1
|
Ganesan G, Rangasami R, Chandrasekharan A, Marreddy S, Ramachandran R. Role of Advanced Magnetic Resonance Imaging in Differentiating among Glioma Subtypes and Predicting Tumor-Proliferative Behavior. Asian J Neurosurg 2025; 20:34-42. [PMID: 40041591 PMCID: PMC11875706 DOI: 10.1055/s-0044-1790508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Objective Gliomas are a devastating and heterogeneous group of primary brain tumors. Previously, the source of glioma was undetermined. Recent literature indicates that neural stem cells, or progenitors, are proposed to be the source of glioma. The prognosis of different types of gliomas differs due to their various biological tissue types. Besides the histological grade, the two useful immunohistochemistry markers that show the tumor's biological behavior are isocitrate dehydrogenase (IDH) labeling and the K i -67 labeling index. We sought to determine the magnetic resonance imaging (MRI) characteristics associated with IDH mutational status and ascertain whether MRI combined with IDH mutational status, can better predict the clinical outcomes of gliomas. Materials and Methods This period study was conducted in the Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India for 5 years (May 2016-May 2021). The study cohort included 30 patients diagnosed with gliomas who underwent preoperative MRI followed by surgical resection and histopathological examination. Preoperative MRI images were done to assess qualitative tumor characteristics such as location, margin of tumor, extent, cortical involvement, cystic component, mineralization or hemorrhage, and contrast enhancement. Discussion Differences in MRI features between IDH-mutant (MT) and IDH-wild-type (WT) groups were analyzed using the chi-square test for categorical variables and the Mann-Whitney U test for continuous variables. Statistical analysis was conducted using SPSS software. Results Among the 30 patients evaluated, 18 had IDH-WT and 12 had IDH-MT type gliomas. Male predominance (73.33%) was noted in our study. Brainstem location, indistinct borders (83.33%), less cortical involvement (72.22%), less cystic changes (88.89%), more area of necrotic component (44.44%), significantly increased choline/creatine (Cho/Cr) ratio, and choline/N-acetyl aspartate (Cho/NAA) ratio favors IDH-WT tumors. Positive T2-fluid-attenuated inversion recovery mismatch sign is more frequently seen in IDH-MT (7/12; 58.33%) tumors than in IDH-WT (4/18; 22.22%) tumors. Whereas well-defined contours (66.67%), more cortical involvement (83.33%), more cystic changes (58.33%), and less area of necrotic component favor IDH-MT type tumors. Conclusion MRI is a very promising and valuable tool for differentiating among glioma subtypes and predicting tumor-proliferative behavior in glioma cases. The combination of MRI characteristics with IDH mutation status enhances the predictive accuracy for clinical outcomes in glioma patients. This approach could potentially guide treatment planning and improve prognostic assessments.
Collapse
Affiliation(s)
- Gunalan Ganesan
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Rajeswaran Rangasami
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Anupama Chandrasekharan
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Sahithi Marreddy
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Rajoo Ramachandran
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Hosseini SA, Servaes S, Hall B, Bhaduri S, Rajan A, Rosa-Neto P, Brem S, Loevner LA, Mohan S, Chawla S. Quantitative Physiologic MRI Combined with Feature Engineering for Developing Machine Learning-Based Prediction Models to Distinguish Glioblastomas from Single Brain Metastases. Diagnostics (Basel) 2024; 15:38. [PMID: 39795566 PMCID: PMC11720653 DOI: 10.3390/diagnostics15010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
Background: The accurate and early distinction of glioblastomas (GBMs) from single brain metastases (BMs) provides a window of opportunity for reframing treatment strategies enabling optimal and timely therapeutic interventions. We sought to leverage physiologically sensitive parameters derived from diffusion tensor imaging (DTI) and dynamic susceptibility contrast (DSC)-perfusion-weighted imaging (PWI) along with machine learning-based methods to distinguish GBMs from single BMs. Methods: Patients with histopathology-confirmed GBMs (n = 62) and BMs (n = 26) and exhibiting contrast-enhancing regions (CERs) underwent 3T anatomical imaging, DTI and DSC-PWI prior to treatment. Median values of mean diffusivity (MD), fractional anisotropy, linear, planar and spheric anisotropic coefficients, and relative cerebral blood volume (rCBV) and maximum rCBV values were measured from CERs and immediate peritumor regions. Data normalization and scaling were performed. In the next step, most relevant features were extracted (non-interacting features), which were subsequently used to generate a set of new, innovative, high-order features (interacting features) using a feature engineering method. Finally, 10 machine learning classifiers were employed in distinguishing GBMs and BMs. Cross-validation and receiver operating characteristic (ROC) curve analyses were performed to determine the diagnostic performance. Results: A random forest classifier with ANOVA F-value feature selection algorithm using both interacting and non-interacting features provided the best diagnostic performance in distinguishing GBMs from BMs with an area under the ROC curve of 92.67%, a classification accuracy of 87.8%, a sensitivity of 73.64% and a specificity of 97.5%. Conclusions: A machine learning based approach involving the combined use of interacting and non-interacting physiological MRI parameters shows promise to differentiate between GBMs and BMs with high accuracy.
Collapse
Affiliation(s)
- Seyyed Ali Hosseini
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 2B4, Canada
| | - Brandon Hall
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sourav Bhaduri
- Institute for Advancing Intelligence (IAI), The Chatterjee Group—Centre for Research and Education in Science and Technology (TCG CREST), Kolkata 700091, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Archith Rajan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 2B4, Canada
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurie A. Loevner
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Gao M, Cheng J, Qiu A, Zhao D, Wang J, Liu J. Magnetic resonance imaging (MRI)-based intratumoral and peritumoral radiomics for prognosis prediction in glioma patients. Clin Radiol 2024; 79:e1383-e1393. [PMID: 39218720 DOI: 10.1016/j.crad.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
AIM The purpose of this study was to identify robust radiological features from intratumoral and peritumoral regions, evaluate MRI protocols, and machine learning methods for overall survival stratification of glioma patients, and explore the relationship between radiological features and the tumour microenvironment. MATERIAL AND METHODS A retrospective analysis was conducted on 163 glioma patients, divided into a training set (n=113) and a testing set (n=50). For each patient, 2135 features were extracted from clinical MRI. Feature selection was performed using the Minimum Redundancy Maximum Relevance method and the Random Forest (RF) algorithm. Prognostic factors were assessed using the Cox proportional hazards model. Four machine learning models (RF, Logistic Regression, Support Vector Machine, and XGBoost) were trained on clinical and radiological features from tumour and peritumoral regions. Model evaluations on the testing set used receiver operating characteristic curves. RESULTS Among the 163 patients, 96 had an overall survival (OS) of less than three years postsurgery, while 67 had an OS of more than three years. Univariate Cox regression in the validation set indicated that age (p=0.003) and tumour grade (p<0.001) were positively associated with the risk of death within three years postsurgery. The final predictive model incorporated 13 radiological and 7 clinical features. The RF model, combining intratumor and peritumor radiomics, achieved the best predictive performance (AUC = 0.91; ACC = 0.86), outperforming single-region models. CONCLUSION Combined intratumoral and peritumoral radiomics can improve survival prediction and have potential as a practical imaging biomarker to guide clinical decision-making.
