1
|
Avino A, Ion DE, Gheoca-Mutu DE, Abu-Baker A, Țigăran AE, Peligrad T, Hariga CS, Balcangiu-Stroescu AE, Jecan CR, Tudor A, Răducu L. Diagnostic and Therapeutic Particularities of Symptomatic Melanoma Brain Metastases from Case Report to Literature Review. Diagnostics (Basel) 2024; 14:688. [PMID: 38611601 PMCID: PMC11011469 DOI: 10.3390/diagnostics14070688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The recent introduction of immunotherapy and targeted therapy has substantially enriched the therapeutic landscape of metastatic melanoma. However, cerebral metastases remain unrelenting entities with atypical metabolic and genetic profiles compared to extracranial metastases, requiring combined approaches with local ablative treatment to alleviate symptoms, prevent recurrence and restore patients' biological and psychological resources for fighting malignancy. This paper aims to provide the latest scientific evidence about the rationale and timing of treatment, emphasizing the complementary roles of surgery, radiotherapy, and systemic therapy in eradicating brain metastases, with a special focus on the distinct response of intracranial and extracranial disease, which are regarded as separate molecular entities. To illustrate the complexity of designing individualized therapeutic schemes, we report a case of delayed BRAF-mutant diagnosis, an aggressive forearm melanoma, in a presumed psychiatric patient whose symptoms were caused by cerebral melanoma metastases. The decision to administer molecularly targeted therapy was dictated by the urgency of diminishing the tumor burden for symptom control, due to potentially life-threatening complications caused by the flourishing of extracranial disease in locations rarely reported in living patients, further proving the necessity of multidisciplinary management.
Collapse
Affiliation(s)
- Adelaida Avino
- Discipline of Plastic Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.A.); (C.-R.J.); (L.R.)
- Doctoral School, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| | - Daniela-Elena Ion
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| | - Daniela-Elena Gheoca-Mutu
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
- Discipline of Anatomy, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Abdalah Abu-Baker
- Doctoral School, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| | - Andrada-Elena Țigăran
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| | - Teodora Peligrad
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| | - Cristian-Sorin Hariga
- Discipline of Plastic Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.A.); (C.-R.J.); (L.R.)
- Department of Plastic and Reconstructive Surgery, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | - Andra-Elena Balcangiu-Stroescu
- Discipline of Physiology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristian-Radu Jecan
- Discipline of Plastic Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.A.); (C.-R.J.); (L.R.)
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| | - Adrian Tudor
- Discipline of Anatomy and Embriology, University of Medicine, Sciences and Technology “George Emil Palade”, 540139 Targu Mures, Romania;
- Department of General Surgery I, Targu Mures Emergency Clinical Hospital, 540136 Targu Mures, Romania
| | - Laura Răducu
- Discipline of Plastic Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.A.); (C.-R.J.); (L.R.)
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| |
Collapse
|
2
|
Dharnipragada R, Dusenbery K, Watanabe Y, Ferreira C, Chen CC. Comparison of Gamma Knife (GK) and Linear Accelerator (LINAC) radiosurgery of brain metastasis resection cavity: a systematic review and proportional meta-analysis. Clin Exp Metastasis 2024; 41:1-8. [PMID: 37943360 DOI: 10.1007/s10585-023-10240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE Stereotactic radiosurgery (SRS) to the resection cavity is essential in the treatment of brain metastasis (BM) amenable to surgical resection. The two most common platforms for SRS delivery include Gamma Knife (GK) and LINAC. Here we collated the available peer-reviewed literature and performed a meta-analysis on clinical outcomes after GK or LINAC resection cavity SRS. METHODS Following PRISMA Guidelines, a search on PUBMED and MEDLINE was performed to include all studies evaluating each post-operative SRS modality. Local control, overall survival, radiation necrosis, and leptomeningeal disease were evaluated from the available data. A proportional meta-analysis was performed via R using the metafor package to pool the outcomes of studies and a moderator effect to assess the significance between groups. RESULTS We identified 21 GK studies (n = 2009) and 28 LINAC studies (n = 2219). The radiosurgery doses employed were comparable between GK and LINAC studies. The pooled estimate of 1-year local control, 1-year overall survival, and risk of leptomeningeal disease were statistically comparable between GK and LINAC (81.7 v 85.8%; 61.4 v 62.7%; 10.6 v 12.5%, respectively). However, the risk of radiation necrosis (RN) was higher for LINAC resection cavity SRS (5.4% vs. 10%, p = 0.036). The volume of the resection cavity was a significant modifying factor for RN in both modalities (p = 0.007) with a 0.5% and 0.7% increase in RN risk with every 1 cm3 increase in tumor volume for GK and LINAC, respectively. CONCLUSIONS Our meta-analysis suggests that GK and LINAC SRS of resection cavity achieve comparable 1-year local control and survival. However, resection cavity treated with GK SRS was associated with lowered RN risk relative to those treated with LINAC SRS.
Collapse
Affiliation(s)
- Rajiv Dharnipragada
- University of Minnesota Medical School, University of Minnesota Twin-Cities, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
- University of Minnesota Medical School, University of Minnesota Twin-Cities, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
| | - Kathryn Dusenbery
- Department of Radiation Oncology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Yoichi Watanabe
- Department of Radiation Oncology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| |
Collapse
|
3
|
Kübler J, Wester-Ebbinghaus M, Wenz F, Stieler F, Bathen B, Mai SK, Wolff R, Hänggi D, Blanck O, Giordano FA. Postoperative stereotactic radiosurgery and hypofractionated radiotherapy for brain metastases using Gamma Knife and CyberKnife: a dual-center analysis. J Neurosurg Sci 2024; 68:22-30. [PMID: 32031357 DOI: 10.23736/s0390-5616.20.04830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
BACKGROUND Postoperative stereotactic radiosurgery (SRS) and hypofractionated stereotactic radiotherapy (hFSRT) to tumor cavities is emerging as a new standard of care after resection of brain metastases. Both Gamma Knife (GK) and CyberKnife (CK) are modalities commonly used for stereotactic radiotherapy, but fractional schemes are not consistent. The objective of this study was to evaluate outcomes in patients receiving postoperative stereotactic radiotherapy of resected brain metastases (BM) using different fractionation schedules and modalities in two large centers. METHODS Patients with newly diagnosed BM who underwent postoperative SRS or hFSRT with either GK or CK at two large cancer centers were retrospectively evaluated. We analyzed local control (LC), regional control (RC) and overall survival (OS). RESULTS From April 14th to May 18th, 2020, 79 patients with 81 resection cavities were treated. Forty-seven patients (59.5%) received GK and 32 patients (40.5%) received CK treatment. Fifty-four cavities (66.7%) were treated with hFSRT and 27 (33.3%) with SRS. The most common hFSRT and SRS scheme was 3x10 Gy and 1x16 Gy, respectively. Median OS was 11.7 months with survival rates of 44.7% at 1 year and 18.5% at 2 years. LC was 83.3% after 1 year. Median time to regional progression was 12.0 months with RC rates of 61.1% at 6 months and 41.0% at 12 months. There was no difference in OS, LC or RC between GK and CK treatments or SRS and hFSRT. CONCLUSIONS Both SRS and hFSRT provide high local control rates in resected BM regardless of the applied modality.
