1
|
Nakajima R, Osada T, Kinoshita M, Ogawa A, Okita H, Konishi S, Nakada M. More widespread functionality of posterior language area in patients with brain tumors. Hum Brain Mapp 2024; 45:e26801. [PMID: 39087903 PMCID: PMC11293139 DOI: 10.1002/hbm.26801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Damage to the posterior language area (PLA), or Wernicke's area causes cortical reorganization in the corresponding regions of the contralateral hemisphere. However, the details of reorganization within the ipsilateral hemisphere are not fully understood. In this context, direct electrical stimulation during awake surgery can provide valuable opportunities to investigate neuromodulation of the human brain in vivo, which is difficult through the non-invasive approaches. Thus, in this study, we aimed to investigate the characteristics of the cortical reorganization of the PLA within the ipsilateral hemisphere. Sixty-two patients with left hemispheric gliomas were divided into groups depending on whether the lesion extended to the PLA. All patients underwent direct cortical stimulation with a picture-naming task. We further performed functional connectivity analyses using resting-state functional magnetic resonance imaging (MRI) in a subset of patients and calculated betweenness centrality, an index of the network importance of brain areas. During direct cortical stimulation, the regions showing positive (impaired) responses in the non-PLA group were localized mainly in the posterior superior temporal gyrus (pSTG), whereas those in the PLA group were widely distributed from the pSTG to the posterior supramarginal gyrus (pSMG). Notably, the percentage of positive responses in the pSMG was significantly higher in the PLA group (47%) than in the non-PLA group (8%). In network analyses of functional connectivity, the pSMG was identified as a hub region with high betweenness centrality in both the groups. These findings suggest that the language area can spread beyond the PLA to the pSMG, a hub region, in patients with lesion progression to the pSTG. The change in the pattern of the language area may be a compensatory mechanism to maintain efficient brain networks.
Collapse
Affiliation(s)
- Riho Nakajima
- Department of Occupational Therapy, Faculty of Health Science, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| | - Takahiro Osada
- Department of NeurophysiologyJuntendo University School of MedicineTokyoJapan
| | - Masashi Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| | - Akitoshi Ogawa
- Department of NeurophysiologyJuntendo University School of MedicineTokyoJapan
| | - Hirokazu Okita
- Department of Physical Medicine and RehabilitationKanazawa University HospitalKanazawaJapan
| | - Seiki Konishi
- Department of NeurophysiologyJuntendo University School of MedicineTokyoJapan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
- Sapiens Life SciencesEvolution and Medicine Research CenterKanazawa UniversityKanazawaJapan
| |
Collapse
|
2
|
de Zwart B, Ruis C. An update on tests used for intraoperative monitoring of cognition during awake craniotomy. Acta Neurochir (Wien) 2024; 166:204. [PMID: 38713405 PMCID: PMC11076349 DOI: 10.1007/s00701-024-06062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Mapping higher-order cognitive functions during awake brain surgery is important for cognitive preservation which is related to postoperative quality of life. A systematic review from 2018 about neuropsychological tests used during awake craniotomy made clear that until 2017 language was most often monitored and that the other cognitive domains were underexposed (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). The field of awake craniotomy and cognitive monitoring is however developing rapidly. The aim of the current review is therefore, to investigate whether there is a change in the field towards incorporation of new tests and more complete mapping of (higher-order) cognitive functions. METHODS We replicated the systematic search of the study from 2018 in PubMed and Embase from February 2017 to November 2023, yielding 5130 potentially relevant articles. We used the artificial machine learning tool ASReview for screening and included 272 papers that gave a detailed description of the neuropsychological tests used during awake craniotomy. RESULTS Comparable to the previous study of 2018, the majority of studies (90.4%) reported tests for assessing language functions (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). Nevertheless, an increasing number of studies now also describe tests for monitoring visuospatial functions, social cognition, and executive functions. CONCLUSIONS Language remains the most extensively tested cognitive domain. However, a broader range of tests are now implemented during awake craniotomy and there are (new developed) tests which received more attention. The rapid development in the field is reflected in the included studies in this review. Nevertheless, for some cognitive domains (e.g., executive functions and memory), there is still a need for developing tests that can be used during awake surgery.
