1
|
Bardini R, Di Carlo S. Computational methods for biofabrication in tissue engineering and regenerative medicine - a literature review. Comput Struct Biotechnol J 2024; 23:601-616. [PMID: 38283852 PMCID: PMC10818159 DOI: 10.1016/j.csbj.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/30/2024] Open
Abstract
This literature review rigorously examines the growing scientific interest in computational methods for Tissue Engineering and Regenerative Medicine biofabrication, a leading-edge area in biomedical innovation, emphasizing the need for accurate, multi-stage, and multi-component biofabrication process models. The paper presents a comprehensive bibliometric and contextual analysis, followed by a literature review, to shed light on the vast potential of computational methods in this domain. It reveals that most existing methods focus on single biofabrication process stages and components, and there is a significant gap in approaches that utilize accurate models encompassing both biological and technological aspects. This analysis underscores the indispensable role of these methods in understanding and effectively manipulating complex biological systems and the necessity for developing computational methods that span multiple stages and components. The review concludes that such comprehensive computational methods are essential for developing innovative and efficient Tissue Engineering and Regenerative Medicine biofabrication solutions, driving forward advancements in this dynamic and evolving field.
Collapse
Affiliation(s)
- Roberta Bardini
- Department of Control and Computer Engineering, Polytechnic University of Turin, Corso Duca Degli Abruzzi, 24, Turin, 10129, Italy
| | - Stefano Di Carlo
- Department of Control and Computer Engineering, Polytechnic University of Turin, Corso Duca Degli Abruzzi, 24, Turin, 10129, Italy
| |
Collapse
|
2
|
Soliveri L, Bruneau D, Ring J, Bozzetto M, Remuzzi A, Valen-Sendstad K. Toward a physiological model of vascular wall vibrations in the arteriovenous fistula. Biomech Model Mechanobiol 2024; 23:1741-1755. [PMID: 38977647 DOI: 10.1007/s10237-024-01865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/05/2024] [Indexed: 07/10/2024]
Abstract
The mechanism behind hemodialysis arteriovenous fistula (AVF) failure remains poorly understood, despite previous efforts to correlate altered hemodynamics with vascular remodeling. We have recently demonstrated that transitional flow induces high-frequency vibrations in the AVF wall, albeit with a simplified model. This study addresses the key limitations of our original fluid-structure interaction (FSI) approach, aiming to evaluate the vibration response using a more realistic model. A 3D AVF geometry was generated from contrast-free MRI and high-fidelity FSI simulations were performed. Patient-specific inflow and pressure were incorporated, and a three-term Mooney-Rivlin model was fitted using experimental data. The viscoelastic effect of perivascular tissue was modeled with Robin boundary conditions. Prescribing pulsatile inflow and pressure resulted in a substantial increase in vein displacement ( + 400 %) and strain ( + 317 %), with a higher maximum spectral frequency becoming visible above -42 dB (from 200 to 500 Hz). Transitioning from Saint Venant-Kirchhoff to Mooney-Rivlin model led to displacement amplitudes exceeding 10 micrometers and had a substantial impact on strain ( + 116 %). Robin boundary conditions significantly damped high-frequency displacement ( - 60 %). Incorporating venous tissue properties increased vibrations by 91%, extending up to 700 Hz, with a maximum strain of 0.158. Notably, our results show localized, high levels of vibration at the inner curvature of the vein, a site known for experiencing pronounced remodeling. Our findings, consistent with experimental and clinical reports of bruits and thrills, underscore the significance of incorporating physiologically plausible modeling approaches to investigate the role of wall vibrations in AVF remodeling and failure.
Collapse
Affiliation(s)
- Luca Soliveri
- Department of Bioengineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - David Bruneau
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Johannes Ring
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Michela Bozzetto
- Department of Bioengineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Andrea Remuzzi
- Department of Management, Information and Production Engineering, University of Bergamo, Bergamo, Italy
| | | |
Collapse
|
3
|
Perinajová R, van de Ven T, Roelse E, Xu F, Juffermans J, Westenberg J, Lamb H, Kenjereš S. A comprehensive MRI-based computational model of blood flow in compliant aorta using radial basis function interpolation. Biomed Eng Online 2024; 23:69. [PMID: 39039565 PMCID: PMC11265469 DOI: 10.1186/s12938-024-01251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/03/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Properly understanding the origin and progression of the thoracic aortic aneurysm (TAA) can help prevent its growth and rupture. For a better understanding of this pathogenesis, the aortic blood flow has to be studied and interpreted in great detail. We can obtain detailed aortic blood flow information using magnetic resonance imaging (MRI) based computational fluid dynamics (CFD) with a prescribed motion of the aortic wall. METHODS We performed two different types of simulations-static (rigid wall) and dynamic (moving wall) for healthy control and a patient with a TAA. For the latter, we have developed a novel morphing approach based on the radial basis function (RBF) interpolation of the segmented 4D-flow MRI geometries at different time instants. Additionally, we have applied reconstructed 4D-flow MRI velocity profiles at the inlet with an automatic registration protocol. RESULTS The simulated RBF-based movement of the aorta matched well with the original 4D-flow MRI geometries. The wall movement was most dominant in the ascending aorta, accompanied by the highest variation of the blood flow patterns. The resulting data indicated significant differences between the dynamic and static simulations, with a relative difference for the patient of 7.47±14.18% in time-averaged wall shear stress and 15.97±43.32% in the oscillatory shear index (for the whole domain). CONCLUSIONS In conclusion, the RBF-based morphing approach proved to be numerically accurate and computationally efficient in capturing complex kinematics of the aorta, as validated by 4D-flow MRI. We recommend this approach for future use in MRI-based CFD simulations in broad population studies. Performing these would bring a better understanding of the onset and growth of TAA.
Collapse
Affiliation(s)
- Romana Perinajová
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands.
- J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, The Netherlands.
| | - Thijn van de Ven
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Elise Roelse
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Fei Xu
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
- J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, The Netherlands
| | - Joe Juffermans
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hildo Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Saša Kenjereš
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands.
- J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, The Netherlands.
| |
Collapse
|
4
|
Futami K, Misaki K, Uno T, Nambu I, Kamide T, Nakada M. Characterization of Maximum Wall Shear Stress Points in Unruptured Cerebral Aneurysms Using Four-dimensional Flow Magnetic Resonance Imaging. Clin Neuroradiol 2024:10.1007/s00062-024-01436-w. [PMID: 39017672 DOI: 10.1007/s00062-024-01436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Maximum wall shear stress (maxWSS) points of unruptured cerebral aneurysms (UCAs) may cause wall remodeling leading to rupture. We characterized maxWSS points and their inherent intra-aneurysmal flow structures in a sizable cohort of saccular UCAs using four-dimensional (4D) flow magnetic resonance imaging (MRI). METHODS After contrast administration, 50 saccular UCAs were subjected to 4D flow MRI using a 1.5 T MRI scanner. Post-processing of obtained data was performed using commercially available software. The maxWSS points and maxWSS values were evaluated. The maxWSS values were statistically compared between aneurysm groups. RESULTS The maxWSS point was located on the aneurysm apex in 9 (18.0%), body in 2 (4.0%), and neck in 39 (78.0%) UCAs. The inherent intra-aneurysmal flow structure of the maxWSS point was an inflow zone in 34 (68.0%) UCAs, an inflow jet in 8 (16.0%), and an impingement zone in 8 (16.0%). The maxWSS point on the neck had significantly higher maxWSS values than those points on the other wall areas (P = 0.008). The maxWSS values of the maxWSS points on the apex and on the impingement zone were not significantly different compared with those of the other maxWSS points. CONCLUSION The maxWSS points existed preferentially on the aneurysmal neck adjacent to the inflow zone with higher maxWSS values. The maxWSS points existed occasionally on the aneurysmal apex adjacent to the impingement zone. 4D flow MRI may be helpful to discriminate saccular UCAs with higher-risk maxWSS points that can cause wall remodeling leading to rupture.