Collapse
Affiliation(s)
- Jens Kübler
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Wester-Ebbinghaus
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Florian Stieler
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bastian Bathen
- Saphir Radiosurgery Center Frankfurt, Frankfurt am Main, Germany
- Department of Radiation Oncology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sabine K Mai
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert Wolff
- Saphir Radiosurgery Center Frankfurt, Frankfurt am Main, Germany
- Department of Neurosurgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Oliver Blanck
- Saphir Radiosurgery Center Frankfurt, Frankfurt am Main, Germany
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany -
| |
Collapse
|
4
|
Duan Y, Feng A, Wang H, Chen H, Gu H, Shao Y, Huang Y, Shen Z, Kong Q, Xu Z. Dosimetry and treatment efficiency of SBRT using TaiChiB radiotherapy system for two-lung lesions with one overlapping organs at risk. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:379-394. [PMID: 38217628 DOI: 10.3233/xst-230176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Purpose This study aims to assess the dosimetry and treatment efficiency of TaiChiB-based Stereotactic Body Radiotherapy (SBRT) plans applying to treat two-lung lesions with one overlapping organs at risk. Methods For four retrospective patients diagnosed with two-lung lesions each patient, four treatment plans were designed including Plan Edge, TaiChiB linac-based, RGS-based, and a linac-RGS hybrid (Plan TCLinac, Plan TCRGS, and Plan TCHybrid). Dosimetric metrics and beam-on time were employed to evaluate and compare the TaiChiB-based plans against Plan Edge. Results For Conformity Index (CI), Plan TCRGS outperformed all other plans with an average CI of 1.06, as opposed to Plan Edge's 1.33. Similarly, for R50 %, Plan TCRGS was superior with an average R50 % of 3.79, better than Plan Edge's 4.28. In terms of D2 cm, Plan TCRGS also led with an average of 48.48%, compared to Plan Edge's 56.25%. For organ at risk (OAR) sparing, Plan TCRGS often displayed the lowest dosimetric values, notably for the spinal cord (Dmax 5.92 Gy) and lungs (D1500cc 1.00 Gy, D1000cc 2.61 Gy, V10 Gy 15.14%). However, its high Dmax values for the heart and great vessels sometimes exceeded safety thresholds. Plan TCHybrid presented a balanced approach, showing doses comparable to or better than Plan Edge without crossing safety limits. In terms of beam-on time, Plan TCLinac emerged as the most efficient treatment option in three out of four cases, followed closely by Plan Edge in one case. Plan TCRGS, despite its dosimetric advantages, was the least efficient, recording notably longer beam-on times, with a peak at 33.28 minutes in Case 2. Conclusion For patients with two-lung lesions treated by SBRT whose one lesion overlaps with OARs, the Plan TCHybrid delivered by TaiChiB digital radiotherapy system can be recommended as a clinical option.
Collapse
Affiliation(s)
- Yanhua Duan
- Institute of Modern Physics, Fudan University, Shanghai, China
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aihui Feng
- Institute of Modern Physics, Fudan University, Shanghai, China
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wang
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Hua Chen
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Hengle Gu
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Yan Shao
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Ying Huang
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Zhenjiong Shen
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Qing Kong
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Zhiyong Xu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Spaniol M, Abo-Madyan Y, Ruder AM, Fleckenstein J, Giordano FA, Stieler F. Homogenous dose prescription in Gamma Knife Radiotherapy: Combining the best of both worlds. Phys Med 2024; 117:103202. [PMID: 38159546 DOI: 10.1016/j.ejmp.2023.103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/28/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
PURPOSE Stereotactic radiosurgery with linear accelerators (LINACs) or Leksell Gamma Knife® (LGK, Elekta AB) is an established treatment option for intracranial tumors. When those are involving/abutting organs at risk (OAR), homogenous and normofractionated treatments outmatch single fraction deliveries. In such situations, it would be desirable to balance LINAC's homogeneity benefits with LGK's dose gradient attributes. In this study, we determined homogeneity and OAR sparing ranges using a non-clinical, homogenous prototype version of LGK Lightning. METHODS We retrospectively analyzed thirty fractionated LGK Icon in-house patients with acoustic neuromas, pituitary adenomas and meningiomas. Four treatment plans were generated (54 Gy,1.8 Gy/fx) per patient: one LINAC plan, one clinical Lightning plan ("LGK") and two prototype Lightning plans ("LGK Hom" and "LGK OAR"). We analyzed Dmean and D2% for different OAR, Gradient Index (GI), Paddick Conformity Index (PCI), Homogeneity Index (HI) and beam-on-time (BOT). RESULTS While the LINAC vs. Lightning plans (LGK Hom|LGK OAR|LGK) boast better homogeneity (median: 1.08 vs. 1.18|1.24|1.35) and shorter BOT (median: 137 s vs. 432 s|510 s|510 s), Lightning plans show improved GI (median: 6.68 vs. 3.86|3.50|3.19), similar PCI (median: 0.75 vs. 0.76|0.75|0.82) and significantly reduced OAR doses. For in-tumor OAR, LGK Hom and LINAC plans achieves similar OAR sparing with improved GI for LGK Hom. CONCLUSIONS This study is a preliminary attempt to combine the dosimetric advantages of LINAC and LGK treatment planning. We observed that LGK plan homogeneity can be improved toward LINAC standards while maintaining the LGK advantage of favorable OAR doses and GI. Additionally, in-tumor OAR hotspots can be considerably reduced.
Collapse
Affiliation(s)
- Manon Spaniol
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Germany, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Yasser Abo-Madyan
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Germany, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Arne M Ruder
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Germany, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Jens Fleckenstein
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Germany, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Frank A Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Germany, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Florian Stieler
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Germany, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
6
|
Shah SN, Shah SS, Kaki P, Satti SR, Shah SA. Efficacy of Dose-Escalated Hypofractionated Radiosurgery for Arteriovenous Malformations. Cureus 2024; 16:e52514. [PMID: 38371098 PMCID: PMC10874255 DOI: 10.7759/cureus.52514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
There is considerable controversy about the management of arteriovenous malformations (AVMs) that are high risk for surgical resection. Stereotactic radiosurgery (SRS) has a reported success rate of less than 50% with unacceptably high rates of radiation necrosis with larger AVM volumes. Neither volume staging nor hypo-fractionated SRS have conclusively been demonstrated to improve results. We hypothesized that the failure of previous hypo-fractionation SRS trials was due to an insufficient biologically effective dose (BED) of radiation. We initiated a pilot study of treating AVM patients with a total dose divided into three or five fractions designed to deliver the equivalent BED of 20 Gy in a single fraction (α/β =3). We performed a retrospective analysis of 37 AVM patients who had a minimum of two years of follow-up or underwent obliteration. Patients were treated with 30 Gy/3 fractions, 33 Gy/3 fractions, or 40 Gy/5 fractions using a CyberKnife device (Accuracy Incorporated, Madison, Wisconsin, United States). The primary endpoint was complete AVM obliteration, determined by MRA imaging. Most obliterations were confirmed with diagnostic cerebral angiography. Secondary endpoints were post-radiosurgery hemorrhage and radiation-related necrosis. Kaplan-Meier analysis was used to determine obliteration rates. From 2013 to 2021, 37 patients fitting inclusion criteria were identified (62% male, average age at treatment = 48.88 years). Fifteen (41%) patients had prior treatment (surgery, radiosurgery, embolization) for their AVM, 32 (86%) had AVMs in eloquent locations, 17 (46%) had high-risk features, and 14 (38%) experienced AVM rupture prior to treatment. The average modified radiosurgery-based AVM score (mRBAS) was 1.81 (standard deviation (SD)= 0.52), and the mean AVM volume was 6.77 ccs (SD = 6.09). Complete AVM obliteration was achieved in 100% of patients after an average of 26.13 (SD = 14.62) months. The Kaplan-Meier analysis showed AVM obliteration rates at one, two, and three years to be 16.2%, 46.9%, and 81.1%, respectively. Post-operative AVM rupture or hemorrhage occurred in one (2.7%) patient, after nine months. Radiation necrosis occurred in four (11%) patients after an average period of 17.3 (SD =14.7) months. The SRS dose used in this study is the highest BED of any AVM hypofractionation trial in the published literature. This study suggests that dose-escalated hypofractionated radiosurgery can be a successful strategy for AVMs with acceptable long-term complication rates. Further investigation of this treatment regimen should be performed to assess its efficacy.
Collapse
Affiliation(s)
- Sophia N Shah
- Radiation Oncology, Christiana Care Health System, Newark, USA
| | - Sohan S Shah
- Radiation Oncology, Christiana Care Health System, Newark, USA
| | - Praneet Kaki
- Radiation Oncology, Christiana Care Health System, Newark, USA
| | - Sudhakar R Satti
- Interventional Neuroradiology, Christiana Care Health System, Newark, USA
| | - Sunjay A Shah
- Radiation Oncology, Christiana Care Health System, Newark, USA
| |
Collapse
|
7
|
Levis M, Gastino A, De Giorgi G, Mantovani C, Bironzo P, Mangherini L, Ricci AA, Ricardi U, Cassoni P, Bertero L. Modern Stereotactic Radiotherapy for Brain Metastases from Lung Cancer: Current Trends and Future Perspectives Based on Integrated Translational Approaches. Cancers (Basel) 2023; 15:4622. [PMID: 37760591 PMCID: PMC10526239 DOI: 10.3390/cancers15184622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Brain metastases (BMs) represent the most frequent metastatic event in the course of lung cancer patients, occurring in approximately 50% of patients with non-small-cell lung cancer (NSCLC) and in up to 70% in patients with small-cell lung cancer (SCLC). Thus far, many advances have been made in the diagnostic and therapeutic procedures, allowing improvements in the prognosis of these patients. The modern approach relies on the integration of several factors, such as accurate histological and molecular profiling, comprehensive assessment of clinical parameters and precise definition of the extent of intracranial and extracranial disease involvement. The combination of these factors is pivotal to guide the multidisciplinary discussion and to offer the most appropriate treatment to these patients based on a personalized approach. Focal radiotherapy (RT), in all its modalities (radiosurgery (SRS), fractionated stereotactic radiotherapy (SRT), adjuvant stereotactic radiotherapy (aSRT)), is the cornerstone of BM management, either alone or in combination with surgery and systemic therapies. We review the modern therapeutic strategies available to treat lung cancer patients with brain involvement. This includes an accurate review of the different technical solutions which can be exploited to provide a "state-of-art" focal RT and also a detailed description of the systemic agents available as effective alternatives to SRS/SRT when a targetable molecular driver is present. In addition to the validated treatment options, we also discuss the future perspective for focal RT, based on emerging clinical reports (e.g., SRS for patients with many BMs from NSCLC or SRS for BMs from SCLC), together with a presentation of innovative and promising findings in translational research and the combination of novel targeted agents with SRS/SRT.