Collapse
Affiliation(s)
- Beleke de Zwart
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands.
| | - Carla Ruis
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Mithani K, Suresh H, Ibrahim GM. Graph Theory and Modeling of Network Topology in Clinical Neurosurgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:107-122. [PMID: 39523262 DOI: 10.1007/978-3-031-64892-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The last several decades have seen a shift in understanding many neurological disorders as abnormalities in brain networks rather than specific brain regions. This conceptual revolution, coupled with advancements in computing capabilities and resources, has enabled a wealth of research on delineating and treating aberrant brain networks. One approach to network neuroscience, graph theory, involves modeling network topologies as mathematical graphs and computing various metrics that describe its characteristics. Using graph theory, researchers have derived new insights into the pathophysiology of many neuropsychiatric disorders and even developed treatments targeted at restoring network disturbances. In this chapter, we provide an overview of the principles of graph theory and how to implement it, specific applications of graph theory within clinical neurosurgery, and a discussion on the advantages and limitations of these approaches.
Collapse
Affiliation(s)
- Karim Mithani
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Hrishikesh Suresh
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Boerger TF, Pahapill P, Butts AM, Arocho-Quinones E, Raghavan M, Krucoff MO. Large-scale brain networks and intra-axial tumor surgery: a narrative review of functional mapping techniques, critical needs, and scientific opportunities. Front Hum Neurosci 2023; 17:1170419. [PMID: 37520929 PMCID: PMC10372448 DOI: 10.3389/fnhum.2023.1170419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 08/01/2023] Open
Abstract
In recent years, a paradigm shift in neuroscience has been occurring from "localizationism," or the idea that the brain is organized into separately functioning modules, toward "connectomics," or the idea that interconnected nodes form networks as the underlying substrates of behavior and thought. Accordingly, our understanding of mechanisms of neurological function, dysfunction, and recovery has evolved to include connections, disconnections, and reconnections. Brain tumors provide a unique opportunity to probe large-scale neural networks with focal and sometimes reversible lesions, allowing neuroscientists the unique opportunity to directly test newly formed hypotheses about underlying brain structural-functional relationships and network properties. Moreover, if a more complete model of neurological dysfunction is to be defined as a "disconnectome," potential avenues for recovery might be mapped through a "reconnectome." Such insight may open the door to novel therapeutic approaches where previous attempts have failed. In this review, we briefly delve into the most clinically relevant neural networks and brain mapping techniques, and we examine how they are being applied to modern neurosurgical brain tumor practices. We then explore how brain tumors might teach us more about mechanisms of global brain dysfunction and recovery through pre- and postoperative longitudinal connectomic and behavioral analyses.
Collapse
Affiliation(s)
- Timothy F. Boerger
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Peter Pahapill
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alissa M. Butts
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
- Mayo Clinic, Rochester, MN, United States
| | - Elsa Arocho-Quinones
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Manoj Raghavan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Max O. Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
5
|
Krishna S, Choudhury A, Keough MB, Seo K, Ni L, Kakaizada S, Lee A, Aabedi A, Popova G, Lipkin B, Cao C, Nava Gonzales C, Sudharshan R, Egladyous A, Almeida N, Zhang Y, Molinaro AM, Venkatesh HS, Daniel AGS, Shamardani K, Hyer J, Chang EF, Findlay A, Phillips JJ, Nagarajan S, Raleigh DR, Brang D, Monje M, Hervey-Jumper SL. Glioblastoma remodelling of human neural circuits decreases survival. Nature 2023; 617:599-607. [PMID: 37138086 PMCID: PMC10191851 DOI: 10.1038/s41586-023-06036-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Abstract
Gliomas synaptically integrate into neural circuits1,2. Previous research has demonstrated bidirectional interactions between neurons and glioma cells, with neuronal activity driving glioma growth1-4 and gliomas increasing neuronal excitability2,5-8. Here we sought to determine how glioma-induced neuronal changes influence neural circuits underlying cognition and whether these interactions influence patient survival. Using intracranial brain recordings during lexical retrieval language tasks in awake humans together with site-specific tumour tissue biopsies and cell biology experiments, we find that gliomas remodel functional neural circuitry such that task-relevant neural responses activate tumour-infiltrated cortex well beyond the cortical regions that are normally recruited in the healthy brain. Site-directed biopsies from regions within the tumour that exhibit high functional connectivity between the tumour and the rest of the brain are enriched for a glioblastoma subpopulation that exhibits a distinct synaptogenic and neuronotrophic phenotype. Tumour cells from functionally connected regions secrete the synaptogenic factor thrombospondin-1, which contributes to the differential neuron-glioma interactions observed in functionally connected tumour regions compared with tumour regions with less functional connectivity. Pharmacological inhibition of thrombospondin-1 using the FDA-approved drug gabapentin decreases glioblastoma proliferation. The degree of functional connectivity between glioblastoma and the normal brain negatively affects both patient survival and performance in language tasks. These data demonstrate that high-grade gliomas functionally remodel neural circuits in the human brain, which both promotes tumour progression and impairs cognition.
