1
|
Wang Z, Chen F, Cao Y, Zhang F, Sun L, Yang C, Xie X, Wu Z, Sun M, Ma F, Shao D, Leong KW, Pei R. An Engineered Nanoplatform with Tropism Toward Irradiated Glioblastoma Augments Its Radioimmunotherapy Efficacy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314197. [PMID: 38713519 DOI: 10.1002/adma.202314197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/27/2024] [Indexed: 05/09/2024]
Abstract
Combining radiotherapy with immune checkpoint blockade therapy offers a promising approach to treat glioblastoma multiforme (GBM), yet challenges such as limited effectiveness and immune-related adverse events (irAEs) persist. These issues are largely due to the failure in targeting immunomodulators directly to the tumor microenvironment. To address this, a biomimetic nanoplatform that combines a genetically modified mesenchymal stem cell (MSC) membrane with a bioactive nanoparticle core for chemokine-directed radioimmunotherapy of GBM is developed. The CC chemokine receptor 2 (CCR2)-overexpressing MSC membrane acts as a tactical tentacle to achieve radiation-induced tropism toward the abundant chemokine (CC motif) ligand 2 (CCL2) in irradiated gliomas. The nanoparticle core, comprising diselenide-bridged mesoporous silica nanoparticles (MSNs) and PD-L1 antibodies (αPD-L1), enables X-ray-responsive drug release and radiosensitization. In two murine models with orthotopic GBM tumors, this nanoplatform reinvigorated immunogenic cell death, and augmented the efficacy and specificity of GBM radioimmunotherapy, with reduced occurrence of irAEs. This study suggests a promising radiation-induced tropism strategy for targeted drug delivery, and presents a potent nanoplatform that enhances the efficacy and safety of radio-immunotherapy.
Collapse
Affiliation(s)
- Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Fan Zhang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Lina Sun
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chao Yang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaochun Xie
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Ziping Wu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Madi Sun
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Fanshu Ma
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
2
|
Zhang Y, Wang C, Li JJ. Revisiting the role of mesenchymal stromal cells in cancer initiation, metastasis and immunosuppression. Exp Hematol Oncol 2024; 13:64. [PMID: 38951845 PMCID: PMC11218091 DOI: 10.1186/s40164-024-00532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Immune checkpoint blockade (ICB) necessitates a thorough understanding of intricate cellular interactions within the tumor microenvironment (TME). Mesenchymal stromal cells (MSCs) play a pivotal role in cancer generation, progression, and immunosuppressive tumor microenvironment. Within the TME, MSCs encompass both resident and circulating counterparts that dynamically communicate and actively participate in TME immunosurveillance and response to ICB. This review aims to reevaluate various facets of MSCs, including their potential self-transformation to function as cancer-initiating cells and contributions to the creation of a conducive environment for tumor proliferation and metastasis. Additionally, we explore the immune regulatory functions of tumor-associated MSCs (TA-MSCs) and MSC-derived extracellular vesicles (MSC-EVs) with analysis of potential connections between circulating and tissue-resident MSCs. A comprehensive understanding of the dynamics of MSC-immune cell communication and the heterogeneous cargo of tumor-educated versus naïve MSCs may unveil a new MSC-mediated immunosuppressive pathway that can be targeted to enhance cancer control by ICB.
Collapse
Affiliation(s)
- Yanyan Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Charles Wang
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA.
- NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
3
|
Wu Q, Berglund AE, Macaulay RJ, Etame AB. The Role of Mesenchymal Reprogramming in Malignant Clonal Evolution and Intra-Tumoral Heterogeneity in Glioblastoma. Cells 2024; 13:942. [PMID: 38891074 PMCID: PMC11171993 DOI: 10.3390/cells13110942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma (GBM) is the most common yet uniformly fatal adult brain cancer. Intra-tumoral molecular and cellular heterogeneities are major contributory factors to therapeutic refractoriness and futility in GBM. Molecular heterogeneity is represented through molecular subtype clusters whereby the proneural (PN) subtype is associated with significantly increased long-term survival compared to the highly resistant mesenchymal (MES) subtype. Furthermore, it is universally recognized that a small subset of GBM cells known as GBM stem cells (GSCs) serve as reservoirs for tumor recurrence and progression. The clonal evolution of GSC molecular subtypes in response to therapy drives intra-tumoral heterogeneity and remains a critical determinant of GBM outcomes. In particular, the intra-tumoral MES reprogramming of GSCs using current GBM therapies has emerged as a leading hypothesis for therapeutic refractoriness. Preventing the intra-tumoral divergent evolution of GBM toward the MES subtype via new treatments would dramatically improve long-term survival for GBM patients and have a significant impact on GBM outcomes. In this review, we examine the challenges of the role of MES reprogramming in the malignant clonal evolution of glioblastoma and provide future perspectives for addressing the unmet therapeutic need to overcome resistance in GBM.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Robert J. Macaulay
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Kang QM, Wang J, Chen SM, Song SR, Yu SC. Glioma-associated mesenchymal stem cells. Brain 2024; 147:755-765. [PMID: 37850820 DOI: 10.1093/brain/awad360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/06/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
Recent studies have revealed that glioma-associated mesenchymal stem cells play instrumental roles in tumorigenesis and tumour progression and cannot be ignored as a cellular component of the glioma microenvironment. Nevertheless, the origin of these cells and their roles are poorly understood. The only relevant studies have shown that glioma-associated mesenchymal stem cells play a large role in promoting tumour proliferation, invasion and angiogenesis. This review provides a comprehensive summary of their discovery and definition, origin, differences from other tissue-derived mesenchymal stem cells, spatial distribution, functions and prognostic and therapeutic opportunities to deepen the understanding of these cells and provide new insight into the treatment of glioma.
Collapse
Affiliation(s)
- Qing-Mei Kang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Shi-Man Chen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Si-Rong Song
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| |
Collapse
|
5
|
De Fazio E, Pittarello M, Gans A, Ghosh B, Slika H, Alimonti P, Tyler B. Intrinsic and Microenvironmental Drivers of Glioblastoma Invasion. Int J Mol Sci 2024; 25:2563. [PMID: 38473812 PMCID: PMC10932253 DOI: 10.3390/ijms25052563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Gliomas are diffusely infiltrating brain tumors whose prognosis is strongly influenced by their extent of invasion into the surrounding brain tissue. While lower-grade gliomas present more circumscribed borders, high-grade gliomas are aggressive tumors with widespread brain infiltration and dissemination. Glioblastoma (GBM) is known for its high invasiveness and association with poor prognosis. Its low survival rate is due to the certainty of its recurrence, caused by microscopic brain infiltration which makes surgical eradication unattainable. New insights into GBM biology at the single-cell level have enabled the identification of mechanisms exploited by glioma cells for brain invasion. In this review, we explore the current understanding of several molecular pathways and mechanisms used by tumor cells to invade normal brain tissue. We address the intrinsic biological drivers of tumor cell invasion, by tackling how tumor cells interact with each other and with the tumor microenvironment (TME). We focus on the recently discovered neuronal niche in the TME, including local as well as distant neurons, contributing to glioma growth and invasion. We then address the mechanisms of invasion promoted by astrocytes and immune cells. Finally, we review the current literature on the therapeutic targeting of the molecular mechanisms of invasion.
