs (lncRNAs), which comprise a very heterogeneous group of non-protein-coding RNAs greater than 200 nucleotides, have emerged as functional mediators in the regulation of vascular homeostasis under pathophysiological conditions. Remarkably, lncRNAs can regulate gene transcription and translation, thus interfering with gene expression and signaling pathways by different mechanisms. Hence, a deeper insight into the function and regulatory mechanisms of lncRNAs following CNS injury, especially cerebrovascular-related lncRNAs, could help in establishing potential therapeutic strategies to improve or inhibit neurological disorders. In this review, we highlight recent advancements in understanding of the role of lncRNAs and their application in mediating cerebrovascular pathologies after CNS injury.
Collapse
Affiliation(s)
- Mengqi Zhang
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue SL-83, New Orleans, LA, 70112, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
9
|
Michinaga S, Koyama Y. Pathophysiological Responses and Roles of Astrocytes in Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22126418. [PMID: 34203960 PMCID: PMC8232783 DOI: 10.3390/ijms22126418] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is immediate damage caused by a blow to the head resulting from traffic accidents, falls, and sporting activity, which causes death or serious disabilities in survivors. TBI induces multiple secondary injuries, including neuroinflammation, disruption of the blood–brain barrier (BBB), and brain edema. Despite these emergent conditions, current therapies for TBI are limited or insufficient in some cases. Although several candidate drugs exerted beneficial effects in TBI animal models, most of them failed to show significant effects in clinical trials. Multiple studies have suggested that astrocytes play a key role in the pathogenesis of TBI. Increased reactive astrocytes and astrocyte-derived factors are commonly observed in both TBI patients and experimental animal models. Astrocytes have beneficial and detrimental effects on TBI, including promotion and restriction of neurogenesis and synaptogenesis, acceleration and suppression of neuroinflammation, and disruption and repair of the BBB via multiple bioactive factors. Additionally, astrocytic aquaporin-4 is involved in the formation of cytotoxic edema. Thus, astrocytes are attractive targets for novel therapeutic drugs for TBI, although astrocyte-targeting drugs have not yet been developed. This article reviews recent observations of the roles of astrocytes and expected astrocyte-targeting drugs in TBI.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan;
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe 668-8558, Japan
- Correspondence: ; Tel.: +81-78-441-7572
| |
Collapse
|
10
|
Wang J, Deng X, Xie Y, Tang J, Zhou Z, Yang F, He Q, Cao Q, Zhang L, He L. An Integrated Transcriptome Analysis Reveals IGFBP7 Upregulation in Vasculature in Traumatic Brain Injury. Front Genet 2021; 11:599834. [PMID: 33505428 PMCID: PMC7831608 DOI: 10.3389/fgene.2020.599834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023] Open
Abstract
Vasculature plays critical roles in the pathogenesis and neurological repair of traumatic brain injury (TBI). However, how vascular endothelial cells respond to TBI at the molecular level has not been systematically reviewed. Here, by integrating three transcriptome datasets including whole cortex of mouse brain, FACS-sorted mouse brain endothelial cells, and single cell sequencing of mouse brain hippocampus, we revealed the key molecular alteration of endothelial cells characterized by increased Myc targets and Epithelial-Mesenchymal Transition signatures. In addition, immunofluorescence staining of patients’ samples confirmed that IGFBP7 was up-regulated in vasculature in response to TBI. TGFβ1, mainly derived from microglia and endothelial cells, sufficiently induces IGFBP7 expression in cultured endothelial cells, and is significantly upregulated in response to TBI. Our results identified IGFBP7 as a potential biomarker of vasculature in response to TBI, and indicate that TGFβ signaling may contribute to the upregulation of IGFBP7 in the vasculature.
Collapse
Affiliation(s)
- Jianhao Wang
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China
| | - Xiangyi Deng
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China
| | - Yuan Xie
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiefu Tang
- Trauma Center, First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Ziwei Zhou
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China
| | - Fan Yang
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China
| | - Qiyuan He
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qingze Cao
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lei Zhang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Precision Medicine Center, The Second People's Hospital of Huaihua, Huaihua, China
| | - Liqun He
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Abstract
Despite thousands of neuroprotectants demonstrating promise in preclinical trials, a neuroprotective therapeutic has yet to be approved for the treatment of acute brain injuries such as stroke or traumatic brain injury. Developing a more detailed understanding of models and populations demonstrating "neurological resilience" in spite of brain injury can give us important insights into new translational therapies. Resilience is the process of active adaptation to a stressor. In the context of neuroprotection, models of preconditioning and unique animal models of extreme physiology (such as hibernating species) reliably demonstrate resilience in the laboratory setting. In the clinical setting, resilience is observed in young patients and can be found in those with specific genetic polymorphisms. These important examples of resilience can help transform and extend the current neuroprotective framework from simply countering the injurious cascade into one that anticipates, monitors, and optimizes patients' physiological responses from the time of injury throughout the process of recovery. This review summarizes the underpinnings of key adaptations common to models of resilience and how this understanding can be applied to new neuroprotective approaches.
