1
|
Castro AL, Gonçalves RM. Trends and considerations in annulus fibrosus in vitro model design. Acta Biomater 2025:S1742-7061(25)00080-7. [PMID: 39900271 DOI: 10.1016/j.actbio.2025.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/09/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Annulus Fibrosus (AF) tissue integrity maintains intervertebral disc (IVD) structure, essential to spine mobility and shock absorption. However, this tissue, which confines nucleus pulposus (NP), has been poorly investigated, partially due to the lack of appropriate study models. This review provides a comprehensive analysis of AF in vitro models. By critically assessing the current AF in vitro models, this works thoroughly identifies key gaps in replicating the tissue's complex microenvironment. Finally, we outline the essential criteria for developing more accurate and reliable AF models, emphasizing the importance of biomaterial composition, architecture, and microenvironmental cues. By advancing in vitro models, we aim to deepen the understanding of AF failure mechanisms and support the development of novel therapeutic strategies for IVD herniation. Insights gained from this review may also have broader applications in regenerative medicine, particularly in the study and treatment of other connective tissue disorders. STATEMENT OF SIGNIFICANCE: This review evaluates the current in vitro models of the annulus fibrosus (AF), a key component of the intervertebral disc (IVD). By identifying gaps in these models, particularly in replicating tissue's complex microenvironment, we propose essential criteria for the development of more accurate AF models, to better understand the pathomechanisms and potentially aid the development of therapeutic approaches for spinal disorders. The findings also extend to broader studies of musculoskeletal tissue disorders in the context of regenerative medicine, appealing to a diverse biomedical research readership.
Collapse
Affiliation(s)
- A L Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - R M Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Li L, Zhang G, Yang Z, Kang X. Stress-Activated Protein Kinases in Intervertebral Disc Degeneration: Unraveling the Impact of JNK and p38 MAPK. Biomolecules 2024; 14:393. [PMID: 38672411 PMCID: PMC11047866 DOI: 10.3390/biom14040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a major cause of lower back pain. The pathophysiological development of IDD is closely related to the stimulation of various stressors, including proinflammatory cytokines, abnormal mechanical stress, oxidative stress, metabolic abnormalities, and DNA damage, among others. These factors prevent normal intervertebral disc (IVD) development, reduce the number of IVD cells, and induce senescence and apoptosis. Stress-activated protein kinases (SAPKs), particularly, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), control cell signaling in response to cellular stress. Previous studies have shown that these proteins are highly expressed in degenerated IVD tissues and are involved in complex biological signal-regulated processes. Therefore, we summarize the research reports on IDD related to JNK and p38 MAPK. Their structure, function, and signal regulation mechanisms are comprehensively and systematically described and potential therapeutic targets are proposed. This work could provide a reference for future research and help improve molecular therapeutic strategies for IDD.
Collapse
Affiliation(s)
- Lei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Zhili Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| |
Collapse
|
3
|
Romero Gavilán F, Cerqueira A, Anitua E, Muñoz F, García Arnáez I, Azkargorta M, Elortza F, Gurruchaga M, Goñi I, Suay J, Tejero R. Enhancing the correlation between in vitro and in vivo experiments in dental implant osseointegration: investigating the role of Ca ions. J Mater Chem B 2024; 12:2831-2842. [PMID: 38412455 DOI: 10.1039/d3tb02694a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
This study delves into the osteogenic potential of a calcium-ion modified titanium implant surface, unicCa, employing state-of-the-art proteomics techniques both in vitro (utilizing osteoblasts and macrophage cell cultures) and in vivo (in a rabbit condyle model). When human osteoblasts (Hobs) were cultured on unicCa surfaces, they displayed a marked improvement in cell adhesion and differentiation compared to their unmodified counterparts. The proteomic analysis also revealed enrichment in functions associated with cell migration, adhesion, extracellular matrix organization, and proliferation. The analysis also underscored the involvement of key signalling pathways such as PI3K-Akt and mTOR. In the presence of macrophages, unicCa initially exhibited improvement in immune-related functions and calcium channel activities at the outset (1 day), gradually tapering off over time (3 days). Following a 5-day implantation in rabbits, unicCa demonstrated distinctive protein expression profiles compared to unmodified surfaces. The proteomic analysis highlighted shifts in adhesion, immune response, and bone healing-related proteins. unicCa appeared to influence the coagulation cascade and immune regulatory proteins within the implant site. In summary, this study provides a comprehensive proteomic analysis of the unicCa surface, drawing correlations between in vitro and in vivo results. It emphasizes the considerable potential of unicCa surfaces in enhancing osteogenic behavior and immunomodulation. These findings significantly contribute to our understanding of the intricate molecular mechanisms governing the interplay between biomaterials and bone cells, thereby facilitating the development of improved implant surfaces for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Francisco Romero Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Eduardo Anitua
- BTI Biotechnology Institute I + D, C/Leonardo da Vinci 14B, Miñano 01510, Spain
- University Institute of Regenerative Medicine and Oral Implantology (UIRMI), University of the Basque Country (UPV/EHU), C/Jacinto Quincoces, 39, Vitoria 01007, Spain.