Collapse
Affiliation(s)
- Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
| | - Matilde Pittarello
- Department of Medicine, Humanitas University School of Medicine, 20089 Rozzano, Italy;
| | - Alessandro Gans
- Department of Neurology, University of Milan, 20122 Milan, Italy;
| | - Bikona Ghosh
- School of Medicine and Surgery, Dhaka Medical College, Dhaka 1000, Bangladesh;
| | - Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Paolo Alimonti
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
6
|
Ramos-Fresnedo A, Al-Kharboosh R, Twohy EL, Basil AN, Szymkiewicz EC, Zubair AC, Trifiletti DM, Durand N, Dickson DW, Middlebrooks EH, Abarbanel DN, Tzeng SY, Almeida JP, Chaichana KL, Green JJ, Sherman WJ, Quiñones-Hinojosa A. Phase 1, Dose Escalation, Nonrandomized, Open-Label, Clinical Trial Evaluating the Safety and Preliminary Efficacy of Allogenic Adipose-Derived Mesenchymal Stem Cells for Recurrent Glioblastoma: A Clinical Trial Protocol. NEUROSURGERY PRACTICE 2023; 4:e00062. [PMID: 38464470 PMCID: PMC10923529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background and Objectives Despite standard of care with maximal safe resection and chemoradiation, glioblastoma is the most common and aggressive type of primary brain cancer. Surgical resection provides a window of opportunity to locally treat gliomas while the patient is recovering, and before initiating concomitant chemoradiation. To assess the safety and establish the maximum tolerated dose of adipose-derived mesenchymal stem cells (AMSCs) for the treatment of recurrent glioblastoma (GBM). Secondary objectives are to assess the toxicity profile and long-term survival outcomes of patients enrolled in the trial. Additionally, biospecimens will be collected to explore the local and systemic responses to this therapy. Methods We will conduct a phase 1, dose escalated, non-randomized, open label, clinical trial of GBM patients who are undergoing surgical resection for recurrence. Up to 18 patients will receive intra-cavitary application of AMSCs encapsulated in fibrin glue during surgical resection. All patients will be followed for up to 5 years for safety and survival data. Adverse events will be recorded using the CTCAE V5.0. Expected Outcomes This study will explore the maximum tolerated dose (MTD) of AMSCs along with the toxicity profile of this therapy in patients with recurrent GBM. Additionally, preliminary long-term survival and progression-free survival outcome analysis will be used to power further randomized studies. Lastly, CSF and blood will be obtained throughout the treatment period to investigate circulating molecular and inflammatory tumoral/stem cell markers and explore the mechanism of action of the therapeutic intervention. Discussion This prospective translational study will determine the initial safety and toxicity profile of local delivery of AMSCs for recurrent GBM. It will also provide additional survival metrics for future randomized trials.
Collapse
Affiliation(s)
| | | | - Erin L. Twohy
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Abba C. Zubair
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Nisha Durand
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, Florida, USA
| | - Dennis W. Dickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Erik H. Middlebrooks
- Department of Radiology, Neuroradiology Division, Mayo Clinic, Jacksonville, Florida, USA
| | - David N. Abarbanel
- Department of Neurology, Neuro-Oncology Division, Mayo Clinic, Jacksonville, Florida, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Jordan J. Green
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Wendy J. Sherman
- Department of Neurology, Neuro-Oncology Division, Mayo Clinic, Jacksonville, Florida, USA
| | | |
Collapse
|
7
|
Nakhle J, Khattar K, Özkan T, Boughlita A, Abba Moussa D, Darlix A, Lorcy F, Rigau V, Bauchet L, Gerbal-Chaloin S, Daujat-Chavanieu M, Bellvert F, Turchi L, Virolle T, Hugnot JP, Buisine N, Galloni M, Dardalhon V, Rodriguez AM, Vignais ML. Mitochondria Transfer from Mesenchymal Stem Cells Confers Chemoresistance to Glioblastoma Stem Cells through Metabolic Rewiring. CANCER RESEARCH COMMUNICATIONS 2023; 3:1041-1056. [PMID: 37377608 PMCID: PMC10266428 DOI: 10.1158/2767-9764.crc-23-0144] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
Glioblastomas (GBM) are heterogeneous tumors with high metabolic plasticity. Their poor prognosis is linked to the presence of glioblastoma stem cells (GSC), which support resistance to therapy, notably to temozolomide (TMZ). Mesenchymal stem cells (MSC) recruitment to GBM contributes to GSC chemoresistance, by mechanisms still poorly understood. Here, we provide evidence that MSCs transfer mitochondria to GSCs through tunneling nanotubes, which enhances GSCs resistance to TMZ. More precisely, our metabolomics analyses reveal that MSC mitochondria induce GSCs metabolic reprograming, with a nutrient shift from glucose to glutamine, a rewiring of the tricarboxylic acid cycle from glutaminolysis to reductive carboxylation and increase in orotate turnover as well as in pyrimidine and purine synthesis. Metabolomics analysis of GBM patient tissues at relapse after TMZ treatment documents increased concentrations of AMP, CMP, GMP, and UMP nucleotides and thus corroborate our in vitro analyses. Finally, we provide a mechanism whereby mitochondrial transfer from MSCs to GSCs contributes to GBM resistance to TMZ therapy, by demonstrating that inhibition of orotate production by Brequinar (BRQ) restores TMZ sensitivity in GSCs with acquired mitochondria. Altogether, these results identify a mechanism for GBM resistance to TMZ and reveal a metabolic dependency of chemoresistant GBM following the acquisition of exogenous mitochondria, which opens therapeutic perspectives based on synthetic lethality between TMZ and BRQ. Significance Mitochondria acquired from MSCs enhance the chemoresistance of GBMs. The discovery that they also generate metabolic vulnerability in GSCs paves the way for novel therapeutic approaches.
Collapse
Affiliation(s)
- Jean Nakhle
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Institute of Molecular Genetics of Montpellier, University of Montpellier, CNRS, Montpellier, France
- RESTORE Research Center, University of Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Khattar Khattar
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Tülin Özkan
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Faculty of Medicine, Department of Medical Biology, University of Ankara, Ankara, Turkey
| | - Adel Boughlita
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Daouda Abba Moussa
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Amélie Darlix
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier (ICM), University of Montpellier, Montpellier, France
| | - Frédérique Lorcy
- Department of Pathology and Oncobiology, Hôpital Gui de Chauliac, Montpellier, France
- The Center of the Biological Resource Center of University Hospital Center of Montpellier (BRC), Montpellier, France
| | - Valérie Rigau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Department of Pathology and Oncobiology, Hôpital Gui de Chauliac, Montpellier, France
- The Center of the Biological Resource Center of University Hospital Center of Montpellier (BRC), Montpellier, France
| | - Luc Bauchet
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Department of Neurosurgery, Hopital Gui de Chauliac, Montpellier, France
| | - Sabine Gerbal-Chaloin
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Martine Daujat-Chavanieu
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Floriant Bellvert
- Toulouse Biotechnology Institute, University of Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Laurent Turchi
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM, “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Nice, France
| | - Thierry Virolle
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM, “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Nice, France
| | - Jean-Philippe Hugnot
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicolas Buisine
- UMR7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Mireille Galloni
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Valérie Dardalhon
- Institute of Molecular Genetics of Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Anne-Marie Rodriguez
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Marie-Luce Vignais
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| |
Collapse
|
8
|
Wang M, Wang X, Jin X, Zhou J, Zhang Y, Yang Y, Liu Y, Zhang J. Cell-based and cell-free immunotherapies for glioblastoma: current status and future directions. Front Immunol 2023; 14:1175118. [PMID: 37304305 PMCID: PMC10248152 DOI: 10.3389/fimmu.2023.1175118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Glioblastoma (GBM) is among the most fatal and recurring malignant solid tumors. It arises from the GBM stem cell population. Conventional neurosurgical resection, temozolomide (TMZ)-dependent chemotherapy and radiotherapy have rendered the prognosis of patients unsatisfactory. Radiotherapy and chemotherapy can frequently induce non-specific damage to healthy brain and other tissues, which can be extremely hazardous. There is therefore a pressing need for a more effective treatment strategy for GBM to complement or replace existing treatment options. Cell-based and cell-free immunotherapies are currently being investigated to develop new treatment modalities against cancer. These treatments have the potential to be both selective and successful in minimizing off-target collateral harm in the normal brain. In this review, several aspects of cell-based and cell-free immunotherapies related to GBM will be discussed.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiaojie Wang