Collapse
Affiliation(s)
- Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Abrar Choudhury
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Kyounghee Seo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lijun Ni
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Sofia Kakaizada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Anthony Lee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander Aabedi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Galina Popova
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin Lipkin
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Caroline Cao
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Cesar Nava Gonzales
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Rasika Sudharshan
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew Egladyous
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nyle Almeida
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Yalan Zhang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Andy G S Daniel
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Jeanette Hyer
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Anne Findlay
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Srikantan Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, USA
| | - David Brang
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Anastasaki C, Gao Y, Gutmann DH. Neurons as stromal drivers of nervous system cancer formation and progression. Dev Cell 2023; 58:81-93. [PMID: 36693322 PMCID: PMC9883043 DOI: 10.1016/j.devcel.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 12/27/2022] [Indexed: 01/24/2023]
Abstract
Similar to their pivotal roles in nervous system development, neurons have emerged as critical regulators of cancer initiation, maintenance, and progression. Focusing on nervous system tumors, we describe the normal relationships between neurons and other cell types relevant to normal nerve function, and discuss how disruptions of these interactions promote tumor evolution, focusing on electrical (gap junctions) and chemical (synaptic) coupling, as well as the establishment of new paracrine relationships. We also review how neuron-tumor communication contributes to some of the complications of cancer, including neuropathy, chemobrain, seizures, and pain. Finally, we consider the implications of cancer neuroscience in establishing risk for tumor penetrance and in the design of future anti-tumoral treatments.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yunqing Gao
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
Nieberlein L, Rampp S, Gussew A, Prell J, Hartwigsen G. Reorganization and Plasticity of the Language Network in Patients with Cerebral Gliomas. Neuroimage Clin 2023; 37:103326. [PMID: 36736198 PMCID: PMC9926312 DOI: 10.1016/j.nicl.2023.103326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/15/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Language is organized in large-scale networks in the human brain that show a strong potential for flexible interactions and adaptation. Neuroplasticity is the central mechanism that allows such dynamic modulation to changing conditions across the life span and is particularly important for network reorganization after brain lesions. Most studies on language reorganization focused on language recovery after stroke. Yet, a strong degree of adaptive neuroplasticity can also be observed in patients with brain tumors in language-eloquent brain areas. This review discusses key mechanisms for neural reorganization in patients with brain tumors. Our main aim is to elucidate the underlying mechanisms for intra- and interhemispheric plasticity in the language network in these patients. The following reorganization patterns are discussed: 1) Persisting function within the tumor; 2) Reorganization in perilesional regions; 3) Reorganization in a distributed network of the affected hemisphere; 4) Reorganization to the contralesional hemisphere. In this context, we shed light on language-related reorganization patterns in frontal and temporo-parietal areas and discuss their functional relevance. We also address tumor-related changes in structural and functional connectivity between eloquent brain regions. Thereby, we aim to expand the general understanding of the plastic potential of the neural language network and facilitate clinical decision-making processes for effective, function-preserving tumor treatment.