- Private Practice in Oral Implantology, C/Jose Maria Cagigal, 19, Vitoria 01007, Spain
| | - Fernando Muñoz
- Facultade de Veterinaria, Universidade de Santiago de Compostela, Campus Universitario, s/n, Lugo 27002, Spain
| | - Iñaki García Arnáez
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, San Sebastián 20018, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Bizkaia Science and Technology Park, Derio 48160, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Bizkaia Science and Technology Park, Derio 48160, Spain
| | - Mariló Gurruchaga
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, San Sebastián 20018, Spain
| | - Isabel Goñi
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, San Sebastián 20018, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Ricardo Tejero
- BTI Biotechnology Institute I + D, C/Leonardo da Vinci 14B, Miñano 01510, Spain
- University Institute of Regenerative Medicine and Oral Implantology (UIRMI), University of the Basque Country (UPV/EHU), C/Jacinto Quincoces, 39, Vitoria 01007, Spain.
| |
Collapse
|
4
|
Zhang X, Zhang Z, Zou X, Wang Y, Qi J, Han S, Xin J, Zheng Z, Wei L, Zhang T, Zhang S. Unraveling the mechanisms of intervertebral disc degeneration: an exploration of the p38 MAPK signaling pathway. Front Cell Dev Biol 2024; 11:1324561. [PMID: 38313000 PMCID: PMC10834758 DOI: 10.3389/fcell.2023.1324561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a worldwide spinal degenerative disease. Low back pain (LBP) is frequently caused by a variety of conditions brought on by IDD, including IVD herniation and spinal stenosis, etc. These conditions bring substantial physical and psychological pressure and economic burden to patients. IDD is closely tied with the structural or functional changes of the IVD tissue and can be caused by various complex factors like senescence, genetics, and trauma. The IVD dysfunction and structural changes can result from extracellular matrix (ECM) degradation, differentiation, inflammation, oxidative stress, mechanical stress, and senescence of IVD cells. At present, the treatment of IDD is basically to alleviate the symptoms, but not from the pathophysiological changes of IVD. Interestingly, the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway is involved in many processes of IDD, including inflammation, ECM degradation, apoptosis, senescence, proliferation, oxidative stress, and autophagy. These activities in degenerated IVD tissue are closely relevant to the development trend of IDD. Hence, the p38 MAPK signaling pathway may be a fitting curative target for IDD. In order to better understand the pathophysiological alterations of the intervertebral disc tissue during IDD and offer potential paths for targeted treatments for intervertebral disc degeneration, this article reviews the purpose of the p38 MAPK signaling pathway in IDD.