- Basic Medical School, Shenyang Medical College, Shenyang, Liaoning, China
| | - Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jingjing Zhou
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yiyuan Yang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
9
|
Zhang X, Zhang H, Zhang J, Yang M, Zhu M, Yin Y, Fan X, Yu F. The paradoxical role of radiation-induced cGAS-STING signalling network in tumour immunity. Immunology 2023; 168:375-388. [PMID: 36217274 DOI: 10.1111/imm.13592] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022] Open
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is an essential component of the innate immune system and is central to the identification of abnormal DNA leakage caused by ionising radiation (IR) damage. Cell-intrinsic cGAS-STING initiation has been revealed to have tremendous potential for facilitating interferon synthesis and T-cell priming. Targeting the cGAS-STING axis has been proposed as a strategy to improve radiosensitivity or enhance immunosurveillance. However, due to the complex biology of the irradiated tumour microenvironment and the extensive involvement of the cGAS-STING pathway in various physiological and pathological processes, many defects in this strategy limit the therapeutic effect. Here, we outline the molecular mechanisms by which IR activates the cGAS-STING pathway and analyse the dichotomous roles of the cGAS-STING pathway in modulating cancer immunity after radiotherapy (RT). Then, based on the crosstalk between the cGAS-STING pathway and other signalling events induced by IR, such as necroptosis, autophagy and other cellular effects, we discuss the immunomodulatory actions of the broad cGAS-STING signalling network in RT and their potential therapeutic applications. Finally, recent advances in combination therapeutic strategies targeting cGAS-STING in RT are explored.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Mengqin Zhu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yuzhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Wang Y, Wang B, Zhou F, Lv K, Xu X, Cao W. CircNDC80 promotes glioblastoma multiforme tumorigenesis via the miR-139-5p/ECE1 pathway. J Transl Med 2023; 21:22. [PMID: 36635757 PMCID: PMC9837923 DOI: 10.1186/s12967-022-03852-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/24/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been shown to be essential for the emergence and growth of different cancers. However, further research is required to validate the function of circRNA in glioblastoma (GBM). METHODS CircNDC80 expression in both normal brain tissues (NBTs) and glioma tissues was determined using real-time PCR. The impact of circNDC80 on GBM cell proliferation, migration, and invasion was then confirmed by CCK-8, colony formation, EdU incorporation, Transwell, and wound healing assays. To determine how circNDC80 affects the capacity of glioma stem cells (GSCs) to maintain their stemness and self-renewal, a CellTiter-Glo assay, clonogenic assay and extreme limiting dilution assay were utilized. To ascertain the impact of circNDC80 in vivo, intracranial xenograft models were established. RESULTS When compared to NBT, glioblastoma tissue had a higher level of circNDC80 expression. In functional assays, circNDC80 promoted glioblastoma cell proliferation, migration, and invasion, while sustaining the stemness and fostering the self-renewal of glioma stem cells. In addition, a dual luciferase reporter assay and circRIP were used to verify that circNDC80 simultaneously affects the expression of ECE1 mRNA by sponging miR-139-5p, and a rescue experiment was used to verify the above results further. CONCLUSIONS According to our research, circNDC80 is an oncogenic factor that promotes glioblastoma through the miR-139-5p/ECE1 pathway. This implies that circNDC80 may be employed as a novel therapeutic target and a possible predictive biomarker.
Collapse
Affiliation(s)
- Yuhang Wang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000 Jiangsu China
| | - Binbin Wang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000 Jiangsu China
| | - Fengqi Zhou
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000 Jiangsu China
| | - Kun Lv
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000 Jiangsu China
| | - Xiupeng Xu
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000 Jiangsu China
| | - Wenping Cao
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000 Jiangsu China
| |
Collapse
|
11
|
Immunotherapy by mesenchymal stromal cell delivery of oncolytic viruses for treating metastatic tumors. Mol Ther Oncolytics 2022; 25:78-97. [PMID: 35434272 PMCID: PMC8989711 DOI: 10.1016/j.omto.2022.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses (OVs) have emerged as a very promising anti-cancer therapeutic strategy in the past decades. However, despite their pre-clinical promise, many OV clinical evaluations for cancer therapy have highlighted the continued need for their improved delivery and targeting. Mesenchymal stromal cells (MSCs) have emerged as excellent candidate vehicles for the delivery of OVs due to their tumor-homing properties and low immunogenicity. MSCs can enhance OV delivery by protecting viruses from rapid clearance following administration and also by more efficiently targeting tumor sites, consequently augmenting the therapeutic potential of OVs. MSCs can function as “biological factories,” enabling OV amplification within these cells to promote tumor lysis following MSC-OV arrival at the tumor site. MSC-OVs can promote enhanced safety profiles and therapeutic effects relative to OVs alone. In this review we explore the general characteristics of MSCs as delivery tools for cancer therapeutic agents. Furthermore, we discuss the potential of OVs as immune therapeutics and highlight some of the promising applications stemming from combining MSCs to achieve enhanced delivery and anti-tumor effectiveness of OVs at different pre-clinical and clinical stages. We further provide potential pitfalls of the MSC-OV platform and the strategies under development for enhancing the efficacy of these emerging therapeutics.
Collapse
|
12
|
To Explore the Stem Cells Homing to GBM: The Rise to the Occasion. Biomedicines 2022; 10:biomedicines10050986. [PMID: 35625723 PMCID: PMC9138893 DOI: 10.3390/biomedicines10050986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple efforts are currently underway to develop targeted therapeutic deliveries to the site of glioblastoma progression. The use of carriers represents advancement in the delivery of various therapeutic agents as a new approach in neuro-oncology. Mesenchymal stem cells (MSCs) and neural stem cells (NSCs) are used because of their capability in migrating and delivering therapeutic payloads to tumors. Two of the main properties that carrier cells should possess are their ability to specifically migrate from the bloodstream and low immunogenicity. In this article, we also compared the morphological and molecular features of each type of stem cell that underlie their migration capacity to glioblastoma. Thus, the major focus of the current review is on proteins and lipid molecules that are released by GBM to attract stem cells.
Collapse
|
13
|
Mercer-Smith AR, Buckley A, Valdivia A, Jiang W, Thang M, Bell N, Kumar RJ, Bomba HN, Woodell AS, Luo J, Floyd SR, Hingtgen SD. Next-generation Tumor-homing Induced Neural Stem Cells as an Adjuvant to Radiation for the Treatment of Metastatic Lung Cancer. Stem Cell Rev Rep 2022; 18:2474-2493. [PMID: 35441348 DOI: 10.1007/s12015-022-10375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
The spread of non-small cell lung cancer (NSCLC) to the leptomeninges is devastating with a median survival of only a few months. Radiation offers symptomatic relief, but new adjuvant therapies are desperately needed. Spheroidal, human induced neural stem cells (hiNeuroS) secreting the cytotoxic protein, TRAIL, have innate tumoritropic properties. Herein, we provide evidence that hiNeuroS-TRAIL cells can migrate to and suppress growth of NSCLC metastases in combination with radiation. In vitro cell tracking and post-mortem tissue analysis showed that hiNeuroS-TRAIL cells migrate to NSCLC tumors. Importantly, isobolographic analysis suggests that TRAIL with radiation has a synergistic cytotoxic effect on NSCLC tumors. In vivo, mice treated with radiation and hiNeuroS-TRAIL showed significant (36.6%) improvements in median survival compared to controls. Finally, bulk mRNA sequencing analysis showed both NSCLC and hiNeuroS-TRAIL cells showed changes in genes involved in migration following radiation. Overall, hiNeuroS-TRAIL cells +/- radiation have the capacity to treat NSCLC metastases.