Collapse
Affiliation(s)
- Mario Levis
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Alessio Gastino
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Greta De Giorgi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Cristina Mantovani
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paolo Bironzo
- Oncology Unit, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy;
| | - Luca Mangherini
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Umberto Ricardi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| |
Collapse
|
8
|
Yan M, Holden L, Detsky J, Tseng CL, Soliman H, Myrehaug S, Husain Z, Das S, Yeboah C, Lipsman N, Ruschin M, Sahgal A. Conventionally fully fractionated Gamma Knife Icon re-irradiation of primary recurrent intracranial tumors: the first report indicating feasibility and safety. J Neurosurg 2023; 138:674-682. [PMID: 35986735 DOI: 10.3171/2022.6.jns22998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE With the incorporation of real-time image guidance on the Gamma Knife system allowing for mask-based immobilization (Gamma Knife Icon [GKI]), conventionally fully fractionated (1.8-3.0 Gy/day) GKI radiation can now be delivered to take advantage of an inherently minimal margin for delivery uncertainty, sharp dose falloff, and inhomogeneous dose distribution. This case series details the authors' preliminary experience in re-irradiating 7 complex primary intracranial tumors, which were considered to have been previously maximally radiated and situated adjacent to critical organs at risk. METHODS The authors retrospectively reviewed all patients who received fractionated re-irradiation using GKI at the Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada, between 2016 and 2021. Patients with brain metastases, and those who received radiotherapy courses in 5 or fewer fractions, were excluded. All radiotherapy doses were converted to the equivalent total dose in 2-Gy fractions (EQD2), with the assumption of an α/β ratio of 2 for late normal tissue toxicity and 10 for the tumor. RESULTS A total of 7 patients were included in this case series. Three patients had recurrent meningiomas, as well as 1 patient each with ependymoma, intracranial sarcoma, pituitary macroadenoma, and papillary pineal tumor. Six patients had undergone prior linear accelerator-based conventional fractionated radiotherapy and 1 patient had undergone prior proton therapy. Patients were re-irradiated with a median (range) total dose of 50.4 (30-63.4) Gy delivered in a median (range) of 28 (10-38) fractions with GKI. The median (range) target volume was 6.58 (0.2-46.3) cm3. The median (range) cumulative mean EQD2 administered to the tumor was 121.1 (107.9-181.3) Gy, and the median (range) maximum point EQD2 administered to the brainstem, optic nerves, and optic chiasm were 91.6 (74.0-111.5) Gy, 58.9 (6.3-102.9) Gy, and 59.9 (36.7-127.3) Gy, respectively. At a median (range) follow-up of 15 (6-42) months, 6 of 7 patients were alive with 4 having locally controlled disease. Only 3 patients experienced treatment-related toxicities, which were self-limited. CONCLUSIONS Fractionated radiotherapy using GKI may be a safe and effective method for the re-irradiation of complex progressive primary intracranial tumors, where the aim is to minimize the potential for serious late effects.
Collapse
Affiliation(s)
- Michael Yan
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Lori Holden
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Jay Detsky
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Chia-Lin Tseng
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Hany Soliman
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Sten Myrehaug
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Zain Husain
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Sunit Das
- 2Division of Neurosurgery, St. Michael's Hospital
| | - Collins Yeboah
- 3Department of Medical Physics, Sunnybrook Health Sciences Centre; and
| | - Nir Lipsman
- 4Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Mark Ruschin
- 3Department of Medical Physics, Sunnybrook Health Sciences Centre; and
| | - Arjun Sahgal
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| |
Collapse
|
9
|
Albers EAC, de Ruiter MB, van de Poll-Franse LV, Merckel LG, Compter A, Schagen SB. Neurocognitive functioning after Gamma Knife and LINAC stereotactic radiosurgery in patients with brain metastases. J Neurooncol 2022; 160:649-658. [PMID: 36454373 PMCID: PMC9713121 DOI: 10.1007/s11060-022-04185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE Brain metastases (BM) themselves and treatment with stereotactic radiosurgery (SRS) can influence neurocognitive functioning. This prospective study aimed to assess neurocognitive decline in patients with BM after SRS. METHODS A neuropsychological test battery was assessed yielding ten test outcomes. Neurocognitive decline at 3 and 6 months post SRS was compared to measurement prior to Gamma Knife (GK) or linear accelerator (LINAC) SRS. Reliable change indices with correction for practice effects were calculated to determine the percentage of neurocognitive decline (defined as decline on ≥ 2 test outcomes). Risk factors of neurocognitive decline were analyzed with binary logistic regression. RESULTS Of 194 patients pre-SRS, 40 GK and 29 LINAC patients had data accessible at 6 months. Compared to baseline, 38% of GK patients declined at 3 months, and 23% declined at 6 months. GK patients declined on attention, executive functioning, verbal memory, and fine motor skill. Of LINAC patients, 10% declined at 3 months, and 24% at 6 months. LINAC patients declined on executive functioning, verbal memory, and fine motor skills. Risk factors of neurocognitive decline at 3 months were high age, low education level and type of SRS (GK or LINAC). At 6 months, high age was a risk factor. Karnofsky Performance Scale, BM volume, number of BM, tumor progression and neurocognitive impairment pre-SRS were no risk factors. CONCLUSION Neurocognitive decline occurs in a considerable proportion of patients with BM treated with GK or LINAC SRS. Overall, high age appears to be a risk factor for neurocognitive decline after SRS.
Collapse
Affiliation(s)
- Elaine A C Albers
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Michiel B de Ruiter
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Lonneke V van de Poll-Franse
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Research and Development, Netherlands Comprehensive Cancer Organization, Utrecht, The Netherlands
- Department of Medical and Clinical Psychology, Centre of Research on Psychological and Somatic Disorders (CoRPS), Tilburg University, Tilburg, The Netherlands
| | - Laura G Merckel
- Department of Radiotherapy, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Annette Compter
- Department of Neuro-Oncology, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Sanne B Schagen
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Nakano H, Takizawa T, Kawahara D, Tanabe S, Utsunomiya S, Kaidu M, Maruyama K, Takeuchi S, Onda K, Koizumi M, Nishio T, Ishikawa H. Radiobiological evaluation considering the treatment time with stereotactic radiosurgery for brain metastases. BJR Open 2022; 4:20220013. [PMID: 38525167 PMCID: PMC10958663 DOI: 10.1259/bjro.20220013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
Objective We evaluated the radiobiological effect of the irradiation time with the interruption time of stereotactic radiosurgery (SRS) using CyberKnife® (CK) systemfor brain metastases. Methods We used the DICOM data and irradiation log file of the 10 patients with brain metastases from non-small-cell lung cancer (NSCLC) who underwent brain SRS. We defined the treatment time as the sum of the dose-delivery time and the interruption time during irradiations, and we used a microdosimetric kinetic model (MKM) to evaluate the radiobiological effects of the treatment time. The biological parameters, i.e. α0, β0, and the DNA repair constant rate (a + c), were acquired from NCI-H460 cell for the MKM. We calculated the radiobiological dose for the gross tumor volume (GTVbio) to evaluate the treatment time's effect compared with no treatment time as a reference. The D95 (%) and the Radiation Therapy Oncology Group conformity index (RCI) and Paddick conformity index (PCI) were calculated as dosimetric indices. We used several DNA repair constant rates (a + c) (0.46, 1.0, and 2.0) to assess the radiobiological effect by varying the DNA repair date (a + c) values. Results The mean values of D95 (%), RCI, and PCI for GTVbio were 98.8%, 0.90, and 0.80, respectively, and decreased with increasing treatment time. The mean values of D95 (%), RCI, and PCI of GTVbio at 2.0 (a+c) value were 94.9%, 0.71, and 0.49, respectively. Conclusion The radiobiological effect of the treatment time on tumors was accurately evaluated with brain SRS using CK. Advances in knowledge There has been no published investigation of the radiobiological impact of the longer treatment time with multiple interruptions of SRS using a CK on the target dose distribution in a comparison with the use of a linac. Radiobiological dose assessment that takes into account treatment time in the physical dose in this study may allow more accurate dose assessment in SRS for metastatic brain tumors using CK.