Collapse
Affiliation(s)
- Xingmin Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Zilin Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Xiaosong Zou
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Yongjie Wang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Jinwei Qi
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Song Han
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Jingguo Xin
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Zhi Zheng
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Lin Wei
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Tianhui Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
| | - Shaokun Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| |
Collapse
|
5
|
Gao XW, Hu HL, Xie MH, Tang CX, Ou J, Lu ZH. CX3CL1/CX3CR1 axis alleviates inflammation and apoptosis in human nucleus pulpous cells via M2 macrophage polarization. Exp Ther Med 2023; 26:359. [PMID: 37324510 PMCID: PMC10265713 DOI: 10.3892/etm.2023.12058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/06/2023] [Indexed: 06/17/2023] Open
Abstract
CX3C chemokine ligand 1 (CX3CL1) belongs to the CX3C chemokine family and is involved in various disease processes. However, its role in intervertebral disc degeneration (IDD) remains to be elucidated. In the present study, western blotting, reverse transcription-quantitative PCR and ELISA assays were used to assess target gene expression. In addition, immunofluorescence and TUNEL staining were used to assess macrophage infiltration, monocyte migration and apoptosis. The present study aimed to reveal if and how CX3CL1 regulates IDD progression by exploring its effect on macrophage polarization and apoptosis of human nucleus pulposus cells (HNPCs). The data showed that CX3CL1 bound to CX3C motif chemokine receptor 1 (CX3CR1) promoted the M2 phenotype polarization via JAK2/STAT3 signaling, followed by increasing the secretion of anti-inflammatory cytokines from HNPCs. In addition, HNPC-derived CX3CL1 promoted M2 macrophage-derived C-C motif chemokine ligand 17 release thereby reducing the apoptosis of HNPCs. In clinic, the reduction of mRNA and protein levels CX3CL1 in degenerative nucleus pulposus tissues (NPs) was measured. Increased M1 macrophages and pro-inflammatory cytokines were found in NPs of IDD patients with low CX3CL1 expression. Collectively, these findings suggested that the CX3CL1/CX3CR1 axis alleviates IDD by reducing inflammation and apoptosis of HNPCs via macrophages. Therefore, targeting CX3CL1/CX3CR1 axis is expected to produce a new therapeutic approach for IDD.
Collapse
Affiliation(s)
- Xiao-Wen Gao
- The Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Han-Lin Hu
- The Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ming-Hua Xie
- The Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Cai-Xia Tang
- The Department of Obstetrics and Gynecology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jun Ou
- The Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zheng-Hao Lu
- The Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
6
|
Shi ZW, Zhu L, Song ZR, Liu TJ, Hao DJ. Roles of p38 MAPK signalling in intervertebral disc degeneration. Cell Prolif 2023:e13438. [PMID: 36872558 PMCID: PMC10392072 DOI: 10.1111/cpr.13438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 03/07/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common degenerative disease mediated by multiple factors. Because of its complex aetiology and pathology, no specific molecular mechanisms have yet been identified and no definitive treatments are currently available for IVDD. p38 mitogen-activated protein kinase (MAPK) signalling, part of the serine and threonine (Ser/Thr) protein kinases family, is associated with the progression of IVDD, by mediating the inflammatory response, increasing extracellular matrix (ECM) degradation, promoting cell apoptosis and senescence and suppressing cell proliferation and autophagy. Meanwhile, the inhibition of p38 MAPK signalling has a significant effect on IVDD treatment. In this review, we first summarize the regulation of p38 MAPK signalling and then highlight the changes in the expression of p38 MAPK signalling and their impact on pathological process of IVDD. Moreover, we discuss the current applications and future prospects of p38 MAPK as a therapeutic target for IVDD treatment.
Collapse
Affiliation(s)
- Zheng-Wei Shi
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Lei Zhu
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Zong-Rang Song
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Tuan-Jiang Liu
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Ding-Jun Hao
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| |
Collapse
|
7
|
Macrophages and Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:ijms24021367. [PMID: 36674887 PMCID: PMC9863885 DOI: 10.3390/ijms24021367] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
The intervertebral disc (IVD) aids in motion and acts to absorb energy transmitted to the spine. With little inherent regenerative capacity, degeneration of the intervertebral disc results in intervertebral disc disease, which contributes to low back pain and significant disability in many individuals. Increasing evidence suggests that IVD degeneration is a disease of the whole joint that is associated with significant inflammation. Moreover, studies show elevated macrophage accumulation within the IVD with increasing levels of disease severity; however, we still need to understand the roles, be they causative or consequential, of macrophages during the degenerative process. In this narrative review, we discuss hallmarks of IVD degeneration, showcase evidence of macrophage involvement during disc degeneration, and explore burgeoning research aimed at understanding the molecular pathways regulating macrophage functions during intervertebral disc degeneration.