Collapse
Affiliation(s)
- M Gao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - J Cheng
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China; Institute of Guizhou Aerospace Measuring and Testing Technology, Guiyang, China
| | - A Qiu
- Department of Biomedical Engineering, The Johns Hopkins University, MD, USA; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - D Zhao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
| | - J Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China.
| | - J Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China; Department of Radiology Quality Control Center, Changsha, China.
| |
Collapse
|
4
|
Tang PLY, Romero AM, Nout RA, van Rij C, Slagter C, Swaak-Kragten AT, Smits M, Warnert EAH. Amide proton transfer-weighted CEST MRI for radiotherapy target delineation of glioblastoma: a prospective pilot study. Eur Radiol Exp 2024; 8:123. [PMID: 39477835 PMCID: PMC11525355 DOI: 10.1186/s41747-024-00523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Extensive glioblastoma infiltration justifies a 15-mm margin around the gross tumor volume (GTV) to define the radiotherapy clinical target volume (CTV). Amide proton transfer (APT)-weighted imaging could enable visualization of tumor infiltration, allowing more accurate GTV delineation. We quantified the impact of integrating APT-weighted imaging into GTV delineation of glioblastoma and compared two APT-weighted quantification methods-magnetization transfer ratio asymmetry (MTRasym) and Lorentzian difference (LD) analysis-for target delineation. METHODS Nine glioblastoma patients underwent an extended imaging protocol prior to radiotherapy, yielding APT-weighted MTRasym and LD maps. From both maps, biological tumor volumes were generated (BTVMTRasym and BTVLD) and added to the conventional GTV to generate biological GTVs (GTVbio,MTRasym and GTVbio,LD). Wilcoxon signed-rank tests were performed for comparisons. RESULTS The GTVbio,MTRasym and GTVbio,LD were significantly larger than the conventional GTV (p ≤ 0.022), with a median volume increase of 9.3% and 2.1%, respectively. The GTVbio,MTRasym and GTVbio,LD were significantly smaller than the CTV (p = 0.004), with a median volume reduction of 72.1% and 70.9%, respectively. There was no significant volume difference between the BTVMTRasym and BTVLD (p = 0.074). In three patients, BTVMTRasym delineation was affected by elevated signals at the brain periphery due to residual motion artifacts; this elevation was absent on the APT-weighted LD maps. CONCLUSION Larger biological GTVs compared to the conventional GTV highlight the potential of APT-weighted imaging for radiotherapy target delineation of glioblastoma. APT-weighted LD mapping may be advantageous for target delineation as it may be more robust against motion artifacts. RELEVANCE STATEMENT The introduction of APT-weighted imaging may, ultimately, enhance visualization of tumor infiltration and eliminate the need for the substantial 15-mm safety margin for target delineation of glioblastoma. This could reduce the risk of radiation toxicity while still effectively irradiating the tumor. TRIAL REGISTRATION NCT05970757 (ClinicalTrials.gov). KEY POINTS Integration of APT-weighted imaging into target delineation for radiotherapy is feasible. The integration of APT-weighted imaging yields larger GTVs in glioblastoma. APT-weighted LD mapping may be more robust against motion artifacts than APT-weighted MTRasym.
Collapse
Affiliation(s)
- Patrick L Y Tang
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alejandra Méndez Romero
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Remi A Nout
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Caroline van Rij
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cleo Slagter
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annemarie T Swaak-Kragten
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marion Smits
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
| | - Esther A H Warnert
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Shah S, Mansour HM, Aguilar TM, Lucke-Wold B. Advances in Anti-Cancer Drug Development: Metformin as Anti-Angiogenic Supplemental Treatment for Glioblastoma. Int J Mol Sci 2024; 25:5694. [PMID: 38891882 PMCID: PMC11171521 DOI: 10.3390/ijms25115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
According to the WHO 2016 classification, glioblastoma is the most prevalent primary tumor in the adult central nervous system (CNS) and is categorized as grade IV. With an average lifespan of about 15 months from diagnosis, glioblastoma has a poor prognosis and presents a significant treatment challenge. Aberrant angiogenesis, which promotes tumor neovascularization and is a prospective target for molecular target treatment, is one of its unique and aggressive characteristics. Recently, the existence of glioma stem cells (GSCs) within the tumor, which are tolerant to chemotherapy and radiation, has been linked to the highly aggressive form of glioblastoma. Anti-angiogenic medications have not significantly improved overall survival (OS), despite various preclinical investigations and clinical trials demonstrating encouraging results. This suggests the need to discover new treatment options. Glioblastoma is one of the numerous cancers for which metformin, an anti-hyperglycemic medication belonging to the Biguanides family, is used as first-line therapy for type 2 diabetes mellitus (T2DM), and it has shown both in vitro and in vivo anti-tumoral activity. Based on these findings, the medication has been repurposed, which has shown the inhibition of many oncopromoter mechanisms and, as a result, identified the molecular pathways involved. Metformin inhibits cancer cell growth by blocking the LKB1/AMPK/mTOR/S6K1 pathway, leading to selective cell death in GSCs and inhibiting the proliferation of CD133+ cells. It has minimal impact on differentiated glioblastoma cells and normal human stem cells. The systematic retrieval of information was performed on PubMed. A total of 106 articles were found in a search on metformin for glioblastoma. Out of these six articles were Meta-analyses, Randomized Controlled Trials, clinical trials, and Systematic Reviews. The rest were Literature review articles. These articles were from the years 2011 to 2024. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. The clinical trials on metformin use in the treatment of glioblastoma were searched on clinicaltrials.gov. In this article, we examine and evaluate metformin's possible anti-tumoral effects on glioblastoma, determining whether or not it may appropriately function as an anti-angiogenic substance and be safely added to the treatment and management of glioblastoma patients.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (S.S.)
| | - Hadeel M. Mansour
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (S.S.)
| | - Tania M. Aguilar
- College of Medicine at Chicago, University of Illinois, Chicago, IL 60612, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (S.S.)
| |
Collapse
|
6
|
Ohmura K, Tomita H, Hara A. Peritumoral Edema in Gliomas: A Review of Mechanisms and Management. Biomedicines 2023; 11:2731. [PMID: 37893105 PMCID: PMC10604286 DOI: 10.3390/biomedicines11102731] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Treating malignant glioma is challenging owing to its highly invasive potential in healthy brain tissue and the formation of intense surrounding edema. Peritumoral edema in gliomas can lead to severe symptoms including neurological dysfunction and brain herniation. For the past 50 years, the standard treatment for peritumoral edema has been steroid therapy. However, the discovery of cerebral lymphatic vessels a decade ago prompted a re-evaluation of the mechanisms involved in brain fluid regulation and the formation of cerebral edema. This review aimed to describe the clinical features of peritumoral edema in gliomas. The mechanisms currently known to cause glioma-related edema are summarized, the limitations in current cerebral edema therapies are discussed, and the prospects for future cerebral edema therapies are presented. Further research concerning edema surrounding gliomas is needed to enhance patient prognosis and improve treatment efficacy.
