1
|
Li S, Su X, Peng J, Chen N, Liu Y, Zhang S, Shao H, Tan Q, Yang X, Liu Y, Gong Q, Yue Q. Development and External Validation of an MRI-based Radiomics Nomogram to Distinguish Circumscribed Astrocytic Gliomas and Diffuse Gliomas: A Multicenter Study. Acad Radiol 2024; 31:639-647. [PMID: 37507329 DOI: 10.1016/j.acra.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
RATIONALE AND OBJECTIVES The 5th edition of the World Health Organization classification of tumors of the Central Nervous System (WHO CNS) has introduced the term "diffuse" and its counterpart "circumscribed" to the category of gliomas. This study aimed to develop and validate models for distinguishing circumscribed astrocytic gliomas (CAGs) from diffuse gliomas (DGs). MATERIALS AND METHODS We retrospectively analyzed magnetic resonance imaging (MRI) data from patients with CAGs and DGs across three institutions. After tumor segmentation, three volume of interest (VOI) types were obtained: VOItumor and peritumor, VOIwhole, and VOIinterface. Clinical and combined models (incorporating radiomics and clinical features) were also established. To address imbalances in training dataset, Synthetic Minority Oversampling Technique was employed. RESULTS A total of 475 patients (DGs: n = 338, CAGs: n = 137) were analyzed. The VOIinterface model demonstrated the best performance for differentiating CAGs from DGs, achieving an area under the curve (AUC) of 0.806 and area under the precision-recall curve (PRAUC)of 0.894 in the cross-validation set. Using analysis of variance (ANOVA) feature selector and Support Vector Machine (SVM) classifier, seven features were selected. The model achieved an AUC and AUPRC of 0.912 and 0.972 in the internal validation dataset, and 0.897 and 0.930 in the external validation dataset. The combined model, incorporating interface radiomics and clinical features, showed improved performance in the external validation set, with an AUC of 0.94 and PRAUC of 0.959. CONCLUSION Radiomics models incorporating the peritumoral area demonstrate greater potential for distinguishing CAGs from DGs compared to intratumoral models. These findings may hold promise for evaluating tumor nature before surgery and improving clinical management of glioma patients.
Collapse
Affiliation(s)
- Shuang Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (S.L., X.S., S.Z., H.S., Q.T., Q.G.); Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China (S.L.); Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China (S.L.)
| | - Xiaorui Su
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (S.L., X.S., S.Z., H.S., Q.T., Q.G.)
| | - Juan Peng
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China (J.P.)
| | - Ni Chen
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (N.C.)
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Y.L.)
| | - Simin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (S.L., X.S., S.Z., H.S., Q.T., Q.G.)
| | - Hanbing Shao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (S.L., X.S., S.Z., H.S., Q.T., Q.G.)
| | - Qiaoyue Tan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (S.L., X.S., S.Z., H.S., Q.T., Q.G.); Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Q.T.)
| | - Xibiao Yang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (X.Y., Q.Y.)
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (Y.L.)
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (S.L., X.S., S.Z., H.S., Q.T., Q.G.); Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China (Q.G.)
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (X.Y., Q.Y.).
| |
Collapse
|
2
|
Buti G, Ajdari A, Hochreuter K, Shih H, Bridge CP, Sharp GC, Bortfeld T. The influence of anisotropy on the clinical target volume of brain tumor patients. Phys Med Biol 2024; 69:10.1088/1361-6560/ad1997. [PMID: 38157552 PMCID: PMC10863979 DOI: 10.1088/1361-6560/ad1997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Objective.Current radiotherapy guidelines for glioma target volume definition recommend a uniform margin expansion from the gross tumor volume (GTV) to the clinical target volume (CTV), assuming uniform infiltration in the invaded brain tissue. However, glioma cells migrate preferentially along white matter tracts, suggesting that white matter directionality should be considered in an anisotropic CTV expansion. We investigate two models of anisotropic CTV expansion and evaluate their clinical feasibility.Approach.To incorporate white matter directionality into the CTV, a diffusion tensor imaging (DTI) atlas is used. The DTI atlas consists of water diffusion tensors that are first spatially transformed into local tumor resistance tensors, also known as metric tensors, and secondly fed to a CTV expansion algorithm to generate anisotropic CTVs. Two models of spatial transformation are considered in the first step. The first model assumes that tumor cells experience reduced resistance parallel to the white matter fibers. The second model assumes that the anisotropy of tumor cell resistance is proportional to the anisotropy observed in DTI, with an 'anisotropy weighting parameter' controlling the proportionality. The models are evaluated in a cohort of ten brain tumor patients.Main results.To evaluate the sensitivity of the model, a library of model-generated CTVs was computed by varying the resistance and anisotropy parameters. Our results indicate that the resistance coefficient had the most significant effect on the global shape of the CTV expansion by redistributing the target volume from potentially less involved gray matter to white matter tissue. In addition, the anisotropy weighting parameter proved useful in locally increasing CTV expansion in regions characterized by strong tissue directionality, such as near the corpus callosum.Significance.By incorporating anisotropy into the CTV expansion, this study is a step toward an interactive CTV definition that can assist physicians in incorporating neuroanatomy into a clinically optimized CTV.
Collapse
Affiliation(s)
- Gregory Buti
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, United States of America
| | - Ali Ajdari
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, United States of America
| | - Kim Hochreuter
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, United States of America
- Aarhus University Hospital, Danish Centre for Particle Therapy, Palle Juul-Jensens Blvd. 99, DK-8200 Aarhus, Denmark
- Aarhus University, Department of Clinical Medicine, Palle Juul-Jensens Blvd. 82, DK-8200 Aarhus, Denmark
| | - Helen Shih
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, 100 Blossom St, Boston, MA 02114, United States of America
| | - Christopher P Bridge
- Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth St, Charlestown, MA 02129, United States of America
| | - Gregory C Sharp
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, United States of America
| | - Thomas Bortfeld
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, United States of America
| |
Collapse
|
3
|
Koga SF, Hodges WB, Adamyan H, Hayes T, Fecci PE, Tsvankin V, Pradilla G, Hoang KB, Lee IY, Sankey EW, Codd PJ, Huie D, Zacharia BE, Verma R, Baboyan VG. Preoperative validation of edema-corrected tractography in neurosurgical practice: translating surgeon insights into novel software implementation. Front Neurol 2024; 14:1322815. [PMID: 38259649 PMCID: PMC10801029 DOI: 10.3389/fneur.2023.1322815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Background Peritumoral edema alters diffusion anisotropy, resulting in false negatives in tractography reconstructions negatively impacting surgical decision-making. With supratotal resections tied to survival benefit in glioma patients, advanced diffusion modeling is critical to visualize fibers within the peritumoral zone to prevent eloquent fiber transection thereafter. A preoperative assessment paradigm is therefore warranted to systematically evaluate multi-subject tractograms along clinically meaningful parameters. We propose a novel noninvasive surgically-focused survey to evaluate the benefits of a tractography algorithm for preoperative planning, subsequently applied to Synaptive Medical's free-water correction algorithm developed for clinically feasible single-shell DTI data. Methods Ten neurosurgeons participated in the study and were presented with patient datasets containing histological lesions of varying degrees of edema. They were asked to compare standard (uncorrected) tractography reconstructions overlaid onto anatomical images with enhanced (corrected) reconstructions. The raters assessed the datasets in terms of overall data quality, tract alteration patterns, and the impact of the correction on lesion definition, brain-tumor interface, and optimal surgical pathway. Inter-rater reliability coefficients were calculated, and statistical comparisons were made. Results Standard tractography was perceived as problematic in areas proximal to the lesion, presenting with significant tract reduction that challenged assessment of the brain-tumor interface and of tract infiltration. With correction applied, significant reduction in false negatives were reported along with additional insight into tract infiltration. Significant positive correlations were shown between favorable responses to the correction algorithm and the lesion-to-edema ratio, such that the correction offered further clarification in increasingly edematous and malignant lesions. Lastly, the correction was perceived to introduce false tracts in CSF spaces and - to a lesser degree - the grey-white matter interface, highlighting the need for noise mitigation. As a result, the algorithm was modified by free-water-parameterizing the tractography dataset and introducing a novel adaptive thresholding tool for customizable correction guided by the surgeon's discretion. Conclusion Here we translate surgeon insights into a clinically deployable software implementation capable of recovering peritumoral tracts in edematous zones while mitigating artifacts through the introduction of a novel and adaptive case-specific correction tool. Together, these advances maximize tractography's clinical potential to personalize surgical decisions when faced with complex pathologies.
Collapse
Affiliation(s)
- Sebastian F Koga
- Franciscan Missionaries of Our Lady Health System, Baton Rouge, LA, United States
| | | | | | - Tim Hayes
- Synaptive Medical Inc., Toronto, ON, Canada
| | - Peter E Fecci
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Vadim Tsvankin
- Colorado Brain and Spine Institute, Englewood, CO, United States
| | - Gustavo Pradilla
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Kimberly B Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Eric W Sankey
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Patrick J Codd
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - David Huie
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Brad E Zacharia
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, United States
| | - Ragini Verma
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- Cohen Veterans Bioscience, New York, NY, United States
| | | |
Collapse
|
4
|
Roh TH, Kim SH. Supramaximal Resection for Glioblastoma: Redefining the Extent of Resection Criteria and Its Impact on Survival. Brain Tumor Res Treat 2023; 11:166-172. [PMID: 37550815 PMCID: PMC10409622 DOI: 10.14791/btrt.2023.0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 08/09/2023] Open
Abstract
Glioblastomas (GBMs) are the most common and aggressive primary brain tumors, and despite advances in treatment, prognosis remains poor. The extent of resection has been widely recognized as a key factor affecting survival outcomes in GBM patients. The surgical principle of "maximal safe resection" has been widely applied to balance tumor removal and neurological function preservation. Historically, T1-contrast enhanced (T1CE) extent of resection has been the focus of research; however, the "supramaximal resection" concept has emerged, advocating for even greater tumor resection while maintaining neurological function. Recent studies have demonstrated potential survival benefits associated with resection beyond T1CE extent in GBMs. This review explores the developing consensus and newly established criteria for "supramaximal resection" in GBMs, with a focus on T2-extent of resection. Systematic reviews and meta-analyses on supramaximal resection are summarized, and the Response Assessment in Neuro-Oncology (RANO) resect group classification for extent of resection is introduced. The evolving understanding of the role of supramaximal resection in GBMs may lead to improved patient outcomes and more objective criteria for evaluating the extent of tumor resection.