Collapse
Affiliation(s)
- Laura Nieberlein
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Halle (Saale), Germany; Department of Neurosurgery, University Hospital Erlangen, Germany
| | - Alexander Gussew
- Department of Medical Physics, University Hospital Halle (Saale), Germany
| | - Julian Prell
- Department of Neurosurgery, University Hospital Halle (Saale), Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Germany
| |
Collapse
|
8
|
Collée E, Vincent A, Dirven C, Satoer D. Speech and Language Errors during Awake Brain Surgery and Postoperative Language Outcome in Glioma Patients: A Systematic Review. Cancers (Basel) 2022; 14:cancers14215466. [PMID: 36358884 PMCID: PMC9658495 DOI: 10.3390/cancers14215466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Awake craniotomy with direct electrical stimulation (DES) is the standard treatment for patients with gliomas in eloquent areas. Even though language is monitored carefully during surgery, many patients suffer from postoperative aphasia, with negative effects on their quality of life. Some perioperative factors are reported to influence postoperative language outcome. However, the influence of different intraoperative speech and language errors on language outcome is not clear. Therefore, we investigate this relation. A systematic search was performed in which 81 studies were included, reporting speech and language errors during awake craniotomy with DES and postoperative language outcomes in adult glioma patients up until 6 July 2020. The frequencies of intraoperative errors and language status were calculated. Binary logistic regressions were performed. Preoperative language deficits were a significant predictor for postoperative acute (OR = 3.42, p < 0.001) and short-term (OR = 1.95, p = 0.007) language deficits. Intraoperative anomia (OR = 2.09, p = 0.015) and intraoperative production errors (e.g., dysarthria or stuttering; OR = 2.06, p = 0.016) were significant predictors for postoperative acute language deficits. Postoperatively, the language deficits that occurred most often were production deficits and spontaneous speech deficits. To conclude, during surgery, intraoperative anomia and production errors should carry particular weight during decision-making concerning the optimal onco-functional balance for a given patient, and spontaneous speech should be monitored. Further prognostic research could facilitate intraoperative decision-making, leading to fewer or less severe postoperative language deficits and improvement of quality of life.
Collapse
|
9
|
Kirkman MA, Hunn BHM, Thomas MSC, Tolmie AK. Influences on cognitive outcomes in adult patients with gliomas: A systematic review. Front Oncol 2022; 12:943600. [PMID: 36033458 PMCID: PMC9407441 DOI: 10.3389/fonc.2022.943600] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
People with brain tumors, including those previously treated, are commonly affected by a range of neurocognitive impairments involving executive function, memory, attention, and social/emotional functioning. Several factors are postulated to underlie this relationship, but evidence relating to many of these factors is conflicting and does not fully explain the variation in cognitive outcomes seen in the literature and in clinical practice. To address this, we performed a systematic literature review to identify and describe the range of factors that can influence cognitive outcomes in adult patients with gliomas. A literature search was performed of Ovid MEDLINE, PsychINFO, and PsycTESTS from commencement until September 2021. Of 9,998 articles identified through the search strategy, and an additional 39 articles identified through other sources, 142 were included in our review. The results confirmed that multiple factors influence cognitive outcomes in patients with gliomas. The effects of tumor characteristics (including location) and treatments administered are some of the most studied variables but the evidence for these is conflicting, which may be the result of methodological and study population differences. Tumor location and laterality overall appear to influence cognitive outcomes, and detection of such an effect is contingent upon administration of appropriate cognitive tests. Surgery appears to have an overall initial deleterious effect on cognition with a recovery in most cases over several months. A large body of evidence supports the adverse effects of radiotherapy on cognition, but the role of chemotherapy is less clear. To contrast, baseline cognitive status appears to be a consistent factor that influences cognitive outcomes, with worse baseline cognition at diagnosis/pre-treatment correlated with worse long-term outcomes. Similarly, much evidence indicates that anti-epileptic drugs have a negative effect on cognition and genetics also appear to have a role. Evidence regarding the effect of age on cognitive outcomes in glioma patients is conflicting, and there is insufficient evidence for gender and fatigue. Cognitive reserve, brain reserve, socioeconomic status, and several other variables discussed in this review, and their influence on cognition and recovery, have not been well-studied in the context of gliomas and are areas for focus in future research. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42017072976.