Collapse
Affiliation(s)
- Neel S Singhal
- Department of Neurology, University of California-San Francisco, 555 South Mission Bay Blvd, San Francisco, CA, 94158, USA.
| | - Chung-Huan Sun
- Department of Neurology, University of California-San Francisco, 555 South Mission Bay Blvd, San Francisco, CA, 94158, USA
| | - Evan M Lee
- Cardiovascular Research Institute, University of California-San Francisco, 555 South Mission Bay Blvd, San Francisco, CA, 94158, USA
- Department of Physiology, University of California-San Francisco, 555 South Mission Bay Blvd, San Francisco, CA, 94158, USA
| | - Dengke K Ma
- Cardiovascular Research Institute, University of California-San Francisco, 555 South Mission Bay Blvd, San Francisco, CA, 94158, USA
- Department of Physiology, University of California-San Francisco, 555 South Mission Bay Blvd, San Francisco, CA, 94158, USA
| |
Collapse
|
12
|
Abrahamson EE, Ikonomovic MD. Brain injury-induced dysfunction of the blood brain barrier as a risk for dementia. Exp Neurol 2020; 328:113257. [PMID: 32092298 DOI: 10.1016/j.expneurol.2020.113257] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) is a complex and dynamic physiological interface between brain parenchyma and cerebral vasculature. It is composed of closely interacting cells and signaling molecules that regulate movement of solutes, ions, nutrients, macromolecules, and immune cells into the brain and removal of products of normal and abnormal brain cell metabolism. Dysfunction of multiple components of the BBB occurs in aging, inflammatory diseases, traumatic brain injury (TBI, severe or mild repetitive), and in chronic degenerative dementing disorders for which aging, inflammation, and TBI are considered risk factors. BBB permeability changes after TBI result in leakage of serum proteins, influx of immune cells, perivascular inflammation, as well as impairment of efflux transporter systems and accumulation of aggregation-prone molecules involved in hallmark pathologies of neurodegenerative diseases with dementia. In addition, cerebral vascular dysfunction with persistent alterations in cerebral blood flow and neurovascular coupling contribute to brain ischemia, neuronal degeneration, and synaptic dysfunction. While the idea of TBI as a risk factor for dementia is supported by many shared pathological features, it remains a hypothesis that needs further testing in experimental models and in human studies. The current review focusses on pathological mechanisms shared between TBI and neurodegenerative disorders characterized by accumulation of pathological protein aggregates, such as Alzheimer's disease and chronic traumatic encephalopathy. We discuss critical knowledge gaps in the field that need to be explored to clarify the relationship between TBI and risk for dementia and emphasize the need for longitudinal in vivo studies using imaging and biomarkers of BBB dysfunction in people with single or multiple TBI.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
13
|
Sandsmark DK, Bashir A, Wellington CL, Diaz-Arrastia R. Cerebral Microvascular Injury: A Potentially Treatable Endophenotype of Traumatic Brain Injury-Induced Neurodegeneration. Neuron 2019; 103:367-379. [PMID: 31394062 PMCID: PMC6688649 DOI: 10.1016/j.neuron.2019.06.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/10/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023]
Abstract
Traumatic brain injury (TBI) is one the most common human afflictions, contributing to long-term disability in survivors. Emerging data indicate that functional improvement or deterioration can occur years after TBI. In this regard, TBI is recognized as risk factor for late-life neurodegenerative disorders. TBI encompasses a heterogeneous disease process in which diverse injury subtypes and multiple molecular mechanisms overlap. To develop precision medicine approaches where specific pathobiological processes are targeted by mechanistically appropriate therapies, techniques to identify and measure these subtypes are needed. Traumatic microvascular injury is a common but relatively understudied TBI endophenotype. In this review, we describe evidence of microvascular dysfunction in human and animal TBI, explore the role of vascular dysfunction in neurodegenerative disease, and discuss potential opportunities for vascular-directed therapies in ameliorating TBI-related neurodegeneration. We discuss the therapeutic potential of vascular-directed therapies in TBI and the use and limitations of preclinical models to explore these therapies.