Collapse
Affiliation(s)
- Tae Hoon Roh
- Department of Neurosurgery, Brain Tumor Center, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Se-Hyuk Kim
- Department of Neurosurgery, Brain Tumor Center, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
5
|
Zakharova NE, Batalov AI, Pogosbekian EL, Chekhonin IV, Goryaynov SA, Bykanov AE, Tyurina AN, Galstyan SA, Nikitin PV, Fadeeva LM, Usachev DY, Pronin IN. Perifocal Zone of Brain Gliomas: Application of Diffusion Kurtosis and Perfusion MRI Values for Tumor Invasion Border Determination. Cancers (Basel) 2023; 15:2760. [PMID: 37345097 DOI: 10.3390/cancers15102760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
(1) Purpose: To determine the borders of malignant gliomas with diffusion kurtosis and perfusion MRI biomarkers. (2) Methods: In 50 high-grade glioma patients, diffusion kurtosis and pseudo-continuous arterial spin labeling (pCASL) cerebral blood flow (CBF) values were determined in contrast-enhancing area, in perifocal infiltrative edema zone, in the normal-appearing peritumoral white matter of the affected cerebral hemisphere, and in the unaffected contralateral hemisphere. Neuronavigation-guided biopsy was performed from all affected hemisphere regions. (3) Results: We showed significant differences between the DKI values in normal-appearing peritumoral white matter and unaffected contralateral hemisphere white matter. We also established significant (p < 0.05) correlations of DKI with Ki-67 labeling index and Bcl-2 expression activity in highly perfused enhancing tumor core and in perifocal infiltrative edema zone. CBF correlated with Ki-67 LI in highly perfused enhancing tumor core. One hundred percent of perifocal infiltrative edema tissue samples contained tumor cells. All glioblastoma samples expressed CD133. In the glioblastoma group, several normal-appearing white matter specimens were infiltrated by tumor cells and expressed CD133. (4) Conclusions: DKI parameters reveal changes in brain microstructure invisible on conventional MRI, e.g., possible infiltration of normal-appearing peritumoral white matter by glioma cells. Our results may be useful for plotting individual tumor invasion maps for brain glioma surgery or radiotherapy planning.
Collapse
Affiliation(s)
- Natalia E Zakharova
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Artem I Batalov
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Eduard L Pogosbekian
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Ivan V Chekhonin
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Sergey A Goryaynov
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Andrey E Bykanov
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Anastasia N Tyurina
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Suzanna A Galstyan
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Pavel V Nikitin
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Lyudmila M Fadeeva
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Dmitry Yu Usachev
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Igor N Pronin
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| |
Collapse
|
6
|
Halilibrahimoğlu H, Polat K, Keskin S, Genç O, Aslan O, Öztürk-Işık E, Yakıcıer C, Danyeli AE, Pamir MN, Özduman K, Dinçer A, Özcan A. Associating IDH and TERT Mutations in Glioma with Diffusion Anisotropy in Normal-Appearing White Matter. AJNR Am J Neuroradiol 2023; 44:553-561. [PMID: 37105678 PMCID: PMC10171376 DOI: 10.3174/ajnr.a7855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/21/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND AND PURPOSE IDH and TERT mutations might infiltratively manifest within normal-appearing white matter with specific phenotypes such as microstructural changes undetectable by standard MR imaging contrasts but potentially associable with DTI variables. The aim of this retrospective glioma study was to statistically investigate IDH and TERT associations and classifications with DTI reported microstructure in normal-appearing white matter. MATERIALS AND METHODS Retrospective data from patients imaged between March 2012 and February 2016 were analyzed by grouping them as IDH-TERT subgroups and by IDH and TERT mutation status. DTI variables in the IDH-TERT subgroups were first identified by the Kruskal-Wallis test, followed by Dunn-Šidák multiple comparisons with Bonferroni correction. IDH and TERT mutations were compared with the Mann-Whitney U test. Classification by thresholding was tested using receiver operating characteristic analysis. RESULTS Of 170 patients, 70 patients (mean age, 43.73 [SD, 15.32] years; 40 men) were included. Whole-brain normal-appearing white matter fractional anisotropy (FA) and relative anisotropy (RA) (P = .002) were significantly higher and the contralateral-ipsilateral hemispheric differences, ΔFA and ΔRA, (P < .001) were significantly lower in IDHonly patients compared with TERTonly, with a higher whole-brain normal-appearing white matter FA and RA (P = .01) and ΔFA and ΔRA (P = .002) compared to double positive patients. Whole-brain normal-appearing white matter ADC (P = .02), RD (P = .001), λ2 (P = .001), and λ3 (P = .001) were higher in IDH wild-type. Whole-brain normal-appearing white matter λ1 (AD) (P = .003), FA (P < .001), and RA (P = .003) were higher, but Δλ1 (P = .002), ΔFA, and ΔRA (P < .001) were lower in IDH mutant versus IDH wild-type. ΔFA (P = .01) and ΔRA (P = .02) were significantly higher in TERT mutant versus TERT wild-type. CONCLUSIONS Axial and nonaxial diffusivities, anisotropy indices in the normal-appearing white matter and their interhemispheric differences demonstrated microstructural differences between IDH and TERT mutations, with the potential for classification methods.
Collapse
Affiliation(s)
- H Halilibrahimoğlu
- Department of Biomedical Engineering (H.H.), McGill University, Montréal, Quebec, Canada
- Biomedical Imaging Research and Development Center (H.H., K.P., S.K., O.A.)
- Institute of Biomedical Engineering (H.H., O.G., E.Ö.-I.), Boğaziçi University Kandilli Campus, Çengelköy, Istanbul, Turkey
| | - K Polat
- From the Department of Electrical and Electronics Engineering (K.P., A.Ö.), Boğaziçi University, Bebek, Istanbul, Turkey
- Biomedical Imaging Research and Development Center (H.H., K.P., S.K., O.A.)
| | - S Keskin
- Biomedical Imaging Research and Development Center (H.H., K.P., S.K., O.A.)
| | - O Genç
- Institute of Biomedical Engineering (H.H., O.G., E.Ö.-I.), Boğaziçi University Kandilli Campus, Çengelköy, Istanbul, Turkey
| | - O Aslan
- Biomedical Imaging Research and Development Center (H.H., K.P., S.K., O.A.)
| | - E Öztürk-Işık
- Brain Tumor Research Group (E.Ö.-I., A.E.D., M.N.P., K.Ö., A.D.)
- Center for Neuroradiological Advanced Research (E.Ö.-I., M.N.P., K.Ö., A.D.), Acibadem Mehmet Ali Aydinlar University, Ataşehir, Istanbul, Turkey
- Institute of Biomedical Engineering (H.H., O.G., E.Ö.-I.), Boğaziçi University Kandilli Campus, Çengelköy, Istanbul, Turkey
| | - C Yakıcıer
- YoctoSensum Biotechnoogy (C.Y.), Fenerbahçe, Istanbul, Turkey
| | - A E Danyeli
- Department of Pathology (A.E.D.)
- Brain Tumor Research Group (E.Ö.-I., A.E.D., M.N.P., K.Ö., A.D.)
| | - M N Pamir
- Department of Neurosurgery (M.N.P., K.Ö.)
- Brain Tumor Research Group (E.Ö.-I., A.E.D., M.N.P., K.Ö., A.D.)
- Center for Neuroradiological Advanced Research (E.Ö.-I., M.N.P., K.Ö., A.D.), Acibadem Mehmet Ali Aydinlar University, Ataşehir, Istanbul, Turkey
| | - K Özduman
- Department of Neurosurgery (M.N.P., K.Ö.)
- Brain Tumor Research Group (E.Ö.-I., A.E.D., M.N.P., K.Ö., A.D.)
- Center for Neuroradiological Advanced Research (E.Ö.-I., M.N.P., K.Ö., A.D.), Acibadem Mehmet Ali Aydinlar University, Ataşehir, Istanbul, Turkey
| | - A Dinçer
- Department of Radiology (A.D.)
- Brain Tumor Research Group (E.Ö.-I., A.E.D., M.N.P., K.Ö., A.D.)
- Center for Neuroradiological Advanced Research (E.Ö.-I., M.N.P., K.Ö., A.D.), Acibadem Mehmet Ali Aydinlar University, Ataşehir, Istanbul, Turkey
| | - A Özcan
- From the Department of Electrical and Electronics Engineering (K.P., A.Ö.), Boğaziçi University, Bebek, Istanbul, Turkey
| |
Collapse
|
7
|
Prener M, Opheim G, Simonsen HJ, Engelmann CM, Ziebell M, Carlsen J, Paulson OB. Delineation of Grade II and III Gliomas Investigated by 7T MRI: An Inter-Observer Pilot Study. Diagnostics (Basel) 2023; 13:diagnostics13081365. [PMID: 37189466 DOI: 10.3390/diagnostics13081365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
PURPOSE Diffuse low-grade gliomas (DLGGs) are low-malignancy brain tumors originating from the glial cells of the brain growing continuously and infiltratively along the neural axons and infiltrating the surrounding brain tissue. DLGGs usually transform into higher malignancy, causing progressive disability and premature death. MRI scans are valuable when assessing soft tissue abnormalities, but, due to the infiltrative properties of DLGGs, delineating the tumor borders is a challenging task. Therefore, the aim of this study was to explore the difference in gross tumor volume (GTV) of DLGGs delineated from 7 Tesla and 3 Tesla MRI scans. METHOD Patients were recruited at the department of neurosurgery and were scanned in both a 7T and a 3T MRI scanner prior to the operation. Two observers delineated the tumors using semi-automatic delineation software. The results from each observer were blinded to the other observer's delineation. RESULTS Comparing GTVs from 7T and 3T, the percentage difference varied up to 40.4% on the T2-weighted images. The percentage difference in GTV varied up to 15.3% on the fluid-attenuated inversion recovery (FLAIR) images. On the T2-weighted images, most cases varied by approximately 15%; on the FLAIR sequence, half of the cases varied by approximately 5% and the other half by approximately 15%. The overall inter-observer agreement was near perfect, with an intraclass correlation of 0.969. The intraclass correlation was better on the FLAIR sequence than on the T2 sequence. CONCLUSION Overall, the GTVs delineated from 7T images were smaller. The increase in field strength improved the inter-observer agreement only on the FLAIR sequence.
Collapse
Affiliation(s)
- Martin Prener
- Neurobiology Research Unit, Rigshospitalet Blegdamsvej, 2100 Copenhagen, Denmark
| | - Giske Opheim
- Neurobiology Research Unit, Rigshospitalet Blegdamsvej, 2100 Copenhagen, Denmark
| | - Helle Juhl Simonsen
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, 2600 Copenhagen, Denmark
| | | | - Morten Ziebell
- Department of Neurosurgery, Rigshospitalet Blegdamsvej, 2100 Copenhagen, Denmark
| | - Jonathan Carlsen
- Department of Radiology, Rigshospitalet Blegdamsvej, 2100 Copenhagen, Denmark
| | - Olaf B Paulson
- Neurobiology Research Unit, Rigshospitalet Blegdamsvej, 2100 Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
8
|
Duffau H. Oncological and functional neurosurgery: Perspectives for the decade regarding diffuse gliomas. Rev Neurol (Paris) 2023; 179:437-448. [PMID: 36907710 DOI: 10.1016/j.neurol.2023.01.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 03/12/2023]
Abstract
For decades, diffuse glioma (DG) studies mostly focused on oncological considerations, whereas functional outcomes received less attention. Currently, because overall survival has increased in DG, especially in low-grade glioma (overall survival > 15 years), quality of life including neurocognitive and behavioral aspects should be assessed and preserved more systematically, particularly regarding surgery. Indeed, early maximal tumor removal results in greater survival in both high-grade and low-grade gliomas, leading to propose "supra-marginal" resection, with excision of the peritumoral zone in diffuse neoplasms. To minimize functional risks while maximizing the extent of resection, traditional "tumor-mass resection" is replaced by "connectome-guided resection" conducted under awake mapping, taking into account inter-individual brain anatomo-functional variability. A better understanding of the dynamic interplay between DG progression and reactional neuroplastic mechanisms is critical to adapt a personalized multistage therapeutic strategy, with integration of functional neurooncological (re)operation(s) in a multimodal management scheme including repeated medical therapies. Because the therapeutic armamentarium remains limited, the aims of this paradigmatic shift are to predict one/several step(s) ahead glioma behavior, its modifications, and compensatory neural networks reconfiguration over time in order to optimize the onco-functional benefit of each treatment - either in isolation or in combination with others - in human beings bearing a chronic tumoral disease while enjoying an active familial and socio-professional life as close as possible to their expectations. Thus, new ecological endpoints such as return to work should be incorporated into future DG trials. "Preventive neurooncology" might also be envisioned, by proposing a screening policy to discover and treat incidental glioma earlier.