Collapse
Affiliation(s)
- Matthew A. Kirkman
- Department of Psychology and Human Development, University College London (UCL) Institute of Education, UCL, London, United Kingdom
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, United Kingdom
| | - Benjamin H. M. Hunn
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Neurosurgery, Royal Hobart Hospital, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Michael S. C. Thomas
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Andrew K. Tolmie
- Department of Psychology and Human Development, University College London (UCL) Institute of Education, UCL, London, United Kingdom
| |
Collapse
|
10
|
Aabedi AA, Young JS, Chang EF, Berger MS, Hervey-Jumper SL. Involvement of White Matter Language Tracts in Glioma: Clinical Implications, Operative Management, and Functional Recovery After Injury. Front Neurosci 2022; 16:932478. [PMID: 35898410 PMCID: PMC9309688 DOI: 10.3389/fnins.2022.932478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
To achieve optimal survival and quality of life outcomes in patients with glioma, the extent of tumor resection must be maximized without causing injury to eloquent structures. Preservation of language function is of particular importance to patients and requires careful mapping to reveal the locations of cortical language hubs and their structural and functional connections. Within this language network, accurate mapping of eloquent white matter tracts is critical, given the high risk of permanent neurological impairment if they are injured during surgery. In this review, we start by describing the clinical implications of gliomas involving white matter language tracts. Next, we highlight the advantages and limitations of methods commonly used to identify these tracts during surgery including structural imaging techniques, functional imaging, non-invasive stimulation, and finally, awake craniotomy. We provide a rationale for combining these complementary techniques as part of a multimodal mapping paradigm to optimize postoperative language outcomes. Next, we review local and long-range adaptations that take place as the language network undergoes remodeling after tumor growth and surgical resection. We discuss the probable cellular mechanisms underlying this plasticity with emphasis on the white matter, which until recently was thought to have a limited role in adults. Finally, we provide an overview of emerging developments in targeting the glioma-neuronal network interface to achieve better disease control and promote recovery after injury.
Collapse
Affiliation(s)
| | | | | | | | - Shawn L. Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
11
|
Carrete LR, Young JS, Cha S. Advanced Imaging Techniques for Newly Diagnosed and Recurrent Gliomas. Front Neurosci 2022; 16:787755. [PMID: 35281485 PMCID: PMC8904563 DOI: 10.3389/fnins.2022.787755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Management of gliomas following initial diagnosis requires thoughtful presurgical planning followed by regular imaging to monitor treatment response and survey for new tumor growth. Traditional MR imaging modalities such as T1 post-contrast and T2-weighted sequences have long been a staple of tumor diagnosis, surgical planning, and post-treatment surveillance. While these sequences remain integral in the management of gliomas, advances in imaging techniques have allowed for a more detailed characterization of tumor characteristics. Advanced MR sequences such as perfusion, diffusion, and susceptibility weighted imaging, as well as PET scans have emerged as valuable tools to inform clinical decision making and provide a non-invasive way to help distinguish between tumor recurrence and pseudoprogression. Furthermore, these advances in imaging have extended to the operating room and assist in making surgical resections safer. Nevertheless, surgery, chemotherapy, and radiation treatment continue to make the interpretation of MR changes difficult for glioma patients. As analytics and machine learning techniques improve, radiomics offers the potential to be more quantitative and personalized in the interpretation of imaging data for gliomas. In this review, we describe the role of these newer imaging modalities during the different stages of management for patients with gliomas, focusing on the pre-operative, post-operative, and surveillance periods. Finally, we discuss radiomics as a means of promoting personalized patient care in the future.