Collapse
Affiliation(s)
- Kazufumi Ohmura
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (K.O.)
- Department of Neurosurgery, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (K.O.)
- Center for One Medicine Innovative Translational Research, Institute for Advanced Study, Gifu University, Gifu 501-1193, Japan
| | - Akira Hara
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (K.O.)
| |
Collapse
|
7
|
Kaur M, Cassinelli Petersen G, Jekel L, von Reppert M, Varghese S, Dixe de Oliveira Santo I, Avesta A, Aneja S, Omuro A, Chiang V, Aboian M. PACS-Integrated Tools for Peritumoral Edema Volumetrics Provide Additional Information to RANO-BM-Based Assessment of Lung Cancer Brain Metastases after Stereotactic Radiotherapy: A Pilot Study. Cancers (Basel) 2023; 15:4822. [PMID: 37835516 PMCID: PMC10571649 DOI: 10.3390/cancers15194822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Stereotactic radiotherapy (SRT) is the standard of care treatment for brain metastases (METS) today. Nevertheless, there is limited understanding of how posttreatment lesional volumetric changes may assist prediction of lesional outcome. This is partly due to the paucity of volumetric segmentation tools. Edema alone can cause significant clinical symptoms and, therefore, needs independent study along with standard measurements of contrast-enhancing tumors. In this study, we aimed to compare volumetric changes of edema to RANO-BM-based measurements of contrast-enhancing lesion size. Patients with NSCLC METS ≥10 mm on post-contrast T1-weighted image and treated with SRT had measurements for up to seven follow-up scans using a PACS-integrated tool segmenting the peritumoral FLAIR hyperintense volume. Two-dimensional contrast-enhancing and volumetric edema changes were compared by creating treatment response curves. Fifty NSCLC METS were included in the study. The initial median peritumoral edema volume post-SRT relative to pre-SRT baseline was 37% (IQR 8-114%). Most of the lesions with edema volume reduction post-SRT experienced no increase in edema during the study. In over 50% of METS, the pattern of edema volume change was different than the pattern of contrast-enhancing lesion change at different timepoints, which was defined as incongruent. Lesions demonstrating incongruence at the first follow-up were more likely to progress subsequently. Therefore, edema assessment of METS post-SRT provides critical additional information to RANO-BM.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; (M.K.); (L.J.)
- Medical Faculty, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Gabriel Cassinelli Petersen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; (M.K.); (L.J.)
| | - Leon Jekel
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; (M.K.); (L.J.)
| | - Marc von Reppert
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; (M.K.); (L.J.)
| | - Sunitha Varghese
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Irene Dixe de Oliveira Santo
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; (M.K.); (L.J.)
| | - Arman Avesta
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA (S.A.)
| | - Sanjay Aneja
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA (S.A.)
| | - Antonio Omuro
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Veronica Chiang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA (S.A.)
| | - Mariam Aboian
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; (M.K.); (L.J.)
| |
Collapse
|
8
|
Yakubov E, Schmid S, Hammer A, Chen D, Dahlmanns JK, Mitrovic I, Zurabashvili L, Savaskan N, Steiner HH, Dahlmanns M. Ferroptosis and PPAR-gamma in the limelight of brain tumors and edema. Front Oncol 2023; 13:1176038. [PMID: 37554158 PMCID: PMC10406130 DOI: 10.3389/fonc.2023.1176038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
Human malignant brain tumors such as gliomas are devastating due to the induction of cerebral edema and neurodegeneration. A major contributor to glioma-induced neurodegeneration has been identified as glutamate. Glutamate promotes cell growth and proliferation in variety of tumor types. Intriguently, glutamate is also an excitatory neurotransmitter and evokes neuronal cell death at high concentrations. Even though glutamate signaling at the receptor and its downstream effectors has been extensively investigated at the molecular level, there has been little insight into how glutamate enters the tumor microenvironment and impacts on metabolic equilibration until recently. Surprisingly, the 12 transmembrane spanning tranporter xCT (SLC7A11) appeared to be a major player in this process, mediating glutamate secretion and ferroptosis. Also, PPARγ is associated with ferroptosis in neurodegeneration, thereby destroying neurons and causing brain swelling. Although these data are intriguing, tumor-associated edema has so far been quoted as of vasogenic origin. Hence, glutamate and PPARγ biology in the process of glioma-induced brain swelling is conceptually challenging. By inhibiting xCT transporter or AMPA receptors in vivo, brain swelling and peritumoral alterations can be mitigated. This review sheds light on the role of glutamate in brain tumors presenting the conceptual challenge that xCT disruption causes ferroptosis activation in malignant brain tumors. Thus, interfering with glutamate takes center stage in forming the basis of a metabolic equilibration approach.
Collapse
Affiliation(s)
- Eduard Yakubov
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Germany
| | - Sebastian Schmid
- Department of Trauma, Orthopaedics, Plastic and Hand Surgery, University Hospital Augsburg, Augsburg, Germany
| | - Alexander Hammer
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Germany
- Center for Spine and Scoliosis Therapy, Malteser Waldkrankenhaus St. Marien, Erlangen, Germany
| | - Daishi Chen
- Department of Otorhinolaryngology, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Jana Katharina Dahlmanns
- Institute for Physiology and Pathophysiology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ivana Mitrovic
- Department of Cardiac Surgery, Bogenhausen Hospital, Munich, Germany
| | | | - Nicolai Savaskan
- Department of Neurosurgery, University Medical School Hospital Universitätsklinikum Erlangen (UKER), Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department of Public Health Neukölln, District Office Neukölln of Berlin Neukölln, Berlin, Germany
| | | | - Marc Dahlmanns
- Institute for Physiology and Pathophysiology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Shao H, Chen N, Su X, Zheng L, Yang X, Wan X, Zhang S, Tan Q, Li S, Gong Q, Yue Q. Magnetic Resonance Imaging Features of Zinc Finger Translocation Associated-RELA Fusion Ependymoma Compared to Its Wild-Type Counterpart. World Neurosurg 2023; 175:e1283-e1291. [PMID: 37149089 DOI: 10.1016/j.wneu.2023.04.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVE To explore the predictive value of quantitative features extracted from conventional magnetic resonance imaging (MRI) in distinguishing Zinc Finger Translocation Associated (ZFTA)-RELA fusion-positive and wild-type ependymomas. METHODS Twenty-seven patients with pathologically confirmed ependymomas (17 patients with ZFTA-RELA fusions and 10 ZFTA-RELA fusion-negative patients) who underwent conventional MRI were enrolled in this retrospective study. Two experienced neuroradiologists who were blinded to the histopathological subtypes independently extracted imaging features using Visually Accessible Rembrandt Images annotations. The consistency between the readers was evaluated with the Kappa test. The imaging features with significant differences between the 2 groups were obtained using the least absolute shrinkage and selection operator regression model. Logistic regression analysis and receiver operating characteristic analysis were performed to analyze the diagnostic performance of the imaging features in predicting the ZFTA-RELA fusion status in ependymoma. RESULTS There was a good interevaluator agreement on the imaging features (kappa value range 0.601-1.000). Enhancement quality, thickness of the enhancing margin, and edema crossing the midline have high predictive performance in identifying ZFTA-RELA fusion-positive and ZFTA-RELA fusion-negative ependymomas (C-index = 0.862 and area under the curve= 0.8618). CONCLUSIONS Quantitative features extracted from preoperative conventional MRI by Visually Accessible Rembrandt Images provide high discriminatory accuracy in predicting the ZFTA-RELA fusion status of ependymoma.