Collapse
Affiliation(s)
- Kazuya Futami
- Department of Neurosurgery, Hokuriku Central Hospital of Japan Mutual Aid Association of Public School Teachers, 123 Nodera, Oyabe, 932-8503, Toyama, Japan.
| | - Kouichi Misaki
- Department of Neurosurgery, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Takehiro Uno
- Department of Neurosurgery, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Iku Nambu
- Department of Neurosurgery, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Tomoya Kamide
- Department of Neurosurgery, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Kanazawa University School of Medicine, Kanazawa, Japan
| |
Collapse
|
5
|
Luciano RD, da Silva BL, Chen XB, Bergstrom DJ. Turbulent blood flow in a cerebral artery with an aneurysm. J Biomech 2024; 172:112214. [PMID: 38991421 DOI: 10.1016/j.jbiomech.2024.112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
Unruptured intracranial aneurysms are common in the general population, and many uncertainties remain when predicting rupture risks and treatment outcomes. One of the cutting-edge tools used to investigate this condition is computational fluid dynamics (CFD). However, CFD is not yet mature enough to guide the clinical management of this disease. In addition, recent studies have reported significant flow instabilities when refined numerical methods are used. Questions remain as to how to properly simulate and evaluate this flow, and whether these instabilities are really turbulence. The purpose of the present study is to evaluate the impact of the simulation setup on the results and investigate the occurrence of turbulence in a cerebral artery with an aneurysm. For this purpose, direct numerical simulations were performed with up to 200 cardiac cycles and with data sampling rates of up to 100,000 times per cardiac cycle. Through phase-averaging or triple decomposition, the contributions of turbulence and of laminar pulsatile waves to the velocity, pressure and wall shear stress fluctuations were distinguished. For example, the commonly used oscillatory shear index was found to be closely related to the laminar waves introduced at the inlet, rather than turbulence. The turbulence energy cascade was evaluated through energy spectrum estimates, revealing that, despite the low flow rates and Reynolds number, the flow is turbulent near the aneurysm. Phase-averaging was shown to be an approach that can help researchers better understand this flow, although the results are highly dependent on simulation setup and post-processing choices.
Collapse
Affiliation(s)
- R D Luciano
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Canada.
| | - B L da Silva
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Canada
| | - X B Chen
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Canada; Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Canada
| | - D J Bergstrom
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Canada
| |
Collapse
|
6
|
Tian Y, Li X, Zhang J, Zhao B, Liang F. Identifying hemodynamic factors associated with the rupture of anterior communicating artery aneurysms based on global modeling of blood flow in the cerebral artery network. Front Bioeng Biotechnol 2024; 12:1419519. [PMID: 38938980 PMCID: PMC11208462 DOI: 10.3389/fbioe.2024.1419519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Anterior communicating artery (ACoA) aneurysms are more prone to rupture compared to aneurysms present in other cerebral arteries. We hypothesize that systemic blood flow in the cerebral artery network plays an important role in shaping intra-aneurysmal hemodynamic environment thereby affecting the rupture risk of ACoA aneurysms. The majority of existing numerical studies in this field employed local modeling methods where the physical boundaries of a model are confined to the aneurysm region, which, though having the benefit of reducing computational cost, may compromise the physiological fidelity of numerical results due to insufficient account of systemic cerebral arterial hemodynamics. In the present study, we firstly carried out numerical experiments to address the difference between the outcomes of local and global modeling methods, demonstrating that local modeling confined to the aneurysm region results in inaccurate predictions of hemodynamic parameters compared with global modeling of the ACoA aneurysm as part of the cerebral artery network. Motivated by this finding, we built global hemodynamic models for 40 ACoA aneurysms (including 20 ruptured and 20 unruptured ones) based on medical image data. Statistical analysis of the computed hemodynamic data revealed that maximum wall shear stress (WSS), minimum WSS divergence, and maximum WSS gradient differed significantly between the ruptured and unruptured ACoA aneurysms. Optimal threshold values of high/low WSS metrics were determined through a series of statistical tests. In the meantime, some morphological parameters of aneurysms, such as large nonsphericity index, aspect ratio, and bottleneck factor, were found to be associated closely with aneurysm rupture. Furthermore, multivariate logistic regression analyses were performed to derive models combining hemodynamic and morphological parameters for discriminating the rupture status of aneurysms. The capability of the models in rupture status discrimination was high, with the area under the receiver operating characteristic curve reaching up to 0.9. The findings of the study suggest that global modeling of the cerebral artery network is essential for reliable quantification of hemodynamics in ACoA aneurysms, disturbed WSS and irregular aneurysm morphology are associated closely with aneurysm rupture, and multivariate models integrating hemodynamic and morphological parameters have high potential for assessing the rupture risk of ACoA aneurysms.
Collapse
Affiliation(s)
- Yuqing Tian
- Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Li
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjian Zhang
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuyou Liang
- Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Hydrodynamics (MOE), School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Ocean Engineering, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
7
|
Kjeldsberg HA, Albors C, Mill J, Medel DV, Camara O, Sundnes J, Valen-Sendstad K. Impact of left atrial wall motion assumptions in fluid simulations on proposed predictors of thrombus formation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3825. [PMID: 38629309 DOI: 10.1002/cnm.3825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/18/2024] [Accepted: 04/05/2024] [Indexed: 06/11/2024]
Abstract
Atrial fibrillation (AF) poses a significant risk of stroke due to thrombus formation, which primarily occurs in the left atrial appendage (LAA). Medical image-based computational fluid dynamics (CFD) simulations can provide valuable insight into patient-specific hemodynamics and could potentially enhance personalized assessment of thrombus risk. However, the importance of accurately representing the left atrial (LA) wall dynamics has not been fully resolved. In this study, we compared four modeling scenarios; rigid walls, a generic wall motion based on a reference motion, a semi-generic wall motion based on patient-specific motion, and patient-specific wall motion based on medical images. We considered a LA geometry acquired from 4D computed tomography during AF, systematically performed convergence tests to assess the numerical accuracy of our solution strategy, and quantified the differences between the four approaches. The results revealed that wall motion had no discernible impact on LA cavity hemodynamics, nor on the markers that indicate thrombus formation. However, the flow patterns within the LAA deviated significantly in the rigid model, indicating that the assumption of rigid walls may lead to errors in the estimated risk factors. In contrast, the generic, semi-generic, and patient-specific cases were qualitatively similar. The results highlight the crucial role of wall motion on hemodynamics and predictors of thrombus formation, and also demonstrate the potential of using a generic motion model as a surrogate for the more complex patient-specific motion. While the present study considered a single case, the employed CFD framework is entirely open-source and designed for adaptability, allowing for integration of additional models and generic motions.
Collapse
Affiliation(s)
- Henrik A Kjeldsberg
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Carlos Albors
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Mill
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Oscar Camara
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joakim Sundnes
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | | |
Collapse
|
8
|
Yi H, Yang Z, Bramlage L, Ludwig B. Using DFT on ultrasound measurements to determine patient-specific blood flow boundary conditions for computational hemodynamics of intracranial aneurysms. Comput Biol Med 2024; 176:108563. [PMID: 38761498 DOI: 10.1016/j.compbiomed.2024.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/01/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Boundary conditions (BCs) is one pivotal factor influencing the accuracy of hemodynamic predictions on intracranial aneurysms (IAs) using computational fluid dynamics (CFD) modeling. Unfortunately, a standard procedure to secure accurate BCs for hemodynamic modeling does not exist. To bridge such a knowledge gap, two representative patient-specific IA models (Case-I and Case-II) were reconstructed and their blood flow velocity waveforms in the internal carotid artery (ICA) were measured by ultrasonic techniques and modeled by discrete Fourier transform (DFT). Then, numerical investigations were conducted to explore the appropriate number of samples (N) for DFT modeling to secure the accurate BC by comparing a series of hemodynamic parameters using in-vitro validated CFD modeling. Subsequently, a comprehensive comparison in hemodynamic characteristics under patient-specific BCs and a generalized BC based on a one-dimensional (1D) model was conducted to reinforce the understanding that a patient-specific BC is pivotal for accurate hemodynamic risk evaluations on IA pathophysiology. In addition, the influence of the variance of heart rate/cardiac pulsatile period on hemodynamic characteristics in IA models was studied preliminarily. The results showed that N ≥ 16 for DFT model is a decent choice to secure the proper BC profile to calculate time-averaged hemodynamic parameters, while more data points such as N ≥ 36 can ensure the accuracy of instantaneous hemodynamic predictions. In addition, results revealed the generalized BC could overestimate or underestimate the hemodynamic risks on IAs significantly; thus, patient-specific BCs are highly recommended for hemodynamic modeling for IA risk evaluation. Furthermore, this study discovered the variance of heart rate has rare influences on hemodynamic characteristics in both instantaneous and time-averaged parameters under the assumption of an identical blood flow rate.