Collapse
Affiliation(s)
- Alison R Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrew Buckley
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wulin Jiang
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Morrent Thang
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Noah Bell
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rashmi J Kumar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hunter N Bomba
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alex S Woodell
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jie Luo
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Scott R Floyd
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Neurosurgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
14
|
Xiao J, Zeng L, Ding S, Chen Y, Zhang X, Bian X, Tian G. Tumor-Tropic Adipose-Derived Mesenchymal Stromal Cell Mediated Bi 2 Se 3 Nano-Radiosensitizers Delivery for Targeted Radiotherapy of Non-Small Cell Lung Cancer. Adv Healthc Mater 2022; 11:e2200143. [PMID: 35195958 DOI: 10.1002/adhm.202200143] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Indexed: 11/05/2022]
Abstract
With the successful marriage between nanotechnology and oncology, various high-Z element containing nanoparticles (NPs) are approved as radiosensitizers to overcome radiation resistance for enhanced radiotherapy (RT). Unfortunately, NPs themselves lack specificity to tumors. Due to the inherent tropism nature of malignant cells, mesenchymal stem cells (MSCs) emerge as cell-mediated delivery vehicles for functional NPs to improve their therapeutic index. Herein, radiosensitive bismuth selenide (Bi2 Se3 ) NPs-laden adipose-derived mesenchymal stromal cells (AD-MSCs/Bi2 Se3 ) are engineered for targeted RT of non-small cell lung cancer (NSCLC). The results reveal that the optimized intracellular loading strategy hardly affects cell viability, specific surface markers, or migration capability of AD-MSCs, and Bi2 Se3 NPs can be efficiently transported from AD-MSCs to tumor cells. In vivo biodistribution test shows that the Bi2 Se3 NPs accumulation in tumor is increased 20 times via AD-MSCs-mediated delivery. Therefore, AD-MSCs/Bi2 Se3 administration synchronized with X-ray irradiation controls the tumor progress well in orthotopic A549 tumor bearing mice. Considering that MSCs migrate better to irradiated tumor cells in comparison to nonirradiated ones and MSCs preferentially accumulate within lung tissues after systemic administration into accounts, the tumor-tropic MSCs/NPs system is feasible and promising for targeted RT treatment of NSCLC.
Collapse
Affiliation(s)
- Jingfang Xiao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 40038 P. R. China
| | - Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 40038 P. R. China
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 40038 P. R. China
| | - Yemiao Chen
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 40038 P. R. China
- Biobank of The First Affiliated Hospital Third Military Medical University (Army Medical University) Chongqing 40038 P. R. China
- Clinical Research Center Chongqing Public Health Medical Center Chongqing 400036 P. R. China
| | - Xiao Zhang
- International Joint Research Center for Precision Biotherapy and Department of Stem Cell and Regenerative Medicine The First Affiliated Hospital Third Military Medical University (Army Medical University) Chongqing 400038 P. R. China
| | - Xiu‐wu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 40038 P. R. China
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 40038 P. R. China
| |
Collapse
|
15
|
Stoellinger HM, Alexanian AR. Modifications to the Transwell Migration/Invasion Assay Method That Eases Assay Performance and Improves the Accuracy. Assay Drug Dev Technol 2022; 20:75-82. [PMID: 35196113 PMCID: PMC8968842 DOI: 10.1089/adt.2021.140] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Migration is a key property of live cells and critical for normal development, immune response, and disease processes such as cancer metastasis and inflammation. Methods to examine cell migration are especially useful and important for a wide range of biomedical research such as cancer biology, immunology, vascular biology, cell biology, and developmental biology. In vitro assays are excellent approaches to extrapolate to in vivo situations and study live cells behavior. The aim of this article is to discuss the existing methods for transwell migration/invasion studies, the problems associated with this assay, and proposed modifications to this methodological approach that makes it simple to perform and improve the assay accuracy. Results of our studies demonstrated that the count of cells that had grown on top of the membrane is important to accurately evaluate the percentage of migrated/invaded cells. The results also showed that the transparent transwell insert with 4',6-diamidino-2-phenylindole (DAPI) stained cells is the best approach to ease the analysis of cell numbers on top of the membranes. In addition, the overlay of bright light (representing membrane pores) and DAPI images can further improve the accuracy of cell count. All these modifications in combination simplify the assay performance and improve the accuracy of the transwell migration assay method.
Collapse
Affiliation(s)
| | - Arshak R. Alexanian
- Cell Reprogramming & Therapeutics LLC, Wauwatosa, Wisconsin, USA.,Address correspondence to: Arshak R. Alexanian, VMD, PhD, Cell Reprogramming & Therapeutics LLC, 10437 W Innovation Dr., Wauwatosa (Milwaukee County), WI 53226, USA
| |
Collapse
|
16
|
Razeghian E, Margiana R, Chupradit S, Bokov DO, Abdelbasset WK, Marofi F, Shariatzadeh S, Tosan F, Jarahian M. Mesenchymal Stem/Stromal Cells as a Vehicle for Cytokine Delivery: An Emerging Approach for Tumor Immunotherapy. Front Med (Lausanne) 2021; 8:721174. [PMID: 34513882 PMCID: PMC8430327 DOI: 10.3389/fmed.2021.721174] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 12/22/2022] Open
Abstract
Pro-inflammatory cytokines can effectively be used for tumor immunotherapy, affecting every step of the tumor immunity cycle. Thereby, they can restore antigen priming, improve the effector immune cell frequencies in the tumor microenvironment (TME), and eventually strengthen their cytolytic function. A renewed interest in the anticancer competencies of cytokines has resulted in a substantial promotion in the number of trials to address the safety and efficacy of cytokine-based therapeutic options. However, low response rate along with the high toxicity associated with high-dose cytokine for reaching desired therapeutic outcomes negatively affect their clinical utility. Recently, mesenchymal stem/stromal cells (MSCs) due to their pronounced tropism to tumors and also lower immunogenicity have become a promising vehicle for cytokine delivery for human malignancies. MSC-based delivery of the cytokine can lead to the more effective immune cell-induced antitumor response and provide sustained release of target cytokines, as widely evidenced in a myriad of xenograft models. In the current review, we offer a summary of the novel trends in cytokine immunotherapy using MSCs as a potent and encouraging carrier for antitumor cytokines, focusing on the last two decades' animal reports.
Collapse
Affiliation(s)
- Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Cipto Mangunkusumo Hospital, The National Referral Hospital, Central Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Foad Tosan
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
17
|
Mercer-Smith AR, Jiang W, Bago JR, Valdivia A, Thang M, Woodell AS, Montgomery SA, Sheets KT, Anders CK, Hingtgen SD. Cytotoxic Engineered Induced Neural Stem Cells as an Intravenous Therapy for Primary Non-Small Cell Lung Cancer and Triple-Negative Breast Cancer. Mol Cancer Ther 2021; 20:2291-2301. [PMID: 34433662 DOI: 10.1158/1535-7163.mct-21-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Converting human fibroblasts into personalized induced neural stem cells (hiNSC) that actively seek out tumors and deliver cytotoxic agents is a promising approach for treating cancer. Herein, we provide the first evidence that intravenously-infused hiNSCs secreting cytotoxic agent home to and suppress the growth of non-small cell lung cancer (NSCLC) and triple-negative breast cancer (TNBC). Migration of hiNSCs to NSCLC and TNBC in vitro was investigated using time-lapse motion analysis, which showed directional movement of hiNSCs to both tumor cell lines. In vivo, migration of intravenous hiNSCs to orthotopic NSCLC or TNBC tumors was determined using bioluminescent imaging (BLI) and immunofluorescent post-mortem tissue analysis, which indicated that hiNSCs colocalized with tumors within 3 days of intravenous administration and persisted through 14 days. In vitro, efficacy of hiNSCs releasing cytotoxic TRAIL (hiNSC-TRAIL) was monitored using kinetic imaging of co-cultures, in which hiNSC-TRAIL therapy induced rapid killing of both NSCLC and TNBC. Efficacy was determined in vivo by infusing hiNSC-TRAIL or control cells intravenously into mice bearing orthotopic NSCLC or TNBC and tracking changes in tumor volume using BLI. Mice treated with intravenous hiNSC-TRAIL showed a 70% or 72% reduction in NSCLC or TNBC tumor volume compared with controls within 14 or 21 days, respectively. Safety was assessed by hematology, blood chemistry, and histology, and no significant changes in these safety parameters was observed through 28 days. These results indicate that intravenous hiNSCs-TRAIL seek out and kill NSCLC and TNBC tumors, suggesting a potential new strategy for treating aggressive peripheral cancers.