Collapse
Affiliation(s)
- Hanbing Shao
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Ni Chen
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China; Huaxi Glioma Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaorui Su
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Linmao Zheng
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Xibiao Yang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xinyue Wan
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Simin Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Qiaoyue Tan
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shuang Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Huaxi Glioma Center, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Ciurea AV, Mohan AG, Covache-Busuioc RA, Costin HP, Saceleanu VM. The Brain's Glymphatic System: Drawing New Perspectives in Neuroscience. Brain Sci 2023; 13:1005. [PMID: 37508938 PMCID: PMC10377460 DOI: 10.3390/brainsci13071005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
This paper delves into the intricate structure and functionality of the brain's glymphatic system, bringing forth new dimensions in its neuroscientific understanding. This paper commences by exploring the cerebrospinal fluid (CSF)-its localization, production, and pivotal role within the central nervous system, acting as a cushion and vehicle for nutrient distribution and waste elimination. We then transition into an in-depth study of the morphophysiological aspects of the glymphatic system, a recent discovery revolutionizing the perception of waste clearance from the brain, highlighting its lymphatic-like characteristics and remarkable operations. This paper subsequently emphasizes the glymphatic system's potential implications in Alzheimer's disease (AD), discussing the connection between inefficient glymphatic clearance and AD pathogenesis. This review also elucidates the intriguing interplay between the glymphatic system and the circadian rhythm, illustrating the optimal functioning of glymphatic clearance during sleep. Lastly, we underscore the hitherto underappreciated involvement of the glymphatic system in the tumoral microenvironment, potentially impacting tumor growth and progression. This comprehensive paper accentuates the glymphatic system's pivotal role in multiple domains, fostering an understanding of the brain's waste clearance mechanisms and offering avenues for further research into neuropathological conditions.
Collapse
Affiliation(s)
- Alexandru Vlad Ciurea
- Neurosurgery Department, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| | - Aurel George Mohan
- Department of Neurosurgery, Bihor County Emergency Clinical Hospital, 410167 Oradea, Romania
- Department of Neurosurgery, Faculty of Medicine, Oradea University, 410610 Oradea, Romania
| | | | - Horia Petre Costin
- Neurosurgery Department, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Vicentiu Mircea Saceleanu
- Neurosurgery Department, Sibiu County Emergency Hospital, 550245 Sibiu, Romania
- Department of Neurosurgery, "Lucian Blaga" University of Medicine, 550024 Sibiu, Romania
| |
Collapse
|
11
|
Schramm MWJ, Currie S, Lee MT, Livermore LJ, Solanki SP, Mathew RK, Wurdak H, Lorger M, Twelves C, Short SC, Chakrabarty A, Chumas P. Do animal models of brain tumors replicate human peritumoral edema? a systematic literature search. J Neurooncol 2023; 161:451-467. [PMID: 36757526 PMCID: PMC9992038 DOI: 10.1007/s11060-023-04246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Brain tumors cause morbidity and mortality in part through peritumoral brain edema. The current main treatment for peritumoral brain edema are corticosteroids. Due to the increased recognition of their side-effect profile, there is growing interest in finding alternatives to steroids but there is little formal study of animal models of peritumoral brain edema. This study aims to summarize the available literature. METHODS A systematic search was undertaken of 5 literature databases (Medline, Embase, CINAHL, PubMed and the Cochrane Library). The generic strategy was to search for various terms associated with "brain tumors", "brain edema" and "animal models". RESULTS We identified 603 reports, of which 112 were identified as relevant for full text analysis that studied 114 peritumoral brain edema animal models. We found significant heterogeneity in the species and strain of tumor-bearing animals, tumor implantation method and edema assessment. Most models did not produce appreciable brain edema and did not test for observable manifestations thereof. CONCLUSION No animal model currently exists that enable the investigation of novel candidates for the treatment of peritumoral brain edema. With current interest in alternative treatments for peritumoral brain edema, there is an unmet need for clinically relevant animal models.
Collapse
Affiliation(s)
- Moritz W J Schramm
- School of Medicine, University of Leeds, Leeds, UK.
- Department of Neurosurgery, The General Infirmary at Leeds, Great George Street, Leeds, LS1 3EX, UK.
| | - Stuart Currie
- Leeds Teaching Hospitals NHS Trust, University of Leeds, Leeds, UK
| | - Ming-Te Lee
- Leeds Teaching Hospitals NHS Trust, University of Leeds, Leeds, UK
| | - Laurent J Livermore
- Department of Neurosurgery, The General Infirmary at Leeds, Great George Street, Leeds, LS1 3EX, UK
| | | | - Ryan K Mathew
- School of Medicine, University of Leeds, Leeds, UK
- Department of Neurosurgery, The General Infirmary at Leeds, Great George Street, Leeds, LS1 3EX, UK
| | - Heiko Wurdak
- School of Medicine, University of Leeds, Leeds, UK
| | | | - Chris Twelves
- Leeds Teaching Hospitals NHS Trust, University of Leeds, Leeds, UK
- School of Medicine, University of Leeds, Leeds, UK
| | - Susan C Short
- Leeds Teaching Hospitals NHS Trust, University of Leeds, Leeds, UK
- School of Medicine, University of Leeds, Leeds, UK
| | | | - Paul Chumas
- Department of Neurosurgery, The General Infirmary at Leeds, Great George Street, Leeds, LS1 3EX, UK
| |
Collapse
|
12
|
Wu X, Tao R, Zhang T, Liu X, Wang J, Zhang Z, Zhao X, Yang P. Biomedical applications of terahertz spectra in clinical and molecular pathology of human glioma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121933. [PMID: 36208578 DOI: 10.1016/j.saa.2022.121933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Gliomas are the most common type of primary tumor originating in the central nervous system of adults. Tumor histological type, pathological grade, and molecular pathology are significant prognosis and predictive factors. In this study, we were aiming to predict histological type and molecular pathological features based on terahertz time-domain spectroscopy technology. Nine gliomas with different grades, one meningioma, and one lymphoma were enrolled. There were significant differences in terahertz absorption coefficient between normal brain tissue, tumoral-periphery, and tumoral-center tissue in specific frequency bands (0.2-1.4 THz). Histological type, pathological grade, and glioma-specific biomarkers were closely related to the terahertz absorption coefficient in both tumoral-periphery and tumoral-center tissues. Interestingly, tumoral-periphery showed more obvious differences than tumoral-center tissues in almost all aspects. All the results show that the terahertz technology has potential application value in the intraoperative real-time glioma recognition and diagnosis of glioma histological and molecular pathological features.