Collapse
Affiliation(s)
- Hang Yi
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45435, USA
| | - Zifeng Yang
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45435, USA.
| | - Luke Bramlage
- Division of NeuroInterventional Surgery, Department of Neurology, Wright State University/Premier Health-Clinical Neuroscience Institute, 30E. Apple St., Dayton, OH, 45409, USA; Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Bryan Ludwig
- Division of NeuroInterventional Surgery, Department of Neurology, Wright State University/Premier Health-Clinical Neuroscience Institute, 30E. Apple St., Dayton, OH, 45409, USA; Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| |
Collapse
|
9
|
Khalili E, Daversin-Catty C, Olivares AL, Mill J, Camara O, Valen-Sendstad K. On the importance of fundamental computational fluid dynamics toward a robust and reliable model of left atrial flows. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3804. [PMID: 38286150 DOI: 10.1002/cnm.3804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/31/2023] [Accepted: 01/07/2024] [Indexed: 01/31/2024]
Abstract
Computational fluid dynamics (CFD) studies of left atrial flows have reached a sophisticated level, for example, revealing plausible relationships between hemodynamics and stresses with atrial fibrillation. However, little focus has been on fundamental fluid modeling of LA flows. The purpose of this study was to investigate the spatiotemporal convergence, along with the differences between high- (HR) versus normal-resolution/accuracy (NR) solution strategies, respectively. Rigid wall CFD simulations were conducted on 12 patient-specific left atrial geometries obtained from computed tomography scans, utilizing a second-order accurate and space/time-centered solver. The convergence studies showed an average variability of around 30% and 55% for time averaged wall shear stress (WSS), oscillatory shear index (OSI), relative residence time (RRT), and endothelial cell activation potential (ECAP), even between intermediate spatial and temporal resolutions, in the left atrium (LA) and left atrial appendage (LAA), respectively. The comparison between HR and NR simulations showed good correlation in the LA for WSS, RRT, and ECAP (R 2 > .9 ), but not for OSI (R 2 = .63 ). However, there were poor correlations in the LAA especially for OSI, RRT, and ECAP (R 2 = .55, .63, and .61, respectively), except for WSS (R 2 = .81 ). The errors are comparable to differences previously reported with disease correlations. To robustly predict atrial hemodynamics and stresses, numerical resolutions of 10 M elements (i.e., Δ x = ∼ .5 mm) and 10 k time-steps per cycle seem necessary (i.e., one order of magnitude higher than normally used in both space and time). In conclusion, attention to fundamental numerical aspects is essential toward establishing a plausible, robust, and reliable model of LA flows.
Collapse
Affiliation(s)
- Ehsan Khalili
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Cécile Daversin-Catty
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Andy L Olivares
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Mill
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Oscar Camara
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
10
|
Fillingham P, Belur N, Sweem R, Barbour MC, Marsh LMM, Aliseda A, Levitt MR. Standardized viscosity as a source of error in computational fluid dynamic simulations of cerebral aneurysms. Med Phys 2024; 51:1499-1508. [PMID: 38150511 PMCID: PMC10922831 DOI: 10.1002/mp.16926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Computational fluid dynamics (CFD) simulations are a powerful tool for studying cerebral aneurysms, capable of evaluating hemodynamics in a way that is infeasible with imaging alone. However, the difficulty of incorporating patient-specific information and inherent obstacles of in vivo validation have limited the clinical usefulness of CFD of cerebral aneurysms. In this work we investigate the effect of using standardized blood viscosity values in CFD simulations of cerebral aneurysms when compared to simulations of the same aneurysms using patient-specific viscosity values derived from hematocrit measurements. PURPOSE The objective of this work is to determine the level of error, on average, that is, caused by using standardized values of viscosity in CFD simulations of cerebral aneurysms. By quantifying this error, we demonstrate the need for incorporating patient-specific viscosity in future CFD investigations of cerebral aneurysms. METHODS CFD simulations of forty-one cerebral aneurysms were conducted using patient-specific boundary conditions. For each aneurysm two simulations were conducted, one utilizing patient-specific blood viscosity derived from hematocrit measurements and another using a standardized value for blood viscosity. Hemodynamic parameters such as wall shear stress (WSS), wall shear stress gradient (WSSG), and the oscillatory shear index (OSI) were calculated for each of the simulations for each aneurysm. Paired t-tests for differences in the time-averaged maps of these hemodynamic parameters between standardized and patient-specific viscosity simulations were conducted for each aneurysm. Bland-Altman analysis was used to examine the cohort-wide changes in the hemodynamic parameters. Subjects were broken into two groups, those with higher than standard viscosity and those with lower than standard viscosity. An unpaired t-test was used to compare the percent change in WSS, WSSG, and OSI between patient-specific and standardized viscosity simulations for the two cohorts. The percent changes in hemodynamic parameters were correlated against the direction and magnitude of percent change in viscosity, aneurysm size, and aneurysm location. For all t-tests, a Bonferroni-corrected significance level of 0.0167 was used. RESULTS 63.2%, 41.5%, and 48.7% of aneurysms showed statistically significant differences between patient-specific and standardized viscosity simulations for WSS, WSSG, and OSI respectively. No statistically significant difference was found in the percent changes in WSS, WSSG, and OSI between the group with higher than standard viscosity and those with lower than standard viscosity, indicating an increase in viscosity can cause either an increase or decrease in each of the hemodynamic parameters. On a study-wide level no significant bias was found in either direction for WSS, WSSG, or OSI between the simulation groups due to the bidirectional effect of changing viscosity. No correlation was found between percent change of viscosity and percent change of WSS, WSSG, or OSI, meaning an after-the-fact correction for patient-specific viscosity is not feasible. CONCLUSION Standardizing viscosity values in CFD of cerebral aneurysms has a large and unpredictable impact on the calculated WSS, WSSG, and OSI when compared to CFD simulations of the same aneurysms using a patient-specific viscosity. We recommend implementing hematocrit-based patient-specific blood viscosity values for all CFD simulations of cerebral aneurysms.
Collapse
Affiliation(s)
- Patrick Fillingham
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Neethi Belur
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Rebecca Sweem
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Michael C. Barbour
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Laurel M. M. Marsh
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Alberto Aliseda
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Michael R. Levitt
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
- Department of Radiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Liao J, Misaki K, Uno T, Nambu I, Kamide T, Chen Z, Nakada M, Sakamoto J. Fluid dynamic analysis in predicting the recanalization of intracranial aneurysms after coil embolization - A study of spatiotemporal characteristics. Heliyon 2024; 10:e22801. [PMID: 38226254 PMCID: PMC10788401 DOI: 10.1016/j.heliyon.2023.e22801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024] Open
Abstract
Purpose Hemodynamics play a key role in the management of cerebral aneurysm recanalization after coil embolization; however, the most reliable hemodynamic parameter remains unknown. Previous studies have explored the use of both spatiotemporally averaged and maximal definitions for hemodynamic parameters, based on computational fluid dynamics (CFD) analysis, to build predictive models for aneurysmal recanalization. In this study, we aimed to assess the influence of different spatiotemporal characteristics of hemodynamic parameters on predictive performance. Methods Hemodynamics were simulated using CFD for 66 cerebral aneurysms from 65 patients. We evaluated 14 types of spatiotemporal definitions for two hemodynamic parameters in the pre-coiling model and five in virtual post-coiling model (VM) created by cutting the aneurysm from the pre-coiling model. A total of 91 spatiotemporal hemodynamic features were derived and utilized to develop univariate predictor (UP) and multivariate logistic regression (LR) models. The model's performance was assessed using two metrics: the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). Results Different spatiotemporal hemodynamic features exhibited a wide range of AUROC values ranging from 0.224 to 0.747, with 22 feature pairs showing a significant difference in AUROC value (P-value <0.05), despite being derived from the same hemodynamic parameter. PDave,q1 was identified as the strongest UP with AUROC/AUPRC values of 0.747/0.385, yielding sensitivity and specificity value of 0.889 and 0.614 at the optimal cut-off value, respectively. The LR model further improved the prediction performance, having AUROC/AUPRC values of 0.890/0.903. At the optimal cut-off value, the LR model achieved a specificity of 0.877, sensitivity of 0.719, outperforming the UP model. Conclusion Our research indicated that the characteristics of hemodynamic parameters in terms of space and time had a significant impact on the development of predictive model. Our findings suggest that LR model based on spatiotemporal hemodynamic features could be clinically useful in predicting recanalization after coil embolization in patients, without the need for invasive procedures.