Collapse
Affiliation(s)
- H Duffau
- Department of Neurosurgery, Montpellier University Medical Center, Gui-de-Chauliac Hospital, 80, avenue Augustin-Fliche, 34295 Montpellier, France; Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", National Institute for Health and Medical Research (Inserm), U1191 Laboratory, Institute of Functional Genomics, University of Montpellier, 34091 Montpellier, France.
| |
Collapse
|
9
|
Al-Holou WN, Suki D, Hodges TR, Everson RG, Freeman J, Ferguson SD, McCutcheon IE, Prabhu SS, Weinberg JS, Sawaya R, Lang FF. Circumferential sulcus-guided resection technique for improved outcomes of low-grade gliomas. J Neurosurg 2022; 137:1015-1025. [PMID: 34996044 DOI: 10.3171/2021.9.jns21718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Many neurosurgeons resect nonenhancing low-grade gliomas (LGGs) by using an inside-out piecemeal resection (PMR) technique. At the authors' institution they have increasingly used a circumferential, perilesional, sulcus-guided resection (SGR) technique. This technique has not been well described and there are limited data on its effectiveness. The authors describe the SGR technique and assess the extent to which SGR correlates with extent of resection and neurological outcome. METHODS The authors identified all patients with newly diagnosed LGGs who underwent resection at their institution over a 22-year period. Demographics, presenting symptoms, intraoperative data, method of resection (SGR or PMR), volumetric imaging data, and postoperative outcomes were obtained. Univariate analyses used ANOVA and Fisher's exact test. Multivariate analyses were performed using multivariate logistic regression. RESULTS Newly diagnosed LGGs were resected in 519 patients, 208 (40%) using an SGR technique and 311 (60%) using a PMR technique. The median extent of resection in the SGR group was 84%, compared with 77% in the PMR group (p = 0.019). In multivariate analysis, SGR was independently associated with a higher rate of complete (100%) resection (27% vs 18%) (OR 1.7, 95% CI 1.1-2.6; p = 0.03). SGR was also associated with a statistical trend toward lower rates of postoperative neurological complications (11% vs 16%, p = 0.09). A subset analysis of tumors located specifically in eloquent brain demonstrated SGR to be as safe as PMR. CONCLUSIONS The authors describe the SGR technique used to resect LGGs and show that SGR is independently associated with statistically significantly higher rates of complete resection, without an increase in neurological complications, than with PMR. SGR technique should be considered when resecting LGGs.
Collapse
Affiliation(s)
- Wajd N Al-Holou
- 1Department of Neurosurgery
- 2Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas; and
- 3Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Dima Suki
- 1Department of Neurosurgery
- 2Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | - Tiffany R Hodges
- 1Department of Neurosurgery
- 2Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | - Richard G Everson
- 1Department of Neurosurgery
- 2Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | - Jacob Freeman
- 1Department of Neurosurgery
- 2Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | - Sherise D Ferguson
- 1Department of Neurosurgery
- 2Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | - Ian E McCutcheon
- 1Department of Neurosurgery
- 2Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | - Sujit S Prabhu
- 1Department of Neurosurgery
- 2Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | - Jeffrey S Weinberg
- 1Department of Neurosurgery
- 2Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | - Raymond Sawaya
- 1Department of Neurosurgery
- 2Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | - Frederick F Lang
- 1Department of Neurosurgery
- 2Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas; and
| |
Collapse
|
10
|
Duffau H. A Personalized Longitudinal Strategy in Low-Grade Glioma Patients: Predicting Oncological and Neural Interindividual Variability and Its Changes over Years to Think One Step Ahead. J Pers Med 2022; 12:jpm12101621. [PMID: 36294760 PMCID: PMC9604939 DOI: 10.3390/jpm12101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Diffuse low-grade glioma (LGG) is a rare cerebral cancer, mostly involving young adults with an active life at diagnosis. If left untreated, LGG widely invades the brain and becomes malignant, generating neurological worsening and ultimately death. Early and repeat treatments for this incurable tumor, including maximal connectome-based surgical resection(s) in awake patients, enable postponement of malignant transformation while preserving quality of life owing to constant neural network reconfiguration. Due to considerable interindividual variability in terms of LGG course and consecutive cerebral reorganization, a multistage longitudinal strategy should be tailored accordingly in each patient. It is crucial to predict how the glioma will progress (changes in growth rate and pattern of migration, genetic mutation, etc.) and how the brain will adapt (changes in patterns of spatiotemporal redistribution, possible functional consequences such as epilepsy or cognitive decline, etc.). The goal is to anticipate therapeutic management, remaining one step ahead in order to select the optimal (re-)treatment(s) (some of them possibly kept in reserve), at the appropriate time(s) in the evolution of this chronic disease, before malignization and clinical worsening. Here, predictive tumoral and non-tumoral factors, and their ever-changing interactions, are reviewed to guide individual decisions in advance based on patient-specific markers, for the treatment of LGG.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av. Augustin Fliche, 34295 Montpellier, France; ; Tel.: +33-4-67-33-66-12; Fax: +33-4-67-33-69-12
- Team “Plasticity of Central Nervous System, Stem Cells and Glial Tumors”, National Institute for Health and Medical Research (INSERM), U1191 Laboratory, Institute of Functional Genomics, University of Montpellier, 34091 Montpellier, France
| |
Collapse
|
11
|
Silva M, Vivancos C, Duffau H. The Concept of «Peritumoral Zone» in Diffuse Low-Grade Gliomas: Oncological and Functional Implications for a Connectome-Guided Therapeutic Attitude. Brain Sci 2022; 12:brainsci12040504. [PMID: 35448035 PMCID: PMC9032126 DOI: 10.3390/brainsci12040504] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/22/2022] Open
Abstract
Diffuse low-grade gliomas (DLGGs) are heterogeneous and poorly circumscribed neoplasms with isolated tumor cells that extend beyond the margins of the lesion depicted on MRI. Efforts to demarcate the glioma core from the surrounding healthy brain led us to define an intermediate region, the so-called peritumoral zone (PTZ). Although most studies about PTZ have been conducted on high-grade gliomas, the purpose here is to review the cellular, metabolic, and radiological characteristics of PTZ in the specific context of DLGG. A better delineation of PTZ, in which glioma cells and neural tissue strongly interact, may open new therapeutic avenues to optimize both functional and oncological results. First, a connectome-based “supratotal” surgical resection (i.e., with the removal of PTZ in addition to the tumor core) resulted in prolonged survival by limiting the risk of malignant transformation, while improving the quality of life, thanks to a better control of seizures. Second, the timing and order of (neo)adjuvant medical treatments can be modulated according to the pattern of peritumoral infiltration. Third, the development of new drugs specifically targeting the PTZ could be considered from an oncological (such as immunotherapy) and epileptological perspective. Further multimodal investigations of PTZ are needed to maximize long-term outcomes in DLGG patients.
Collapse
Affiliation(s)
- Melissa Silva
- Department of Neurosurgery, Hospital Garcia de Orta, 2805-267 Almada, Portugal;
| | - Catalina Vivancos
- Department of Neurosurgery, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 34295 Montpellier, France
- Team “Plasticity of Central Nervous System, Stem Cells and Glial Tumors”, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM) U1191, University of Montpellier, 34295 Montpellier, France
- Correspondence:
| |
Collapse
|
12
|
Yu S, Guo J, Li Y, Zhang K, Li J, Liu P, Ming H, Guo Y. Advanced modalities and surgical theories in glioma resection: A narrative review. GLIOMA 2022. [DOI: 10.4103/glioma.glioma_14_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Abstract
Background: Gliomas are primary cerebral tumors. Radiation therapy plays a key role in their treatment but with a risk of toxicity associated with the dose to and volume of normal tissue that is irradiated. With its precision properties allowing for the increased sparing of healthy tissue, proton therapy could be an interesting option for this pathology. Methods: Two reviewers performed a systematic review of original papers published between 2010 and July 2021 following PRISMA guidelines. We analyzed disease outcomes, toxicity outcomes, or dosimetry data in four separate groups: children/adults and individuals with low-/high-grade gliomas. Results: Among 15 studies, 11 concerned clinical and toxicity outcomes, and 4 reported dosimetry data. Proton therapy showed similar disease outcomes with greater tolerance than conventional radiation therapy, partly due to the better dosimetry plans. Conclusions: This review suggests that proton therapy is a promising technique for glioma treatment. However, studies with a high level of evidence are still needed to validate this finding.
Collapse
|
14
|
Dong C, Li X, Yang J, Yuan D, Zhou Y, Zhang Y, Shi G, Zhang R, Liu J, Fu P, Sun M. PPFIBP1 induces glioma cell migration and invasion through FAK/Src/JNK signaling pathway. Cell Death Dis 2021; 12:827. [PMID: 34480020 PMCID: PMC8417031 DOI: 10.1038/s41419-021-04107-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor, with a 5-year survival ratio <5%. Invasive growth is a major determinant of the poor prognosis in GBM. In this study, we demonstrate that high expression of PPFIA binding protein 1 (PPFIBP1) correlates with remarkable invasion and poor prognosis of GBM patients. Using scratch and transwell assay, we find that the invasion and migration of GBM cells are promoted by overexpression of PPFIBP1, while inhibited by knockdown of PPFIBP1. Then, we illustrate that overexpression of PPFIBP1 facilitates glioma cell infiltration and reduces survival in xenograft models. Next, RNA-Seq and GO enrichment analysis reveal that PPFIBP1 regulates differentially expressed gene clusters involved in the Wnt and adhesion-related signaling pathways. Furthermore, we demonstrate that PPFIBP1 activates focal adhesion kinase (FAK), Src, c-Jun N-terminal kinase (JNK), and c-Jun, thereby enhancing Matrix metalloproteinase (MMP)-2 expression probably through interacting with SRCIN1 (p140Cap). Finally, inhibition of phosphorylation of Src and FAK significantly reversed the augmentation of invasion and migration caused by PPFIBP1 overexpression in GBM cells. In conclusion, these findings uncover a novel mechanism of glioma invasion and identify PPFIBP1 as a potential therapeutic target of glioma.