Collapse
Affiliation(s)
- Alison R Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Wulin Jiang
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Juli R Bago
- Department of Hemato-Oncology, University of Ostrava, Ostrava, Czech Republic
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Morrent Thang
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alex S Woodell
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephanie A Montgomery
- Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kevin T Sheets
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Carey K Anders
- Department of Medicine, Duke University, Durham, North Carolina
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Department of Neurosurgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
18
|
Puca F, Yu F, Bartolacci C, Pettazzoni P, Carugo A, Huang-Hobbs E, Liu J, Zanca C, Carbone F, Del Poggetto E, Gumin J, Dasgupta P, Seth S, Srinivasan S, Lang FF, Sulman EP, Lorenzi PL, Tan L, Shan M, Tolstyka ZP, Kachman M, Zhang L, Gao S, Deem AK, Genovese G, Scaglioni PP, Lyssiotis CA, Viale A, Draetta GF. Medium-chain acyl CoA dehydrogenase protects mitochondria from lipid peroxidation in glioblastoma. Cancer Discov 2021; 11:2904-2923. [PMID: 34039636 DOI: 10.1158/2159-8290.cd-20-1437] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/25/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is highly resistant to chemo- and immune-based therapies and targeted inhibitors. To identify novel drug targets, we screened orthotopically implanted, patient-derived glioblastoma sphere-forming cells (GSCs) using an RNAi library to probe essential tumor cell metabolic programs. This identified high dependence on mitochondrial fatty acid metabolism. We focused on medium-chain acyl-CoA dehydrogenase (MCAD), which oxidizes medium-chain fatty acids (MCFAs), due to its consistently high score and high expression among models and upregulation in GBM compared to normal brain. Beyond the expected energetics impairment, MCAD depletion in primary GBM models induced an irreversible cascade of detrimental metabolic effects characterized by accumulation of unmetabolized MCFAs, which induced lipid peroxidation and oxidative stress, irreversible mitochondrial damage, and apoptosis. Our data uncover a novel protective role for MCAD to clear lipid molecules that may cause lethal cell damage, suggesting that therapeutic targeting of MCFA catabolism could exploit a key metabolic feature of GBM.
Collapse
Affiliation(s)
| | - Fei Yu
- Genomic Medicine, The University of Texas MD Anderson Cancer Center
| | | | | | - Alessandro Carugo
- Therapeutics Discovery, The University of Texas MD Anderson Cancer Center
| | | | - Jintan Liu
- Genomic Medicine, The University of Texas MD Anderson Cancer Center
| | - Ciro Zanca
- The University of Texas MD Anderson Cancer Center
| | | | | | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center
| | - Pushan Dasgupta
- Neurology, The University of Texas at Austin Dell Medical School
| | - Sahil Seth
- Bioinformatics and Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center
| | | | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center
| | | | - Philip L Lorenzi
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, and The Proteomics and Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center
| | - Mengrou Shan
- Molecular and Integrative Physiology, University of Michigan–Ann Arbor
| | | | - Maureen Kachman
- Department of Internal Medicine, University of Michigan–Ann Arbor
| | - Li Zhang
- Rogel Cancer Center, University of Michigan–Ann Arbor
| | - Sisi Gao
- Therapeutics Discovery, The University of Texas MD Anderson Cancer Center
| | - Angela K Deem
- Institute for Applied Cancer Science, MDAnderson Cancer Center
| | | | | | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology and Department of Internal Medicine, Division of Gastroenterology, University of Michigan–Ann Arbor
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center
| | - Giulio F Draetta
- Genomic Medicine, The University of Texas MD Anderson Cancer Center
| |
Collapse
|
19
|
Wang X, Zhao X, He Z. Mesenchymal stem cell carriers enhance anti-tumor efficacy of oncolytic virotherapy. Oncol Lett 2021; 21:238. [PMID: 33664802 PMCID: PMC7882891 DOI: 10.3892/ol.2021.12499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Oncolytic viruses (OVs) specifically infect, replicate and eventually destroy tumor cells, with no concomitant toxicity to adjacent normal cells. Furthermore, OVs can regulate tumor microenvironments and stimulate anti-tumor immune responses. Mesenchymal stem cells (MSCs) have inherent tumor tropisms and immunosuppressive functions. MSCs carrying OVs not only protect viruses from clearing by the immune system, but they also deliver the virus to tumor lesions. Equally, cytokines released by MSCs enhance anti-tumor immune responses, suggesting that MSCs carrying OVs may be considered as a promising strategy in enhancing the anti-tumor efficacies of virotherapy. In the present review, preclinical and clinical studies were evaluated and discussed, as well as the effectiveness of MSCs carrying OVs for tumor treatment.
Collapse
Affiliation(s)
- Xianyao Wang
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou 550004, P.R. China
- Department of Immunology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Xing Zhao
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou 550004, P.R. China
- Department of Immunology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Zhixu He
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou 550004, P.R. China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
20
|
Putavet DA, de Keizer PLJ. Residual Disease in Glioma Recurrence: A Dangerous Liaison with Senescence. Cancers (Basel) 2021; 13:1560. [PMID: 33805316 PMCID: PMC8038015 DOI: 10.3390/cancers13071560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
With a dismally low median survival of less than two years after diagnosis, Glioblastoma (GBM) is the most lethal type of brain cancer. The standard-of-care of surgical resection, followed by DNA-damaging chemo-/radiotherapy, is often non-curative. In part, this is because individual cells close to the resection border remain alive and eventually undergo renewed proliferation. These residual, therapy-resistant cells lead to rapid recurrence, against which no effective treatment exists to date. Thus, new experimental approaches need to be developed against residual disease to prevent GBM survival and recurrence. Cellular senescence is an attractive area for the development of such new approaches. Senescence can occur in healthy cells when they are irreparably damaged. Senescent cells develop a chronic secretory phenotype that is generally considered pro-tumorigenic and pro-migratory. Age is a negative prognostic factor for GBM stage, and, with age, senescence steadily increases. Moreover, chemo-/radiotherapy can provide an additional increase in senescence close to the tumor. In light of this, we will review the importance of senescence in the tumor-supportive brain parenchyma, focusing on the invasion and growth of GBM in residual disease. We will propose a future direction on the application of anti-senescence therapies against recurrent GBM.
Collapse
Affiliation(s)
| | - Peter L. J. de Keizer
- Center for Molecular Medicine, Division LAB, University Medical Center Utrecht, 3584CG Utrecht, The Netherlands;
| |
Collapse
|
21
|
Yang Q, Zhang J, Zhang X, Miao L, Zhang W, Jiang Z, Zhou W. C-C motif chemokine ligand 2/C-C receptor 2 is associated with glioma recurrence and poor survival. Exp Ther Med 2021; 21:564. [PMID: 33850536 PMCID: PMC8027722 DOI: 10.3892/etm.2021.9996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Several studies have explored the mechanisms of C-C motif chemokine ligand (CCL)2/CC receptor (R)2 function in tumorigenesis and inflammation. However, little is known about the role of CCL2/CCR2 in tumor recurrence, especially after radiotherapy. The present study aimed to determine the association between CCL2/CCR2 and glioma relapse. Moreover, the difference in the expression of CCL2/CCR2 between post-radiation and non-radiation recurrent glioma tissues was compared. A retrospective analysis of 80 patients with glioma who underwent tumor resection twice was performed. Primary group refers to glioma patients who received glioma resection surgery for the first time. Recurrent group refers to glioma patients who received glioma resection surgery after first relapse. In total, 10 patients with brain trauma who underwent partial resection of the normal brain as decompression treatment were used as controls. Protein expression levels of CCL2 and CCR2 were evaluated using immunohistochemistry. Prognostic analyses of patient survival using Kaplan-Meier curves and Cox regression models were performed. The expression levels of CCL2 and CCR2 were higher in recurrent glioma compared with the primary group. There was a positive correlation between tumor grade and protein expression of CCL2/CCR2. Furthermore, irradiation had a significant effect on CCR2 protein expression (P=0.014), but not on CCL2 protein expression (P=0.626). However, the expression of CCL2 and CCR2 showed no significant difference between primary and secondary glioblastoma. After adjusting for sex, radiotherapy and location of tumors in these gliomas, CCL2 was a prognostic factor for disease-free and overall survival (OS) times, as well as age and tumor grade. In the multivariate Cox modeling for glioma, CCR2 was significantly associated with OS rather than DFI. The significant correlations between CCL2/CCR2 expression and glioma tumor grade suggested that CCL2/CCR2 has a role in glioma progression. Combined with previous in vitro experiments, it was proposed that irradiation (radiotherapy)-induced expression of CCL2 is transient, while irradiation-induced expression of CCR2 is lasting. Therefore, CCL2/CCR2 is a potential therapeutic target for patients with glioma.