Collapse
Affiliation(s)
- Jing Liao
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Ishikawa, Japan
| | - Kouichi Misaki
- Department of Neurosurgery, Kanazawa University, Ishikawa, Japan
| | - Tekehiro Uno
- Department of Neurosurgery, Kanazawa University, Ishikawa, Japan
| | - Iku Nambu
- Department of Neurosurgery, Kanazawa University, Ishikawa, Japan
| | - Tomoya Kamide
- Department of Neurosurgery, Kanazawa University, Ishikawa, Japan
| | - Zhuoqing Chen
- Department of Nuclear Medicine, Kanazawa University, Ishikawa, Japan
| | | | - Jiro Sakamoto
- Division of Mechanical Science and Engineering, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
12
|
MacDonald DE, Cancelliere NM, Pereira VM, Steinman DA. Sensitivity of hostile hemodynamics to aneurysm geometry via unsupervised shape interpolation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 241:107762. [PMID: 37598472 DOI: 10.1016/j.cmpb.2023.107762] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND AND OBJECTIVE Vessel geometry and hemodynamics are intrinsically linked, whereby geometry determines hemodynamics, and hemodynamics influence vascular remodeling. Both have been used for testing clinical outcomes, but geometry/morphology generally has less uncertainty than hemodynamics derived from medical image-based computational fluid dynamics (CFD). To provide clinical utility, CFD-based hemodynamic parameters must be robust to modeling errors and/or uncertainties, but must also provide useful information not more-easily extracted from shape alone. The objective of this study was to methodically assess the response of hemodynamic parameters to gradual changes in shape created using an unsupervised 3D shape interpolation method. METHODS We trained the neural network NeuroMorph on 3 patient-derived intracranial aneurysm surfaces (labelled A, B, C), and then generated 3 distinct morph sequences (A→B, B→C, C→A) each containing 10 interpolated surfaces. From high-fidelity CFD simulation of these, we calculated a variety of common reduced hemodynamic parameters, including many previously associated with aneurysm rupture, and analyzed their responses to changes in shape, and their correlations. RESULTS The interpolated surfaces demonstrate complex, gradual changes in branch angles, vessel diameters, and aneurysm morphology. CFD simulation showed gradual changes in aneurysm jetting characteristics and wall-shear stress (WSS) patterns, but demonstrated a range of responses from the reduced hemodynamic parameters. Spatially and temporally averaged parameters including time-averaged WSS, time-averaged velocity, and low-shear area (LSA) showed low variation across all morph sequences, while parameters of flow complexity such as oscillatory shear, spectral broadening, and spectral bandedness indices showed high variation between slightly-altered neighboring surfaces. Correlation analysis revealed a great deal of mutual information with easier-to-measure shape-based parameters. CONCLUSIONS In the absence of large clinical datasets, unsupervised shape interpolation provides an ideal laboratory for exploring the delicate balance between robustness and sensitivity of nominal hemodynamic predictors of aneurysm rupture. Parameters like time-averaged WSS and LSA that are highly "robust" may, as a result, be effectively redundant to morphological predictors, whereas more sensitive parameters may be too uncertain for practical clinical use. Understanding these sensitivities may help identify parameters that are capable of providing added value to rupture risk assessment.
Collapse
Affiliation(s)
- Daniel E MacDonald
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Rd, Toronto, Ontario M5S 3G8, Canada
| | - Nicole M Cancelliere
- Department of Neurosurgery, St. Michael's Hospital, 36 Queen St E, Toronto, Ontario M5B 1W8, Canada
| | - Vitor M Pereira
- Department of Neurosurgery, St. Michael's Hospital, 36 Queen St E, Toronto, Ontario M5B 1W8, Canada
| | - David A Steinman
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Rd, Toronto, Ontario M5S 3G8, Canada.
| |
Collapse
|
13
|
Sache A, Reymond P, Brina O, Jung B, Farhat M, Vargas MI. Near-wall hemodynamic parameters quantification in in vitro intracranial aneurysms with 7 T PC-MRI. MAGMA (NEW YORK, N.Y.) 2023; 36:295-308. [PMID: 37072539 PMCID: PMC10140017 DOI: 10.1007/s10334-023-01082-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVE Wall shear stress (WSS) and its derived spatiotemporal parameters have proven to play a major role on intracranial aneurysms (IAs) growth and rupture. This study aims to demonstrate how ultra-high field (UHF) 7 T phase contrast magnetic resonance imaging (PC-MRI) coupled with advanced image acceleration techniques allows a highly resolved visualization of near-wall hemodynamic parameters patterns in in vitro IAs, paving the way for more robust risk assessment of their growth and rupture. MATERIALS AND METHODS We performed pulsatile flow measurements inside three in vitro models of patient-specific IAs using 7 T PC-MRI. To this end, we built an MRI-compatible test bench, which faithfully reproduced a typical physiological intracranial flow rate in the models. RESULTS The ultra-high field 7 T images revealed WSS patterns with high spatiotemporal resolution. Interestingly, the high oscillatory shear index values were found in the core of low WSS vortical structures and in flow stream intersecting regions. In contrast, maxima of WSS occurred around the impinging jet sites. CONCLUSIONS We showed that the elevated signal-to-noise ratio arising from 7 T PC-MRI enabled to resolve high and low WSS patterns with a high degree of detail.
Collapse
Affiliation(s)
- Antoine Sache
- Department of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Philippe Reymond
- Division of Neuroradiology, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - Olivier Brina
- Division of Neuroradiology, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - Bernd Jung
- Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mohamed Farhat
- Department of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maria Isabel Vargas
- Division of Neuroradiology, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Stahl J, Marsh LMM, Thormann M, Ding A, Saalfeld S, Behme D, Berg P. Assessment of the flow-diverter efficacy for intracranial aneurysm treatment considering pre- and post-interventional hemodynamics. Comput Biol Med 2023; 156:106720. [PMID: 36878124 DOI: 10.1016/j.compbiomed.2023.106720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
Endovascular treatment of intracranial aneurysms with flow diverters (FD) has become one of the most promising interventions. Due to its woven high-density structure they are particularly applicable for challenging lesions. Although several studies have already conducted realistic hemodynamic quantification of the FD efficacy, a comparison with morphologic post-interventional data is still missing. This study analyses the hemodynamics of ten intracranial aneurysm patients treated with a novel FD device. Based on pre- and post-interventional 3D digital subtraction angiography image data, patient-specific 3D models of both treatment states are generated applying open source threshold-based segmentation methods. Using a fast virtual stenting approach, the real stent positions available in the post-interventional data are virtually replicated and both treatment scenarios were characterized using image-based blood flow simulations. The results show FD-induced flow reductions at the ostium by a decrease in mean neck flow rate (51%), inflow concentration index (56%) and mean inflow velocity (53%). Intraluminal reductions in flow activity for time-averaged wall shear stress (47%) and kinetic energy (71%) are present as well. However, an intra-aneurysmal increase in flow pulsatility (16%) for the post-interventional cases can be observed. Patient-specific FD simulations demonstrate the desired flow redirection and activity reduction inside the aneurysm beneficial for thrombosis formation. Differences in the magnitude of hemodynamic reduction exist over the cardiac cycle which may be addressed in a clinical setting by anti-hypertensive treatment in selected cases.
Collapse
Affiliation(s)
- Janneck Stahl
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, 39106, Germany; Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, 39106, Germany.