Collapse
|
8
|
Adipokine human Resistin promotes obesity-associated inflammatory intervertebral disc degeneration via pro-inflammatory cytokine cascade activation. Sci Rep 2022; 12:8936. [PMID: 35624126 PMCID: PMC9142523 DOI: 10.1038/s41598-022-12793-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Adipokine human Resistin (hResistin), is known to be associated with insulin resistance and secrete low-grade pro-inflammatory cytokines in obesity. Although studies on low-grade inflammation of adipokine hResistin are known, studies on the effects and mechanisms of intervertebral disc degeneration (IVDD) are still lacking. Thus, we investigated the adipokine hResistin with or without pro-inflammatory cytokine IL-1β in intervertebral disc (IVD) cells such as human annulus fibrosus (hAF) and nucleus pulposus (hNP). The protein expression changes in IL-1β, IL-6, IL-8, MMP-1, MMP-3, and MMP-13, induced by the combined-hResistin and IL-1β stimulation on hAF cells, was significantly greater than that of the same induced by mono-IL-1β stimulation. Similarly, in the case of the protein expression change of inflammatory mediators induced by the combined-hResistin and IL-1β stimulation on hNP cells was also significantly greater than that of the same induced by mono-IL-1β stimulation. These results improve understanding of hResistin on inflammatory IVDD but also with other obesity-related inflammatory diseases.
Collapse
|
9
|
Kim JH, Ham CH, Kwon WK. Current Knowledge and Future Therapeutic Prospects in Symptomatic Intervertebral Disc Degeneration. Yonsei Med J 2022; 63:199-210. [PMID: 35184422 PMCID: PMC8860939 DOI: 10.3349/ymj.2022.63.3.199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is the main source of intractable lower back pain, and symptomatic IVD degeneration could be due to different degeneration mechanisms. In this article, we describe the molecular basis of symptomatic IVD degenerative disc diseases (DDDs), emphasizing the role of degeneration, inflammation, angiogenesis, and extracellular matrix (ECM) regulation during this process. In symptomatic DDD, pro-inflammatory mediators modulate catabolic reactions, resulting in changes in ECM homeostasis and, finally, neural/vascular ingrowth-related chronic intractable discogenic pain. In ECM homeostasis, anabolic protein-regulating genes show reduced expression and changes in ECM production, while matrix metalloproteinase gene expression increases and results in aggressive ECM degradation. The resultant loss of normal IVD viscoelasticity and a concomitant change in ECM composition are key mechanisms in DDDs. During inflammation, a macrophage-related cascade is represented by the secretion of high levels of pro-inflammatory cytokines, which induce inflammation. Aberrant angiogenesis is considered a key initiative pathologic step in symptomatic DDD. In reflection of angiogenesis, vascular endothelial growth factor expression is regulated by hypoxia-inducible factor-1 in the hypoxic conditions of IVDs. Furthermore, IVD cells undergoing degeneration potentially enhance neovascularization by secreting large amounts of angiogenic cytokines, which penetrate the IVD from the outer annulus fibrosus, extending deep into the outer part of the nucleus pulposus. Based on current knowledge, a multi-disciplinary approach is needed in all aspects of spinal research, starting from basic research to clinical applications, as this will provide information regarding treatments for DDDs and discogenic pain.