Collapse
Affiliation(s)
- Qiuan Yang
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Junpeng Zhang
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, Shandong 250200, P.R. China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lifeng Miao
- Department of Neurosurgery, Dezhou People's Hospital, Dezhou, Shandong 253020, P.R. China
| | - Wei Zhang
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Zheng Jiang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wei Zhou
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
22
|
The Potential of Mesenchymal Stromal Cells in Neuroblastoma Therapy for Delivery of Anti-Cancer Agents and Hematopoietic Recovery. J Pers Med 2021; 11:jpm11030161. [PMID: 33668854 PMCID: PMC7996318 DOI: 10.3390/jpm11030161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is one of the most common pediatric cancers and a major cause of cancer-related death in infancy. Conventional therapies including high-dose chemotherapy, stem cell transplantation, and immunotherapy approach a limit in the treatment of high-risk neuroblastoma and prevention of relapse. In the last two decades, research unraveled a potential use of mesenchymal stromal cells in tumor therapy, as tumor-selective delivery vehicles for therapeutic compounds and oncolytic viruses and by means of supporting hematopoietic stem cell transplantation. Based on pre-clinical and clinical advances in neuroblastoma and other malignancies, we assess both the strong potential and the associated risks of using mesenchymal stromal cells in the therapy for neuroblastoma. Furthermore, we examine feasibility and safety aspects and discuss future directions for harnessing the advantageous properties of mesenchymal stromal cells for the advancement of therapy success.
Collapse
|
23
|
Trifiletti DM, Ruiz-Garcia H, Quinones-Hinojosa A, Ramakrishna R, Sheehan JP. The evolution of stereotactic radiosurgery in neurosurgical practice. J Neurooncol 2021; 151:451-459. [PMID: 33611711 DOI: 10.1007/s11060-020-03392-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/06/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Stereotactic radiosurgery (SRS) was born in an attempt to treat complex intracranial pathologies in a fashion whereby open surgery would create unnecessary or excessive risk. To create this innovation, it was necessary to harness advances in other fields such as engineering, physics, radiology, and computer science. METHODS We review the history of SRS to provide context to today's current state, as well as guide future advancement in the field. RESULTS Since time of Lars Leksell, the young Swedish neurosurgeon who pioneered the development of the SRS, the collegial and essential partnership between neurosurgeons, radiation oncologists and physicists has given rise to radiosurgery as a prominent and successful tool in neurosurgical practice. CONCLUSION We examine how neurosurgeons have helped foster the SRS evolution and how this evolution has impacted neurosurgical practice as well as that of radiation oncology and neuro-oncology.
Collapse
Affiliation(s)
- Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA. .,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA.
| | - Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | | | - Rohan Ramakrishna
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
24
|
Mesenchymal Stem Cells for Mitigating Radiotherapy Side Effects. Cells 2021; 10:cells10020294. [PMID: 33535574 PMCID: PMC7912747 DOI: 10.3390/cells10020294] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Radiation therapy for cancers also damages healthy cells and causes side effects. Depending on the dosage and exposure region, radiotherapy may induce severe and irreversible injuries to various tissues or organs, especially the skin, intestine, brain, lung, liver, and heart. Therefore, promising treatment strategies to mitigate radiation injury is in pressing need. Recently, stem cell-based therapy generates great attention in clinical care. Among these, mesenchymal stem cells are extensively applied because it is easy to access and capable of mesodermal differentiation, immunomodulation, and paracrine secretion. Here, we summarize the current attempts and discuss the future perspectives about mesenchymal stem cells (MSCs) for mitigating radiotherapy side effects.
Collapse
|
25
|
Bajetto A, Thellung S, Dellacasagrande I, Pagano A, Barbieri F, Florio T. Cross talk between mesenchymal and glioblastoma stem cells: Communication beyond controversies. Stem Cells Transl Med 2020; 9:1310-1330. [PMID: 32543030 PMCID: PMC7581451 DOI: 10.1002/sctm.20-0161] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be isolated from bone marrow or other adult tissues (adipose tissue, dental pulp, amniotic fluid, and umbilical cord). In vitro, MSCs grow as adherent cells, display fibroblast-like morphology, and self-renew, undergoing specific mesodermal differentiation. High heterogeneity of MSCs from different origin, and differences in preparation techniques, make difficult to uniform their functional properties for therapeutic purposes. Immunomodulatory, migratory, and differentiation ability, fueled clinical MSC application in regenerative medicine, whereas beneficial effects are currently mainly ascribed to their secretome and extracellular vesicles. MSC translational potential in cancer therapy exploits putative anti-tumor activity and inherent tropism toward tumor sites to deliver cytotoxic drugs. However, controversial results emerged evaluating either the therapeutic potential or homing efficiency of MSCs, as both antitumor and protumor effects were reported. Glioblastoma (GBM) is the most malignant brain tumor and its development and aggressive nature is sustained by cancer stem cells (CSCs) and the identification of effective therapeutic is required. MSC dualistic action, tumor-promoting or tumor-targeting, is dependent on secreted factors and extracellular vesicles driving a complex cross talk between MSCs and GBM CSCs. Tumor-tropic ability of MSCs, besides providing an alternative therapeutic approach, could represent a tool to understand the biology of GBM CSCs and related paracrine mechanisms, underpinning MSC-GBM interactions. In this review, recent findings on the complex nature of MSCs will be highlighted, focusing on their elusive impact on GBM progression and aggressiveness by direct cell-cell interaction and via secretome, also facing the perspectives and challenges in treatment strategies.
Collapse
Affiliation(s)
- Adriana Bajetto
- Dipartimento di Medicina InternaUniversità di GenovaGenovaItaly
| | | | | | - Aldo Pagano
- Dipartimento di Medicina SperimentaleUniversità di GenovaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| | | | - Tullio Florio
- Dipartimento di Medicina InternaUniversità di GenovaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| |
Collapse
|
26
|
Franco-Luzón L, García-Mulero S, Sanz-Pamplona R, Melen G, Ruano D, Lassaletta Á, Madero L, González-Murillo Á, Ramírez M. Genetic and Immune Changes Associated with Disease Progression under the Pressure of Oncolytic Therapy in A Neuroblastoma Outlier Patient. Cancers (Basel) 2020; 12:cancers12051104. [PMID: 32354143 PMCID: PMC7281487 DOI: 10.3390/cancers12051104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022] Open
Abstract
Little is known about the effect of oncolytic adenovirotherapy on pediatric tumors. Here we present the clinical case of a refractory neuroblastoma that responded positively to Celyvir (ICOVIR-5 oncolytic adenovirus delivered by autologous mesenchymal stem cells) for several months. We analyzed samples during tumor evolution in order to identify molecular and mutational features that could explain the interactions between treatment and tumor and how the balance between both of them evolved. We identified a higher adaptive immune infiltration during stabilized disease compared to progression, and also a higher mutational rate and T-cell receptor (TCR) diversity during disease progression. Our results indicate an initial active role of the immune system controlling tumor growth during Celyvir therapy. The tumor eventually escaped from the control exerted by virotherapy through acquisition of resistance by the tumor microenvironment that exhausted the initial T cell response.
Collapse
Affiliation(s)
- Lidia Franco-Luzón
- Children Oncohematology Foundation, 28079 Madrid, Spain; (L.F.-L.); (L.M.)
| | - Sandra García-Mulero
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain;
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| | - Gustavo Melen
- Biomedical Research Foundation, Niño Jesús Children Hospital, 28009 Madrid, Spain; (G.M.); (Á.G.-M.)