Collapse
Affiliation(s)
- Luis R. Carrete
- University of California San Francisco School of Medicine, San Francisco, CA, United States
| | - Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Jacob S. Young,
| | - Soonmee Cha
- Department of Radiology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
12
|
Functional alterations in cortical processing of speech in glioma-infiltrated cortex. Proc Natl Acad Sci U S A 2021; 118:2108959118. [PMID: 34753819 DOI: 10.1073/pnas.2108959118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
Recent developments in the biology of malignant gliomas have demonstrated that glioma cells interact with neurons through both paracrine signaling and electrochemical synapses. Glioma-neuron interactions consequently modulate the excitability of local neuronal circuits, and it is unclear the extent to which glioma-infiltrated cortex can meaningfully participate in neural computations. For example, gliomas may result in a local disorganization of activity that impedes the transient synchronization of neural oscillations. Alternatively, glioma-infiltrated cortex may retain the ability to engage in synchronized activity in a manner similar to normal-appearing cortex but exhibit other altered spatiotemporal patterns of activity with subsequent impact on cognitive processing. Here, we use subdural electrocorticography to sample both normal-appearing and glioma-infiltrated cortex during speech. We find that glioma-infiltrated cortex engages in synchronous activity during task performance in a manner similar to normal-appearing cortex but recruits a diffuse spatial network. On a temporal scale, we show that signals from glioma-infiltrated cortex have decreased entropy, which may affect its ability to encode information during nuanced tasks such as production of monosyllabic versus polysyllabic words. Furthermore, we show that temporal decoding strategies for distinguishing monosyllabic from polysyllabic words were feasible for signals arising from normal-appearing cortex but not from glioma-infiltrated cortex. These findings inform our understanding of cognitive processing in chronic disease states and have implications for neuromodulation and prosthetics in patients with malignant gliomas.
Collapse
|
13
|
Czarnecki P, Lin J, Aton SJ, Zochowski M. Dynamical Mechanism Underlying Scale-Free Network Reorganization in Low Acetylcholine States Corresponding to Slow Wave Sleep. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:759131. [PMID: 35785148 PMCID: PMC9249096 DOI: 10.3389/fnetp.2021.759131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022]
Abstract
Sleep is indispensable for most animals' cognitive functions, and is hypothesized to be a major factor in memory consolidation. Although we do not fully understand the mechanisms of network reorganisation driving memory consolidation, available data suggests that sleep-associated neurochemical changes may be important for such processes. In particular, global acetylcholine levels change across the sleep/wake cycle, with high cholinergic tone during wake and REM sleep and low cholinergic tone during slow wave sleep. Furthermore, experimental perturbation of cholinergic tone has been shown to impact memory storage. Through in silico modeling of neuronal networks, we show how spiking dynamics change in highly heterogenous networks under varying levels of cholinergic tone, with neuronal networks under high cholinergic modulation firing asynchronously and at high frequencies, while those under low cholinergic modulation exhibit synchronous patterns of activity. We further examined the network's dynamics and its reorganization mediated via changing levels of acetylcholine within the context of different scale-free topologies, comparing network activity within the hub cells, a small group of neurons having high degree connectivity, and with the rest of the network. We show a dramatic, state-dependent change in information flow throughout the network, with highly active hub cells integrating information in a high-acetylcholine state, and transferring it to rest of the network in a low-acetylcholine state. This result is experimentally corroborated by frequency-dependent frequency changes observed in vivo experiments. Together, these findings provide insight into how new neurons are recruited into memory traces during sleep, a mechanism which may underlie system memory consolidation.
Collapse
Affiliation(s)
- Paulina Czarnecki
- Department of Mathematics, University of Michigan, Ann Arbor, MI, United States
| | - Jack Lin
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Sara J. Aton
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Michal Zochowski
- Department of Physics and Biophysics Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Convergence of heteromodal lexical retrieval in the lateral prefrontal cortex. Sci Rep 2021; 11:6305. [PMID: 33737672 PMCID: PMC7973515 DOI: 10.1038/s41598-021-85802-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
Lexical retrieval requires selecting and retrieving the most appropriate word from the lexicon to express a desired concept. Few studies have probed lexical retrieval with tasks other than picture naming, and when non-picture naming lexical retrieval tasks have been applied, both convergent and divergent results emerged. The presence of a single construct for auditory and visual processes of lexical retrieval would influence cognitive rehabilitation strategies for patients with aphasia. In this study, we perform support vector regression lesion-symptom mapping using a brain tumor model to test the hypothesis that brain regions specifically involved in lexical retrieval from visual and auditory stimuli represent overlapping neural systems. We find that principal components analysis of language tasks revealed multicollinearity between picture naming, auditory naming, and a validated measure of word finding, implying the existence of redundant cognitive constructs. Nonparametric, multivariate lesion-symptom mapping across participants was used to model accuracies on each of the four language tasks. Lesions within overlapping clusters of 8,333 voxels and 21,512 voxels in the left lateral prefrontal cortex (PFC) were predictive of impaired picture naming and auditory naming, respectively. These data indicate a convergence of heteromodal lexical retrieval within the PFC.