Collapse
Affiliation(s)
- Caihua Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jiao Yang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Yina Zhang
- Neurological Department, Helios-Amper Clinic Dachau, Dachau, Germany
| | - Guohua Shi
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Ruobing Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jianping Liu
- Integrated Cardio Metabolic Centre, Karolinska Institute, Huddinge, Sweden
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| |
Collapse
|
15
|
van Hooren L, Vaccaro A, Ramachandran M, Vazaios K, Libard S, van de Walle T, Georganaki M, Huang H, Pietilä I, Lau J, Ulvmar MH, Karlsson MCI, Zetterling M, Mangsbo SM, Jakola AS, Olsson Bontell T, Smits A, Essand M, Dimberg A. Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma. Nat Commun 2021; 12:4127. [PMID: 34226552 PMCID: PMC8257767 DOI: 10.1038/s41467-021-24347-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
Gliomas are brain tumors characterized by an immunosuppressive microenvironment. Immunostimulatory agonistic CD40 antibodies (αCD40) are in clinical development for solid tumors, but are yet to be evaluated for glioma. Here, we demonstrate that systemic delivery of αCD40 in preclinical glioma models induces the formation of tertiary lymphoid structures (TLS) in proximity of meningeal tissue. In treatment-naïve glioma patients, the presence of TLS correlates with increased T cell infiltration. However, systemic delivery of αCD40 induces hypofunctional T cells and impairs the response to immune checkpoint inhibitors in pre-clinical glioma models. This is associated with a systemic induction of suppressive CD11b+ B cells post-αCD40 treatment, which accumulate in the tumor microenvironment. Our work unveils the pleiotropic effects of αCD40 therapy in glioma and reveals that immunotherapies can modulate TLS formation in the brain, opening up for future opportunities to regulate the immune response. Agonistic CD40 antibodies (αCD40) have broad immunostimulatory properties, however their efficacy in glioma remains unclear. Here the authors show that αCD40 promotes the formation of tertiary lymphoid structures but does not improve survival and impairs the response to immune checkpoint blockade in murine glioma models.
Collapse
Affiliation(s)
- Luuk van Hooren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alessandra Vaccaro
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Konstantinos Vazaios
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sylwia Libard
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Tiarne van de Walle
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Georganaki
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Hua Huang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ilkka Pietilä
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Joey Lau
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Maria H Ulvmar
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Zetterling
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Sara M Mangsbo
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Asgeir S Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Olsson Bontell
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology and Cytology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anja Smits
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden.,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Latini F, Fahlström M, Beháňová A, Sintorn IM, Hodik M, Staxäng K, Ryttlefors M. The link between gliomas infiltration and white matter architecture investigated with electron microscopy and diffusion tensor imaging. Neuroimage Clin 2021; 31:102735. [PMID: 34247117 PMCID: PMC8274339 DOI: 10.1016/j.nicl.2021.102735] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/23/2021] [Accepted: 06/15/2021] [Indexed: 11/21/2022]
Abstract
Diffuse low-grade gliomas (DLGG) display different preferential locations in eloquent and secondary associative brain areas. The reason for this tendency is still unknown. We hypothesized that the intrinsic architecture and water diffusion properties of the white matter bundles in these regions may facilitate gliomas infiltration. Magnetic resonance imaging of sixty-seven diffuse low-grade gliomas patients were normalized to/and segmented in MNI space to create three probabilistic infiltration weighted gradient maps according to the molecular status of each tumor group (IDH mutated, IDH wild-type and IDH mutated/1p19q co-deleted). Diffusion tensor imaging (DTI)- based parameters were derived for five major white matter bundles, displaying regional differences in the grade of infiltration, averaged over 20 healthy individuals acquired from the Human connectome project (HCP) database. Transmission electron microscopy (TEM) was used to analyze fiber density, fiber diameter and g-ratio in 100 human white matter regions, sampled from cadaver specimens, reflecting areas with different gliomas infiltration in each white matter bundle. Histological results and DTI-based parameters were compared in anatomical regions of high- and low grade of infiltration (HIF and LIF) respectively. We detected differences in the white matter infiltration of five major white matter bundles in three groups. Astrocytomas IDHm infiltrated left fronto-temporal subcortical areas. Astrocytomas IDHwt were detected in the posterior-temporal and temporo-parietal regions bilaterally. Oligodendrogliomas IDHm/1p19q infiltrated anterior subcortical regions of the frontal lobes bilaterally. Regional differences within the same white matter bundles were detected by both TEM- and DTI analysis linked to different topographical variables. Our multimodal analysis showed that HIF regions, common to all the groups, displayed a smaller fiber diameter, lower FA and higher RD compared with LIF regions. Our results suggest that the both morphological features and diffusion parameters of the white matter may be different in regions linked to the preferential location of DLGG.
Collapse
Affiliation(s)
- Francesco Latini
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden.
| | - Markus Fahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Andrea Beháňová
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Ida-Maria Sintorn
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Monika Hodik
- Immunology, Genetics and Pathology - Biovis Platform, Uppsala University, Uppsala, Sweden
| | - Karin Staxäng
- Immunology, Genetics and Pathology - Biovis Platform, Uppsala University, Uppsala, Sweden
| | - Mats Ryttlefors
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Li L, Li G, Fang S, Zhang K, Huang R, Wang Y, Zhang C, Li Y, Zhang W, Zhang Z, Jin Q, Zhou D, Fan X, Jiang T. New-Onset Postoperative Seizures in Patients With Diffuse Gliomas: A Risk Assessment Analysis. Front Neurol 2021; 12:682535. [PMID: 34220689 PMCID: PMC8250134 DOI: 10.3389/fneur.2021.682535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Glioma-related epilepsy (GRE) is the most common presenting sign of patients with diffuse glioma. According to clinical experience, new-onset postoperative seizures can be observed even in patients without preoperative GRE. The current study mainly aimed to explore the risk factors of new-onset postoperative seizures in those patients. In addition, the prognostic value of new-onset postoperative seizures was also discussed. Methods: Data of 313 patients without GRE were retrospectively reviewed. Chi-square test or Fisher's exact test were first performed to compare categorical variables between patients with new-onset postoperative seizures and those without. Subsequently, binary logistic regression analysis was conduct to further assess risk factors of new-onset postoperative seizures. Kaplan-Meier and Cox analysis were used to investigate the prognostic value of new-onset postoperative seizures for progression-free survival (PFS) and overall survival (OS). Results: Patients with low-grade tumors (p = 0.006), isocitrate dehydrogenase 1 (IDH1) mutation (p = 0.040) or low Ki-67 expression (p = 0.005) showed a higher incidence of new-onset postoperative seizures. IDH1 mutation was identified as the only independent predictor for new-onset postoperative seizures (OR, 2.075; 95% CI, 1.051–4.098; p = 0.035). Additionally, new-onset postoperative seizure occurrence was demonstrated as an independent predicter of prolonged OS (OR, 0.574; 95% CI, 0.335–0.983; p = 0.043), while younger age, gross total resection, low-grade and IDH1 mutation were independently correlated with prolonged OS and PFS. Conclusions: IDH1 mutation is an independent predictor for new-onset postoperative seizures in patients without preoperative GRE. Moreover, new-onset postoperative seizures can independently predict prolonged OS in those patients. The results of the current study can contribute to improving the individualized management of diffuse glioma.
Collapse
Affiliation(s)
- Lianwang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shengyu Fang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kenan Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ruoyu Huang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yiming Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang Jin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dabiao Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing Fan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Research Units of Accurate Diagnosis and Treatment of Brain Tumors and Translational Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Bontempi P, Rozzanigo U, Amelio D, Scartoni D, Amichetti M, Farace P. Quantitative Multicomponent T2 Relaxation Showed Greater Sensitivity Than Flair Imaging to Detect Subtle Alterations at the Periphery of Lower Grade Gliomas. Front Oncol 2021; 11:651137. [PMID: 33828992 PMCID: PMC8019971 DOI: 10.3389/fonc.2021.651137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/02/2021] [Indexed: 02/02/2023] Open
Abstract
Purpose To demonstrate that quantitative multicomponent T2 relaxation can be more sensitive than conventional FLAIR imaging for detecting cerebral tissue abnormalities. Methods Six patients affected by lower-grade non-enhancing gliomas underwent T2 relaxation and FLAIR imaging before a radiation treatment by proton therapy (PT) and were examined at follow-up. The T2 decay signal obtained by a thirty-two-echo sequence was decomposed into three main components, attributing to each component a different T2 range: water trapped in the lipid bilayer membrane of myelin, intra/extracellular water and cerebrospinal fluid. The T2 quantitative map of the intra/extracellular water was compared with FLAIR images. Results Before PT, in five patients a mismatch was observed between the intra/extracellular water T2 map and FLAIR images, with peri-tumoral areas of high T2 that typically extended outside the area of abnormal FLAIR hyper-intensity. Such mismatch regions evolved into two different types of patterns. The first type, observed in three patients, was a reduced extension of the abnormal regions on T2 map with respect to FLAIR images (T2 decrease pattern). The second type, observed in two patients, was the appearance of new areas of abnormal hyper-intensity on FLAIR images matching the anomalous T2 map extension (FLAIR increase pattern), that was considered as asymptomatic radiation induced damage. Conclusion Our preliminarily results suggest that quantitative T2 mapping of the intra/extracellular water component was more sensitive than conventional FLAIR imaging to subtle cerebral tissue abnormalities, deserving to be further investigated in future clinical studies.
Collapse
Affiliation(s)
- Pietro Bontempi
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Umberto Rozzanigo
- Radiology Department, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Dante Amelio
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Daniele Scartoni
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Maurizio Amichetti
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Paolo Farace
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| |
Collapse
|
19
|
Latini F, Axelson H, Fahlström M, Jemstedt M, Alberius Munkhammar Å, Zetterling M, Ryttlefors M. Role of Preoperative Assessment in Predicting Tumor-Induced Plasticity in Patients with Diffuse Gliomas. J Clin Med 2021; 10:jcm10051108. [PMID: 33799925 PMCID: PMC7961995 DOI: 10.3390/jcm10051108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/03/2023] Open
Abstract
When diffuse gliomas (DG) affect the brain’s potential to reorganize functional networks, patients can exhibit seizures and/or language/cognitive impairment. The tumor–brain interaction and the individual connectomic organization cannot be predicted preoperatively. We aimed to, first, investigate the relationship between preoperative assessment and intraoperative findings of eloquent tumors in 36 DG operated with awake surgery. Second, we also studied possible mechanisms of tumor-induced brain reorganization in these patients. FLAIR-MRI sequences were used for tumor volume segmentation and the Brain-Grid system (BG) was used as an overlay for infiltration analysis. Neuropsychological (NPS) and/or language assessments were performed in all patients. The distance between eloquent spots and tumor margins was measured. All variables were used for correlation and logistic regression analyses. Eloquent tumors were detected in 75% of the patients with no single variable able to predict this finding. Impaired NPS functions correlated with invasive tumors, crucial location (A4C2S2/A3C2S2-voxels, left opercular-insular/sub-insular region) and higher risk of eloquent tumors. Epilepsy was correlated with larger tumor volumes and infiltrated A4C2S2/A3C2S2 voxels. Language impairment was correlated with infiltrated A3C2S2 voxel. Peritumoral cortical eloquent spots reflected an early compensative mechanism with age as possible influencing factor. Preoperative NPS impairment is linked with high risk of eloquent tumors. A systematic integration of extensive cognitive assessment and advanced neuroimaging can improve our comprehension of the connectomic brain organization at the individual scale and lead to a better oncological/functional balance.