- La Princesa Institute of Health Research, 28006 Madrid, Spain; (D.R.); (Á.L.)
| | - David Ruano
- La Princesa Institute of Health Research, 28006 Madrid, Spain; (D.R.); (Á.L.)
| | - Álvaro Lassaletta
- La Princesa Institute of Health Research, 28006 Madrid, Spain; (D.R.); (Á.L.)
| | - Luís Madero
- Children Oncohematology Foundation, 28079 Madrid, Spain; (L.F.-L.); (L.M.)
- La Princesa Institute of Health Research, 28006 Madrid, Spain; (D.R.); (Á.L.)
- Oncohematology Unit, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain
| | - África González-Murillo
- Biomedical Research Foundation, Niño Jesús Children Hospital, 28009 Madrid, Spain; (G.M.); (Á.G.-M.)
- La Princesa Institute of Health Research, 28006 Madrid, Spain; (D.R.); (Á.L.)
| | - Manuel Ramírez
- Biomedical Research Foundation, Niño Jesús Children Hospital, 28009 Madrid, Spain; (G.M.); (Á.G.-M.)
- La Princesa Institute of Health Research, 28006 Madrid, Spain; (D.R.); (Á.L.)
- Correspondence: ; Tel.: +34-9150-35938
| |
Collapse
|
27
|
Lah TT, Novak M, Breznik B. Brain malignancies: Glioblastoma and brain metastases. Semin Cancer Biol 2020; 60:262-273. [DOI: 10.1016/j.semcancer.2019.10.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
|
28
|
Ruano D, López-Martín JA, Moreno L, Lassaletta Á, Bautista F, Andión M, Hernández C, González-Murillo Á, Melen G, Alemany R, Madero L, García-Castro J, Ramírez M. First-in-Human, First-in-Child Trial of Autologous MSCs Carrying the Oncolytic Virus Icovir-5 in Patients with Advanced Tumors. Mol Ther 2020; 28:1033-1042. [PMID: 32053771 DOI: 10.1016/j.ymthe.2020.01.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
We present here the results of a first-in-human, first-in-child trial for patients with relapsed/refractory solid tumors using Celyvir, an advanced therapy medicine that combines autologous mesenchymal stem cells (MSCs) carrying an oncolytic adenovirus. Celyvir was manufactured from a bone marrow aspirate and then given intravenously. Patients received weekly infusions for 6 weeks at a dose of 2 × 106 cells/kg (children) or 0.5-1 × 106 cells/kg (adults), 2 × 104 viral particles per cell. Fifteen pediatric and 19 adult patients were recruited, but 18 were screen failures, mainly because rapid disease progression before Celyvir was available. No grade 2-5 toxicities were reported. Adenoviral replication detected by PCR was found in all but 2 pediatric patient and in none of the adult ones. Absolute numbers of circulating leukocytes suffered minor changes along therapy, but some subsets showed differences comparing the pediatric versus the adult cohorts. Two patients with neuroblastoma showed disease stabilization, and one of them continued on treatment for up to 6 additional weeks. Celyvir, the combination of MSCs and oncolytic adenovirus, is safe and warrants further evaluation in a phase 2 setting. The use of MSCs may be a strategy to increase the amount of oncolytic virus administered to patients, minimizing toxicities and avoiding direct tumor injections.
Collapse
Affiliation(s)
- David Ruano
- Servicio de Oncología, Hospital Universitario Niño Jesús, Madrid, Spain
| | - José A López-Martín
- Servicio de Oncología Médica, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Lucas Moreno
- Servicio de Oncología, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Álvaro Lassaletta
- Servicio de Oncología, Hospital Universitario Niño Jesús, Madrid, Spain
| | | | - Maitane Andión
- Servicio de Oncología, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Carmen Hernández
- Servicio de Oncología, Hospital Universitario Niño Jesús, Madrid, Spain
| | | | - Gustavo Melen
- Fundación de Investigación Biomédica, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Ramón Alemany
- Institut Català d'Oncologia-IDIBELL, Barcelona, Spain
| | - Luis Madero
- Servicio de Oncología, Hospital Universitario Niño Jesús, Madrid, Spain
| | | | - Manuel Ramírez
- Servicio de Oncología, Hospital Universitario Niño Jesús, Madrid, Spain.
| |
Collapse
|
29
|
Farias VDA, Tovar I, del Moral R, O'Valle F, Expósito J, Oliver FJ, Ruiz de Almodóvar JM. Enhancing the Bystander and Abscopal Effects to Improve Radiotherapy Outcomes. Front Oncol 2020; 9:1381. [PMID: 31970082 PMCID: PMC6960107 DOI: 10.3389/fonc.2019.01381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
In this paper, we summarize published articles and experiences related to the attempt to improve radiotherapy outcomes and, thus, to personalize the radiation treatment according to the individual characteristics of each patient. The evolution of ideas and the study of successively published data have led us to envisage new biophysical models for the interpretation of tumor and healthy normal tissue response to radiation. In the development of the model, we have shown that when mesenchymal stem cells (MSCs) and radiotherapy are administered simultaneously in experimental radiotherapy on xenotumors implanted in a murine model, the results of the treatment show the existence of a synergic mechanism that is able to enhance the local and systemic actions of the radiation both on the treated tumor and on its possible metastasis. We are convinced that, due to the physical hallmarks that characterize the neoplastic tissues, the physical-chemical tropism of MSCs, and the widespread functions of macromolecules, proteins, and exosomes released from activated MSCs, the combination of radiotherapy plus MSCs used intratumorally has the effect of counteracting the pro-tumorigenic and pro-metastatic signals that contribute to the growth, spread, and resistance of the tumor cells. Therefore, we have concluded that MSCs are appropriate for therapeutic use in a clinical trial for rectal cancer combined with radiotherapy, which we are going to start in the near future.
Collapse
Affiliation(s)
- Virgínea de Araújo Farias
- Centro de Investigación Biomédica, Instituto Universitario de Investigación en Biopatología y Medicina Regenerativa, PTS Granada, Granada, Spain
- CIBERONC (Instituto de Salud Carlos III), Granada, Spain
- Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas, PTS Granada, Granada, Spain
| | - Isabel Tovar
- Complejo Hospitalario de Granada, Servicio Andaluz de Salud, PTS Granada, Granada, Spain
| | - Rosario del Moral
- Complejo Hospitalario de Granada, Servicio Andaluz de Salud, PTS Granada, Granada, Spain
| | - Francisco O'Valle
- Centro de Investigación Biomédica, Instituto Universitario de Investigación en Biopatología y Medicina Regenerativa, PTS Granada, Granada, Spain
- CIBERONC (Instituto de Salud Carlos III), Granada, Spain
- Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas, PTS Granada, Granada, Spain
- Departamento de Anatomía Patológica, Facultad de Medicina, Universidad de Granada, PTS Granada, Granada, Spain
| | - José Expósito
- Complejo Hospitalario de Granada, Servicio Andaluz de Salud, PTS Granada, Granada, Spain
| | - Francisco Javier Oliver
- CIBERONC (Instituto de Salud Carlos III), Granada, Spain
- Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas, PTS Granada, Granada, Spain
| | - José Mariano Ruiz de Almodóvar
- Centro de Investigación Biomédica, Instituto Universitario de Investigación en Biopatología y Medicina Regenerativa, PTS Granada, Granada, Spain
- CIBERONC (Instituto de Salud Carlos III), Granada, Spain
| |
Collapse
|
30
|
Liposomal Lapatinib in Combination with Low-Dose Photodynamic Therapy for the Treatment of Glioma. J Clin Med 2019; 8:jcm8122214. [PMID: 31847378 PMCID: PMC6947404 DOI: 10.3390/jcm8122214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Malignant gliomas are highly invasive and extremely difficult to treat tumours with poor prognosis and outcomes. Photodynamic therapy (PDT), mediated by Gleolan®, has been studied previously with partial success in treating these tumours and extending lifetime. We aim to determine whether combining PDT using ALA-protoporphyrin IX (PpIX) with a liposomal formulation of the clinical epidermal growth factor receptor (EGFR) inhibitor, lapatinib, would increase the anti-tumour PDT efficacy. METHODS Lapatinib was given in vitro and in vivo 24 h prior to PDT and for 3-5 days following PDT to elicit whether the combination provided any benefits to PDT therapy. Live-cell imaging, in vitro PDT, and in vivo studies were performed to elucidate the effect lapatinib had on PDT for a variety of glioma cell lines and as well as GSC-30 neurospheres in vivo. RESULTS PDT combined with lapatinib led to a significant increase in PpIX accumulation, and reductions in the LD50 of PpIX mediated PDT in two EGFR-driven cell lines, U87 and U87vIII, tested (p < 0.05). PDT + lapatinib elicited stronger MRI-quantified glioma responses following PDT for two human glioma-derived tumours (U87 and GSC-30) in vivo (p < 0.05). Furthermore, PDT leads to enhanced survival in rats following treatment with lapatinib compared to lapatinib alone and PDT alone (p < 0.05). CONCLUSIONS As lapatinib is approved for other oncological indications, a realization of its potential combination with PDT and in fluorescence-guided resection could be readily tested clinically. Furthermore, as its use would only be in acute settings, long-term resistance should not pose an issue as compared to its use as monotherapy.