Collapse
Affiliation(s)
| | | | - Daisuke Kawahara
- Department of Radiation Oncology, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, Japan
| | - Satoshi Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Satoru Utsunomiya
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Motoki Kaidu
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Katsuya Maruyama
- Department of Radiation Oncology, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-ku, Niigata-shi, Niigata, Japan
| | - Shigekazu Takeuchi
- Department of Neurosurgery, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-ku, Niigata-shi, Niigata, Japan
| | - Kiyoshi Onda
- Department of Neurosurgery, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-ku, Niigata-shi, Niigata, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, Japan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| |
Collapse
|
11
|
Gallitto M, Savacool M, Lee A, Wang TJC, Sisti MB. Feasibility of fractionated gamma knife radiosurgery in the management of newly diagnosed Glioblastoma. BMC Cancer 2022; 22:1095. [PMID: 36289477 PMCID: PMC9608921 DOI: 10.1186/s12885-022-10162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, with overall survival remaining poor despite ongoing efforts to explore new treatment paradigms. Given these outcomes, efforts have been made to shorten treatment time. Recent data report on the safety of CyberKnife (CK) fractionated stereotactic radiosurgery (SRS) in the management of GBM using a five-fraction regimen. The latest Gamma Knife (GK) model also supports frameless SRS, and outcomes using GK SRS in the management of primary GBM have not yet been reported. OBJECTIVE To report on the feasibility of five-fraction SRS with the GammaKnife ICON in the management of newly diagnosed GBM. METHODS In this single institutional study, we retrospectively reviewed all patients from our medical center from January 2017 through December 2021 who received fractionated SRS with Gamma Knife ICON for newly diagnosed GBM. Patient demographics, upfront surgical margins, molecular subtyping, radiation treatment volumes, systemic therapies, and follow-up imaging findings were extracted to report on oncologic outcomes. RESULTS We identified six patients treated within the above time frame. Median age at diagnosis was 73.5 years, 66% were male, and had a median Karnofsky Performance Status (KPS) of 70. All tumors were IDH wild-type, and all but one were MGMT methylated and received concurrent temozolomide (TMZ). Within this group, progression free survival was comparable to that of historical data without significant radiation-induced toxicities. CONCLUSION Gamma Knife ICON may be discussed as a potential treatment option for select GBM patients and warrants further investigation in the prospective setting.
Collapse
Affiliation(s)
- Matthew Gallitto
- grid.21729.3f0000000419368729Department of Radiation Oncology, Columbia University Irving Medical Center, 10032 New York, NY USA
| | - Michelle Savacool
- grid.21729.3f0000000419368729Department of Radiation Oncology, Columbia University Irving Medical Center, 10032 New York, NY USA
| | - Albert Lee
- grid.21729.3f0000000419368729Department of Radiation Oncology, Columbia University Irving Medical Center, 10032 New York, NY USA
| | - Tony J. C. Wang
- grid.21729.3f0000000419368729Department of Radiation Oncology, Columbia University Irving Medical Center, 10032 New York, NY USA
| | - Michael B. Sisti
- grid.21729.3f0000000419368729Department of Neurological Surgery, Columbia University Irving Medical Center, 10032 New York, NY USA
| |
Collapse
|
12
|
Asso RN, Mancini A, Palhares DMF, Junior WFPPN, Marta GN, da Silva JLF, Ramos BFG, Gadia R, Hanna SA. Radiosurgery for multiple brain metastases using volumetric modulated arc therapy: a single institutional series. Rep Pract Oncol Radiother 2022; 27:593-601. [PMID: 36196425 PMCID: PMC9521688 DOI: 10.5603/rpor.a2022.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Patients with brain metastases (BM) live longer due to improved diagnosis and oncologic treatments. The association of volumetric modulated arc therapy (VMAT) and image-guided radiation therapy (IGRT) with brain radiosurgery (SRS) allows complex dose distributions and faster treatment delivery to multiple lesions. Materials and methods This study is a retrospective analysis of SRS for brain metastasis using VMAT. The primary endpoints were local disease-free survival (LDFS) and overall survival (OS). The secondary outcomes were intracranial disease-free survival (IDFS) and meningeal disease-free survival (MDFS). Results The average number of treated lesions was 5.79 (range: 2-20) per treatment in a total of 113 patients. The mean prescribed dose was 18 Gy (range: 12-24 Gy). The median LDFS was 46 months. The LDFS in 6, 12, and 24 months was for 86%, 79%, and 63%, respectively. Moreover, brain progression occurred in 50 patients. The median overall survival was 47 months. The OS in 75%, 69%, and 61% patients was 6, 12, and 24 months, respectively. IDFS was 6 and 24 months in 35% and 14% patients, respectively. The mean MDFS was 62 months; it was 6 and 24 months for 87% and 83% of patients. Acute severe toxicity was relatively rare. During follow-up, the rates of radionecrosis and neurocognitive impairment were low (10%). Conclusion The use of VMAT-SRS for multiple BM was feasible, effective, and associated with low treatment-related toxicity rates. Thus, treatment with VMAT is a safe technique to plan to achieve local control without toxicity.
Collapse
Affiliation(s)
- Rie Nadia Asso
- McGill University Health Centre Glen Site (MUHC), Montreal, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Takizawa T, Tanabe S, Nakano H, Utsunomiya S, Sakai M, Maruyama K, Takeuchi S, Nakano T, Ohta A, Kaidu M, Ishikawa H, Onda K. The impact of target positioning error and tumor size on radiobiological parameters in robotic stereotactic radiosurgery for metastatic brain tumors. Radiol Phys Technol 2022; 15:135-146. [DOI: 10.1007/s12194-022-00655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/01/2022]
|
14
|
Chan M, Gevaert T, Kadoya N, Dorr J, Leung R, Alheet S, Toutaoui A, Farias R, Wong M, Skourou C, Valenti M, Farré I, Otero-Martínez C, O'Doherty D, Waldron J, Hanvey S, Grohmann M, Liu H. Multi-center planning study of radiosurgery for intracranial metastases through Automation (MC-PRIMA) by crowdsourcing prior web-based plan challenge study. Phys Med 2022; 95:73-82. [DOI: 10.1016/j.ejmp.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 10/19/2022] Open
|
15
|
Mantovani C, Gastino A, Cerrato M, Badellino S, Ricardi U, Levis M. Modern Radiation Therapy for the Management of Brain Metastases From Non-Small Cell Lung Cancer: Current Approaches and Future Directions. Front Oncol 2021; 11:772789. [PMID: 34796118 PMCID: PMC8593461 DOI: 10.3389/fonc.2021.772789] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Brain metastases (BMs) represent the most frequent event during the course of Non-Small Cell Lung Cancer (NSCLC) disease. Recent advancements in the diagnostic and therapeutic procedures result in increased incidence and earlier diagnosis of BMs, with an emerging need to optimize the prognosis of these patients through the adoption of tailored treatment solutions. Nowadays a personalized and multidisciplinary approach should rely on several clinical and molecular factors like patient’s performance status, extent and location of brain involvement, extracranial disease control and the presence of any “druggable” molecular target. Radiation therapy (RT), in all its focal (radiosurgery and fractionated stereotactic radiotherapy) or extended (whole brain radiotherapy) declinations, is a cornerstone of BMs management, either alone or combined with surgery and systemic therapies. Our review aims to provide an overview of the many modern RT solutions available for the treatment of BMs from NSCLC in the different clinical scenarios (single lesion, oligo and poly-metastasis, leptomeningeal carcinomatosis). This includes a detailed review of the current standard of care in each setting, with a presentation of the literature data and of the possible technical solutions to offer a “state-of-art” treatment to these patients. In addition to the validated treatment options, we will also discuss the future perspectives on emerging RT technical strategies (e.g., hippocampal avoidance whole brain RT, simultaneous integrated boost, radiosurgery for multiple lesions), and present the innovative and promising findings regarding the combination of novel targeted agents such as tyrosine kinase inhibitors and immune checkpoint inhibitors with brain irradiation.