Collapse
Affiliation(s)
- Francesco Latini
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, 75185 Uppsala, Sweden; (M.Z.); (M.R.)
- Correspondence: ; Tel.: +46-764-244-653
| | - Hans Axelson
- Section of Clinical Neurophysiology, Department of Neuroscience, Uppsala University, 75185 Uppsala, Sweden;
| | - Markus Fahlström
- Section of Radiology, Department of Surgical Sciences, Uppsala University, 75185 Uppsala, Sweden;
| | - Malin Jemstedt
- Department of Neuroscience, Speech-Language Pathology, Uppsala University, 75185 Uppsala, Sweden;
| | | | - Maria Zetterling
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, 75185 Uppsala, Sweden; (M.Z.); (M.R.)
| | - Mats Ryttlefors
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, 75185 Uppsala, Sweden; (M.Z.); (M.R.)
| |
Collapse
|
20
|
Afzali M, Pieciak T, Newman S, Garyfallidis E, Özarslan E, Cheng H, Jones DK. The sensitivity of diffusion MRI to microstructural properties and experimental factors. J Neurosci Methods 2021; 347:108951. [PMID: 33017644 PMCID: PMC7762827 DOI: 10.1016/j.jneumeth.2020.108951] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
Diffusion MRI is a non-invasive technique to study brain microstructure. Differences in the microstructural properties of tissue, including size and anisotropy, can be represented in the signal if the appropriate method of acquisition is used. However, to depict the underlying properties, special care must be taken when designing the acquisition protocol as any changes in the procedure might impact on quantitative measurements. This work reviews state-of-the-art methods for studying brain microstructure using diffusion MRI and their sensitivity to microstructural differences and various experimental factors. Microstructural properties of the tissue at a micrometer scale can be linked to the diffusion signal at a millimeter-scale using modeling. In this paper, we first give an introduction to diffusion MRI and different encoding schemes. Then, signal representation-based methods and multi-compartment models are explained briefly. The sensitivity of the diffusion MRI signal to the microstructural components and the effects of curvedness of axonal trajectories on the diffusion signal are reviewed. Factors that impact on the quality (accuracy and precision) of derived metrics are then reviewed, including the impact of random noise, and variations in the acquisition parameters (i.e., number of sampled signals, b-value and number of acquisition shells). Finally, yet importantly, typical approaches to deal with experimental factors are depicted, including unbiased measures and harmonization. We conclude the review with some future directions and recommendations on this topic.
Collapse
Affiliation(s)
- Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - Tomasz Pieciak
- AGH University of Science and Technology, Kraków, Poland; LPI, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain.
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Eleftherios Garyfallidis
- Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA.
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
21
|
Bø HK, Solheim O, Kvistad KA, Berntsen EM, Torp SH, Skjulsvik AJ, Reinertsen I, Iversen DH, Unsgård G, Jakola AS. Intraoperative 3D ultrasound-guided resection of diffuse low-grade gliomas: radiological and clinical results. J Neurosurg 2020; 132:518-529. [PMID: 30717057 DOI: 10.3171/2018.10.jns181290] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Extent of resection (EOR) and residual tumor volume are linked to prognosis in low-grade glioma (LGG) and there are various methods for facilitating safe maximal resection in such patients. In this prospective study the authors assess radiological and clinical results in consecutive patients with LGG treated with 3D ultrasound (US)-guided resection under general anesthesia. METHODS Consecutive LGGs undergoing primary surgery guided with 3D US between 2008 and 2015 were included. All LGGs were classified according to the WHO 2016 classification system. Pre- and postoperative volumetric assessments were performed, and volumetric results were linked to overall and malignant-free survival. Pre- and postoperative health-related quality of life (HRQoL) was evaluated. RESULTS Forty-seven consecutive patients were included. Twenty LGGs (43%) were isocitrate dehydrogenase (IDH)-mutated, 7 (14%) were IDH wild-type, 19 (40%) had both IDH mutation and 1p/19q codeletion, and 1 had IDH mutation and inconclusive 1p/19q status. Median resection grade was 93.4%, with gross-total resection achieved in 14 patients (30%). An additional 24 patients (51%) had small tumor remnants < 10 ml. A more conspicuous tumor border (p = 0.02) and lower University of California San Francisco prognostic score (p = 0.01) were associated with less remnant tumor tissue, and overall survival was significantly better with remnants < 10 ml (p = 0.03). HRQoL was maintained or improved in 86% of patients at 1 month. In both cases with severe permanent deficits, relevant ischemia was present on diffusion-weighted postoperative MRI. CONCLUSIONS Three-dimensional US-guided LGG resections under general anesthesia are safe and HRQoL is preserved in most patients. Effectiveness in terms of EOR appears to be consistent with published studies using other advanced neurosurgical tools. Avoiding intraoperative vascular injury is a key factor for achieving good functional outcome.
Collapse
Affiliation(s)
- Hans Kristian Bø
- 1Department of Diagnostic Imaging, Nordland Hospital Trust, Bodø
- Departments of2Circulation and Medical Imaging
| | - Ole Solheim
- Departments of3Neurosurgery
- 4Neuromedicine and Movement Science, and
| | | | - Erik Magnus Berntsen
- Departments of2Circulation and Medical Imaging
- 5Radiology and Nuclear Medicine, and
| | - Sverre Helge Torp
- 6Pathology, St. Olavs University Hospital, Trondheim
- 7Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim
| | - Anne Jarstein Skjulsvik
- 6Pathology, St. Olavs University Hospital, Trondheim
- 7Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim
| | - Ingerid Reinertsen
- 8Department of Health Research, SINTEF Technology and Society, Trondheim, Norway
| | - Daniel Høyer Iversen
- Departments of2Circulation and Medical Imaging
- 8Department of Health Research, SINTEF Technology and Society, Trondheim, Norway
| | - Geirmund Unsgård
- Departments of3Neurosurgery
- 4Neuromedicine and Movement Science, and
| | - Asgeir Store Jakola
- Departments of3Neurosurgery
- 9Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg; and
- 10Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| |
Collapse
|
22
|
Jakola AS, Bouget D, Reinertsen I, Skjulsvik AJ, Sagberg LM, Bø HK, Gulati S, Sjåvik K, Solheim O. Spatial distribution of malignant transformation in patients with low-grade glioma. J Neurooncol 2020; 146:373-380. [PMID: 31915981 PMCID: PMC6971181 DOI: 10.1007/s11060-020-03391-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022]
Abstract
Background Malignant transformation represents the natural evolution of diffuse low-grade gliomas (LGG). This is a catastrophic event, causing neurocognitive symptoms, intensified treatment and premature death. However, little is known concerning the spatial distribution of malignant transformation in patients with LGG. Materials and methods Patients histopathological diagnosed with LGG and subsequent radiological malignant transformation were identified from two different institutions. We evaluated the spatial distribution of malignant transformation with (1) visual inspection and (2) segmentations of longitudinal tumor volumes. In (1) a radiological transformation site < 2 cm from the tumor on preceding MRI was defined local transformation. In (2) overlap with pretreatment volume after importation into a common space was defined as local transformation. With a centroid model we explored if there were particular patterns of transformations within relevant subgroups. Results We included 43 patients in the clinical evaluation, and 36 patients had MRIs scans available for longitudinal segmentations. Prior to malignant transformation, residual radiological tumor volumes were > 10 ml in 93% of patients. The transformation site was considered local in 91% of patients by clinical assessment. Patients treated with radiotherapy prior to transformation had somewhat lower rate of local transformations (83%). Based upon the segmentations, the transformation was local in 92%. We did not observe any particular pattern of transformations in examined molecular subgroups. Conclusion Malignant transformation occurs locally and within the T2w hyperintensities in most patients. Although LGG is an infiltrating disease, this data conceptually strengthens the role of loco-regional treatments in patients with LGG.
Collapse
Affiliation(s)
- Asgeir S Jakola
- Department of Neuromedicine and Movement Science, NTNU, Trondheim, Norway. .,Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, vån 3, 41345, Gothenburg, Sweden. .,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Box 430, 40530, Gothenburg, Sweden.
| | - David Bouget
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | | | - Anne J Skjulsvik
- Department of Pathology, St. Olavs University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Lisa Millgård Sagberg
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway.,Department of Neurosurgery, St. Olavs University Hospital, Trondheim, Norway
| | - Hans Kristian Bø
- Department of Diagnostic Imaging, Nordland Hospital Trust, Bodø, Norway
| | - Sasha Gulati
- Department of Neuromedicine and Movement Science, NTNU, Trondheim, Norway.,Department of Neurosurgery, St. Olavs University Hospital, Trondheim, Norway
| | - Kristin Sjåvik
- Department of Neurosurgery, University Hospital of North Norway, Tromsö, Norway
| | - Ole Solheim
- Department of Neuromedicine and Movement Science, NTNU, Trondheim, Norway.,Department of Neurosurgery, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
23
|
Munkvold BKR, Bø HK, Jakola AS, Reinertsen I, Berntsen EM, Unsgård G, Torp SH, Solheim O. Tumor Volume Assessment in Low-Grade Gliomas: A Comparison of Preoperative Magnetic Resonance Imaging to Coregistered Intraoperative 3-Dimensional Ultrasound Recordings. Neurosurgery 2019; 83:288-296. [PMID: 28945871 DOI: 10.1093/neuros/nyx392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/15/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Image guidance based on magnetic resonance imaging (MRI) and/or ultrasound (US) is widely used to aid decision making in glioma surgery, but tumor delineation based on these 2 modalities does not always correspond. OBJECTIVE To analyze volumes of diffuse low-grade gliomas (LGGs) based on preoperative 3-D FLAIR MRIs compared to intraoperative 3-D US image recordings to quantitatively assess potential discrepancies between the 2 imaging modalities. METHODS Twenty-three patients with supratentorial WHO grade II gliomas undergoing primary surgery guided by neuronavigation based on preoperative FLAIR MRI and navigated 3-D US were included. Manual volume segmentation was performed twice in 3-D Slicer version 4.0.0 to assess intrarater variabilities and compare modalities with regard to tumor volume. Factors possibly related to correspondence between MRI and US were also explored. RESULTS In 20 out of 23 patients (87%), the LGG tumor volume segmented from intraoperative US data was smaller than the tumor volume segmented from the preoperative 3-D FLAIR MRI. The median difference between MRI and US volumes was 7.4 mL (range: -4.9-58.7 mL, P < .001) with US LGG volumes corresponding to a median of 74% (range: 42%-183%) of the MRI LGG volumes. However, there was considerable intraobserver variability for US volumes. The correspondence between MRI and US data was higher for astrocytomas (92%). CONCLUSION The tumor volumes of LGGs segmented from intraoperative US images were most often smaller than the tumor volumes segmented from preoperative MRIs. There was a much better match between the 2 modalities in astrocytomas.