Collapse
Affiliation(s)
| | - Asma Bashir
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
14
|
Bogorad MI, DeStefano JG, Linville RM, Wong AD, Searson PC. Cerebrovascular plasticity: Processes that lead to changes in the architecture of brain microvessels. J Cereb Blood Flow Metab 2019; 39:1413-1432. [PMID: 31208241 PMCID: PMC6681538 DOI: 10.1177/0271678x19855875] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabolic demands of the brain are met by oxygen and glucose, supplied by a complex hierarchical network of microvessels (arterioles, capillaries, and venules). Transient changes in neural activity are accommodated by local dilation of arterioles or capillaries to increase cerebral blood flow and hence nutrient availability. Transport and communication between the circulation and the brain is regulated by the brain microvascular endothelial cells that form the blood-brain barrier. Under homeostatic conditions, there is very little turnover in brain microvascular endothelial cells, and the cerebrovascular architecture is largely static. However, changes in the brain microenvironment, due to environmental factors, disease, or trauma, can result in additive or subtractive changes in cerebrovascular architecture. Additions occur by angiogenesis or vasculogenesis, whereas subtractions occur by vascular pruning, injury, or endothelial cell death. Here we review the various processes that lead to changes in the cerebrovascular architecture, including sustained changes in the brain microenvironment, development and aging, and injury, disease, and repair.
Collapse
Affiliation(s)
- Max I Bogorad
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jackson G DeStefano
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Raleigh M Linville
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew D Wong
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.,3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
15
|
Agoston DV, Vink R, Helmy A, Risling M, Nelson D, Prins M. How to Translate Time: The Temporal Aspects of Rodent and Human Pathobiological Processes in Traumatic Brain Injury. J Neurotrauma 2019; 36:1724-1737. [PMID: 30628544 PMCID: PMC7643768 DOI: 10.1089/neu.2018.6261] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) triggers multiple pathobiological responses with differing onsets, magnitudes, and durations. Identifying the therapeutic window of individual pathologies is critical for successful pharmacological treatment. Dozens of experimental pharmacotherapies have been successfully tested in rodent models, yet all of them (to date) have failed in clinical trials. The differing time scales of rodent and human biological and pathological processes may have contributed to these failures. We compared rodent versus human time scales of TBI-induced changes in cerebral glucose metabolism, inflammatory processes, axonal integrity, and water homeostasis based on published data. We found that the trajectories of these pathologies run on different timescales in the two species, and it appears that there is no universal "conversion rate" between rodent and human pathophysiological processes. For example, the inflammatory process appears to have an abbreviated time scale in rodents versus humans relative to cerebral glucose metabolism or axonal pathologies. Limitations toward determining conversion rates for various pathobiological processes include the use of differing outcome measures in experimental and clinical TBI studies and the rarity of longitudinal studies. In order to better translate time and close the translational gap, we suggest 1) using clinically relevant outcome measures, primarily in vivo imaging and blood-based proteomics, in experimental TBI studies and 2) collecting data at multiple post-injury time points with a frequency exceeding the expected information content by two or three times. Combined with a big data approach, we believe these measures will facilitate the translation of promising experimental treatments into clinical use.
Collapse
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland
| | - Robert Vink
- Division of Health Science, University of South Australia, Adelaide, Australia
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - David Nelson
- Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Mayumi Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
16
|
Shah A, Almenawer S, Hawryluk G. Timing of Decompressive Craniectomy for Ischemic Stroke and Traumatic Brain Injury: A Review. Front Neurol 2019; 10:11. [PMID: 30740085 PMCID: PMC6355668 DOI: 10.3389/fneur.2019.00011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/07/2019] [Indexed: 11/23/2022] Open
Abstract
While studies have demonstrated that decompressive craniectomy after stroke or TBI improves mortality, there is much controversy regarding when decompressive craniectomy is optimally performed. The goal of this paper is to synthesize the data regarding timing of craniectomy for malignant stroke and traumatic brain injury (TBI) based on studied time windows and clinical correlates of herniation. In stroke patients, evidence supports that early decompression performed within 24 h or before clinical signs of herniation may improve overall mortality and functional outcomes. In adult TBI patients, published results demonstrate that early decompressive craniectomy within 24 h of injury may reduce mortality and improve functional outcomes when compared to late decompressive craniectomy. In contrast to the stroke data, preliminary TBI data have demonstrated that decompressive craniectomy after radiographic signs of herniation may still lead to improved functional outcomes compared to medical management. In pediatric TBI patients, there is also evidence for better functional outcomes when treated with decompressive craniectomy, regardless of timing. More high quality data are needed, particularly that which incorporates a broader set of metrics into decision-making surrounding cranial decompression. In particular, advanced neuromonitoring and imaging technologies may be useful adjuncts in determining the optimal time for decompression in appropriate patients.