Collapse
|
15
|
Tuncer MS, Salvati LF, Grittner U, Hardt J, Schilling R, Bährend I, Silva LL, Fekonja LS, Faust K, Vajkoczy P, Rosenstock T, Picht T. Towards a tractography-based risk stratification model for language area associated gliomas. NEUROIMAGE-CLINICAL 2020; 29:102541. [PMID: 33401138 PMCID: PMC7785953 DOI: 10.1016/j.nicl.2020.102541] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/04/2020] [Accepted: 12/20/2020] [Indexed: 12/26/2022]
Abstract
Injury to major white matter pathways during language-area associated glioma surgery often results in permanent aphasia. DTI-based tractography of language pathways allows to correlate individual tract injury profiles with functional outcome. Infiltration of the AF is particularly associated with functional deterioration. The temporo-parieto-occipital junction and the temporal stem were confirmed as pivotal functional nodes. Standardized DTI-based tractography can help to determine the individual aphasia risk profile before surgery.
Objectives Injury to major white matter pathways during language-area associated glioma surgery often leads to permanent loss of neurological function. The aim was to establish standardized tractography of language pathways as a predictor of language outcome in clinical neurosurgery. Methods We prospectively analyzed 50 surgical cases of patients with left perisylvian, diffuse gliomas. Standardized preoperative Diffusion-Tensor-Imaging (DTI)-based tractography of the 5 main language tracts (Arcuate Fasciculus [AF], Frontal Aslant Tract [FAT], Inferior Fronto-Occipital Fasciculus [IFOF], Inferior Longitudinal Fasciculus [ILF], Uncinate Fasciculus [UF]) and spatial analysis of tumor and tracts was performed. Postoperative imaging and the resulting resection map were analyzed for potential surgical injury of tracts. The language status was assessed preoperatively, postoperatively and after 3 months using the Aachen Aphasia Test and Berlin Aphasia Score. Correlation analyses, two-step cluster analysis and binary logistic regression were used to analyze associations of tractography results with language outcome after surgery. Results In 14 out of 50 patients (28%), new aphasic symptoms were detected 3 months after surgery. The preoperative infiltration of the AF was associated with functional worsening (cc = 0.314; p = 0.019). Cluster analysis of tract injury profiles revealed two areas particularly related to aphasia: the temporo-parieto-occipital junction (TPO; temporo-parietal AF, middle IFOF, middle ILF) and the temporal stem/peri-insular white matter (middle IFOF, anterior ILF, temporal UF, temporal AF). Injury to these areas (TPO: OR: 23.04; CI: 4.11 – 129.06; temporal stem: OR: 21.96; CI: 2.93 – 164.41) was associated with a higher-risk of persisting aphasia. Conclusions Tractography of language pathways can help to determine the individual aphasia risk profile pre-surgically. The TPO and temporal stem/peri-insular white matter were confirmed as functional nodes particularly sensitive to surgical injuries.
Collapse
Affiliation(s)
- Mehmet Salih Tuncer
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
| | - Juliane Hardt
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany; Hochschule Hannover - University of Applied Sciences and Arts, Fakultät III, Department Information and Communication, Medical Information Management, Hannover, Germany
| | - Ralph Schilling
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
| | - Ina Bährend
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Department of Neurosurgery, Vivantes-Klinikum Neukölln, Berlin, Germany
| | - Luca Leandro Silva
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Department of Anaesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lucius S Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Tizian Rosenstock
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany.