Collapse
Affiliation(s)
| | - Hans Kristian Bø
- Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Asgeir Store Jakola
- Department of Neurosurgery, St. Olavs University Hospital, Trondheim, Norway.,Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| | - Ingerid Reinertsen
- Norwegian National Advisory Unit for Ultrasound and Image Guided Therapy, St. Olavs University Hospital, Trondheim, Norway.,Department of Medical Technology, SINTEF, Trondheim, Norway
| | - Erik Magnus Berntsen
- Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Geirmund Unsgård
- Department of Neuroscience, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurosurgery, St. Olavs University Hospital, Trondheim, Norway.,Norwegian National Advisory Unit for Ultrasound and Image Guided Therapy, St. Olavs University Hospital, Trondheim, Norway
| | - Sverre Helge Torp
- Department of Pathology and Medical Genetics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Ole Solheim
- Department of Neuroscience, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurosurgery, St. Olavs University Hospital, Trondheim, Norway.,Norwegian National Advisory Unit for Ultrasound and Image Guided Therapy, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
24
|
Falk Delgado A, Van Westen D, Nilsson M, Knutsson L, Sundgren PC, Larsson EM, Falk Delgado A. Diagnostic value of alternative techniques to gadolinium-based contrast agents in MR neuroimaging-a comprehensive overview. Insights Imaging 2019; 10:84. [PMID: 31444580 PMCID: PMC6708018 DOI: 10.1186/s13244-019-0771-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022] Open
Abstract
Gadolinium-based contrast agents (GBCAs) increase lesion detection and improve disease characterization for many cerebral pathologies investigated with MRI. These agents, introduced in the late 1980s, are in wide use today. However, some non-ionic linear GBCAs have been associated with the development of nephrogenic systemic fibrosis in patients with kidney failure. Gadolinium deposition has also been found in deep brain structures, although it is of unclear clinical relevance. Hence, new guidelines from the International Society for Magnetic Resonance in Medicine advocate cautious use of GBCA in clinical and research practice. Some linear GBCAs were restricted from use by the European Medicines Agency (EMA) in 2017. This review focuses on non-contrast-enhanced MRI techniques that can serve as alternatives for the use of GBCAs. Clinical studies on the diagnostic performance of non-contrast-enhanced as well as contrast-enhanced MRI methods, both well established and newly proposed, were included. Advantages and disadvantages together with the diagnostic performance of each method are detailed. Non-contrast-enhanced MRIs discussed in this review are arterial spin labeling (ASL), time of flight (TOF), phase contrast (PC), diffusion-weighted imaging (DWI), magnetic resonance spectroscopy (MRS), susceptibility weighted imaging (SWI), and amide proton transfer (APT) imaging. Ten common diseases were identified for which studies reported comparisons of non-contrast-enhanced and contrast-enhanced MRI. These specific diseases include primary brain tumors, metastases, abscess, multiple sclerosis, and vascular conditions such as aneurysm, arteriovenous malformation, arteriovenous fistula, intracranial carotid artery occlusive disease, hemorrhagic, and ischemic stroke. In general, non-contrast-enhanced techniques showed comparable diagnostic performance to contrast-enhanced MRI for specific diagnostic questions. However, some diagnoses still require contrast-enhanced imaging for a complete examination.
Collapse
Affiliation(s)
- Anna Falk Delgado
- Clinical neurosciences, Karolinska Institutet, Stockholm, Sweden. .,Department of Neuroradiology, Karolinska University Hospital, Eugeniavägen 3, Solna, Stockholm, Sweden.
| | - Danielle Van Westen
- Department of Clinical Sciences/Radiology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Markus Nilsson
- Department of Clinical Sciences/Radiology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.,Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pia C Sundgren
- Department of Clinical Sciences/Radiology, Faculty of Medicine, Lund University, Lund, Sweden.,Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
25
|
The landscape of postsurgical recurrence patterns in diffuse low-grade gliomas. Crit Rev Oncol Hematol 2019; 138:148-155. [PMID: 31092371 DOI: 10.1016/j.critrevonc.2019.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
Early and maximal safe surgical resection optionally followed by adjuvant treatment is currently recommended in diffuse low-grade glioma (DLGG). Although this management delays malignant transformation (MT), recurrence will most often occur. Because this relapse usually arises locally, reoperation can be considered, with possible further chemotherapy/radiotherapy. However, due to a prolonged overall survival, a large spectrum of unusual recurrence patterns begins to emerge during long-term follow-up, beyond the classical slow and local tumor re-growth. We review various atypical patterns of DLGG relapse, we discuss their pathophysiological mechanisms and how to adapt the treatment(s). Those patterns include very diffuse, ipsi- or bilateral gliomatosis-like progression, multicentric recurrence with emergence of remote low-grade or high-grade glioma, leptomeningeal dissemination, acute (early or delayed) local MT or bulky relapse into the operating cavity. This landscape of recurrence patterns may allow physicians to elaborate new tailored therapeutic strategies and scientists to develop original hypotheses for basic research.
Collapse
|
26
|
Alexander DC, Dyrby TB, Nilsson M, Zhang H. Imaging brain microstructure with diffusion MRI: practicality and applications. NMR IN BIOMEDICINE 2019; 32:e3841. [PMID: 29193413 DOI: 10.1002/nbm.3841] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/09/2017] [Accepted: 09/11/2017] [Indexed: 05/22/2023]
Abstract
This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term.
Collapse
Affiliation(s)
- Daniel C Alexander
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Markus Nilsson
- Clinical Sciences Lund, Department of Radiology, Lund University, Lund, Sweden
| | - Hui Zhang
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK
| |
Collapse
|
27
|
Radiological evaluation of low-grade glioma: time to embrace quantitative data? Acta Neurochir (Wien) 2019; 161:577-578. [PMID: 30693371 DOI: 10.1007/s00701-019-03816-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 01/21/2023]
|
28
|
Latini F, Fahlström M, Berntsson SG, Larsson EM, Smits A, Ryttlefors M. A novel radiological classification system for cerebral gliomas: The Brain-Grid. PLoS One 2019; 14:e0211243. [PMID: 30677090 PMCID: PMC6345500 DOI: 10.1371/journal.pone.0211243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/09/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose Standard radiological/topographical classifications of gliomas often do not reflect the real extension of the tumor within the lobar-cortical anatomy. Furthermore, these systems do not provide information on the relationship between tumor growth and the subcortical white matter architecture. We propose the use of an anatomically standardized grid system (the Brain-Grid) to merge serial morphological magnetic resonance imaging (MRI) scans with a representative tractographic atlas. Two illustrative cases are presented to show the potential advantages of this classification system. Methods MRI scans of 39 patients (WHO grade II and III gliomas) were analyzed with a standardized grid created by intersecting longitudinal lines on the axial, sagittal, and coronal planes. The anatomical landmarks were chosen from an average brain, spatially normalized to the Montreal Neurological Institute (MNI) space and the Talairach space. Major white matter pathways were reconstructed with a deterministic tracking algorithm on a reference atlas and analyzed using the Brain-Grid system. Results In all, 48 brain grid voxels (areas defined by 3 coordinates, axial (A), coronal (C), sagittal (S) and numbers from 1 to 4) were delineated in each MRI sequence and on the tractographic atlas. The number of grid voxels infiltrated was consistent, also in the MNI space. The sub-cortical insula/basal ganglia (A3-C2-S2) and the fronto-insular region (A3-C2-S1) were most frequently involved. The inferior fronto-occipital fasciculus, anterior thalamic radiation, uncinate fasciculus, and external capsule were the most frequently associated pathways in both hemispheres. Conclusions The Brain-Grid based classification system provides an accurate observational tool in all patients with suspected gliomas, based on the comparison of grid voxels on a morphological MRI and segmented white matter atlas. Important biological information on tumor kinetics including extension, speed, and preferential direction of progression can be observed and even predicted with this system. This novel classification can easily be applied to both prospective and retrospective cohorts of patients and increase our comprehension of glioma behavior.
Collapse
Affiliation(s)
- Francesco Latini
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Markus Fahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Shala G. Berntsson
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Anja Smits
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Ryttlefors
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Duffau H. Diffuse low-grade glioma, oncological outcome and quality of life: a surgical perspective. Curr Opin Oncol 2018; 30:383-389. [DOI: 10.1097/cco.0000000000000483] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Su C, Li H, Gao W. TRIM28 is overexpressed in glioma and associated with tumor progression. Onco Targets Ther 2018; 11:6447-6458. [PMID: 30349292 PMCID: PMC6188017 DOI: 10.2147/ott.s168630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Tripartite motif containing 28 (TRIM28) is a transcriptional co-factor targeting many genes with pleiotropic biological activities, but the study on the role of TRIM28 in glioma is rare. Methods To explore the function of TRIM28 in glioma, we first detected the expression levels of TRIM28 in glioma tissues and analyzed the correlations of TRIM28 expression with clinicopathological variables of patients in 85 cases of glioma. Meanwhile, we used shRNA to knockdown TRIM28 in glioma cell lines to detect the biological functions of TRIM28 in cell and animal experiments. Results We found that TRIM28 was expressed at significantly higher level in glioma tissues than in non-tumor brain, and TRIM28 expression correlated significantly with tumor malignancy. Furthermore, TRIM28 higher expression was also correlated with poor survival of glioma patients (P<0.01). Functionally, knockdown of TRIM28 could significantly inhibit cell proliferation and migration in glioma cells. Additionally, we found that TRIM28 could inhibit the expression of E-cadherin significantly by reducing its mRNA stability at the post-transcriptional level. Conclusion Our results suggest that TRIM28 overexpression is correlated with glioma malignant progression and patients' poor survival, so targeting TRIM28 could be an efficacious strategy in glioma.
Collapse
Affiliation(s)
- Chunhai Su
- Department of Neurosurgery, Jining No 1 People's Hospital, Jining, China,
| | - Hui Li
- School of Nursing, Jining Medical University, Jining, China
| | - Wenbo Gao
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
31
|
Maudsley AA. Lesion segmentation for MR spectroscopic imaging using the convolution difference method. Magn Reson Med 2018; 81:1499-1510. [PMID: 30303564 DOI: 10.1002/mrm.27500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/18/2018] [Accepted: 08/01/2018] [Indexed: 11/05/2022]
Abstract
PURPOSE Delineation of lesion boundaries from volumetric MRSI metabolite ratio maps using a method that accounts for the spatial response function of the acquisition and variable spectral quality and is robust to signal heterogeneity within the lesion. METHODS A novel method for lesion segmentation, termed convolution difference, has been developed that is robust to signal heterogeneity within the lesion and to differences in the spatial response function. Procedures are described for processing metabolite ratio maps and to exclude regions of inadequate spectral quality. This method was evaluated using computer simulations, and the results were compared with an iterative thresholding technique that determines an optimal amplitude threshold, and with the use of a fixed amplitude threshold. These methods were evaluated for segmentation of volumetric MRSI studies of gliomas using maps of the choline to N-acetylaspartate ratio, and a qualitative comparison of lesion volumes carried out. RESULTS Simulation studies indicated improved performance for the convolution difference method when applied to ratio maps. Variations in tumor volume were observed for the in vivo studies between the convolution difference and the iterative thresholding methods; however, visual analysis indicates that both showed improved accuracy in comparison to using a fixed amplitude threshold. CONCLUSION This study reinforces previous reports indicating that the use of fixed threshold values for segmentation of maps with broad spatial response functions can result in errors in lesion volume definition. A novel segmentation method, termed the convolution difference, has been introduced and demonstrated to be robust for segmentation of volumetric MRSI metabolite data.