| | | | - Maximilian Thormann
- University Clinic for Neuroradiology, University Hospital Magdeburg, Magdeburg, 39120, Germany
| | | | - Sylvia Saalfeld
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, 39106, Germany; Department of Simulation and Graphics, University of Magdeburg, Magdeburg, 39106, Germany
| | - Daniel Behme
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, 39106, Germany; University Clinic for Neuroradiology, University Hospital Magdeburg, Magdeburg, 39120, Germany
| | - Philipp Berg
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, 39106, Germany; Department of Medical Engineering, University of Magdeburg, Magdeburg, 39106, Germany
| |
Collapse
|
15
|
Shen J, Huang K, Zhu Y, Weng Y, Xiao F, Mungur R, Wu F, Pan J, Zhan R. Mean arterial pressure-aneurysm neck ratio predicts the rupture risk of intracranial aneurysm by reflecting pressure at the dome. Front Aging Neurosci 2023; 15:1082800. [PMID: 36819719 PMCID: PMC9928879 DOI: 10.3389/fnagi.2023.1082800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Background and purpose The unruptured intracranial aneurysm (UIA) has high disability and mortality rate after rupture, it is particularly important to assess the risk of UIA and to carry out individualized treatment. The objective of this research is to introduce a novel parameter to predict the rupture risk of UIA. Methods A total of 649 patients with 964 intracranial aneurysms in our center were enrolled. A novel parameter named mean arterial pressure-aneurysmal neck ratio (MAPN) was defined. Ten baseline clinical features and twelve aneurysm morphological characteristics were extracted to generate the MAPN model. The discriminatory performance of the MAPN model was compared with the PHASES score and the UCAS score. Results In hemodynamic analysis, MAPN was positively correlated with wall shear stress and aneurysm top pressure, with Pearson correlation coefficients of 0.887 and 0.791, respectively. The MAPN was larger in the ruptured group (36.62 ± 18.96 vs. 28.38 ± 14.58, P < 0.001). The area under the curve (AUC) of the MAPN was superior than the AUC of aspect ratio (AR) and the bottleneck factor (BN), they were 0.64 (P < 0.001; 95% CI, 0.588-0.692), 0.611 (P < 0.001; 95% CI, 0.559-0.663) and 0.607 (P < 0.001; 95% CI, 0.554-0.660), respectively. The MAPN model constructed by aneurysm size, aneurysm location, presence of secondary sacs and MAPN, demonstrated good discriminatory ability. The MAPN model exhibited superior performance compared with the UCAS score and the PHASES score (the AUC values were 0.799 [P < 0.001; 95% CI, 0.756-0.840], 0.763 [P < 0.001; 95% CI,0.719-0.807] and 0.741 [P < 0.001; 95% CI, 0.695-0.787], respectively; the sensitivities were 0.849, 0.758 and 0.753, respectively). Conclusions Research demonstrates the potential of MAPN to augment the clinical decision-making process for assessing the rupture risk of UIAs.
Collapse
|
16
|
Lampropoulos DS, Boutopoulos ID, Bourantas GC, Miller K, Zampakis PE, Loukopoulos VC. Hemodynamics of anterior circulation intracranial aneurysms with daughter blebs: investigating the multidirectionality of blood flow fields. Comput Methods Biomech Biomed Engin 2023; 26:113-125. [PMID: 35297711 DOI: 10.1080/10255842.2022.2048374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent advances in diagnostic neuroradiological imaging, allowed the detection of unruptured intracranial aneurysms (IAs). The shape - irregular or multilobular - of the aneurysmal dome, is considered as a possible rupture risk factor, independently of the size, the location and patient medical background. Disturbed blood flow fields in particular is thought to play a key role in IAs progression. However, there is an absence of widely-used hemodynamic indices to quantify the extent of a multi-directional disturbed flow. We simulated blood flow in twelve patient-specific anterior circulation unruptured intracranial aneurysms with daughter blebs utilizing the spectral/hp element framework Nektar++. We simulated three cardiac cycles using a volumetric flow rate waveform while we considered blood as a Newtonian fluid. To investigate the multidirectionality of the blood flow fields, besides the time-averaged wall shear stress (TAWSS), we calculated the oscillatory shear index (OSI), the relative residence time (RRT) and the time-averaged cross flow index (TACFI). Our CFD simulations suggest that in the majority of our vascular models there is a formation of complex intrasaccular flow patterns, resulting to low and highly oscillating WSS, especially in the area of the daughter blebs. The existence of disturbed multi-directional blood flow fields is also evident by the distributions of the RRT and the TACFI. These findings further support the theory that IAs with daughter blebs are linked to a potentially increased rupture risk.
Collapse
Affiliation(s)
| | | | - George C Bourantas
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, Perth, Western Australia, Australia
| | - Karol Miller
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, Perth, Western Australia, Australia.,Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Petros E Zampakis
- Department of Diagnostic and Interventional Neuroradiology, University of Patras, Patras, Greece
| | | |
Collapse
|
17
|
Aneurysm Neck Overestimation has a Relatively Modest Impact on Simulated Hemodynamics. Cardiovasc Eng Technol 2022; 14:252-263. [PMID: 36517696 DOI: 10.1007/s13239-022-00652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Overestimation of intracranial aneurysm neck width by 3D angiography is a recognized clinical problem, and has long been a concern for image-based computational fluid dynamics (CFD). Recently, it was demonstrated that neck overestimation in 3D rotational angiography (3DRA) could be corrected via segmentation with upsampled resolution and gradient enhancement (SURGE). Our aim was to leverage this approach to determine whether and how neck overestimation actually impacts CFD-derived hemodynamics. MATERIALS AND METHODS A subset of 17 cases having the largest neck errors from a consecutive clinical sample of 60 was segmented from 3DRA using both standard watershed and SURGE methods. High-fidelity, pulsatile CFD was performed, and a variety of scalar hemodynamic parameters that have been associated with aneurysm growth and/or rupture status were derived. RESULTS With a few exceptions, flow and wall shear stress (WSS) patterns were qualitatively similar between neck-overestimated and corrected models. Sac-averaged WSS values were significantly lower after neck correction (p = 0.0005) but were highly correlated with their neck-overestimated counterparts (R2 = 0.98). Jet impingement was significantly more concentrated in the neck-corrected vs. -uncorrected models (p = 0.0011), and only moderately correlated (R2 = 0.61). Parameters quantifying velocity or WSS fluctuations were not significantly different after neck correction, but this reflected their poorer correlations (R2 < 0.4). Nevertheless, for all hemodynamic parameters, median absolute differences were < 26%, and no parameter had more than 5/17 cases with absolute differences > 50%. CONCLUSION Differences in hemodynamics due to neck width overestimation were found to be at most equal to, and often less than, those reported for other sources of error/uncertainty in intracranial aneurysm CFD, such as solver settings or assumed inflow rates.
Collapse
|
18
|
Du P, Wang JX. Reducing Geometric Uncertainty in Computational Hemodynamics by Deep Learning-Assisted Parallel-Chain MCMC. J Biomech Eng 2022; 144:121009. [PMID: 36166284 PMCID: PMC9632478 DOI: 10.1115/1.4055809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/21/2022] [Indexed: 11/08/2022]
Abstract
Computational hemodynamic modeling has been widely used in cardiovascular research and healthcare. However, the reliability of model predictions is largely dependent on the uncertainties of modeling parameters and boundary conditions, which should be carefully quantified and further reduced with available measurements. In this work, we focus on propagating and reducing the uncertainty of vascular geometries within a Bayesian framework. A novel deep learning (DL)-assisted parallel Markov chain Monte Carlo (MCMC) method is presented to enable efficient Bayesian posterior sampling and geometric uncertainty reduction. A DL model is built to approximate the geometry-to-hemodynamic map, which is trained actively using online data collected from parallel MCMC chains and utilized for early rejection of unlikely proposals to facilitate convergence with less expensive full-order model evaluations. Numerical studies on two-dimensional aortic flows are conducted to demonstrate the effectiveness and merit of the proposed method.
Collapse
Affiliation(s)
- Pan Du
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Jian-Xun Wang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
19
|
Bozzetto M, Soliveri L, Volpi J, Remuzzi A, Barbieri A, Lanterna LAA, Lanzarone E. Computational fluid dynamic modeling of flow-altering surgical procedures: feasibility assessment on saccular aneurysm case study. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2022. [DOI: 10.1080/21681163.2022.2140310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Michela Bozzetto
- Laboratory of Medical Imaging, Istituto di Ricerche Famacologiche “Mario Negri” IRCCS, Ranica, Italy
| | - Luca Soliveri
- Laboratory of Medical Imaging, Istituto di Ricerche Famacologiche “Mario Negri” IRCCS, Ranica, Italy
| | - Jessica Volpi
- Department of Management, Information and Production and Engineering, University of Bergamo, Dalmine, Italy
| | - Andrea Remuzzi
- Department of Management, Information and Production and Engineering, University of Bergamo, Dalmine, Italy
| | - Antonio Barbieri
- Department of Neurosurgery, San Carlo Borromeo Hospital, Milan, Italy
| | | | - Ettore Lanzarone
- Department of Management, Information and Production and Engineering, University of Bergamo, Dalmine, Italy
| |
Collapse
|
20
|
Shen Y, Molenberg R, Bokkers RPH, Wei Y, Uyttenboogaart M, van Dijk JMC. The Role of Hemodynamics through the Circle of Willis in the Development of Intracranial Aneurysm: A Systematic Review of Numerical Models. J Pers Med 2022; 12:jpm12061008. [PMID: 35743791 PMCID: PMC9225067 DOI: 10.3390/jpm12061008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The role of regional hemodynamics in the intracranial aneurysmal formation, growth, and rupture has been widely discussed based on numerical models over the past decades. Variation of the circle of Willis (CoW), which results in hemodynamic changes, is associated with the aneurysmal formation and rupture. However, such correlation has not been further clarified yet. The aim of this systematic review is to investigate whether simulated hemodynamic indices of the CoW are relevant to the formation, growth, or rupture of intracranial aneurysm. Methods: We conducted a review of MEDLINE, Web of Science, and EMBASE for studies on the correlation between hemodynamics indices of the CoW derived from numerical models and intracranial aneurysm up to December 2020 in compliance with PRISMA guidelines. Results: Three case reports out of 1046 publications met our inclusion and exclusion criteria, reporting 13 aneurysms in six patients. Eleven aneurysms were unruptured, and the state of the other two aneurysms was unknown. Wall shear stress, oscillatory shear index, von-Mises tension, flow velocity, and flow rate were reported as hemodynamic indices. Due to limited cases and significant heterogeneity between study settings, meta-analysis could not be performed. Conclusion: Numerical models can provide comprehensive information on the cerebral blood flow as well as local flow characteristics in the intracranial aneurysm. Based on only three case reports, no firm conclusion can be drawn regarding the correlation between hemodynamic parameters in the CoW derived from numerical models and aneurysmal formation or rupture. Due to the inherent nature of numerical models, more sensitive analysis and rigorous validations are required to determine its measurement error and thus extend their application into clinical practice for personalized management. Prospero registration number: CRD42021125169.