Collapse
Affiliation(s)
- Joo Han Kim
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Chang Hwa Ham
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Woo-Keun Kwon
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Jeon MS, Choi YY, Mo SJ, Ha JH, Lee YS, Lee HU, Park SD, Shim JJ, Lee JL, Chung BG. Contributions of the microbiome to intestinal inflammation in a gut-on-a-chip. NANO CONVERGENCE 2022; 9:8. [PMID: 35133522 PMCID: PMC8825925 DOI: 10.1186/s40580-022-00299-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 05/07/2023]
Abstract
The intestinal microbiome affects a number of biological functions of the organism. Although the animal model is a powerful tool to study the relationship between the host and microbe, a physiologically relevant in vitro human intestinal system has still unmet needs. Thus, the establishment of an in vitro living cell-based system of the intestine that can mimic the mechanical, structural, absorptive, transport and pathophysiological properties of the human intestinal environment along with its commensal bacterial strains can promote pharmaceutical development and potentially replace animal testing. In this paper, we present a microfluidic-based gut model which allows co-culture of human and microbial cells to mimic the gastrointestinal structure. The gut microenvironment is recreated by flowing fluid at a low rate (21 μL/h) over the microchannels. Under these conditions, we demonstrated the capability of gut-on-a-chip to recapitulate in vivo relevance epithelial cell differentiation including highly polarized epithelium, mucus secretion, and tight membrane integrity. Additionally, we observed that the co-culture of damaged epithelial layer with the probiotics resulted in a substantial responded recovery of barrier function without bacterial overgrowth in a gut-on-a-chip. Therefore, this gut-on-a-chip could promote explorations interaction with host between microbe and provide the insights into questions of fundamental research linking the intestinal microbiome to human health and disease.
Collapse
Affiliation(s)
- Min Seo Jeon
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Yoon Young Choi
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
| | | | - Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | - Young Seo Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | - Hee Uk Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | | | | | | | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| |
Collapse
|
11
|
Antiaging Factor Klotho Retards the Progress of Intervertebral Disc Degeneration through the Toll-Like Receptor 4-NF- κB Pathway. Int J Cell Biol 2020; 2020:8319516. [PMID: 32256598 PMCID: PMC7106913 DOI: 10.1155/2020/8319516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/09/2020] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Antiaging protein Klotho exhibits impressive properties of anti-inflammation, however is declined early after intervertebral disc injury, making Klotho restoration an attractive strategy of treating intervertebral disc inflammatory disorders. Here, we have found that Klotho is enriched in nucleus pulposus (NP) cells and Klotho overexpression attenuates H2O2-induced acute inflammation essentially via suppressing Toll-like receptor 4 (TLR4). The proinflammatory NF-κB signaling and cytokine expressions paralleled with Klotho repression and TLR4 elevation in both NP cells (H2O2 treatment) and rat intervertebral disc (needle puncture treatment). Overexpression of TLR4 downregulated expression of Klotho, whereas interfering TLR4 expression diminished the inhibitory effects of H2O2 on Klotho in NP cells. Consistently, Klotho knockdown by RNA interferences largely diminished the anti-inflammatory and intervertebral disc protective effects in an Intervertebral Disc Degeneration (IDD) model. Thus, our study indicates that TLR4-NF-κB signaling and Klotho form a negative-feedback loop in NP cells. Also, we demonstrate that the expression of Klotho is regulated by the balance between upregulation and downregulation of TLR4-NF-κB signaling.
Collapse
|
12
|
Byvaltsev VA, Kolesnikov SI, Bardonova LA, Belykh EG, Korytov LI, Giers MB, Preul MC. Assessment of Lactate Production and Proteoglycans Synthesis by the Intact and Degenerated Intervertebral Disc Cells under the Influence of Activated Macrophages: an In Vitro Study. Bull Exp Biol Med 2018; 166:170-173. [PMID: 30417288 DOI: 10.1007/s10517-018-4307-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 12/11/2022]
Abstract
The effects of proinflammatory cytokines on the secretion of glycosaminoglycans and lactate production by normal and degenerated intervertebral disk cells were studied on the model of their co-culturing with activated macrophage-like cells. It was found that proinflammatory cytokines produced a direct effect on intervertebral disk cells in a 3D culture reducing the rate of glycolysis and synthetic activity of both normal and degenerated cells of annulus fibrosus and nucleus pulposus, which is an important factor in progression of intervertebral disk degeneration.