Collapse
|
31
|
Gupta K, Burns TC. Radiation-Induced Alterations in the Recurrent Glioblastoma Microenvironment: Therapeutic Implications. Front Oncol 2018; 8:503. [PMID: 30467536 PMCID: PMC6236021 DOI: 10.3389/fonc.2018.00503] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 01/19/2023] Open
Abstract
Glioblastoma (GBM) is uniformly fatal with a median survival of just over 1 year, despite best available treatment including radiotherapy (RT). Impacts of prior brain RT on recurrent tumors are poorly understood, though increasing evidence suggests RT-induced changes in the brain microenvironment contribute to recurrent GBM aggressiveness. The tumor microenvironment impacts malignant cells directly and indirectly through stromal cells that support tumor growth. Changes in extracellular matrix (ECM), abnormal vasculature, hypoxia, and inflammation have been reported to promote tumor aggressiveness that could be exacerbated by prior RT. Prior radiation may have long-term impacts on microglia and brain-infiltrating monocytes, leading to lasting alterations in cytokine signaling and ECM. Tumor-promoting CNS injury responses are recapitulated in the tumor microenvironment and augmented following prior radiation, impacting cell phenotype, proliferation, and infiltration in the CNS. Since RT is vital to GBM management, but substantially alters the tumor microenvironment, we here review challenges, knowledge gaps, and therapeutic opportunities relevant to targeting pro-tumorigenic features of the GBM microenvironment. We suggest that insights from RT-induced changes in the tumor microenvironment may provide opportunities to target mechanisms, such as cellular senescence, that may promote GBM aggressiveness amplified in previously radiated microenvironment.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
32
|
Hsu FT, Wei ZH, Hsuan YCY, Lin W, Su YC, Liao CH, Hsieh CL. MRI tracking of polyethylene glycol-coated superparamagnetic iron oxide-labelled placenta-derived mesenchymal stem cells toward glioblastoma stem-like cells in a mouse model. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S448-S459. [PMID: 30198338 DOI: 10.1080/21691401.2018.1499661] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mesenchymal stem cells (MSCs) that display homing and infiltration properties towards tumor cells are a promising cellular targeting vector for brain tumor therapy but are limited to local-regional delivery in current preclinical models. Here, we investigated whether placenta-derived MSCs (P-MSCs) are a superior cellular vector for systemic targeting of glioblastoma stem-like cells (GSCs), with an imaging modality to real-time monitor the trafficking P-MSCs to glioblastoma sites. Results demonstrated that P-MSCs had greater migratory activity towards GSCs and across blood-brain barrier compared with bone marrow-derived MSCs, and this activity was enhanced by hypoxia precondition. Chemokine ligand 5 was identified as a chemoattractant responsible for the glioblastoma tropism of P-MSCs. Polyethylene glycol-coated superparamagnetic iron oxide (PEG-SPIO) was synthesized for cellular labelling and imaging P-MSCs, displaying high cellular uptake and no cytotoxic effect on P-MSCs cell proliferation or stemness property. The homing effects of intravenously administered PEG-SPIO-labelled P-MSCs towards intracerebral GSCs were able to be detected in mice models through T2-weighted magnetic resonance imaging (MRI). This study suggests the possibility of innovative systemic P-MSC-based cell therapy for aggressive GSCs, developing a state-of-the-art theranostic technique for real-time tracking of therapeutic P-MSCs tumor infiltration through cellular MRI.
Collapse
Affiliation(s)
- Fei-Ting Hsu
- a Department of Radiology , School of Medicine, College of Medicine, Taipei Medical University , Taipei , Taiwan.,b Department of Biological Science and Technology , China Medical University , Taichung , Taiwan.,c Department of Medical Imaging , Taipei Medical University Hospital , Taipei , Taiwan.,d Research Center of Translational Imaging , College of Medicine, Taipei Medical University , Taipei , Taiwan
| | - Zung-Hang Wei
- e Department of Power Mechanical Engineering , National Tsing Hua University , Hsinchu , Taiwan
| | | | - Willie Lin
- f Meridigen Biotech Co., Ltd. , Neihu, Taipei City , Taiwan
| | - Yu-Chin Su
- f Meridigen Biotech Co., Ltd. , Neihu, Taipei City , Taiwan
| | - Chia-Hui Liao
- g The PhD Program for Translational Medicine , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| | - Chia-Ling Hsieh
- g The PhD Program for Translational Medicine , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan.,h Clinical Research Center , Taipei Medical University Hospital, Taipei Medical University , Taipei , Taiwan.,i TMU Research Center of Cancer Translational Medicine , Taipei Medical University , Taipei , Taiwan
| |
Collapse
|
33
|
Chishti AA, Baumstark-Khan C, Koch K, Kolanus W, Feles S, Konda B, Azhar A, Spitta LF, Henschenmacher B, Diegeler S, Schmitz C, Hellweg CE. Linear Energy Transfer Modulates Radiation-Induced NF-kappa B Activation and Expression of its Downstream Target Genes. Radiat Res 2018; 189:354-370. [DOI: 10.1667/rr14905.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Arif Ali Chishti
- German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Christa Baumstark-Khan
- German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Kristina Koch
- German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Waldemar Kolanus
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
| | - Sebastian Feles
- German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Bikash Konda
- German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Abid Azhar
- The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi-75270, Pakistan
| | - Luis F. Spitta
- German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Bernd Henschenmacher
- German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Sebastian Diegeler
- German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Claudia Schmitz
- German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Christine E. Hellweg
- German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| |
Collapse
|
34
|
Hill BS, Pelagalli A, Passaro N, Zannetti A. Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype. Oncotarget 2017; 8:73296-73311. [PMID: 29069870 PMCID: PMC5641213 DOI: 10.18632/oncotarget.20265] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) are recruited into tumor microenvironment in response to multiple signals produced by cancer cells. Molecules involved in their homing to tumors are the same inflammatory mediators produced by injured tissues: chemokines, cytokines and growth factors. When MSCs arrive into the tumor microenvironment these are “educated” to have pro-metastatic behaviour. Firstly, they promote cancer immunosuppression modulating both innate and adaptive immune systems. Moreover, tumor associated-MSCs trans-differentiating into cancer-associated fibroblasts can induce epithelial-mesenchymal-transition program in tumor cells. This process determinates a more aggressive phenotype of cancer cells by increasing their motility and invasiveness and favoring their dissemination to distant sites. In addition, MSCs are involved in the formation and modelling of pre-metastatic niches creating a supportive environment for colonization of circulating tumor cells. The development of novel therapeutic approaches targeting the different functions of MSCs in promoting tumor progression as well as the mechanisms underlying their activities could enhance the efficacy of conventional and immune anti-cancer therapies. Furthermore, many studies report the use of MSCs engineered to express different genes or as vehicle to specifically deliver novel drugs to tumors exploiting their strong tropism. Importantly, this approach can enhance local therapeutic efficacy and reduce the risk of systemic side effects.
Collapse
Affiliation(s)
- Billy Samuel Hill
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples, Italy
| | - Alessandra Pelagalli
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples, Italy.,Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Nunzia Passaro
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples, Italy
| |
Collapse
|