Collapse
Affiliation(s)
- Yuanyuan Shen
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (Y.S.); (R.M.)
| | - Rob Molenberg
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (Y.S.); (R.M.)
| | - Reinoud P. H. Bokkers
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (R.P.H.B.); (M.U.)
| | - Yanji Wei
- Engineering and Technology Institute Groningen, Faculty of Science & Engineering, University of Groningen, 9747 AG Groningen, The Netherlands;
| | - Maarten Uyttenboogaart
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (R.P.H.B.); (M.U.)
- Department of Neurology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - J. Marc C. van Dijk
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (Y.S.); (R.M.)
- Correspondence:
| |
Collapse
|
21
|
He Y, Northrup H, Le H, Cheung AK, Berceli SA, Shiu YT. Medical Image-Based Computational Fluid Dynamics and Fluid-Structure Interaction Analysis in Vascular Diseases. Front Bioeng Biotechnol 2022; 10:855791. [PMID: 35573253 PMCID: PMC9091352 DOI: 10.3389/fbioe.2022.855791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/08/2022] [Indexed: 01/17/2023] Open
Abstract
Hemodynamic factors, induced by pulsatile blood flow, play a crucial role in vascular health and diseases, such as the initiation and progression of atherosclerosis. Computational fluid dynamics, finite element analysis, and fluid-structure interaction simulations have been widely used to quantify detailed hemodynamic forces based on vascular images commonly obtained from computed tomography angiography, magnetic resonance imaging, ultrasound, and optical coherence tomography. In this review, we focus on methods for obtaining accurate hemodynamic factors that regulate the structure and function of vascular endothelial and smooth muscle cells. We describe the multiple steps and recent advances in a typical patient-specific simulation pipeline, including medical imaging, image processing, spatial discretization to generate computational mesh, setting up boundary conditions and solver parameters, visualization and extraction of hemodynamic factors, and statistical analysis. These steps have not been standardized and thus have unavoidable uncertainties that should be thoroughly evaluated. We also discuss the recent development of combining patient-specific models with machine-learning methods to obtain hemodynamic factors faster and cheaper than conventional methods. These critical advances widen the use of biomechanical simulation tools in the research and potential personalized care of vascular diseases.
Collapse
Affiliation(s)
- Yong He
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, United States
| | - Hannah Northrup
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Ha Le
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Alfred K. Cheung
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, United States
| | - Scott A. Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, United States
- Vascular Surgery Section, Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, United States
| | - Yan Tin Shiu
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, United States
- *Correspondence: Yan Tin Shiu,
| |
Collapse
|
22
|
Integrating computational fluid dynamics data into medical image visualization workflows via DICOM. Int J Comput Assist Radiol Surg 2022; 17:1143-1154. [DOI: 10.1007/s11548-022-02613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/17/2022] [Indexed: 11/27/2022]
|
23
|
Keller SB, Bumpus JM, Gatenby JC, Yang E, Kassim AA, Dampier C, Gore JC, Buck AKW. Characterizing Intracranial Hemodynamics in Sickle Cell Anemia: Impact of Patient-Specific Viscosity. Cardiovasc Eng Technol 2022; 13:104-119. [PMID: 34286479 PMCID: PMC9030946 DOI: 10.1007/s13239-021-00559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 06/18/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Pediatric and adult patients with sickle cell anemia (SCA) are at increased risk of stroke and cerebrovascular accident. In the general adult population, there is a relationship between arterial hemodynamics and pathology; however, this relationship in SCA patients remains to be elucidated. The aim of this work was to characterize circle of Willis hemodynamics in patients with SCA and quantify the impact of viscosity choice on pathophysiologically-relevant hemodynamics measures. METHODS Based on measured vascular geometries, time-varying flow rates, and blood parameters, detailed patient-specific simulations of the circle of Willis were conducted for SCA patients (n = 6). Simulations quantified the impact of patient-specific and standard blood viscosities on wall shear stress (WSS). RESULTS These results demonstrated that use of a standard blood viscosity introduces large errors into the estimation of pathophysiologically-relevant hemodynamic parameters. Standard viscosity models overpredicted peak WSS by 55% and 49% for steady and pulsatile flow, respectively. Moreover, these results demonstrated non-uniform, spatial patterns of positive and negative WSS errors related to viscosity, and standard viscosity simulations overpredicted the time-averaged WSS by 32% (standard deviation = 7.1%). Finally, differences in shear rate demonstrated that the viscosity choice alters the simulated near-wall flow field, impacting hemodynamics measures. CONCLUSIONS This work presents simulations of circle of Willis arterial flow in SCA patients and demonstrates the importance and feasibility of using a patient-specific viscosity in these simulations. Accurately characterizing cerebrovascular hemodynamics in SCA populations has potential for elucidating the pathophysiology of large-vessel occlusion, aneurysms, and tissue damage in these patients.
Collapse
Affiliation(s)
- Sara B. Keller
- Department of Bioengineering, University of Washington; Seattle, WA, USA
| | - Jacob M. Bumpus
- Department of Biomedical Engineering, Vanderbilt University; Nashville, TN, USA; currently at Northgate Technologies, Inc.; Elgin, IL, USA
| | | | - Elizabeth Yang
- Center for Cancer and Blood Disorders, Pediatric Specialists of Virginia; Fairfax, VA, USA
| | - Adetola A. Kassim
- Department of Medicine, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Carlton Dampier
- Department of Pediatrics, Emory University and Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center; Nashville, TN, USA,Department of Biomedical Engineering, Vanderbilt University; Nashville, TN, USA,Department of Physics and Astronomy, Vanderbilt University; Nashville, TN, USA
| | - Amanda K. W. Buck
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center; Nashville, TN, USA,Department of Biomedical Engineering, Vanderbilt University; Nashville, TN, USA,Corresponding author: Amanda Kathleen Wake Buck, , Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310
| |
Collapse
|
24
|
Khan MO, Toro Arana V, Najafi M, MacDonald DE, Natarajan T, Valen-Sendstad K, Steinman DA. On the prevalence of flow instabilities from high-fidelity computational fluid dynamics of intracranial bifurcation aneurysms. J Biomech 2021; 127:110683. [PMID: 34454331 DOI: 10.1016/j.jbiomech.2021.110683] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 11/27/2022]
Abstract
High-fidelity computational fluid dynamics (HF-CFD) has revealed the potential for high-frequency flow instabilities (aka "turbulent-like" flow) in intracranial aneurysms, consistent with classic in vivo and in vitro reports of bruits and/or wall vibrations. However, HF-CFD has typically been performed on limited numbers of cases, often with unphysiological inflow conditions or focused on sidewall-type aneurysms where flow instabilities may be inherently less prevalent. Here we report HF-CFD of 50 bifurcation aneurysm cases from the open-source Aneurisk model repository. These were meshed using quadratic finite elements having an average effective spatial resolution of 0.065 mm, and solved under physiologically-pulsatile flow conditions using a well-validated, minimally-dissipative solver with 20,000 time-steps per cardiac cycle Flow instability was quantified using the recently introduced spectral power index (SPI), which quantifies, from 0 to 1, the power associated with velocity fluctuations above those of the driving inflow waveform. Of the 50 cases, nearly half showed regions within the sac having SPI up to 0.5, often with non-negligible power into the 100's of Hz, and roughly 1/3 had sac-averaged SPI > 0.1. High SPI did not significantly predict rupture status in this cohort. Proper orthogonal decomposition of cases with highest SPIavg revealed time-varying energetics consistent with transient turbulence. Our reported prevalence of high-frequency flow instabilities in HF-CFD modelling of aneurysms suggests that care must be taken to avoid routinely overlooking them if we are to understand the highly dynamic mechanical forces to which some aneurysm walls may be exposed, and their prevalence in vivo.