Collapse
Affiliation(s)
- V A Byvaltsev
- Irkutsk State Medical University, Irkutsk, Russia. .,Irkutsk Research Center of Surgery and Traumatology, Irkutsk, Russia. .,Railroad Clinical Hospital at Irkutsk-Passenger Station, Russian Railways Company, Irkutsk, Russia.
| | - S I Kolesnikov
- Research Center for Problems of Family Health and Human Reproduction, Irkutsk, Russia.,M. V. Lomonosov Moscow State University, Moscow, Russia
| | - L A Bardonova
- Irkutsk State Medical University, Irkutsk, Russia.,Barrow Neurological Institute, Phoenix, AZ, USA
| | - E G Belykh
- Irkutsk State Medical University, Irkutsk, Russia.,Barrow Neurological Institute, Phoenix, AZ, USA
| | - L I Korytov
- Irkutsk State Medical University, Irkutsk, Russia
| | - M B Giers
- Oregon State University, Corvallis, OR, USA
| | - M C Preul
- Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
13
|
Byvaltsev VA, Kolesnikov SI, Bardonova LA, Belykh EG, Korytov LI, Giers MB, Bowen S, Preul MC. Development of an In Vitro Model of Inflammatory Cytokine Influences on Intervertebral Disk Cells in 3D Cell Culture Using Activated Macrophage-Like THP-1 Cells. Bull Exp Biol Med 2018; 166:151-154. [PMID: 30417291 DOI: 10.1007/s10517-018-4304-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Indexed: 01/04/2023]
Abstract
We developed a new model for evaluation of the influence of proinflammatory cytokines on intervertebral disc cells in a 3D culture based on co-culturing of these cells with activated macrophage-like THP-1 cells. The levels of TNFα, IL-1β, IL-6, IL-8, IL-10, and IL-12p70 production were assessed by flow cytofluorometry using microspheres. Considerable differences in the level of spontaneous cytokine secretion by normal and degenerated intervertebral disc cells were revealed. A significant increase in the level of IL-1β and IL-8 was observed during co-culturing, which confirms consistency of the developed model.
Collapse
Affiliation(s)
- V A Byvaltsev
- Irkutsk State Medical University, Irkutsk, Russia.
- Irkutsk Research Center of Surgery and Traumatology, Irkutsk, Russia.
- Railroad Clinical Hospital at Irkutsk-Passenger Station, Russian Railways Company, Irkutsk, Russia.
| | - S I Kolesnikov
- Research Center for Problems of Family Health and Human Reproduction, Irkutsk, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | - L A Bardonova
- Irkutsk State Medical University, Irkutsk, Russia
- Barrow Neurological Institute, Phoenix, AZ, USA
| | - E G Belykh
- Irkutsk State Medical University, Irkutsk, Russia
- Barrow Neurological Institute, Phoenix, AZ, USA
| | - L I Korytov
- Irkutsk State Medical University, Irkutsk, Russia
| | - M B Giers
- Oregon State University, Corvallis, OR, USA
- Barrow Neurological Institute, Phoenix, AZ, USA
| | - S Bowen
- Barrow Neurological Institute, Phoenix, AZ, USA
| | - M C Preul
- Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
14
|
Jones LD, Pangloli P, Krishnan HB, Dia VP. BG-4, a novel bioactive peptide from momordica charantia, inhibits lipopolysaccharide-induced inflammation in THP-1 human macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:226-232. [PMID: 29655690 DOI: 10.1016/j.phymed.2018.03.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/08/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Bitter melon (Momordica charantia) is a commonly used food crop for management of a variety of diseases most notably for control of diabetes, a disease associated with aberrant inflammation. PURPOSE To evaluate the anti-inflammatory property of BG-4, a novel bioactive peptide isolated from the seed of bitter melon. METHODS Differentiated THP-1 human macrophages were pre-treated with BG-4 and stimulated with lipopolysaccharide. Pro-inflammatory cytokines IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay. The mechanism of action involving activation of NF-κB and phosphorylation of ERK and STAT3 was measured by western blot and immunofluorescence. The production of intracellular reactive oxygen species was evaluated by fluorescence microscopy and fluorescence spectrophotometry. RESULTS BG-4 dose dependently reduce the production of pro-inflammatory cytokines IL-6 and TNF-α. The ability of BG-4 to reduce production of cytokines are associated with reduced phosphorylation of ERK and STAT3 accompanied by reduced nuclear translocation of p65 NF-κB subunit. The mechanism of action is reduction of LPS-induced production of intracellular reactive oxygen species. CONCLUSION Our results demonstrated the ability of BG-4, a novel peptide from the seed of bitter melon, to exert anti-inflammatory action. This could explain the traditional use of bitter melon against diseases associated with aberrant and uncontrolled inflammation.