Collapse
Affiliation(s)
- Aatman Shah
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Saleh Almenawer
- Division of Neurosurgery, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Gregory Hawryluk
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
17
|
Russo MV, Latour LL, McGavern DB. Distinct myeloid cell subsets promote meningeal remodeling and vascular repair after mild traumatic brain injury. Nat Immunol 2018; 19:442-452. [PMID: 29662169 DOI: 10.1038/s41590-018-0086-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/15/2018] [Indexed: 12/14/2022]
Abstract
Mild traumatic brain injury (mTBI) can cause meningeal vascular injury and cell death that spreads into the brain parenchyma and triggers local inflammation and recruitment of peripheral immune cells. The factors that dictate meningeal recovery after mTBI are unknown at present. Here we demonstrated that most patients who had experienced mTBI resolved meningeal vascular damage within 2-3 weeks, although injury persisted for months in a subset of patients. To understand the recovery process, we studied a mouse model of mTBI and found extensive meningeal remodeling that was temporally reliant on infiltrating myeloid cells with divergent functions. Inflammatory myelomonocytic cells scavenged dead cells in the lesion core, whereas wound-healing macrophages proliferated along the lesion perimeter and promoted angiogenesis through the clearance of fibrin and production of the matrix metalloproteinase MMP-2. Notably, a secondary injury experienced during the acute inflammatory phase aborted this repair program and enhanced inflammation, but a secondary injury experienced during the wound-healing phase did not. Our findings demonstrate that meningeal vasculature can undergo regeneration after mTBI that is dependent on distinct myeloid cell subsets.
Collapse
Affiliation(s)
- Matthew V Russo
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Johns Hopkins University Graduate Partnership Program, Baltimore, MD, USA
| | - Lawrence L Latour
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dorian B McGavern
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Main BS, Villapol S, Sloley SS, Barton DJ, Parsadanian M, Agbaegbu C, Stefos K, McCann MS, Washington PM, Rodriguez OC, Burns MP. Apolipoprotein E4 impairs spontaneous blood brain barrier repair following traumatic brain injury. Mol Neurodegener 2018; 13:17. [PMID: 29618365 PMCID: PMC5885297 DOI: 10.1186/s13024-018-0249-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/21/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Traumatic Brain Injury (TBI) is a major cause of disability and mortality, to which there is currently no comprehensive treatment. Blood Brain Barrier (BBB) dysfunction is well documented in human TBI patients, yet the molecular mechanisms that underlie this neurovascular unit (NVU) pathology remains unclear. The apolipoprotein-E (apoE) protein has been implicated in controlling BBB integrity in an isoform dependent manner, via suppression of Cyclophilin A (CypA)-Matrix metallopeptidase-9 (MMP-9) signaling cascades, however the contribution of this pathway in TBI-induced BBB permeability is not fully investigated. METHODS We exposed C57Bl/6 mice to controlled cortical impact and assessed NVU and BBB permeability responses up to 21 days post-injury. We pharmacologically probed the role of the CypA-MMP-9 pathway in BBB permeability after TBI using Cyclosporin A (CsA, 20 mg/kg). Finally, as the apoE4 protein is known to be functionally deficient compared to the apoE3 protein, we used humanized APOE mice as a clinically relevant model to study the role of apoE on BBB injury and repair after TBI. RESULTS In C57Bl/6 mice there was an inverse relationship between soluble apoE and BBB permeability, such that damaged BBB stabilizes as apoE levels increase in the days following TBI. TBI mice displayed acute pericyte loss, increased MMP-9 production and activity, and reduced tight-junction expression. Treatment with the CypA antagonist CsA in C57Bl/6 mice attenuates MMP-9 responses and enhances BBB repair after injury, demonstrating that MMP-9 plays an important role in the timing of spontaneous BBB repair after TBI. We also show that apoe mRNA is present in both astrocytes and pericytes after TBI. We report that APOE3 and APOE4 mice have similar acute BBB responses to TBI, but APOE3 mice display faster spontaneous BBB repair than APOE4 mice. Isolated microvessel analysis reveals delayed pericyte repopulation, augmented and sustained MMP-9 expression at the NVU, and impaired stabilization of Zonula Occludens-1, Occludin and Claudin-5 expression at tight junctions in APOE4 mice after TBI compared to APOE3 mice. CONCLUSIONS These data confirm apoE as an important modulator of spontaneous BBB stabilization following TBI, and highlights the APOE4 allele as a risk factor for poor outcome after TBI.