Collapse
Affiliation(s)
| | | | - Marzia Cerrato
- Department of Oncology, University of Torino, Torino, Italy
| | | | | | - Mario Levis
- Department of Oncology, University of Torino, Torino, Italy
| |
Collapse
|
16
|
Hypofractionated Stereotactic Radiotherapy for the Treatment of Benign Intracranial Meningiomas: Long-Term Safety and Efficacy. ACTA ACUST UNITED AC 2021; 28:3683-3691. [PMID: 34590613 PMCID: PMC8482200 DOI: 10.3390/curroncol28050314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022]
Abstract
Introduction: Hypofractionated stereotactic radiotherapy (hSRT) has emerged as an alternative to single-fraction stereotactic radiosurgery (SRS) and conventionally fractionated radiotherapy for the treatment of intracranial meningiomas (ICMs). However, there is a need for data showing long-term efficacy and complication rates, particularly for larger tumors in sensitive locations. Methods: A retrospective review was conducted on adult patients with ICMs seen at a tertiary care center. Eligible patients were treated with the CyberKnife platform and had a planned treatment course of 3–5 fractions from 2011–2020. The local control was assessed based on radiographic stability and the late toxicity/radionecrosis rates were recorded. Radiographic progression-free survival (PFS) and overall survival (OS) were estimated using the Kaplan–Meier method. Results: In total, 62 patients (age 26–87) with 67 treated tumors were included in this study with a median follow-up of 64.7 months. RT was delivered as the primary treatment in 62.7% of cases and for recurrence in 37.3%. The most common tumor locations were the convexity of the brain and the base of the skull. The tumor sizes ranged from 0.1–51.8 cc and the median planning target volume was 4.9 cc. The most common treatment schedule was 18 Gy in 3 fractions. The five-year PFS and OS were 85.2% and 91.0%, respectively. The late grade III/IV toxicity rate was 3.2% and the radionecrosis rate was 4.8%. Conclusions: Based on our data, hSRT remains an effective modality to treat low-grade ICMs with acceptable long-term toxicity and radionecrosis rates. hSRT should be offered to patients who are not ideal candidates for SRS while preserving the benefits of hypofractionation.
Collapse
|
17
|
Myrehaug S, Hudson J, Soliman H, Ruschin M, Tseng CL, Detsky J, Husain Z, Keith J, Atenafu EG, Maralani P, Heyn C, Das S, Lipsman N, Sahgal A. Hypofractionated Stereotactic Radiation Therapy for Intact Brain Metastases in 5 Daily Fractions: Effect of Dose on Treatment Response. Int J Radiat Oncol Biol Phys 2021; 112:342-350. [PMID: 34537313 DOI: 10.1016/j.ijrobp.2021.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/13/2021] [Accepted: 09/01/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE Multileaf collimator (MLC) linear accelerator (Linac)-based hypofractionated stereotactic radiation therapy (HSRT) is increasingly used not only for large brain metastases or those adjacent to critical structures but also for those metastases that would otherwise be considered for single-fraction radiosurgery (SRS). However, data on outcomes in general are limited, and there is a lack of understanding regarding optimal dosing. Our aim was to report mature image-based outcomes for MLC-Linac HSRT with a focus on clinical and dosimetric factors associated with local failure (LF). METHODS AND MATERIALS A total of 220 patients with 334 brain metastases treated with HSRT were identified. All patients were treated using a 5-fraction daily regimen and were followed with clinical evaluation and volumetric magnetic resonance imaging every 2 to 3 months. Overall survival and progression-free survival were calculated using the Kaplan-Meier method, with LF determined using Fine and Gray's competing risk method. Predictive factors were identified using Cox regression multivariate analysis. RESULTS Median follow-up was 10.8 months. Median size of treated metastasis was 1.9 cm; 60% of metastases were <2 cm in size. The median total dose was 30 Gy in 5 fractions; 36% of the cohort received <30 Gy. The median time to LF and 12-month cumulative incidence of LF was 8.5 months and 23.8%, respectively. Median time to death and 12-month overall survival rates were 11.8 months and 48.2%, respectively. Fifty-two metastases (15.6%) had an adverse radiation effect, of which 32 (9.5%) were symptomatic necrosis. Multivariable analysis identified worse LF in patients who received a total dose of <30 Gy (hazard ratio, 1.62; P = .03), with LF at 6 and 12 months of 13% and 33% for patients treated with <30 Gy versus 5% and 19% for patients treated with >30 Gy. Exploratory analysis demonstrated a dose-response effect observed in all histologic types, including among breast cancer subtypes. CONCLUSION Optimal local control is achieved with HSRT of ≥30 Gy in 5 daily fractions, independent of tumor volume and histology, with an acceptable risk of radiation necrosis.
Collapse
Affiliation(s)
- Sten Myrehaug
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Ontario, Canada.
| | - John Hudson
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Mark Ruschin
- Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Zain Husain
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Julia Keith
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, University Health Network, Ontario, Canada
| | - Pejman Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Chris Heyn
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Sunit Das
- Department of Neurosurgery, St. Michaels Hospital, Ontario, Canada
| | - Nir Lipsman
- Department of Neurosurgery, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Ontario, Canada
| |
Collapse
|
18
|
Biltekin F, Yazici G. Dosimetric comparison and secondary malignancy risk estimation for linac-based and robotic stereotactic radiotherapy in uveal melanoma. Med Dosim 2021; 46:364-369. [PMID: 34011456 DOI: 10.1016/j.meddos.2021.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022]
Abstract
It was aimed to investigate the dosimetric differences among linac-based and robotic stereotactic radiotherapy (SRT) techniques for the treatment of uveal melanoma and to evaluate secondary malignancy risks for these different SRT techniques. Ten patients who received robotic SRT with CyberKnife were retrospectively included in this study. A total dose of 54 Gy in three fractions was prescribed to the planning target volume (PTV). For each patient, non-coplanar micro-multileaf collimator based dynamic conformal arc (DCA), intensity-modulated radiotherapy (IMRT) and circular cone based DCA (cDCA) plans were generated. During the analysis dose-volume histogram (DVH) parameters, homogeneity index, new conformity index, the volume received more than or equal to 30% and 50% of the prescribed dose were compared. Additionally, secondary malignancy risk for each technique was estimated using the risk factors recommended by The International Commission on Radiological Protection. Robotic SRT plans provided a high degree of conformity within the PTV and better normal tissue sparing compared to linac-based treatment plans. However, dose distribution was more heterogeneous in robotic SRT plans than that in linac-based techniques. Estimated secondary malignancy risk was also found as 3.4%, 1.4%, 1.4% and 1.6% for robotic SRT and linac-based IMRT, DCA, cDCA plans, respectively. Treatment parameters of uveal melanoma patients planned with robotic SRT had superior conformity and organ-at-risk (OAR) sparing compared with those planned with the linac-based system. However, estimated secondary malignancy risk was almost two-times higher in robotic SRT than that in linac-based techniques.
Collapse
Affiliation(s)
- Fatih Biltekin
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey.
| | - Gozde Yazici
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| |
Collapse
|
19
|
Bowden GN, Kim JO, Faramand A, Fallon K, Flickinger J, Lunsford LD. Clinical dose profile of Gamma Knife stereotactic radiosurgery for extensive brain metastases. J Neurosurg 2021; 134:1430-1434. [PMID: 32384280 DOI: 10.3171/2020.3.jns193369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/06/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The use of Gamma Knife stereotactic radiosurgery (GKSRS) for the treatment of extensive intracranial metastases has been expanding due to its superior dosimetry and efficacy. However, there remains a dearth of data regarding the dose parameters in actual clinical scenarios. The authors endeavored to calculate the radiation dose to the brain when treating ≥ 15 brain metastases with GKSRS. METHODS This retrospective analysis reviewed dosage characteristics for patients requiring single-session GKSRS for the treatment of ≥ 15 brain metastases. Forty-two patients met the inclusion criteria between 2008 and 2017. The median number of tumors at the initial GKSRS procedure was 20 (range 15-39 tumors), accounting for 865 tumors in this study. The median aggregate tumor volume was 3.1 cm3 (range 0.13-13.26 cm3), and the median marginal dose was 16 Gy (range 14-19 Gy). RESULTS The median of the mean brain dose was 2.58 Gy (range 0.95-3.67 Gy), and 79% of patients had a dose < 3 Gy. The 12-Gy dose volume was a median of 12.45 cm3, which was equivalent to 0.9% of the brain volume. The median percentages of brain receiving 5 Gy and 3 Gy were 6.7% and 20.4%, respectively. There was no correlation between the number of metastases and the mean dose to the brain (p = 0.8). A greater tumor volume was significantly associated with an increased mean brain dose (p < 0.001). The median of the mean dose to the bilateral hippocampi was 2.3 Gy. Sixteen patients had supplementary GKSRS, resulting in an additional mean dose of 1.4 Gy (range 0.2-3.8 Gy) to the brain. CONCLUSIONS GKSRS is a viable means of managing extensive brain metastases. This procedure provides a relatively low dose of radiation to the brain, especially when compared with traditional whole-brain radiation protocols.