Collapse
Affiliation(s)
- Andrew A Maudsley
- Department of Radiology, University of Miami School of Medicine, Miami, Florida
| |
Collapse
|
32
|
Roodakker KR, Alhuseinalkhudhur A, Al-Jaff M, Georganaki M, Zetterling M, Berntsson SG, Danfors T, Strand R, Edqvist PH, Dimberg A, Larsson EM, Smits A. Region-by-region analysis of PET, MRI, and histology in en bloc-resected oligodendrogliomas reveals intra-tumoral heterogeneity. Eur J Nucl Med Mol Imaging 2018; 46:569-579. [PMID: 30109401 PMCID: PMC6351509 DOI: 10.1007/s00259-018-4107-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/20/2018] [Indexed: 12/21/2022]
Abstract
Purpose Oligodendrogliomas are heterogeneous tumors in terms of imaging appearance, and a deeper understanding of the histopathological tumor characteristics in correlation to imaging parameters is needed. We used PET-to-MRI-to-histology co-registration with the aim of studying intra-tumoral 11C-methionine (MET) uptake in relation to tumor perfusion and the protein expression of histological cell markers in corresponding areas. Methods Consecutive histological sections of four tumors covering the entire en bloc-removed tumor were immunostained with antibodies against IDH1-mutated protein (tumor cells), Ki67 (proliferating cells), and CD34 (blood vessels). Software was developed for anatomical landmarks-based co-registration of subsequent histological images, which were overlaid on corresponding MET PET scans and MRI perfusion maps. Regions of interest (ROIs) on PET were selected throughout the entire tumor volume, covering hot spot areas, areas adjacent to hot spots, and tumor borders with infiltrating zone. Tumor-to-normal tissue (T/N) ratios of MET uptake and mean relative cerebral blood volume (rCBV) were measured in the ROIs and protein expression of histological cell markers was quantified in corresponding regions. Statistical correlations were calculated between MET uptake, rCBV, and quantified protein expression. Results A total of 84 ROIs were selected in four oligodendrogliomas. A significant correlation (p < 0.05) between MET uptake and tumor cell density was demonstrated in all tumors separately. In two tumors, MET correlated with the density of proliferating cells and vessel cell density. There were no significant correlations between MET uptake and rCBV, and between rCBV and histological cell markers. Conclusions The MET uptake in hot spots, outside hotspots, and in infiltrating tumor edges unanimously reflects tumor cell density. The correlation between MET uptake and vessel density and density of proliferating cells is less stringent in infiltrating tumor edges and is probably more susceptible to artifacts caused by larger blood vessels surrounding the tumor. Although based on a limited number of samples, this study provides histological proof for MET as an indicator of tumor cell density and for the lack of statistically significant correlations between rCBV and histological cell markers in oligodendrogliomas. Electronic supplementary material The online version of this article (10.1007/s00259-018-4107-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kenney Roy Roodakker
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, S-751 85, Uppsala, Sweden.
| | - Ali Alhuseinalkhudhur
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, S-751 85, Uppsala, Sweden
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Mohammed Al-Jaff
- Department of Information Technology, Division of Visual Information and Interaction, Uppsala University, Uppsala, Sweden
| | - Maria Georganaki
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Zetterling
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Shala G Berntsson
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, S-751 85, Uppsala, Sweden
| | - Torsten Danfors
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Robin Strand
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
- Department of Information Technology, Division of Visual Information and Interaction, Uppsala University, Uppsala, Sweden
| | - Per-Henrik Edqvist
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
- Department of Radiology, Uppsala University Hospital, Uppsala, Sweden
| | - Anja Smits
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, S-751 85, Uppsala, Sweden
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
33
|
Thurin E, Nyström PW, Smits A, Werlenius K, Bäck A, Liljegren A, Daxberg EL, Jakola AS. Proton therapy for low-grade gliomas in adults: A systematic review. Clin Neurol Neurosurg 2018; 174:233-238. [PMID: 30292166 DOI: 10.1016/j.clineuro.2018.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/15/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022]
Abstract
For adult patients with diffuse low-grade glioma (LGG) proton therapy is an emerging radiotherapy modality. The number of proton facilities is rapidly increasing. However, there is a shortage of published data concerning the clinical effectiveness compared to photon radiotherapy and potential proton-specific toxicity. This study aimed to systematically review and summarize the relevant literature on proton therapy for adult LGG patients, including dosimetric comparisons, the type and frequency of acute and long-term toxicity and the clinical effectiveness. A systematic search was performed in several medical databases and 601 articles were screened for relevance. Nine articles were deemed eligible for in-depth analysis using a standardized data collection form by two independent researchers. Proton treatment plans compared favorably to photon-plans regarding dose to uninvolved neural tissue. Fatigue (27-100%), alopecia (37-85%), local erythema (78-85%) and headache (27-75%) were among the most common acute toxicities. One study reported no significant long-term cognitive impairments. Limited data was available on long-term survival. One study reported a 5-year overall survival of 84% and 5-year progression-free survival of 40%. We conclude that published data from clinical studies using proton therapy for adults with LGG are scarce. As the technique becomes more available, controlled clinical studies are urgently warranted to determine if the potential benefits based on comparative treatment planning translate into clinical benefits.
Collapse
Affiliation(s)
- Erik Thurin
- Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Petra W Nyström
- The Skandion Clinic, Uppsala, Sweden; Danish Centre for Particle Therapy, Aarhus, Denmark
| | - Anja Smits
- Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Katja Werlenius
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden; Sahlgrenska Cancer Center, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Anna Bäck
- The Skandion Clinic, Uppsala, Sweden; Therapeutic Radiation Physics, Sahlgrenska University Hospital, Göteborg, Sweden; Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Ann Liljegren
- Medical Library, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva-Lotte Daxberg
- Medical Library, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurosurgery, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
34
|
Yazdani M, Rumboldt Z, Tabesh A, Giglio P, Schiarelli C, Morgan PS, Spampinato MV. Perilesional apparent diffusion coefficient in the preoperative evaluation of glioma grade. Clin Imaging 2018; 52:88-94. [PMID: 30032069 DOI: 10.1016/j.clinimag.2018.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 06/15/2018] [Accepted: 07/04/2018] [Indexed: 01/22/2023]
Abstract
Preoperative identification of high-grade gliomas is critical to optimize treatment strategy and to predict prognosis. To determine whether perilesional apparent diffusion coefficient (ADC) values differ between high- and low-grade tumors, we assessed water diffusivity within normal-appearing brain parenchyma (NABP) surrounding gliomas in twenty-one treatment-naïve patients. This showed significantly lower mean and 25th percentile (Q1) ADC values in high- grade compared to low-grade gliomas respectively in the range of 10-25 and 10-30 mm away from combined tumor and surrounding T2 signal. Thus, perilesional ADC measurement may reflect the extent of tumor infiltration beyond the abnormality seen on conventional MRI.
Collapse
Affiliation(s)
- Milad Yazdani
- Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, USA.
| | - Zoran Rumboldt
- Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, USA
| | - Ali Tabesh
- Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, USA
| | - Pierre Giglio
- Department of Neurology, Ohio State University, Wexner Medical College, Columbus, OH, USA
| | - Chiara Schiarelli
- Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, USA
| | - Paul S Morgan
- Medical Physics & Clinical Engineering, QMC Campus, University of Nottingham, Nottingham, UK
| | - Maria V Spampinato
- Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, USA
| |
Collapse
|
35
|
Näslund O, Smits A, Förander P, Laesser M, Bartek J, Gempt J, Liljegren A, Daxberg EL, Jakola AS. Amino acid tracers in PET imaging of diffuse low-grade gliomas: a systematic review of preoperative applications. Acta Neurochir (Wien) 2018; 160:1451-1460. [PMID: 29797098 PMCID: PMC5995993 DOI: 10.1007/s00701-018-3563-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/09/2018] [Indexed: 11/28/2022]
Abstract
Positron emission tomography (PET) imaging using amino acid tracers has in recent years become widely used in the diagnosis and prediction of disease course in diffuse low-grade gliomas (LGG). However, implications of preoperative PET for treatment and prognosis in this patient group have not been systematically studied. The aim of this systematic review was to evaluate the preoperative diagnostic and prognostic value of amino acid PET in suspected diffuse LGG. Medline, Cochrane Library, and Embase databases were systematically searched using keywords "PET," "low-grade glioma," and "amino acids tracers" with their respective synonyms. Out of 2137 eligible studies, 28 met the inclusion criteria. Increased amino acid uptake (lesion/brain) was consistently reported among included studies; in 25-92% of subsequently histopathology-verified LGG, in 83-100% of histopathology-verified HGG, and also in some non-neoplastic lesions. No consistent results were found in studies reporting hot spot areas on PET in MRI-suspected LGG. Thus, the diagnostic value of amino acid PET imaging in suspected LGG has proven difficult to interpret, showing clear overlap and inconsistencies among reported results. Similarly, the results regarding the prognostic value of PET in suspected LGG and the correlation between uptake ratios and the molecular tumor status of LGG were conflicting. This systematic review illustrates the difficulties with prognostic studies presenting data on group-level without adjustment for established clinical prognostic factors, leading to a loss of additional prognostic information. We conclude that the prognostic value of PET is limited to analysis of histological subgroups of LGG and is probably strongest when using kinetic analysis of dynamic FET uptake parameters.
Collapse
Affiliation(s)
- Olivia Näslund
- Sahlgrenska Academy, Medicinaregatan 3, 41390, Gothenburg, Sweden.
| | - Anja Smits
- Institute of Physiology and Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Petter Förander
- Department of Clinical Neuroscience and Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Laesser
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jiri Bartek
- Department of Clinical Neuroscience and Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, St. Olavs Hospital, Trondheim, Norway
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ann Liljegren
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva-Lotte Daxberg
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Institute of Physiology and Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden
- Medical Library, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
36
|
Munkvold BKR, Jakola AS, Reinertsen I, Sagberg LM, Unsgård G, Solheim O. The Diagnostic Properties of Intraoperative Ultrasound in Glioma Surgery and Factors Associated with Gross Total Tumor Resection. World Neurosurg 2018; 115:e129-e136. [PMID: 29631086 DOI: 10.1016/j.wneu.2018.03.208] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVE In glioma operations, we sought to analyze sensitivity, specificity, and predictive values of intraoperative 3-dimensional ultrasound (US) for detecting residual tumor compared with early postoperative magnetic resonance imaging (MRI). Factors possibly associated with radiologic complete resection were also explored. METHODS One hundred forty-four operations for diffuse supratentorial gliomas were included prospectively in an unselected, population-based, single-institution series. Operating surgeons answered a questionnaire immediately after surgery, stating whether residual tumor was seen with US at the end of resection and rated US image quality (e.g., good, medium, poor). Extent of surgical resection was estimated from preoperative and postoperative MRI. RESULTS Overall specificity was 85% for "no tumor remnant" seen in US images at the end of resection compared with postoperative MRI findings. Sensitivity was 46%, but tumor remnants seen on MRI were usually small (median, 1.05 mL) in operations with false-negative US findings. Specificity was highest in low-grade glioma operations (94%) and lowest in patients who had undergone prior radiotherapy (50%). Smaller tumor volume and superficial location were factors significantly associated with gross total resection in a multivariable logistic regression analysis, whereas good ultrasound image quality did not reach statistical significance (P = 0.061). CONCLUSIONS The specificity of intraoperative US is good, but sensitivity for detecting the last milliliter is low compared with postoperative MRI. Tumor volume and tumor depth are the predictors of achieving gross total resection, although ultrasound image quality was not.