Collapse
Affiliation(s)
- Xianhao Wu
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Rui Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tianyao Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xing Liu
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoyan Zhao
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Turkin AM, Melnikova-Pitskhelauri TV, Fadeeva LM, Kozlov AV, Oshorov AV, Kravchuk AD, Kozlova YA, Petryaikin AV, Ryzhova MV, Pronin IN. [Perifocal edema and glymphatic system dysfunction: quantitative assessment based on diffusion tensor magnetic resonance imaging]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2023; 87:45-54. [PMID: 37830468 DOI: 10.17116/neiro20238705145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
BACKGROUND Pathogenesis of peritumoral cerebral edema is unclear and potentially associated with glymphatic system dysfunction. Diffusion tensor MRI (DT-MRI) with analysis of ALPS (Analysis along the Perivascular Space) index may be valuable for assessment of edema. This approach visualizes fluid flow along perivascular spaces of deep cerebral veins. OBJECTIVE To assess glymphatic system function in supratentorial tumors and healthy volunteers using DT-MRI. MATERIAL AND METHODS There were 52 patients (59% men) aged 43 (28-64) years with supratentorial tumors (meningioma - 20, grade 3-4 glioma - 15, metastases - 9, lymphoma - 8). Tumors and perifocal edema did not involve deep cerebral veins. The control group included 6 healthy volunteers aged 34-66 years. MRI protocol (Signa HDxt, 3 T) contained standard T1, T2, T2FLAIR, DWI and post-contrast T1 (3D BRAVO). DT-MRI had the following parameters: TR=10 000 ms, TEmin=102 ms, FOV=240 mm, isotropic voxel size 3×3×3 mm3, 60 directions of diffusion gradients. Measurements were carried out at b-factor 0 and 1000 s/mm2. Analysis was carried out in the ReadyView software. RESULTS Right- and left-sided ALPS indices were similar in the control group (p=0.917). Perifocal edema (regardless of histological type of tumor) in the ipsilateral hemisphere was accompanied by significantly lower ALPS index (p<0.005), while these values in contralateral (intact) hemisphere were similar in both groups (p=0.7). CONCLUSION We found significantly lower ALPS index in deep parts of the affected hemisphere in patients with perifocal edema. These data can indicate the role of glymphatic system dysfunction in pathogenesis of this pathology.
Collapse
Affiliation(s)
- A M Turkin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - L M Fadeeva
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A V Kozlov
- Burdenko Neurosurgical Center, Moscow, Russia
- Andijan State Medical Institute, Andijan, Uzbekistan
| | - A V Oshorov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - Yu A Kozlova
- Botkin Moscow City Clinical Hospital, Moscow, Russia
| | - A V Petryaikin
- Research Practical Clinical Center for Diagnostics and Telemedicine Technologies, Moscow, Russia
| | - M V Ryzhova
- Burdenko Neurosurgical Center, Moscow, Russia
| | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
14
|
Domecq Laplace L, Ruella M, Caffaratti G, Villamil F, Monsalve M, Alcorta SC, Cervio A. Posterior Fossa Calcifying Pseudoneoplasm of the Neuraxis (CAPNON): Presentation of Three Surgical Cases. World Neurosurg 2022; 167:e423-e431. [PMID: 35964906 DOI: 10.1016/j.wneu.2022.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Calcifying pseudoneoplasm of the neuraxis (CAPNON) is an extremely rare entity with fewer than 150 cases reported in the literature and mostly with a supratentorial or spinal location. Posterior fossa CAPNON has been reported scarcely, and association with perilesional edema is a topic not yet approached which might play a significant role in treatment decision and clinical progression. Our objective is to report, to our knowledge, the first series of 3 posterior fossa CAPNON surgically treated in a single institution and assess features that help provide a systematic approach to diagnosis and timely treatment. METHODS This was a monocentric, retrospective study of surgical patients diagnosed with a posterior fossa CAPNON in the last 5 years. A thorough bibliographic research was conducted. RESULTS Three patients were included. Locations involved IV ventricle, right cerebellopontine angle with extension to foramen magnum, and cerebellar vermis. Two of them presented with symptoms linked to acute hydrocephalus, and the other one presented with progressive cranial nerve palsy and brainstem compression signs. The 3 of them showed radiological signs of perilesional edema on their preoperative magnetic resonance imaging. Gross total resection was accomplished in one case, with near and subtotal resections in the others. There were no complications. The outcome was favorable in all cases. CONCLUSIONS It is essential to contemplate this infrequent diagnosis in cases of calcified lesions involving the posterior fossa. When symptoms manifest, surgery should be considered. Perilesional edema could be associated with symptomatic progression and hence a sign suggesting the need for surgical treatment.
Collapse
Affiliation(s)
| | - Mauro Ruella
- Department of Neurosurgery, Fleni, Buenos Aires, Argentina
| | | | | | | | | | - Andres Cervio
- Department of Neurosurgery, Fleni, Buenos Aires, Argentina
| |
Collapse
|
15
|
Ohno M, Kitano S, Satomi K, Yoshida A, Miyakita Y, Takahashi M, Yanagisawa S, Tamura Y, Ichimura K, Narita Y. Assessment of radiographic and prognostic characteristics of programmed death-ligand 1 expression in high-grade gliomas. J Neurooncol 2022; 160:463-472. [DOI: 10.1007/s11060-022-04165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 10/31/2022]
|
16
|
Bernardini A, Trovatelli M, Kłosowski MM, Pederzani M, Zani DD, Brizzola S, Porter A, Rodriguez Y Baena F, Dini D. Reconstruction of ovine axonal cytoarchitecture enables more accurate models of brain biomechanics. Commun Biol 2022; 5:1101. [PMID: 36253409 PMCID: PMC9576772 DOI: 10.1038/s42003-022-04052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
There is an increased need and focus to understand how local brain microstructure affects the transport of drug molecules directly administered to the brain tissue, for example in convection-enhanced delivery procedures. This study reports a systematic attempt to characterize the cytoarchitecture of commissural, long association and projection fibres, namely the corpus callosum, the fornix and the corona radiata, with the specific aim to map different regions of the tissue and provide essential information for the development of accurate models of brain biomechanics. Ovine samples are imaged using scanning electron microscopy combined with focused ion beam milling to generate 3D volume reconstructions of the tissue at subcellular spatial resolution. Focus is placed on the characteristic cytological feature of the white matter: the axons and their alignment in the tissue. For each tract, a 3D reconstruction of relatively large volumes, including a significant number of axons, is performed and outer axonal ellipticity, outer axonal cross-sectional area and their relative perimeter are measured. The study of well-resolved microstructural features provides useful insight into the fibrous organization of the tissue, whose micromechanical behaviour is that of a composite material presenting elliptical tortuous tubular axonal structures embedded in the extra-cellular matrix. Drug flow can be captured through microstructurally-based models using 3D volumes, either reconstructed directly from images or generated in silico using parameters extracted from the database of images, leading to a workflow to enable physically-accurate simulations of drug delivery to the targeted tissue. Imaging and reconstruction of sheep brain axonal cytoarchitecture provides insight for brain biomechanics models that simulate drug delivery and other biological processes governed by interstitial fluid flow and transport.