Collapse
Affiliation(s)
- Gregory Neil Bowden
- 1Department of Neurological Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Jong Oh Kim
- Departments of2Radiation Oncology (Medical Physics) and
| | - Andrew Faramand
- 3Neurological Surgery and the Center for Image-Guided Neurosurgery, University of Pittsburgh, Pennsylvania; and
| | - Kevin Fallon
- 4Department of Radiation Oncology (Medical Physics), Medical University of South Carolina, Charleston, South Carolina
| | | | - L Dade Lunsford
- 3Neurological Surgery and the Center for Image-Guided Neurosurgery, University of Pittsburgh, Pennsylvania; and
| |
Collapse
|
20
|
Schelin ME, Liu H, Ali A, Shi W, Yu Y, Mooney KE. Dosimetric comparison of Gamma Knife® Icon TM and linear accelerator-based fractionated stereotactic radiotherapy (FSRT) plans for the re-irradiation of large (>14 cm 3) recurrent glioblastomas. JOURNAL OF RADIOSURGERY AND SBRT 2021; 7:233-243. [PMID: 33898087 PMCID: PMC8055238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Our objective is to investigate dosimetric differences between clinically deliverable Gamma Knife® (GK) Icon™ and linac-based FSRT plans on the basis of normal brain dose sparing for large (>14 cm3) recurrent glioblastomas (GBM). Sixteen patients with large, recurrent GBM were treated using re-irradiation via linac-based FSRT, 35 Gy in 10 fractions. For each patient, a new GK FSRT plan was created in Leksell GammaPlan® V11 (LGP). To maintain clinical deliverability, the LGP optimization included a planning goal of treatment time <20 minutes per fraction. Dosimetric comparison of coverage and normal brain dose between the linac and GK treatment plans was performed in MIM. The GK FSRT plans had significantly (p < 0.05) lower mean normal brain dose values (-8.85%), mean values of normal brain V20 (-32.4%) and V12 (-25.9%), and a lower mean V4 (-10.0%). GK FSRT plans have the potential to reduce the risk of radiation-related toxicities.
Collapse
Affiliation(s)
- Matthew E Schelin
- Department of Radiation Oncology, Thomas Jefferson University, Bodine Center for Radiation Therapy, 111 S. 11th Street, Philadelphia, PA 19107, USA
| | - Haisong Liu
- Department of Radiation Oncology, Thomas Jefferson University, Bodine Center for Radiation Therapy, 111 S. 11th Street, Philadelphia, PA 19107, USA
| | - Ayesha Ali
- Department of Radiation Oncology, Thomas Jefferson University, Bodine Center for Radiation Therapy, 111 S. 11th Street, Philadelphia, PA 19107, USA
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University, Bodine Center for Radiation Therapy, 111 S. 11th Street, Philadelphia, PA 19107, USA
| | - Yan Yu
- Department of Radiation Oncology, Thomas Jefferson University, Bodine Center for Radiation Therapy, 111 S. 11th Street, Philadelphia, PA 19107, USA
| | - Karen E Mooney
- Department of Radiation Oncology, Thomas Jefferson University, Bodine Center for Radiation Therapy, 111 S. 11th Street, Philadelphia, PA 19107, USA
| |
Collapse
|
21
|
Kaliyaperumal V, Abraham S, Veni M, Banerjee S, Tamilselvan S, Gupta D, Dayanithi K, Manigandan D, Mishra S, Bisht SS, Kataria T. Dosimetric Comparison of Robotic and Linear Accelerator Multi-Leaf Collimator-Based Stereotactic Radiosurgery for Arteriovenous Malformation. J Med Phys 2021; 46:16-25. [PMID: 34267485 PMCID: PMC8240906 DOI: 10.4103/jmp.jmp_79_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE To investigate the dosimetric comparison of different collimators which are used in robotic radiosurgery (cyberknife-CK) and linear accelerator (LINAC) for stereotactic radiosurgery (SRS) in arteriovenous malformation (AVM). MATERIALS AND METHODS Twenty-five AVM patients were planned in CK using FIXED cone, IRIS collimator, and multi-leaf collimator (MLC) based in LINAC. Dosimetric comparison was performed using Paddick conformity index (CIPaddick) and International Commission on Radiation Units and measurements (ICRU) homogeneity index (HIICRU), gradient score (GS), normal brain dose received by 10cc (D10cc) and critical structure (brain stem, optic chiasma, optic nerves) doses. Paired sample t-test was used for statistical analysis. RESULTS Mean treatment volume was 3.16cc (standard deviation ± 4.91cc). No significant deviation (P =0.45, 0.237 for FIXED vs. IRIS and FIXED vs. MLC, respectively) was found in target coverage. For CIPaddick, the mean difference (MD) between FIXED- and MLC-based plans was 0.16(P = 0.001); For HIICRU, difference between FIXED and IRIS was insignificant (0.5, P = 0.823); but, when FIXED versus MLC, the deviation was 7.99% (P = 0.002). In FIXED- and MLC-based plans, significant difference was found in GS70 and GS40 (P < 0.041 and 0.005, respectively). MD between FIXED- and MLC-based plans for normal brain for 5Gy, 10Gy, 12Gy, and 20Gy were 36.08cc (P = 0.009), 7.12cc (P = 0.000), 5.84cc (P = 0.000) and 1.56cc (P = 0.000), respectively. AVM volume <0.7cc should be treated with CK FIXED and >0.7cc were treated by using FIXED or IRIS collimators. AVM volume > 1.4cc can be treated by either LINAC MLC-based SRS or CK. CONCLUSION Our study shows CK collimator (IRIS and FIXED) could be able to treat brain AVMs in any size. Linac MLC-based SRS has some limitations in terms of conformity and low-dose spillage, and advantages like reduced treatment time and MU.
Collapse
Affiliation(s)
- Venkatesan Kaliyaperumal
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - Susan Abraham
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - Maragatha Veni
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - Susovan Banerjee
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - S Tamilselvan
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - Deepak Gupta
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - K. Dayanithi
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - D. Manigandan
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - Saumyaranjan Mishra
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - Shyam Singh Bisht
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| | - Tejinder Kataria
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India
| |
Collapse
|
22
|
Maraghechi B, Kim T, Mitchell TJ, Goddu SM, Dise J, Kavanaugh JA, Zoberi JE, Mutic S, Knutson NC. Filmless quality assurance of a Leksell Gamma Knife® Icon™. J Appl Clin Med Phys 2020; 22:59-67. [PMID: 33300664 PMCID: PMC7856498 DOI: 10.1002/acm2.13070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/18/2020] [Accepted: 09/20/2020] [Indexed: 11/05/2022] Open
Abstract
PURPOSE The annual quality assurance (QA) of Leksell Gamma Knife® (LGK) systems are typically performed using films. Film is a good candidate for small field dosimetry due to its high spatial resolution and availability. However, there are multiple challenges with using film; film does not provide real-time measurement and requires batch-specific calibration. Our findings show that active detector-based QA can simplify the procedure and save time without loss of accuracy. METHODS Annual QA tests for a LGK Icon™ system were performed using both film-based and filmless techniques. Output calibration, relative output factors (ROF), radiation profiles, sector uniformity/source counting, and verification of the unit center point (UCP) and radiation focal point (RFP) coincidence tests were performed. Radiochromic films, two ionization chambers, and a synthetic diamond detector were used for the measurements. Results were compared and verified with the treatment planning system (TPS). RESULTS The measured dose rate of the LGK Icon was within 0.4% of the TPS value set at the time of commissioning using an ionization chamber. ROF for the 8 and 4-mm collimators were found to be 0.3% and 1.8% different from TPS values using the MicroDiamond detector and 2.6% and 1.9% different for film, respectively. Excellent agreement was found between TPS and measured dose profiles using the MicroDiamond detector which was within 1%/1 mm vs 2%/1 mm for film. Sector uniformity was found to be within 1% for all eight sectors measured using an ionization chamber. Verification of UCP and RFP coincidence using the MicroDiamond detector and pinprick film test was within 0.3 mm at isocenter for both. CONCLUSION The annual QA of a LGK Icon was successfully performed by employing filmless techniques. Comparable results were obtained using radiochromic films. Utilizing active detectors instead of films simplifies the QA process and saves time without loss of accuracy.