Collapse
Affiliation(s)
| | - Asgeir Store Jakola
- Department of Neurosurgery, St. Olav's University Hospital, Trondheim, Norway; Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden; Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| | - Ingerid Reinertsen
- Norwegian National Advisory Unit for Ultrasound and Image Guided Therapy, St. Olav's University Hospital, Trondheim, Norway; SINTEF, Department of Medical Technology, Trondheim, Norway
| | - Lisa Millgård Sagberg
- Department of Neurosurgery, St. Olav's University Hospital, Trondheim, Norway; Norwegian National Advisory Unit for Ultrasound and Image Guided Therapy, St. Olav's University Hospital, Trondheim, Norway; Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geirmund Unsgård
- Department of Neurosurgery, St. Olav's University Hospital, Trondheim, Norway; Norwegian National Advisory Unit for Ultrasound and Image Guided Therapy, St. Olav's University Hospital, Trondheim, Norway; Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St. Olav's University Hospital, Trondheim, Norway; Norwegian National Advisory Unit for Ultrasound and Image Guided Therapy, St. Olav's University Hospital, Trondheim, Norway; Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
37
|
Duffau H. Awake mapping is not an additional surgical technique but an alternative philosophy in the management of low-grade glioma patients. Neurosurg Rev 2017; 41:689-691. [PMID: 29236183 DOI: 10.1007/s10143-017-0937-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/06/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80, Avenue Augustin Fliche, 34295, Montpellier, France. .,Institute for Neuroscience of Montpellier, INSERM U1051, Team "Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors," Saint Eloi Hospital, Montpellier University Medical Center, Montpellier, France.
| |
Collapse
|
38
|
Karlberg A, Berntsen EM, Johansen H, Myrthue M, Skjulsvik AJ, Reinertsen I, Esmaeili M, Dai HY, Xiao Y, Rivaz H, Borghammer P, Solheim O, Eikenes L. Multimodal 18 F-Fluciclovine PET/MRI and Ultrasound-Guided Neurosurgery of an Anaplastic Oligodendroglioma. World Neurosurg 2017; 108:989.e1-989.e8. [DOI: 10.1016/j.wneu.2017.08.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 11/28/2022]
|
39
|
Blystad I, Warntjes JBM, Smedby Ö, Lundberg P, Larsson EM, Tisell A. Quantitative MRI for analysis of peritumoral edema in malignant gliomas. PLoS One 2017; 12:e0177135. [PMID: 28542553 PMCID: PMC5441583 DOI: 10.1371/journal.pone.0177135] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/21/2017] [Indexed: 12/22/2022] Open
Abstract
Background and purpose Damage to the blood-brain barrier with subsequent contrast enhancement is a hallmark of glioblastoma. Non-enhancing tumor invasion into the peritumoral edema is, however, not usually visible on conventional magnetic resonance imaging. New quantitative techniques using relaxometry offer additional information about tissue properties. The aim of this study was to evaluate longitudinal relaxation R1, transverse relaxation R2, and proton density in the peritumoral edema in a group of patients with malignant glioma before surgery to assess whether relaxometry can detect changes not visible on conventional images. Methods In a prospective study, 24 patients with suspected malignant glioma were examined before surgery. A standard MRI protocol was used with the addition of a quantitative MR method (MAGIC), which measured R1, R2, and proton density. The diagnosis of malignant glioma was confirmed after biopsy/surgery. In 19 patients synthetic MR images were then created from the MAGIC scan, and ROIs were placed in the peritumoral edema to obtain the quantitative values. Dynamic susceptibility contrast perfusion was used to obtain cerebral blood volume (rCBV) data of the peritumoral edema. Voxel-based statistical analysis was performed using a mixed linear model. Results R1, R2, and rCBV decrease with increasing distance from the contrast-enhancing part of the tumor. There is a significant increase in R1 gradient after contrast agent injection (P < .0001). There is a heterogeneous pattern of relaxation values in the peritumoral edema adjacent to the contrast-enhancing part of the tumor. Conclusion Quantitative analysis with relaxometry of peritumoral edema in malignant gliomas detects tissue changes not visualized on conventional MR images. The finding of decreasing R1 and R2 means shorter relaxation times closer to the tumor, which could reflect tumor invasion into the peritumoral edema. However, these findings need to be validated in the future.
Collapse
Affiliation(s)
- Ida Blystad
- Department of Radiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- * E-mail:
| | - J. B. Marcel Warntjes
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Örjan Smedby
- Department of Radiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Peter Lundberg
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Elna-Marie Larsson
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Anders Tisell
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
40
|
Delgado AF, Fahlström M, Nilsson M, Berntsson SG, Zetterling M, Libard S, Alafuzoff I, van Westen D, Lätt J, Smits A, Larsson EM. Diffusion Kurtosis Imaging of Gliomas Grades II and III - A Study of Perilesional Tumor Infiltration, Tumor Grades and Subtypes at Clinical Presentation. Radiol Oncol 2017; 51:121-129. [PMID: 28740446 PMCID: PMC5514651 DOI: 10.1515/raon-2017-0010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/08/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diffusion kurtosis imaging (DKI) allows for assessment of diffusion influenced by microcellular structures. We analyzed DKI in suspected low-grade gliomas prior to histopathological diagnosis. The aim was to investigate if diffusion parameters in the perilesional normal-appearing white matter (NAWM) differed from contralesional white matter, and to investigate differences between glioma malignancy grades II and III and glioma subtypes (astrocytomas and oligodendrogliomas). PATIENTS AND METHODS Forty-eight patients with suspected low-grade glioma were prospectively recruited to this institutional review board-approved study and investigated with preoperative DKI at 3T after written informed consent. Patients with histologically proven glioma grades II or III were further analyzed (n=35). Regions of interest (ROIs) were delineated on T2FLAIR images and co-registered to diffusion MRI parameter maps. Mean DKI data were compared between perilesional and contralesional NAWM (student's t-test for dependent samples, Wilcoxon matched pairs test). Histogram DKI data were compared between glioma types and glioma grades (multiple comparisons of mean ranks for all groups). The discriminating potential for DKI in assessing glioma type and grade was assessed with receiver operating characteristics (ROC) curves. RESULTS There were significant differences in all mean DKI variables between perilesional and contralesional NAWM (p=<0.000), except for axial kurtosis (p=0.099). Forty-four histogram variables differed significantly between glioma grades II (n=23) and III (n=12) (p=0.003-0.048) and 10 variables differed significantly between ACs (n=18) and ODs (n=17) (p=0.011-0.050). ROC curves of the best discriminating variables had an area under the curve (AUC) of 0.657-0.815. CONCLUSIONS Mean DKI variables in perilesional NAWM differ significantly from contralesional NAWM, suggesting altered microstructure by tumor infiltration not depicted on morphological MRI. Histogram analysis of DKI data identifies differences between glioma grades and subtypes.
Collapse
Affiliation(s)
- Anna F Delgado
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Markus Fahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | | | - Shala G Berntsson
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Maria Zetterling
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Sylwia Libard
- Department of Immunology, Genetics and Pathology, Section of pathology, Uppsala University Hospital and Uppsala University, Uppsala, Sweden
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Section of pathology, Uppsala University Hospital and Uppsala University, Uppsala, Sweden
| | | | - Jimmy Lätt
- Department of Imaging and Function, Skåne University Healthcare, Lund, Sweden
| | - Anja Smits
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
41
|
Bø HK, Solheim O, Jakola AS, Kvistad KA, Reinertsen I, Berntsen EM. Intra-rater variability in low-grade glioma segmentation. J Neurooncol 2016; 131:393-402. [DOI: 10.1007/s11060-016-2312-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/07/2016] [Indexed: 11/29/2022]
|
42
|
Mallela AN, Peck KK, Petrovich-Brennan NM, Zhang Z, Lou W, Holodny AI. Altered Resting-State Functional Connectivity in the Hand Motor Network in Glioma Patients. Brain Connect 2016; 6:587-595. [PMID: 27457676 DOI: 10.1089/brain.2016.0432] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To examine the functional connectivity of the primary and supplementary motor areas (SMA) in glioma patients using resting-state functional MRI (rfMRI). To correlate rfMRI data with tumor characteristics and clinical information to characterize functional reorganization of resting-state networks (RSN) and the limitations of this method. This study was IRB approved and in compliance with Health Insurance Portability and Accountability Act. Informed consent was waived in this retrospective study. We analyzed rfMRI in 24 glioma patients and 12 age- and sex-matched controls. We compared global activation, interhemispheric connectivity, and functional connectivity in the hand motor RSNs using hemispheric voxel counts, pairwise Pearson correlation, and pairwise total spectral coherence. We explored the relationship between tumor grade, volume, location, and the patient's clinical status to functional connectivity. Global network activation and interhemispheric connectivity were reduced in gliomas (p < 0.05). Functional connectivity between the bilateral motor cortices and the SMA was reduced in gliomas (p < 0.01). High-grade gliomas had lower functional connectivity than low-grade gliomas (p < 0.05). Tumor volume and distance to ipsilateral motor cortex demonstrated no association with functional connectivity loss. Functional connectivity loss is associated with motor deficits in low-grade gliomas, but not in high-grade gliomas. Global reduction in resting-state connectivity in areas distal to tumor suggests that radiological tumor boundaries underestimate areas affected by glioma. Association between motor deficits and rfMRI suggests that rfMRI may accurately reflect functional changes in low-grade gliomas. Lack of association between rfMRI and clinical motor deficits implies decreased sensitivity of rfMRI in high-grade gliomas, possibly due to neurovascular uncoupling.
Collapse
Affiliation(s)
- Arka N Mallela
- 1 Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York.,2 Perelman School of Medicine at the University of Pennsylvania , Philadelphia, Pennsylvania
| | - Kyung K Peck
- 1 Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York.,3 Department of Medical Physics, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Nicole M Petrovich-Brennan
- 1 Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Zhigang Zhang
- 4 Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - William Lou
- 1 Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York.,5 Weill Cornell Medical College , New York, New York
| | - Andrei I Holodny
- 1 Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York.,6 Brain Tumor Center, Memorial Sloan-Kettering Cancer Center , New York, New York
| |
Collapse
|