Collapse
Affiliation(s)
- Bevan S Main
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Sonia Villapol
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Stephanie S Sloley
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - David J Barton
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Maia Parsadanian
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Chinyere Agbaegbu
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Kathryn Stefos
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Mondona S McCann
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Patricia M Washington
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Olga C Rodriguez
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Mark P Burns
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA. .,Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, D.C, 20057, USA.
| |
Collapse
|
19
|
Ho KM, Honeybul S, Ambati R. Prognostic Significance of Magnetic Resonance Imaging in Patients with Severe Nonpenetrating Traumatic Brain Injury Requiring Decompressive Craniectomy. World Neurosurg 2018; 112:277-283. [PMID: 29421447 DOI: 10.1016/j.wneu.2018.01.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Diffuse axonal injury (DAI) detected on magnetic resonance imaging (MRI) may be useful to predict outcome after traumatic brain injury (TBI). METHODS This study compared the ability of the International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) prognostic model with DAI on MRI to predict the 18-month neurologic outcome in 56 patients who had required decompressive craniectomy after TBI. RESULTS Of the 56 patients included in the study (19 scans occurred within 14 days; median time for all patients 24 days, interquartile range 14-42), 18 (32%) had evidence of DAI on the MRI scans. The presence of DAI on the MRI diffusion-weighted (DW) T2*-weighted gradient echo and susceptibility-weighted (SWI) sequences was associated with an increased risk of unfavorable outcome at 18 months compared with patients without DAI (44% vs. 17%, difference = 27%, 95% confidence interval 2.4-46.7%; P = 0.032), particularly when the brainstem was involved. However, neither the grading (I to IV) nor the number of brain regions with DAI was as good as the IMPACT model in discriminating between patients with unfavorable and favorable outcomes (area under the receiver operating characteristic curve: 0.625 and 0.621 vs. 0.918, respectively; P < 0.001 for both comparisons). After adjustment for the IMPACT prognostic risks, DAI in different brain regions and the grading of DAI were also not independently associated with unfavorable outcome. CONCLUSIONS The prognostic significance of DAI on MRI may, in part, be captured by the IMPACT prognostic model. More research is needed before MRI should be routinely used to prognosticate the outcomes in patients with TBI requiring decompressive craniectomy.
Collapse
Affiliation(s)
- Kwok M Ho
- Department of Intensive Care Medicine, Royal Perth Hospital, Perth, Western Australia, Australia; School of Population and Global Health, University of Western Australia, Perth, Western Australia, Australia; School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| | - Stephen Honeybul
- Department of Neurosurgery, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Ravi Ambati
- Department of Intensive Care Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature following traumatic brain injury. J Cereb Blood Flow Metab 2017; 37:2320-2339. [PMID: 28378621 PMCID: PMC5531360 DOI: 10.1177/0271678x17701460] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The critical role of the vasculature and its repair in neurological disease states is beginning to emerge particularly for stroke, dementia, epilepsy, Parkinson's disease, tumors and others. However, little attention has been focused on how the cerebral vasculature responds following traumatic brain injury (TBI). TBI often results in significant injury to the vasculature in the brain with subsequent cerebral hypoperfusion, ischemia, hypoxia, hemorrhage, blood-brain barrier disruption and edema. The sequalae that follow TBI result in neurological dysfunction across a host of physiological and psychological domains. Given the importance of restoring vascular function after injury, emerging research has focused on understanding the vascular response after TBI and the key cellular and molecular components of vascular repair. A more complete understanding of vascular repair mechanisms are needed and could lead to development of new vasculogenic therapies, not only for TBI but potentially vascular-related brain injuries. In this review, we delineate the vascular effects of TBI, its temporal response to injury and putative biomarkers for arterial and venous repair in TBI. We highlight several molecular pathways that may play a significant role in vascular repair after brain injury.