Collapse
Affiliation(s)
- Borna Maraghechi
- Departments of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - Taeho Kim
- Departments of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - Timothy J Mitchell
- Departments of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - S Murty Goddu
- Departments of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - Joe Dise
- Departments of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - James A Kavanaugh
- Departments of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jacqueline E Zoberi
- Departments of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - Sasa Mutic
- Departments of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nels C Knutson
- Departments of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
23
|
Buatti JS, Buatti JM, Yaddanapudi S, Pennington EC, Wang D, Gross B, St‐Aubin JJ, Hyer DE, Smith MC, Flynn RT. Stereotactic radiotherapy of appropriately selected meningiomas and metastatic brain tumor beds with gamma knife icon versus volumetric modulated arc therapy. J Appl Clin Med Phys 2020; 21:246-252. [PMID: 33207030 PMCID: PMC7769414 DOI: 10.1002/acm2.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To determine if the gamma knife icon (GKI) can provide superior stereotactic radiotherapy (SRT) dose distributions for appropriately selected meningioma and post-resection brain tumor bed treatments to volumetric modulated arc therapy (VMAT). MATERIALS AND METHODS Appropriately selected targets were not proximal to great vessels, did not have sensitive soft tissue including organs-at-risk (OARs) within the planning target volume (PTV), and did not have concave tumors containing excessive normal brain tissue. Four of fourteen candidate meningioma patients and six of six candidate patients with brain tumor cavities were considered for this treatment planning comparison study. PTVs were generated for GKI and VMAT by adding 1 mm and 3 mm margins, respectively, to the GTVs. Identical PTV V100% -values were obtained for the GKI and VMAT plans for each patient. Meningioma and tumor bed prescription doses were 52.7-54.0 in 1.7-1.8 Gy fractions and 25 Gy in 5 Gy fractions, respectively. GKI dose rate was 3.735 Gy/min for 16 mm collimators. RESULTS PTV radical dose homogeneity index was 3.03 ± 0.35 for GKI and 1.27 ± 0.19 for VMAT. Normal brain D1% , D5% , and D10% were lower for GKI than VMAT by 45.8 ± 10.9%, 38.9 ± 11.5%, and 35.4 ± 16.5% respectively. All OARs considered received lower maximum doses for GKI than VMAT. GKI and VMAT treatment times for meningioma plans were 12.1 ± 4.13 min and 6.2 ± 0.32 min, respectively, and, for tumor cavities, were 18.1 ± 5.1 min and 11.0 ± 0.56 min, respectively. CONCLUSIONS Appropriately selected meningioma and brain tumor bed patients may benefit from GKI-based SRT due to the decreased normal brain and OAR doses relative to VMAT enabled by smaller margins. Care must be taken in meningioma patient selection for SRT with the GKI, even if they are clinically appropriate for VMAT.
Collapse
Affiliation(s)
- Jacob S. Buatti
- Department of Radiation OncologyUniversity of Iowa Hospital and Clinics200 Hawkins DriveIowa CityIA52242USA
| | - John M. Buatti
- Department of Radiation OncologyUniversity of Iowa Hospital and Clinics200 Hawkins DriveIowa CityIA52242USA
| | - Sridhar Yaddanapudi
- Department of Radiation OncologyUniversity of Iowa Hospital and Clinics200 Hawkins DriveIowa CityIA52242USA
| | - Edward C. Pennington
- Department of Radiation OncologyUniversity of Iowa Hospital and Clinics200 Hawkins DriveIowa CityIA52242USA
| | - Dongxu Wang
- Department of Radiation OncologyUniversity of Iowa Hospital and Clinics200 Hawkins DriveIowa CityIA52242USA
| | - Brandie Gross
- Department of Radiation OncologyUniversity of Iowa Hospital and Clinics200 Hawkins DriveIowa CityIA52242USA
| | - Joël J. St‐Aubin
- Department of Radiation OncologyUniversity of Iowa Hospital and Clinics200 Hawkins DriveIowa CityIA52242USA
| | - Daniel E. Hyer
- Department of Radiation OncologyUniversity of Iowa Hospital and Clinics200 Hawkins DriveIowa CityIA52242USA
| | - Mark C. Smith
- Department of Radiation OncologyUniversity of Iowa Hospital and Clinics200 Hawkins DriveIowa CityIA52242USA
| | - Ryan T. Flynn
- Department of Radiation OncologyUniversity of Iowa Hospital and Clinics200 Hawkins DriveIowa CityIA52242USA
| |
Collapse
|
24
|
Gutzmer R, Vordermark D, Hassel JC, Krex D, Wendl C, Schadendorf D, Sickmann T, Rieken S, Pukrop T, Höller C, Eigentler TK, Meier F. Melanoma brain metastases - Interdisciplinary management recommendations 2020. Cancer Treat Rev 2020; 89:102083. [PMID: 32736188 DOI: 10.1016/j.ctrv.2020.102083] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Melanoma brain metastases (MBM) are common and associated with a particularly poor prognosis; they directly cause death in 60-70% of melanoma patients. In the past, systemic treatments have shown response rates around 5%, whole brain radiation as standard of care has achieved a median overall survival of approximately three months. Recently, the combination of immune checkpoint inhibitors and combinations of MAP-kinase inhibitors both have shown very promising response rates of up to 55% and 58%, respectively, and improved survival. However, current clinical evidence is based on multi-cohort studies only, as prospectively randomized trials have been carried out rarely in MBM, independently whether investigating systemic therapy, radiotherapy or surgical techniques. Here, an interdisciplinary expert team reviewed the outcome of prospectively conducted clinical studies in MBM, identified evidence gaps and provided recommendations for the diagnosis, treatment, outcome evaluation and monitoring of MBM patients. The recommendations refer to four distinct scenarios: patients (i) with 'brain-only' disease, (ii) with oligometastatic asymptomatic intra- and extracranial disease, (iii) with multiple asymptomatic metastases, and (iv) with multiple symptomatic MBM or leptomeningeal disease. Changes in current management recommendations comprise the use of immunotherapy - preferably combined anti-CTLA-4/PD-1-immunotherapy - in asymptomatic MBM minus/plus stereotactic radiosurgery which remains the mainstay of local brain therapy being safe and effective. Adjuvant whole-brain radiotherapy provides no clinical benefit in oligometastatic MBM. Among the systemic therapies, combined MAPK-kinase inhibition provides, in BRAFV600-mutated patients with rapidly progressing or/and symptomatic MBM, an alternative to combined immunotherapy.
Collapse
Affiliation(s)
- Ralf Gutzmer
- Department of Dermatology and Allergy, Skin Cancer Center Hannover, Hannover Medical School, Germany.
| | - Dirk Vordermark
- Department for Radiation Oncology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Jessica C Hassel
- Skin Cancer Center, Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Dietmar Krex
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Christina Wendl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | | | - Stefan Rieken
- Policlinic for Radiation Therapy and Radiation Oncology, University Hospital Göttingen, Göttingen, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christoph Höller
- Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Thomas K Eigentler
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Friedegund Meier
- Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases, Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
25
|
Wilhelm ML, Chan MKH, Abel B, Cremers F, Siebert FA, Wurster S, Krug D, Wolff R, Dunst J, Hildebrandt G, Schweikard A, Rades D, Ernst F, Blanck O. Tumor-dose-rate variations during robotic radiosurgery of oligo and multiple brain metastases. Strahlenther Onkol 2020; 197:581-591. [PMID: 32588102 PMCID: PMC8219559 DOI: 10.1007/s00066-020-01652-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/02/2020] [Indexed: 12/31/2022]
Abstract
Purpose For step-and-shoot robotic stereotactic radiosurgery (SRS) the dose delivered over time, called local tumor-dose-rate (TDR), may strongly vary during treatment of multiple lesions. The authors sought to evaluate technical parameters influencing TDR and correlate TDR to clinical outcome. Material and methods A total of 23 patients with 162 oligo (1–3) and multiple (>3) brain metastases (OBM/MBM) treated in 33 SRS sessions were retrospectively analyzed. Median PTV were 0.11 cc (0.01–6.36 cc) and 0.50 cc (0.12–3.68 cc) for OBM and MBM, respectively. Prescription dose ranged from 16 to 20 Gy prescribed to the median 70% isodose line. The maximum dose-rate for planning target volume (PTV) percentage p in time span s during treatment (TDRs,p) was calculated for various p and s based on treatment log files and in-house software. Results TDR60min,98% was 0.30 Gy/min (0.23–0.87 Gy/min) for OBM and 0.22 Gy/min (0.12–0.63 Gy/min) for MBM, respectively, and increased by 0.03 Gy/min per prescribed Gy. TDR60min,98% strongly correlated with treatment time (ρ = −0.717, p < 0.001), monitor units (MU) (ρ = −0.767, p < 0.001), number of beams (ρ = −0.755, p < 0.001) and beam directions (ρ = −0.685, p < 0.001) as well as lesions treated per collimator (ρ = −0.708, P < 0.001). Median overall survival (OS) was 20 months and 1‑ and 2‑year local control (LC) was 98.8% and 90.3%, respectively. LC did not correlate with any TDR, but tumor response (partial response [PR] or complete response [CR]) correlated with all TDR in univariate analysis (e.g., TDR60min,98%: hazard ration [HR] = 0.974, confidence interval [CI] = 0.952–0.996, p = 0.019). In multivariate analysis only concomitant targeted therapy or immunotherapy and breast cancer tumor histology remained a significant factor for tumor response. Local grade ≥2 radiation-induced tissue reactions were noted in 26.3% (OBM) and 5.2% (MBM), respectively, mainly influenced by tumor volume (p < 0.001). Conclusions Large TDR variations are noted during MBM-SRS which mainly arise from prolonged treatment times. Clinically, low TDR corresponded with decreased local tumor responses, although the main influencing factor was concomitant medication.