Collapse
Affiliation(s)
- Andrea Bernardini
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - Marco Trovatelli
- Faculty of Veterinary Medicine, Università degli Studi di Milano Statale, 26900, Lodi, Italy
| | | | - Matteo Pederzani
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milan, Italy
| | - Davide Danilo Zani
- Faculty of Veterinary Medicine, Università degli Studi di Milano Statale, 26900, Lodi, Italy
| | - Stefano Brizzola
- Faculty of Veterinary Medicine, Università degli Studi di Milano Statale, 26900, Lodi, Italy
| | - Alexandra Porter
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | | | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
17
|
Chen J, Liu G, Wang X, Hong H, Li T, Li L, Wang H, Xie J, Li B, Li T, Lu D, Zhang Y, Zhao H, Yao C, Wen K, Li T, Chen J, Wu S, He K, Zhang WN, Zhao J, Wang N, Han Q, Xia Q, Qi J, Chen J, Zhou T, Man J, Zhang XM, Li AL, Pan X. Glioblastoma stem cell-specific histamine secretion drives pro-angiogenic tumor microenvironment remodeling. Cell Stem Cell 2022; 29:1531-1546.e7. [DOI: 10.1016/j.stem.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 11/03/2022]
|
18
|
Altieri R, Broggi G, Certo F, Pacella D, Cammarata G, Maione M, Garozzo M, Barbagallo D, Purrello M, Caltabiano R, Magro G, Barbagallo G. Anatomical distribution of cancer stem cells between enhancing nodule and FLAIR hyperintensity in supratentorial glioblastoma: time to recalibrate the surgical target? Neurosurg Rev 2022; 45:3709-3716. [PMID: 36171505 DOI: 10.1007/s10143-022-01863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022]
Abstract
It is ge nerally accepted that glioblastoma (GBM) arise from cancer stem cells (CSC); however, there is little evidence on their anatomical distribution. We investigated the expression and distribution of SOX-2-positive and CD133-positive CSCs both in the enhancing nodule (EN) of GBM and in the FLAIR hyperintensity zones on a surgical, histopathological series of 33 GBMs. The inclusion criterion was the intraoperative sampling of different tumor regions individualized, thanks to neuronavigation and positivity to intraoperative fluorescence with the use of 5-aminolevulinic acid (5-ALA). Thirty-three patients (20 males and 13 females with a mean age at diagnosis of 56 years) met the inclusion criterion. A total of 109 histological samples were evaluated, 52 for ENs and 57 for FLAIR hyperintensity zone. Considering the quantitative distribution of levels of intensity of staining (IS), ES (extent score), and immunoreactivity score (IRS), no difference was found between ENs and FLAIR regions for both the SOX-2 biomarker (respectively, IS p = 0.851, ES p = 0.561, IRS p = 1.000) and the CD133 biomarker (IS p = 0.653, ES p = 0.409, IRS p = 0.881). This evidence suggests to recalibrate the target of surgery for FLAIRECTOMY and 5-ALA could improve the possibility to achieve this goal.
Collapse
Affiliation(s)
- Roberto Altieri
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy.
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy.
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy.
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Daniela Pacella
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giacomo Cammarata
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
| | - Massimiliano Maione
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
| | - Marco Garozzo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
| | - Davide Barbagallo
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics Giovanni Sichel, University of Catania, Catania, Italy
| | - Michele Purrello
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics Giovanni Sichel, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Giuseppe Barbagallo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| |
Collapse
|
19
|
Xu G, Yang X, Zhang L, Xu M. Prognostic and Predictive Markers of Limited (1-4) Brain Metastases in Patients with Lung Adenocarcinoma After Stereotactic Radiosurgery: A Retrospective Analysis. World Neurosurg 2022; 164:e671-e680. [PMID: 35589035 DOI: 10.1016/j.wneu.2022.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Owing to the complexities of brain metastases (BMs), accurate and reliable prognostic and predictive factors remain critical roadblocks in patients with lung adenocarcinoma (LUAD) BMs who undergo stereotactic radiosurgery (SRS). METHODS In total, 132 patients with LUAD BMs who underwent SRS were retrospectively analyzed; Cox proportional hazards analysis of imaging and clinical characteristics was used to identify independent predictors related to overall survival (OS) and progression-free survival (PFS). RESULTS Our data indicated that initial brain metastasis velocity (iBMV), Karnofsky performance score (KPS), and Rvol (the sum of peritumoral edema volume/cumulative intracranial tumor volume) could potentially be independent prognostic factors for OS. iBMV ≥2 (P = 0.000), KPS <80 (P = 0.042), and Rvol ≥5.7 (P = 0.017) were strongly associated with unsatisfactory OS. The KPS and BM contrast enhancement were also identified as independent prognostic factors for PFS. A higher KPS (P = 0.004) and homogeneous BM contrast enhancement (P = 0.026) were strongly associated with longer PFS. CONCLUSIONS Collectively, iBMV and Rvol are highly related to OS and could be used as potential prognostic indices in patients with LUAD BMs who underwent SRS. Furthermore, we also revealed that the KPS and BM contrast enhancement could be potential indices of PFS in LUAD BMs.
Collapse
Affiliation(s)
- Guang Xu
- Department of Oncology, the First Affiliated Hospital of Jinan University, Guangzhou City, Guangdong Province, P.R. China; Department of Radiotherapy, the Third Affiliated Hospital of Jinzhou Medical University, Jinzhou City, Liaoning Province, P.R. China
| | - Xu Yang
- Department of Radiotherapy, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, Liaoning Province, P.R. China
| | - Lin Zhang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, Wuhu City, An Hui Province, P.R. China
| | - Meng Xu
- Department of Oncology, the First Affiliated Hospital of Jinan University, Guangzhou City, Guangdong Province, P.R. China.
| |
Collapse
|
20
|
Oishi T, Koizumi S, Kurozumi K. Molecular Mechanisms and Clinical Challenges of Glioma Invasion. Brain Sci 2022; 12:brainsci12020291. [PMID: 35204054 PMCID: PMC8870089 DOI: 10.3390/brainsci12020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
Glioma is the most common primary brain tumor, and its prognosis is poor. Glioma cells are highly invasive to the brain parenchyma. It is difficult to achieve complete resection due to the nature of the brain tissue, and tumors that invade the parenchyma often recur. The invasiveness of tumor cells has been studied from various aspects, and the related molecular mechanisms are gradually becoming clear. Cell adhesion factors and extracellular matrix factors have a strong influence on glioma invasion. The molecular mechanisms that enhance the invasiveness of glioma stem cells, which have been investigated in recent years, have also been clarified. In addition, it has been discussed from both basic and clinical perspectives that current therapies can alter the invasiveness of tumors, and there is a need to develop therapeutic approaches to glioma invasion in the future. In this review, we will summarize the factors that influence the invasiveness of glioma based on the environment of tumor cells and tissues, and describe the impact of the treatment of glioma on invasion in terms of molecular biology, and the novel therapies for invasion that are currently being developed.