Collapse
Affiliation(s)
- M O Khan
- Cardiovascular Imaging, Modelling and Biomechanics Lab, Department of Electrical, Computer and Biomedical Engineering, Ryerson University, Ontario, Canada.
| | - V Toro Arana
- Stanford University School of Medicine, Stanford, CA, USA
| | - M Najafi
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - D E MacDonald
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - T Natarajan
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada; Simula Research Laboratory, Lysaker Norway
| | | | - D A Steinman
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Sun A, Zhao C, Gao Z, Deng X, Qiu H. A proposed design of flow diverter and it’s hemodynamic validation. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2020.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Baseline local hemodynamics as predictor of lumen remodeling at 1-year follow-up in stented superficial femoral arteries. Sci Rep 2021; 11:1613. [PMID: 33452294 PMCID: PMC7810829 DOI: 10.1038/s41598-020-80681-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/24/2020] [Indexed: 11/08/2022] Open
Abstract
In-stent restenosis (ISR) is the major drawback of superficial femoral artery (SFA) stenting. Abnormal hemodynamics after stent implantation seems to promote the development of ISR. Accordingly, this study aims to investigate the impact of local hemodynamics on lumen remodeling in human stented SFA lesions. Ten SFA models were reconstructed at 1-week and 1-year follow-up from computed tomography images. Patient-specific computational fluid dynamics simulations were performed to relate the local hemodynamics at 1-week, expressed in terms of time-averaged wall shear stress (TAWSS), oscillatory shear index and relative residence time, with the lumen remodeling at 1-year, quantified as the change of lumen area between 1-week and 1-year. The TAWSS was negatively associated with the lumen area change (ρ = - 0.75, p = 0.013). The surface area exposed to low TAWSS was positively correlated with the lumen area change (ρ = 0.69, p = 0.026). No significant correlations were present between the other hemodynamic descriptors and lumen area change. The low TAWSS was the best predictive marker of lumen remodeling (positive predictive value of 44.8%). Moreover, stent length and overlapping were predictor of ISR at follow-up. Despite the limited number of analyzed lesions, the overall findings suggest an association between abnormal patterns of WSS after stenting and lumen remodeling.
Collapse
|
27
|
Zhang D, Wu X, Tang J, Wang P, Chen GZ, Yin X. Hemodynamics is associated with vessel wall remodeling in patients with middle cerebral artery stenosis. Eur Radiol 2021; 31:5234-5242. [PMID: 33439317 DOI: 10.1007/s00330-020-07607-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/26/2020] [Accepted: 12/04/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To evaluate the relationship between hemodynamics and vessel wall remodeling patterns in middle cerebral artery (MCA) stenosis based on high-resolution magnetic resonance imaging and computational fluid dynamics (CFD). METHODS Forty consecutive patients with recent ischemic stroke or transient ischemic attack attributed to unilateral atherosclerotic MCA stenosis (50-99%) were prospectively recruited. All patients underwent a cross-sectional scan of the stenotic MCA vessel wall. The parameters of the vessel wall, the number of patients with acute infarction, translesional wall shear stress ratio (WSSR), wall shear stress in stenosis (WSSs), and translesional pressure ratio were obtained. The patients were divided into positive remodeling (PR) and negative remodeling (NR) groups. The differences in vessel wall parameters and hemodynamics were compared. Correlations between the parameters of the vessel wall and hemodynamics were calculated. RESULTS Of the 40 patients, 16 had PR, 19 had NR, and the other 5 displayed non-remodeling. The PR group had a smaller lumen area (p = 0.004), larger plaque area (p < 0.001), normal wall index (p = 0.004), and higher WSSR (p = 0.004) and WSSs (p = 0.023) at the most narrowed site. The PR group had more enhanced plaques (12 vs 6, p = 0.03). The number of patients with acute stroke in the PR group was more than that in the NR group (11 vs 4, p = 0.01). The remodeling index (r = 0.376, p = 0.026) and plaque area (r = 0.407, p = 0.015) showed a positive correlation with WSSR, respectively. CONCLUSIONS Hemodynamics plays a role in atherosclerotic plaques and vessel wall remodeling. Individuals with greater hemodynamic values might be more prone to stroke. KEY POINTS • Stenotic plaques in middle cerebral artery with positive remodeling have smaller lumen area and larger resp. higher plaque area, normal wall index, translesional wall shear stress ratio, and wall shear stress than negative remodeling. • The remodeling index and plaque area are positively correlated with translesional wall shear stress ratio. • Hemodynamic may help to understand the role of positive remodeling in the development of acute stroke.
Collapse
Affiliation(s)
- Danfeng Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Xinying Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Jie Tang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Peng Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Guo Zhong Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
28
|
Model Verification and Error Sensitivity of Turbulence-Related Tensor Characteristics in Pulsatile Blood Flow Simulations. FLUIDS 2020. [DOI: 10.3390/fluids6010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Model verification, validation, and uncertainty quantification are essential procedures to estimate errors within cardiovascular flow modeling, where acceptable confidence levels are needed for clinical reliability. While more turbulent-like studies are frequently observed within the biofluid community, practical modeling guidelines are scarce. Verification procedures determine the agreement between the conceptual model and its numerical solution by comparing for example, discretization and phase-averaging-related errors of specific output parameters. This computational fluid dynamics (CFD) study presents a comprehensive and practical verification approach for pulsatile turbulent-like blood flow predictions by considering the amplitude and shape of the turbulence-related tensor field using anisotropic invariant mapping. These procedures were demonstrated by investigating the Reynolds stress tensor characteristics in a patient-specific aortic coarctation model, focusing on modeling-related errors associated with the spatiotemporal resolution and phase-averaging sampling size. Findings in this work suggest that attention should also be put on reducing phase-averaging related errors, as these could easily outweigh the errors associated with the spatiotemporal resolution when including too few cardiac cycles. Also, substantially more cycles are likely needed than typically reported for these flow regimes to sufficiently converge the phase-instant tensor characteristics. Here, higher degrees of active fluctuating directions, especially of lower amplitudes, appeared to be the most sensitive turbulence characteristics.
Collapse
|
29
|
Teixeira FS, Neufeld E, Kuster N, Watton PN. Modeling intracranial aneurysm stability and growth: an integrative mechanobiological framework for clinical cases. Biomech Model Mechanobiol 2020; 19:2413-2431. [PMID: 32533497 PMCID: PMC7603456 DOI: 10.1007/s10237-020-01351-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 05/12/2020] [Indexed: 11/03/2022]
Abstract
We present a novel patient-specific fluid-solid-growth framework to model the mechanobiological state of clinically detected intracranial aneurysms (IAs) and their evolution. The artery and IA sac are modeled as thick-walled, non-linear elastic fiber-reinforced composites. We represent the undulation distribution of collagen fibers: the adventitia of the healthy artery is modeled as a protective sheath whereas the aneurysm sac is modeled to bear load within physiological range of pressures. Initially, we assume the detected IA is stable and then consider two flow-related mechanisms to drive enlargement: (1) low wall shear stress; (2) dysfunctional endothelium which is associated with regions of high oscillatory flow. Localized collagen degradation and remodelling gives rise to formation of secondary blebs on the aneurysm dome. Restabilization of blebs is achieved by remodelling of the homeostatic collagen fiber stretch distribution. This integrative mechanobiological modelling workflow provides a step towards a personalized risk-assessment and treatment of clinically detected IAs.