Collapse
Affiliation(s)
- Arjang Salehi
- 1 Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA, USA.,2 Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- 3 Department of Physiology and Pharmacology Loma Linda University School of Medicine, CA, USA.,4 Department of Anesthesiology Loma Linda University School of Medicine, CA, USA.,5 Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Andre Obenaus
- 1 Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA, USA.,2 Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA.,6 Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
21
|
Shahim P, Tegner Y, Marklund N, Höglund K, Portelius E, Brody DL, Blennow K, Zetterberg H. Astroglial activation and altered amyloid metabolism in human repetitive concussion. Neurology 2017; 88:1400-1407. [PMID: 28283595 DOI: 10.1212/wnl.0000000000003816] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/22/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether postconcussion syndrome (PCS) due to repetitive concussive traumatic brain injury (rcTBI) is associated with CSF biomarker evidence of astroglial activation, amyloid deposition, and blood-brain barrier (BBB) impairment. METHODS A total of 47 participants (28 professional athletes with PCS and 19 controls) were assessed with lumbar puncture (median 1.5 years, range 0.25-12 years after last concussion), standard MRI of the brain, and Rivermead Post-Concussion Symptoms Questionnaire (RPQ). The main outcome measures were CSF concentrations of astroglial activation markers (glial fibrillary acidic protein [GFAP] and YKL-40), markers reflecting amyloid precursor protein metabolism (Aβ38, Aβ40, Aβ42, sAPPα, and sAPPβ), and BBB function (CSF:serum albumin ratio). RESULTS Nine of the 28 athletes returned to play within a year, while 19 had persistent PCS >1 year. Athletes with PCS >1 year had higher RPQ scores and number of concussions than athletes with PCS <1 year. Median concentrations of GFAP and YKL-40 were higher in athletes with PCS >1 year compared with controls, although with an overlap between the groups. YKL-40 correlated with RPQ score and the lifetime number of concussions. Athletes with rcTBI had lower concentrations of Aβ40 and Aβ42 than controls. The CSF:serum albumin ratio was unaltered. CONCLUSIONS This study suggests that PCS may be associated with biomarker evidence of astroglial activation and β-amyloid (Aβ) dysmetabolism in the brain. There was no clear evidence of Aβ deposition as Aβ40 and Aβ42 were reduced in parallel. The CSF:serum albumin ratio was unaltered, suggesting that the BBB is largely intact in PCS.
Collapse
Affiliation(s)
- Pashtun Shahim
- From the Institute of Neuroscience and Physiology (P.S., K.H., E.P., K.B., H.Z.), Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (P.S., K.H., E.P., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal; Division of Medical Sciences, Department of Health Sciences (Y.T.), Luleå University of Technology; Department of Neuroscience, Neurosurgery (N.M.), Uppsala University, Uppsala, Sweden; Washington University School of Medicine (D.L.B.), St. Louis, MO; and Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK.
| | - Yelverton Tegner
- From the Institute of Neuroscience and Physiology (P.S., K.H., E.P., K.B., H.Z.), Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (P.S., K.H., E.P., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal; Division of Medical Sciences, Department of Health Sciences (Y.T.), Luleå University of Technology; Department of Neuroscience, Neurosurgery (N.M.), Uppsala University, Uppsala, Sweden; Washington University School of Medicine (D.L.B.), St. Louis, MO; and Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK
| | - Niklas Marklund
- From the Institute of Neuroscience and Physiology (P.S., K.H., E.P., K.B., H.Z.), Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (P.S., K.H., E.P., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal; Division of Medical Sciences, Department of Health Sciences (Y.T.), Luleå University of Technology; Department of Neuroscience, Neurosurgery (N.M.), Uppsala University, Uppsala, Sweden; Washington University School of Medicine (D.L.B.), St. Louis, MO; and Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK
| | - Kina Höglund
- From the Institute of Neuroscience and Physiology (P.S., K.H., E.P., K.B., H.Z.), Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (P.S., K.H., E.P., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal; Division of Medical Sciences, Department of Health Sciences (Y.T.), Luleå University of Technology; Department of Neuroscience, Neurosurgery (N.M.), Uppsala University, Uppsala, Sweden; Washington University School of Medicine (D.L.B.), St. Louis, MO; and Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK
| | - Erik Portelius
- From the Institute of Neuroscience and Physiology (P.S., K.H., E.P., K.B., H.Z.), Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (P.S., K.H., E.P., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal; Division of Medical Sciences, Department of Health Sciences (Y.T.), Luleå University of Technology; Department of Neuroscience, Neurosurgery (N.M.), Uppsala University, Uppsala, Sweden; Washington University School of Medicine (D.L.B.), St. Louis, MO; and Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK
| | - David L Brody