Collapse
Affiliation(s)
- Lynsey D Jones
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Philipus Pangloli
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Hari B Krishnan
- USDA-ARS Plant Genetics Resources Unit, University of Missouri, Columbia, MO 65211, USA
| | - Vermont P Dia
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA.
| |
Collapse
|
15
|
Miguélez-Rivera L, Pérez-Castrillo S, González-Fernández ML, Prieto-Fernández JG, López-González ME, García-Cosamalón J, Villar-Suárez V. Immunomodulation of mesenchymal stem cells in discogenic pain. Spine J 2018; 18:330-342. [PMID: 28939169 DOI: 10.1016/j.spinee.2017.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/09/2017] [Accepted: 09/11/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Back pain is a highly prevalent health problem in the world today and has a great economic impact on health-care budgets. Intervertebral disc (IVD) degeneration has been identified as a main cause of back pain. Inflammatory cytokines produced by macrophages or disc cells in an inflammatory environment play an important role in painful progressive degeneration of IVD. Mesenchymal stem cells (MSCs) have shown to have immunosuppressive and anti-inflammatory properties. Mesenchymal stem cells express a variety of chemokines and cytokines receptors having tropism to inflammation sites. PURPOSE This study aimed to develop an in vitro controlled and standardized model of inflammation and degeneration of IVD with rat cells and to evaluate the protective and immunomodulatory effect of conditioned medium (CM) from the culture of MSCs to improve the conditions presented in herniated disc and discogenic pain processes. STUDY DESIGN This is an experimental study. METHODS In this study, an in vitro model of inflammation and degeneration of IVD has been developed, as well as the effectiveness of CM from the culture of MSCs. RESULTS Conditioned medium from MSCs downregulated the expression of various proinflammatory cytokines produced in the pathogenesis of discogenic pain such as interleukin (IL)-1β, IL-6, IL-17, and tumor necrosis factor (TNF). CONCLUSION Mesenchymal stem cells represent a promising alternative strategy in the treatment of IVD degeneration inasmuch as there is currently no treatment which leads to a complete remission of long-term pain in the absence of drugs.
Collapse
Affiliation(s)
- Laura Miguélez-Rivera
- Department of Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana s/n, University of León, 24071, Spain
| | - Saúl Pérez-Castrillo
- Department of Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana s/n, University of León, 24071, Spain
| | | | - Julio Gabriel Prieto-Fernández
- Institute of Biomedicine (IBIOMED), Faculty of Veterinary Sciences, Campus de Vegazana s/n, Universidad de León, 24071, Spain
| | - María Elisa López-González
- Department of Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana s/n, University of León, 24071, Spain
| | - José García-Cosamalón
- Institute of Biomedicine (IBIOMED), Faculty of Veterinary Sciences, Campus de Vegazana s/n, Universidad de León, 24071, Spain
| | - Vega Villar-Suárez
- Department of Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana s/n, University of León, 24071, Spain; Institute of Biomedicine (IBIOMED), Faculty of Veterinary Sciences, Campus de Vegazana s/n, Universidad de León, 24071, Spain.