Collapse
|
21
|
Toh CH, Siow TY, Castillo M. Peritumoral Brain Edema in Metastases May Be Related to Glymphatic Dysfunction. Front Oncol 2021; 11:725354. [PMID: 34722268 PMCID: PMC8548359 DOI: 10.3389/fonc.2021.725354] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022] Open
Abstract
Objectives The proliferation of microvessels with increased permeability is thought to be the cause of peritumoral brain edema (PTBE) in metastases. The contribution of the glymphatic system to the formation of PTBE in brain metastases remains unexplored. We aimed to investigate if the PTBE volume of brain metastases is related to glymphatic dysfunction. Materials and Methods A total of 56 patients with brain metastases who had preoperative dynamic susceptibility contrast-enhanced perfusion-weighted imaging for calculation of tumor cerebral blood volume (CBV) and diffusion tensor imaging for calculations of tumor apparent diffusion coefficient (ADC), tumor fractional anisotropy (FA), and analysis along perivascular space (ALPS) index were analyzed. The volumes of PTBE, whole tumor, enhancing tumor, and necrotic and hemorrhagic portions were manually measured. Additional information collected for each patient included age, sex, primary cancer, metastasis location and number, and the presence of concurrent infratentorial tumors. Linear regression analyses were performed to identify factors associated with PTBE volume. Results Among 56 patients, 45 had solitary metastasis, 24 had right cerebral metastasis, 21 had left cerebral metastasis, 11 had bilateral cerebral metastases, and 11 had concurrent infratentorial metastases. On univariable linear regression analysis, PTBE volume correlated with whole tumor volume (β = -0.348, P = 0.009), hemorrhagic portion volume (β = -0.327, P = 0.014), tumor ADC (β = 0.530, P <.001), and ALPS index (β = -0.750, P <.001). The associations of PTBE volume with age, sex, tumor location, number of tumors, concurrent infratentorial tumor, enhancing tumor volume, necrotic portion volume, tumor FA, and tumor CBV were not significant. On multivariable linear regression analysis, tumor ADC (β = 0.303; P = 0.004) and ALPS index (β = -0.624; P < 0.001) were the two independent factors associated with PTBE volume. Conclusion Metastases with higher tumor ADC and lower ALPS index were associated with larger peritumoral brain edema volumes. The higher tumor ADC may be related to increased periarterial water influx into the tumor interstitium, while the lower ALPS index may indicate insufficient fluid clearance. The changes in both tumor ADC and ALPS index may imply glymphatic dysfunction, which is, at least, partially responsible for peritumoral brain edema formation.
Collapse
Affiliation(s)
- Cheng Hong Toh
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, Taiwan.,Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Tiing Yee Siow
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, Taiwan
| | - Mauricio Castillo
- Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
22
|
Toh CH, Siow TY. Factors Associated With Dysfunction of Glymphatic System in Patients With Glioma. Front Oncol 2021; 11:744318. [PMID: 34631582 PMCID: PMC8496738 DOI: 10.3389/fonc.2021.744318] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/02/2021] [Indexed: 02/04/2023] Open
Abstract
Objectives Rodent experiments have provided some insights into the changes of glymphatic function associated with glioma growth. The diffusion tensor image analysis along the perivascular space (DTI-ALPS) method offers an opportunity for the noninvasive investigation of the glymphatic system in patients with glioma. We aimed to investigate the factors associated with glymphatic function changes in patients with glioma. Materials and Methods A total of 201 glioma patients (mean age = 47.4 years, 116 men; 86 grade II, 52 grade III, and 63 grade IV) who had preoperative diffusion tensor imaging for calculation of the ALPS index were retrospectively included. Information collected from each patient included sex, age, tumor grade, isocitrate dehydrogenase 1 (IDH1) mutation status, peritumoral brain edema volume, tumor volume, and ALPS index. Group differences in the ALPS index according to sex, tumor grade, and IDH1 mutation status were assessed using analysis of covariance with age adjustment. Linear regression analyses were performed to identify the factors associated with the ALPS index. Results Group comparisons revealed that the ALPS index of grade II/III gliomas was significantly higher than that of grade IV gliomas (p < 0.001). The ALPS index of IDH1 mutant gliomas was significantly higher than that of IDH1 wild-type gliomas (p < 0.001). On multivariable linear regression analysis, IDH1 mutation (β = 0.308, p < 0.001) and peritumoral brain edema volume (β = −0.353, p < 0.001) were the two independent factors associated with the ALPS index. Conclusion IDH1 wild-type gliomas and gliomas with larger peritumoral brain edema volumes were associated with a lower ALPS index, which may reflect impaired glymphatic function.
Collapse
Affiliation(s)
- Cheng Hong Toh
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, Taiwan.,Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Tiing Yee Siow
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, Taiwan
| |
Collapse
|
23
|
Rezaee H, Abbasnia S, Alenabi A, Vakili R, Moheghi N, Tavakol Afshari J, Rezaee SA. Expression of Vascular Endothelial Growth Factor A and Its Type 1 Receptor in Supratentorial Neoplasm. Rep Biochem Mol Biol 2021; 10:354-361. [PMID: 34981011 PMCID: PMC8718773 DOI: 10.52547/rbmb.10.3.354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is one of the primary angiogenesis regulators in solid cancers. Brain solid tumors are life-threatening diseases in which angiogenesis is an important phase of tumor development and progression. In the present study, VEGF-A and VEGF receptor (VEGF-R1) gene expression was evaluated in CNS brain tumors. METHODS VEGF-A and VEGF-R1 expression was quantified using real-time PCR on fresh biopsies of 38 supratentorial brain tumors compared to 30 non-tumoral tissues. Then, the correlations were investigated with clinic-pathological and demographic factors of the patients. RESULTS PCR product sequencing confirmed the validity of qRT-PCR. Although VEGF-A and VEGF-R1 expression showed increasing trends with the progression of cell proliferation in different stages of astrocytoma, VEGF-R1 did not meet the 95% confidence interval in other brain tumors. An increasing trend in VEGF-A expression and a declining trend in VEGF-R1 expression from Stage I to II were observed in meningioma. VEGF-A and VEGF-R1 expression had no significant correlation with age and gender. Although peritumoral brain edema (PTBE) in astrocytoma was significantly associated with tumor stages, VEGF-A and VEGF-R1 were not correlated with PTBE in meningioma and metastasis. CONCLUSION VEGF-A is a valuable factor for the prognosis of PTBE and malignancy in astrocytoma and is helpful in monitoring treatment approaches.
Collapse
Affiliation(s)
- Hamid Rezaee
- Neurosurgery Department, Mashhad University of Medical Sciences, Mashhad, Iran.
- The first and the second authors contributed equally to this work.
| | - Shadi Abbasnia
- Immunology Research Centre, Inflammation and inflammatory Diseases division, Mashhad University of Medical Sciences, Mashhad, Iran.