- From the Institute of Neuroscience and Physiology (P.S., K.H., E.P., K.B., H.Z.), Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (P.S., K.H., E.P., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal; Division of Medical Sciences, Department of Health Sciences (Y.T.), Luleå University of Technology; Department of Neuroscience, Neurosurgery (N.M.), Uppsala University, Uppsala, Sweden; Washington University School of Medicine (D.L.B.), St. Louis, MO; and Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK
| | - Kaj Blennow
- From the Institute of Neuroscience and Physiology (P.S., K.H., E.P., K.B., H.Z.), Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (P.S., K.H., E.P., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal; Division of Medical Sciences, Department of Health Sciences (Y.T.), Luleå University of Technology; Department of Neuroscience, Neurosurgery (N.M.), Uppsala University, Uppsala, Sweden; Washington University School of Medicine (D.L.B.), St. Louis, MO; and Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK
| | - Henrik Zetterberg
- From the Institute of Neuroscience and Physiology (P.S., K.H., E.P., K.B., H.Z.), Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (P.S., K.H., E.P., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal; Division of Medical Sciences, Department of Health Sciences (Y.T.), Luleå University of Technology; Department of Neuroscience, Neurosurgery (N.M.), Uppsala University, Uppsala, Sweden; Washington University School of Medicine (D.L.B.), St. Louis, MO; and Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
22
|
Jullienne A, Obenaus A, Ichkova A, Savona-Baron C, Pearce WJ, Badaut J. Chronic cerebrovascular dysfunction after traumatic brain injury. J Neurosci Res 2016; 94:609-22. [PMID: 27117494 PMCID: PMC5415378 DOI: 10.1002/jnr.23732] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/11/2016] [Accepted: 02/28/2016] [Indexed: 12/12/2022]
Abstract
Traumatic brain injuries (TBI) often involve vascular dysfunction that leads to long-term alterations in physiological and cognitive functions of the brain. Indeed, all the cells that form blood vessels and that are involved in maintaining their proper function can be altered by TBI. This Review focuses on the different types of cerebrovascular dysfunction that occur after TBI, including cerebral blood flow alterations, autoregulation impairments, subarachnoid hemorrhage, vasospasms, blood-brain barrier disruption, and edema formation. We also discuss the mechanisms that mediate these dysfunctions, focusing on the cellular components of cerebral blood vessels (endothelial cells, smooth muscle cells, astrocytes, pericytes, perivascular nerves) and their known and potential roles in the secondary injury cascade. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amandine Jullienne
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Andre Obenaus
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California Riverside, Riverside, California
| | | | | | - William J Pearce
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Jerome Badaut
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California
- CNRS UMR5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
23
|
Blood-Brain Barrier Disruption Is an Early Event That May Persist for Many Years After Traumatic Brain Injury in Humans. J Neuropathol Exp Neurol 2015; 74:1147-57. [DOI: 10.1097/nen.0000000000000261] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
24
|
Hay JR, Johnson VE, Young AM, Smith DH, Stewart W. Blood-Brain Barrier Disruption Is an Early Event That May Persist for Many Years After Traumatic Brain Injury in Humans. J Neuropathol Exp Neurol 2015. [DOI: 10.1093/jnen/74.12.1147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
25
|
Su EJ, Fredriksson L, Kanzawa M, Moore S, Folestad E, Stevenson TK, Nilsson I, Sashindranath M, Schielke GP, Warnock M, Ragsdale M, Mann K, Lawrence ALE, Medcalf RL, Eriksson U, Murphy GG, Lawrence DA. Imatinib treatment reduces brain injury in a murine model of traumatic brain injury. Front Cell Neurosci 2015; 9:385. [PMID: 26500491 PMCID: PMC4596067 DOI: 10.3389/fncel.2015.00385] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/14/2015] [Indexed: 12/30/2022] Open
Abstract
Current therapies for Traumatic brain injury (TBI) focus on stabilizing individuals and on preventing further damage from the secondary consequences of TBI. A major complication of TBI is cerebral edema, which can be caused by the loss of blood brain barrier (BBB) integrity. Recent studies in several CNS pathologies have shown that activation of latent platelet derived growth factor-CC (PDGF-CC) within the brain can promote BBB permeability through PDGF receptor α (PDGFRα) signaling, and that blocking this pathway improves outcomes. In this study we examine the efficacy for the treatment of TBI of an FDA approved antagonist of the PDGFRα, Imatinib. Using a murine model we show that Imatinib treatment, begun 45 min after TBI and given twice daily for 5 days, significantly reduces BBB dysfunction. This is associated with significantly reduced lesion size 24 h, 7 days, and 21 days after TBI, reduced cerebral edema, determined from apparent diffusion co-efficient (ADC) measurements, and with the preservation of cognitive function. Finally, analysis of cerebrospinal fluid (CSF) from human TBI patients suggests a possible correlation between high PDGF-CC levels and increased injury severity. Thus, our data suggests a novel strategy for the treatment of TBI with an existing FDA approved antagonist of the PDGFRα.