Collapse
Affiliation(s)
- Maria-Lisa Wilhelm
- Department of Radiation Oncology, University Medicine Rostock, Rostock, Germany.,Saphir Radiosurgery Center Frankfurt and Northern Germany, Guestrow, Germany
| | - Mark K H Chan
- Department of Radiation Oncology, Karl-Lennert-Krebscentrum Nord, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany.,Strahlenklinik, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Benedikt Abel
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Florian Cremers
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Luebeck, Germany
| | - Frank-Andre Siebert
- Department of Radiation Oncology, Karl-Lennert-Krebscentrum Nord, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany
| | - Stefan Wurster
- Saphir Radiosurgery Center Frankfurt and Northern Germany, Guestrow, Germany.,Department of Radiation Oncology, University Medicine Greifswald, Greifswald, Germany
| | - David Krug
- Saphir Radiosurgery Center Frankfurt and Northern Germany, Guestrow, Germany.,Department of Radiation Oncology, Karl-Lennert-Krebscentrum Nord, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany
| | - Robert Wolff
- Saphir Radiosurgery Center Frankfurt and Northern Germany, Guestrow, Germany.,Department of Neurosurgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, Karl-Lennert-Krebscentrum Nord, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany
| | - Guido Hildebrandt
- Department of Radiation Oncology, University Medicine Rostock, Rostock, Germany
| | - Achim Schweikard
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Dirk Rades
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Luebeck, Germany
| | - Floris Ernst
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Oliver Blanck
- Saphir Radiosurgery Center Frankfurt and Northern Germany, Guestrow, Germany. .,Department of Radiation Oncology, Karl-Lennert-Krebscentrum Nord, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany.
| |
Collapse
|
26
|
Prusator MT, Zhao T, Kavanaugh JA, Santanam L, Dise J, Goddu SM, Mitchell TJ, Zoberi JE, Kim T, Mutic S, Knutson NC. Evaluation of a new secondary dose calculation software for Gamma Knife radiosurgery. J Appl Clin Med Phys 2020; 21:95-102. [PMID: 31943756 PMCID: PMC6964756 DOI: 10.1002/acm2.12794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/15/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
Current available secondary dose calculation software for Gamma Knife radiosurgery falls short in situations where the target is shallow in depth or when the patient is positioned with a gamma angle other than 90°. In this work, we evaluate a new secondary calculation software which utilizes an innovative method to handle nonstandard gamma angles and image thresholding to render the skull for dose calculation. 800 treatment targets previously treated with our GammaKnife Icon system were imported from our treatment planning system (GammaPlan 11.0.3) and a secondary dose calculation was conducted. The agreement between the new calculations and the TPS were recorded and compared to the original secondary dose calculation agreement with the TPS using a Wilcoxon Signed Rank Test. Further comparisons using a Mann‐Whitney test were made for targets treated at a 90° gamma angle against those treated with either a 70 or 110 gamma angle for both the new and commercial secondary dose calculation systems. Correlations between dose deviations from the treatment planning system against average target depth were evaluated using a Kendall’s Tau correlation test for both programs. The Wilcoxon Signed Rank Test indicated a significant difference in the agreement between the two secondary calculations and the TPS, with a P‐value < 0.0001. With respect to patients treated at nonstandard gamma angles, the new software was largely independent of patient setup, while the commercial software showed a significant dependence (P‐value < 0.0001). The new secondary dose calculation software showed a moderate correlation with calculation depth, while the commercial software showed a weak correlation (Tau = −.322 and Tau = −.217 respectively). Overall, the new secondary software has better agreement with the TPS than the commercially available secondary calculation software over a range of diverse treatment geometries.
Collapse
Affiliation(s)
- Michael T Prusator
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - James A Kavanaugh
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Lakshmi Santanam
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Joe Dise
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - S Murty Goddu
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Timothy J Mitchell
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Jacqueline E Zoberi
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Taeho Kim
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Sasa Mutic
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Nels C Knutson
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
27
|
Huang L, Sun L, Wang W, Cui Z, Zhang Z, Li J, Wang Y, Wang J, Yu X, Ling Z, Qu B, Pan LS. Therapeutic Effect of Hypofractionated Stereotactic Radiotherapy Using CyberKnife for High Volume Cavernous Sinus Cavernous Hemangiomas. Technol Cancer Res Treat 2019; 18:1533033819876981. [PMID: 31530156 PMCID: PMC6751526 DOI: 10.1177/1533033819876981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate the efficacy and safety of hypofractionated stereotactic radiotherapy using CyberKnife for high volume cavernous sinus cavernous hemangiomas. MATERIALS AND METHODS We collected data from 12 patients with high volume cavernous sinus cavernous hemangiomas treated with hypofractionated stereotactic radiotherapy using CyberKnife in our institute, including 2 men and 10 women/female child, aged 4 to 60 years. Initial tumor volumes ranged from 11.8 to 96.6 cm3 with a median of 24.3 cm3. Irradiation doses were 19.5 Gy with 3 fractions in 2 patients, 21 Gy with 3 fractions in 8 patients, 25 Gy with 5 fractions in 1 patient, and 30 Gy with 3 fractions in 1 patient. We used 109 to 155 beams during treatment, and target volumes reached over 95% of the prescribed dose. Follow-up ranged from 3 to 54 months. We evaluated the efficacy and safety of the CyberKnife system based on changes in the diagnostic images and involved cranial nerves or symptoms. RESULTS Of the 12 patients, 11 were followed for 3 to 54 months with a mean follow-up of 16.3 months; 1 patient was lost to in-person follow-up. Lesion volumes in the followed 11 patients were calculated after fractionated radiotherapy. All tumor volumes decreased (28.6%-94.1%) and symptoms improved (including blurred vision, visual field defects, diplopia, headaches, and facial numbness) after therapy. Postoperative magnetic resonance images revealed a tumor volume range of 2.8 to 41.0 cm3 (median, 6.5 cm3), significantly lower compared with the pretreatment range of 11.8 to 70.1 cm3 (median, 24.3 cm3; T = 0.00, P = .003 < .05). A single patient experienced radiotherapy-related cerebral edema, which resolved after 5 days of mannitol and dexamethasone. CONCLUSIONS Based on the current results, though preliminary, hypofractionated stereotactic radiotherapy using CyberKnife is an effective and safe alternative for high volume cavernous sinus cavernous hemangiomas and is the recommended primary treatment in high-risk patients with this condition.
Collapse
Affiliation(s)
- Lichao Huang
- Department of Neurosurgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Lu Sun
- Department of Neurosurgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Weijun Wang
- Department of Neurosurgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Zhiqiang Cui
- Department of Neurosurgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Zizhong Zhang
- Department of Neurosurgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Jiwei Li
- Department of Radiation Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Yao Wang
- Department of Radiation Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Jinyuan Wang
- Department of Neurosurgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Zhipei Ling
- Department of Neurosurgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Baolin Qu
- Department of Radiation Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Long Sheng Pan
- Department of Neurosurgery, The First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|