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| |
Collapse
|
16
|
Morshed RA, Young JS, Lee AT, Berger MS, Hervey-Jumper SL. Clinical Pearls and Methods for Intraoperative Awake Language Mapping. Neurosurgery 2020; 89:143-153. [PMID: 33289505 DOI: 10.1093/neuros/nyaa440] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Intraoperative language mapping of tumor and peritumor tissue is a well-established technique for avoiding permanent neurological deficits and maximizing extent of resection. Although there are several components of language that may be tested intraoperatively (eg, naming, writing, reading, and repetition), there is a lack of consistency in how patients are tested intraoperatively as well as the techniques involved to ensure safety during an awake procedure. Here, we review appropriate patient selection, neuroanesthetic techniques, cortical and subcortical language mapping stimulation paradigms, and selection of intraoperative language tasks used during awake craniotomies. We also expand on existing language mapping reviews by considering how intensity and timing of electrical stimulation may impact interpretation of mapping results.
Collapse
|
17
|
Morshed RA, Young JS, Kroliczek AA, Berger MS, Brang D, Hervey-Jumper SL. A Neurosurgeon's Guide to Cognitive Dysfunction in Adult Glioma. Neurosurgery 2020; 89:1-10. [PMID: 33289504 DOI: 10.1093/neuros/nyaa400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/02/2020] [Indexed: 11/13/2022] Open
Abstract
Cognitive decline is common among patients with low- and high-grade glioma and can significantly impact quality of life. Although cognitive outcomes have been studied after therapeutic interventions such as surgery and radiation, it is important to understand the impact of the disease process itself prior to any interventions. Neurocognitive domains of interest in this disease context include intellectual function and premorbid ability, executive function, learning and memory, attention, language function, processing speed, visuospatial function, motor function, and emotional function. Here, we review oncologic factors associated with more neurocognitive impairment, key neurocognitive tasks relevant to glioma patient assessment, as well as the relevance of the human neural connectome in understanding cognitive dysfunction in glioma patients. A contextual understanding of glioma-functional network disruption and its impact on cognition is critical in the surgical management of eloquent area tumors.
Collapse
Affiliation(s)
- Ramin A Morshed
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Jacob S Young
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Arlena A Kroliczek
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - David Brang
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| |
Collapse
|
18
|
Duffau H. Functional Mapping before and after Low-Grade Glioma Surgery: A New Way to Decipher Various Spatiotemporal Patterns of Individual Neuroplastic Potential in Brain Tumor Patients. Cancers (Basel) 2020; 12:E2611. [PMID: 32933174 PMCID: PMC7565450 DOI: 10.3390/cancers12092611] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
Intraoperative direct electrostimulation mapping (DEM) is currently the gold-standard for glioma surgery, since functional-based resection allows an optimization of the onco-functional balance (increased resection with preserved quality of life). Besides intrasurgical awake mapping of conation, cognition, and behavior, preoperative mapping by means of functional neuroimaging (FNI) and transcranial magnetic stimulation (TMS) has increasingly been utilized for surgical selection and planning. However, because these techniques suffer from several limitations, particularly for direct functional mapping of subcortical white matter pathways, DEM remains crucial to map neural connectivity. On the other hand, non-invasive FNI and TMS can be repeated before and after surgical resection(s), enabling longitudinal investigation of brain reorganization, especially in slow-growing tumors like low-grade gliomas. Indeed, these neoplasms generate neuroplastic phenomena in patients with usually no or only slight neurological deficits at diagnosis, despite gliomas involving the so-called "eloquent" structures. Here, data gained from perioperative FNI/TMS mapping methods are reviewed, in order to decipher mechanisms underpinning functional cerebral reshaping induced by the tumor and its possible relapse, (re)operation(s), and postoperative rehabilitation. Heterogeneous spatiotemporal patterns of rearrangement across patients and in a single patient over time have been evidenced, with structural changes as well as modifications of intra-hemispheric (in the ipsi-lesional and/or contra-lesional hemisphere) and inter-hemispheric functional connectivity. Such various fingerprints of neural reconfiguration were correlated to different levels of cognitive compensation. Serial multimodal studies exploring neuroplasticity might lead to new management strategies based upon multistage therapeutic approaches adapted to the individual profile of functional reallocation.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Montpellier University Medical Center, 34295 Montpellier, France; ; Tel.: +33-4-67-33-66-12; Fax: +33-4-67-33-69-12
- Institute of Functional Genomics, INSERM U-1191, University of Montpellier, 34298 Montpellier, France
| |
Collapse
|