Collapse
Affiliation(s)
- Enming J Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School Ann Arbor, MI, USA
| | - Linda Fredriksson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School Ann Arbor, MI, USA ; Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet Stockholm, Sweden
| | - Mia Kanzawa
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School Ann Arbor, MI, USA
| | - Shannon Moore
- Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School Ann Arbor, MI, USA
| | - Erika Folestad
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet Stockholm, Sweden
| | - Tamara K Stevenson
- Department of Molecular and Integrative Physiology, University of Michigan Medical School Ann Arbor, MI, USA
| | - Ingrid Nilsson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet Stockholm, Sweden
| | - Maithili Sashindranath
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University Melbourne, VIC, Australia
| | - Gerald P Schielke
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School Ann Arbor, MI, USA
| | - Mark Warnock
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School Ann Arbor, MI, USA
| | - Margaret Ragsdale
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School Ann Arbor, MI, USA
| | - Kris Mann
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School Ann Arbor, MI, USA
| | - Anna-Lisa E Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School Ann Arbor, MI, USA
| | - Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University Melbourne, VIC, Australia
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet Stockholm, Sweden
| | - Geoffrey G Murphy
- Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School Ann Arbor, MI, USA ; Department of Molecular and Integrative Physiology, University of Michigan Medical School Ann Arbor, MI, USA
| | - Daniel A Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School Ann Arbor, MI, USA ; Department of Molecular and Integrative Physiology, University of Michigan Medical School Ann Arbor, MI, USA
| |
Collapse
|
26
|
Logsdon AF, Lucke-Wold BP, Turner RC, Huber JD, Rosen CL, Simpkins JW. Role of Microvascular Disruption in Brain Damage from Traumatic Brain Injury. Compr Physiol 2015; 5:1147-60. [PMID: 26140712 PMCID: PMC4573402 DOI: 10.1002/cphy.c140057] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) is acquired from an external force, which can inflict devastating effects to the brain vasculature and neighboring neuronal cells. Disruption of vasculature is a primary effect that can lead to a host of secondary injury cascades. The primary effects of TBI are rapidly occurring while secondary effects can be activated at later time points and may be more amenable to targeting. Primary effects of TBI include diffuse axonal shearing, changes in blood-brain barrier (BBB) permeability, and brain contusions. These mechanical events, especially changes to the BBB, can induce calcium perturbations within brain cells producing secondary effects, which include cellular stress, inflammation, and apoptosis. These secondary effects can be potentially targeted to preserve the tissue surviving the initial impact of TBI. In the past, TBI research had focused on neurons without any regard for glial cells and the cerebrovasculature. Now a greater emphasis is being placed on the vasculature and the neurovascular unit following TBI. A paradigm shift in the importance of the vascular response to injury has opened new avenues of drug-treatment strategies for TBI. However, a connection between the vascular response to TBI and the development of chronic disease has yet to be elucidated. Long-term cognitive deficits are common amongst those sustaining severe or multiple mild TBIs. Understanding the mechanisms of cellular responses following TBI is important to prevent the development of neuropsychiatric symptoms. With appropriate intervention following TBI, the vascular network can perhaps be maintained and the cellular repair process possibly improved to aid in the recovery of cellular homeostasis.
Collapse
Affiliation(s)
- Aric F Logsdon
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Brandon P Lucke-Wold
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Jason D Huber
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Charles L Rosen
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - James W Simpkins
- Department of Physiology and Pharmacology, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| |
Collapse
|