Collapse
Affiliation(s)
| | - Esra Neufeld
- IT’IS Foundation & ETH Zürich, Zürich, Switzerland
| | - Niels Kuster
- IT’IS Foundation & ETH Zürich, Zürich, Switzerland
| | - Paul N. Watton
- Department of Computer Science, Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
30
|
Characterization of anisotropic turbulence behavior in pulsatile blood flow. Biomech Model Mechanobiol 2020; 20:491-506. [PMID: 33090334 PMCID: PMC7979666 DOI: 10.1007/s10237-020-01396-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/07/2020] [Indexed: 11/10/2022]
Abstract
Turbulent-like hemodynamics with prominent cycle-to-cycle flow variations have received increased attention as a potential stimulus for cardiovascular diseases. These turbulent conditions are typically evaluated in a statistical sense from single scalars extracted from ensemble-averaged tensors (such as the Reynolds stress tensor), limiting the amount of information that can be used for physical interpretations and quality assessments of numerical models. In this study, barycentric anisotropy invariant mapping was used to demonstrate an efficient and comprehensive approach to characterize turbulence-related tensor fields in patient-specific cardiovascular flows, obtained from scale-resolving large eddy simulations. These techniques were also used to analyze some common modeling compromises as well as MRI turbulence measurements through an idealized constriction. The proposed method found explicit sites of elevated turbulence anisotropy, including a broad but time-varying spectrum of characteristics over the flow deceleration phase, which was different for both the steady inflow and Reynolds-averaged Navier–Stokes modeling assumptions. Qualitatively, the MRI results showed overall expected post-stenotic turbulence characteristics, however, also with apparent regions of unrealizable or conceivably physically unrealistic conditions, including the highest turbulence intensity ranges. These findings suggest that more detailed studies of MRI-measured turbulence fields are needed, which hopefully can be assisted by more comprehensive evaluation tools such as the once described herein.
Collapse
|
31
|
Lipp SN, Niedert EE, Cebull HL, Diorio TC, Ma JL, Rothenberger SM, Stevens Boster KA, Goergen CJ. Computational Hemodynamic Modeling of Arterial Aneurysms: A Mini-Review. Front Physiol 2020; 11:454. [PMID: 32477163 PMCID: PMC7235429 DOI: 10.3389/fphys.2020.00454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/09/2020] [Indexed: 01/02/2023] Open
Abstract
Arterial aneurysms are pathological dilations of blood vessels, which can be of clinical concern due to thrombosis, dissection, or rupture. Aneurysms can form throughout the arterial system, including intracranial, thoracic, abdominal, visceral, peripheral, or coronary arteries. Currently, aneurysm diameter and expansion rates are the most commonly used metrics to assess rupture risk. Surgical or endovascular interventions are clinical treatment options, but are invasive and associated with risk for the patient. For aneurysms in locations where thrombosis is the primary concern, diameter is also used to determine the level of therapeutic anticoagulation, a treatment that increases the possibility of internal bleeding. Since simple diameter is often insufficient to reliably determine rupture and thrombosis risk, computational hemodynamic simulations are being developed to help assess when an intervention is warranted. Created from subject-specific data, computational models have the potential to be used to predict growth, dissection, rupture, and thrombus-formation risk based on hemodynamic parameters, including wall shear stress, oscillatory shear index, residence time, and anomalous blood flow patterns. Generally, endothelial damage and flow stagnation within aneurysms can lead to coagulation, inflammation, and the release of proteases, which alter extracellular matrix composition, increasing risk of rupture. In this review, we highlight recent work that investigates aneurysm geometry, model parameter assumptions, and other specific considerations that influence computational aneurysm simulations. By highlighting modeling validation and verification approaches, we hope to inspire future computational efforts aimed at improving our understanding of aneurysm pathology and treatment risk stratification.
Collapse
Affiliation(s)
- Sarah N. Lipp
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Elizabeth E. Niedert
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Hannah L. Cebull
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Tyler C. Diorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Jessica L. Ma
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Sean M. Rothenberger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Kimberly A. Stevens Boster
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
32
|
Cardiovascular models for personalised medicine: Where now and where next? Med Eng Phys 2020; 72:38-48. [PMID: 31554575 DOI: 10.1016/j.medengphy.2019.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
The aim of this position paper is to provide a brief overview of the current status of cardiovascular modelling and of the processes required and some of the challenges to be addressed to see wider exploitation in both personal health management and clinical practice. In most branches of engineering the concept of the digital twin, informed by extensive and continuous monitoring and coupled with robust data assimilation and simulation techniques, is gaining traction: the Gartner Group listed it as one of the top ten digital trends in 2018. The cardiovascular modelling community is starting to develop a much more systematic approach to the combination of physics, mathematics, control theory, artificial intelligence, machine learning, computer science and advanced engineering methodology, as well as working more closely with the clinical community to better understand and exploit physiological measurements, and indeed to develop jointly better measurement protocols informed by model-based understanding. Developments in physiological modelling, model personalisation, model outcome uncertainty, and the role of models in clinical decision support are addressed and 'where-next' steps and challenges discussed.
Collapse
|
33
|
Rayz VL, Cohen-Gadol AA. Hemodynamics of Cerebral Aneurysms: Connecting Medical Imaging and Biomechanical Analysis. Annu Rev Biomed Eng 2020; 22:231-256. [PMID: 32212833 DOI: 10.1146/annurev-bioeng-092419-061429] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the last two decades, numerous studies have conducted patient-specific computations of blood flow dynamics in cerebral aneurysms and reported correlations between various hemodynamic metrics and aneurysmal disease progression or treatment outcomes. Nevertheless, intra-aneurysmal flow analysis has not been adopted in current clinical practice, and hemodynamic factors usually are not considered in clinical decision making. This review presents the state of the art in cerebral aneurysm imaging and image-based modeling, discussing the advantages and limitations of each approach and focusing on the translational value of hemodynamic analysis. Combining imaging and modeling data obtained from different flow modalities can improve the accuracy and fidelity of resulting velocity fields and flow-derived factors that are thought to affect aneurysmal disease progression. It is expected that predictive models utilizing hemodynamic factors in combination with patient medical history and morphological data will outperform current risk scores and treatment guidelines. Possible future directions include novel approaches enabling data assimilation and multimodality analysis of cerebral aneurysm hemodynamics.
Collapse
Affiliation(s)
- Vitaliy L Rayz
- Weldon School of Biomedical Engineering and School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Aaron A Cohen-Gadol
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.,Goodman Campbell Brain and Spine, Carmel, Indiana 46032, USA
| |
Collapse
|
34
|
Cancelliere NM, Najafi M, Brina O, Bouillot P, Vargas MI, Lovblad KO, Krings T, Pereira VM, Steinman DA. 4D-CT angiography versus 3D-rotational angiography as the imaging modality for computational fluid dynamics of cerebral aneurysms. J Neurointerv Surg 2019; 12:626-630. [DOI: 10.1136/neurintsurg-2019-015389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 11/03/2022]
Abstract
Background and purposeComputational fluid dynamics (CFD) can provide valuable information regarding intracranial hemodynamics. Patient-specific models can be segmented from various imaging modalities, which may influence the geometric output and thus hemodynamic results. This study aims to compare CFD results from aneurysm models segmented from three-dimensional rotational angiography (3D-RA) versus novel four-dimensional CT angiography (4D-CTA).MethodsFourteen patients with 16 cerebral aneurysms underwent novel 4D-CTA followed by 3D-RA. Endoluminal geometries were segmented from each modality using an identical workflow, blinded to the other modality, to produce 28 'original' models. Each was then minimally edited a second time to match length of branches, producing 28 additional 'matched' models. CFD simulations were performed using estimated flow rates for 'original' models (representing real-world experience) and patient-specific flow rates from 4D-CTA for 'matched' models (to control for influence of modality alone).ResultsOverall, geometric and hemodynamic results were consistent between models segmented from 3D-RA and 4D-CTA, with correlations improving after matching to control for operator-introduced variability. Despite smaller 4D-CTA parent artery diameters (3.49±0.97 mm vs 3.78±0.92 mm for 3D-RA; p=0.005) and sac volumes (157 (37–750 mm3) vs 173 (53–770 mm3) for 3D-RA; p=0.0002), sac averages of time-averaged wall shear stress (TAWSS), oscillatory shear (OSI), and high frequency fluctuations (measured by spectral power index, SPI) were well correlated between 3D-RA and 4D-CTA 'matched' control models (TAWSS, R2=0.91; OSI, R2=0.79; SPI, R2=0.90).ConclusionsOur study shows that CFD performed using 4D-CTA models produces reliable geometric and hemodynamic information in the intracranial circulation. 4D-CTA may be considered as a follow-up imaging tool for hemodynamic assessment of cerebral aneurysms.
Collapse
|