| |
Collapse
|
16
|
Monchaux M, Forterre S, Spreng D, Karol A, Forterre F, Wuertz-Kozak K. Inflammatory Processes Associated with Canine Intervertebral Disc Herniation. Front Immunol 2017; 8:1681. [PMID: 29255462 PMCID: PMC5723024 DOI: 10.3389/fimmu.2017.01681] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/15/2017] [Indexed: 01/16/2023] Open
Abstract
Intervertebral disc herniation (IVDH) is an important pathology in humans and also in dogs. While the molecular disease mechanisms are well investigated in humans, little is known about the inflammatory mediators in naturally occurring canine IVDH. The objective of this study was to investigate whether the involved proinflammatory cytokines in human IVDH are also key cytokines in canine IVDH and thus to elucidate the suitability of the dog as a model for human trials. 59 samples from 25 dogs with surgically confirmed thoracolumbar IVDH were collected and classified in three subgroups: herniated (H), affected non-herniated (NH) disc, and adjacent non-affected (NA) disc. Discs from 11 healthy dogs acted as controls (C). Samples were analyzed for IL-1, IL-6, IL-8, and TNF-α expression (qPCR/ELISA) as well as cell infiltration and activation of the MAP kinase pathways (immunohistochemistry). Gene and protein expression of all key cytokines could be detected in IVDH affected dogs. Canine IVDH was significantly associated with a higher gene expression of IL-6 (H > C, NH > C) and TNF-α (H > C, NH > C, NA > C) and a significant down-regulation of IL-1β (H < C). Dogs with spontaneous pain had significantly higher IL-6 mRNA compared to those with pain arising only upon palpation. An inter-donor comparison (H and HN relative to NA) revealed a significant increase of IL-6 gene expression (H > NA, NH > NA). IL-8 (H > C, NA > C) and TNF-α (NH > C) protein levels were significantly increased in diseased dogs while inversely, IL-6 protein levels were significantly higher in patients with better clinical outcome. Aside from resident IVD cells, mostly monocytes and macrophages were found in extruded material, with concomitant activation of extracellular signal-regulated kinase p38 in the majority of samples. Dogs with spontaneous IVDH might provide a useful model for human disc diseases. Although the expression of key cytokines found in human IVDH was also demonstrated in canine tissue, the inflammatory mechanisms accompanying canine IVDH diverges partially from humans, which will require further investigations in the future. In dogs, IL-6 seems to play an important pathological role and may represent a new potential therapeutic target for canine patients.
Collapse
Affiliation(s)
- Marie Monchaux
- Vetsuisse Faculty, Department of Clinical Veterinary Science, University of Bern, Bern, Switzerland
| | - Simone Forterre
- Vetsuisse Faculty, Department of Clinical Veterinary Science, University of Bern, Bern, Switzerland
| | - David Spreng
- Vetsuisse Faculty, Department of Clinical Veterinary Science, University of Bern, Bern, Switzerland.,Competence Center of Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Agnieszka Karol
- Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Franck Forterre
- Vetsuisse Faculty, Department of Clinical Veterinary Science, University of Bern, Bern, Switzerland.,Competence Center of Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Karin Wuertz-Kozak
- Competence Center of Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.,Schön Clinic Munich, Harlaching, Munich, Germany.,Spine Research Institute, Paracelsus Medical University, Salzburg, Austria.,Department of Health Sciences, University of Postdam, Postdam, Germany
| |
Collapse
|
17
|
Photobiomodulation on human annulus fibrosus cells during the intervertebral disk degeneration: extracellular matrix-modifying enzymes. Lasers Med Sci 2016; 31:767-77. [PMID: 26987527 DOI: 10.1007/s10103-016-1923-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/08/2016] [Indexed: 01/07/2023]
Abstract
Destruction of extracellular matrix (ECM) leads to degeneration of the intervertebral disk (IVD), which is a major contributor to many spine disorders. IVD degeneration is induced by pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), which are secreted by immune cells, including macrophages and neutrophils. The cytokines modulate ECM-modifying enzymes such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in human annulus fibrosus (AF) cells. The resulting imbalance in catabolic and anabolic enzymes can cause generalized back, neck, and low back pain (LBP). Photobiomodulation (PBM) is known to regulate inflammatory responses and wound healing. The aim of this study was to mimic the degenerative IVD microenvironment, and to investigate the effect of a variety of PBM conditions (wavelength: 635, 525, and 470 nm; energy density: 16, 32, and 64 J/cm(2)) on the production of ECM-modifying-enzymes by AF cells under degenerative conditions induced by macrophage-conditioned medium (MCM), which contains pro-inflammatory cytokines such as TNF-α and IL-β secreted by macrophage during the development of intervertebral disk inflammation. We showed that the MCM-stimulated AF cells express imbalanced ratios of TIMPs (TIMP-1 and TIMP-2) and MMPs (MMP-1 and MMP-3). PBM selectively modulated the production of ECM-modifying enzymes in AF cells. These results suggest that PBM can be a therapeutic tool for degenerative IVD disorders.
Collapse
|