- The first and the second authors contributed equally to this work.
| | - Anita Alenabi
- Shariati Hospital, Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Rosita Vakili
- Immunology Research Centre, Inflammation and inflammatory Diseases division, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Nasrin Moheghi
- Genetic Laboratory, Qaem Hosp. Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Seyed Abdolrahim Rezaee
- Immunology Research Centre, Inflammation and inflammatory Diseases division, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Cluceru J, Nelson SJ, Wen Q, Phillips JJ, Shai A, Molinaro AM, Alcaide-Leon P, Olson MP, Nair D, LaFontaine M, Chunduru P, Villanueva-Meyer JE, Cha S, Chang SM, Berger MS, Lupo JM. Recurrent tumor and treatment-induced effects have different MR signatures in contrast enhancing and non-enhancing lesions of high-grade gliomas. Neuro Oncol 2021; 22:1516-1526. [PMID: 32319527 DOI: 10.1093/neuonc/noaa094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Differentiating treatment-induced injury from recurrent high-grade glioma is an ongoing challenge in neuro-oncology, in part due to lesion heterogeneity. This study aimed to determine whether different MR features were relevant for distinguishing recurrent tumor from the effects of treatment in contrast-enhancing lesions (CEL) and non-enhancing lesions (NEL). METHODS This prospective study analyzed 291 tissue samples (222 recurrent tumor, 69 treatment-effect) with known coordinates on imaging from 139 patients who underwent preoperative 3T MRI and surgery for a suspected recurrence. 8 MR parameter values were tested from perfusion-weighted, diffusion-weighted, and MR spectroscopic imaging at each tissue sample location for association with histopathological outcome using generalized estimating equation models for CEL and NEL tissue samples. Individual cutoff values were evaluated using receiver operating characteristic curve analysis with 5-fold cross-validation. RESULTS In tissue samples obtained from CEL, elevated relative cerebral blood volume (rCBV) was associated with the presence of recurrent tumor pathology (P < 0.03), while increases in normalized choline (nCho) and choline-to-NAA index (CNI) were associated with the presence of recurrent tumor pathology in NEL tissue samples (P < 0.008). A mean CNI cutoff value of 2.7 had the highest performance, resulting in mean sensitivity and specificity of 0.61 and 0.81 for distinguishing treatment-effect from recurrent tumor within the NEL. CONCLUSION Although our results support prior work that underscores the utility of rCBV in distinguishing the effects of treatment from recurrent tumor within the contrast enhancing lesion, we found that metabolic parameters may be better at differentiating recurrent tumor from treatment-related changes in the NEL of high-grade gliomas.
Collapse
Affiliation(s)
- Julia Cluceru
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Qiuting Wen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Joanna J Phillips
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,Department of Neurological Surgery, University of California San Francisco, San Francisco, California.,Department of Pathology, University of California San Francisco, San Francisco, California
| | - Anny Shai
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Paula Alcaide-Leon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Marram P Olson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Devika Nair
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Marisa LaFontaine
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Pranathi Chunduru
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
25
|
Toh CH, Siow TY, Castillo M. Peritumoral Brain Edema in Meningiomas May Be Related to Glymphatic Dysfunction. Front Neurosci 2021; 15:674898. [PMID: 33967688 PMCID: PMC8100232 DOI: 10.3389/fnins.2021.674898] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
The pathogenesis of peritumoral brain edema (PTBE) in meningiomas remains unclear. The glymphatic system is recently recognized as a pathway for waste clearance and maintaining fluid balance in the brain parenchymal interstitium. We aimed to investigate if the PTBE volume of meningiomas correlates with their glymphatic function. A total of 80 meningioma patients (mean age, 58.8 years; 37 men) and 44 normal subjects (mean age 53.3 years; 23 men) who had preoperative diffusion-tensor imaging for calculation of the analysis along the perivascular space (ALPS) index were retrospectively included. Information collected from each patient included sex, age, tumor grade, Ki-67 index, tumor location, tumor volume, PTBE volume and ALPS index. Comparisons of ALPS index among meningiomas without PTBE, meningiomas with PTBE, and normal subjects were performed using analysis of covariance with Bonferroni correction and adjustments for age and sex. Pearson correlation coefficient and multivariable linear regression analyses were performed to identify factors associated with PTBE volume. Group comparisons revealed that the ALPS index was significantly higher (P < 0.05) in meningiomas without PTBE vs. meningiomas with PTBE and normal subjects. On the other hand, ALPS index was not different between meningiomas with PTBE and normal subjects. On Pearson correlation and multivariable linear regression analyses, the ALPS index was the only factor significantly (P < 0.05) associated with PTBE volume. In conclusion, PTBE volume inversely correlated with ALPS index in meningiomas. PTBE formation in meningiomas may be related to glymphatic dysfunction.
Collapse
Affiliation(s)
- Cheng Hong Toh
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tiing Yee Siow
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Mauricio Castillo
- Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
26
|
Dubinski D, Won SY, Rauch M, Behmanesh B, Ngassam LDC, Baumgarten P, Senft C, Harter PN, Bernstock JD, Freiman TM, Seifert V, Gessler F. Association of Isocitrate Dehydrogenase (IDH) Status With Edema to Tumor Ratio and Its Correlation With Immune Infiltration in Glioblastoma. Front Immunol 2021; 12:627650. [PMID: 33868245 PMCID: PMC8044904 DOI: 10.3389/fimmu.2021.627650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose The extent of preoperative peritumoral edema in glioblastoma (GBM) has been negatively correlated with patient outcome. As several ongoing studies are investigating T-cell based immunotherapy in GBM, we conducted this study to assess whether peritumoral edema with potentially increased intracranial pressure, disrupted tissue homeostasis and reduced local blood flow has influence on immune infiltration and affects survival. Methods A volumetric analysis of preoperative imaging (gadolinium enhanced T1 weighted MRI sequences for tumor size and T2 weighted sequences for extent of edema (including the infiltrative zone, gliosis etc.) was conducted in 144 patients using the Brainlab® software. Immunohistochemical staining was analyzed for lymphocytic- (CD 3+) and myelocytic (CD15+) tumor infiltration. A retrospective analysis of patient-, surgical-, and molecular characteristics was performed using medical records. Results The edema to tumor ratio was neither associated with progression-free nor overall survival (p=0.90, p=0.74). However, GBM patients displaying IDH-1 wildtype had significantly higher edema to tumor ratio than patients displaying an IDH-1 mutation (p=0.01). Immunohistopathological analysis did not show significant differences in lymphocytic or myelocytic tumor infiltration (p=0.78, p=0.74) between these groups. Conclusion In our cohort, edema to tumor ratio had no significant correlation with immune infiltration and outcome. However, patients with an IDH-1wildtype GBM had a significantly higher edema to tumor ratio compared to their IDH-1 mutated peer group. Further studies are necessary to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Daniel Dubinski
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Sae-Yeon Won
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Maximilian Rauch
- Institute of Neuroradiology, Goethe University, Frankfurt, Germany
| | - Bedjan Behmanesh
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Lionel D C Ngassam
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Peter Baumgarten
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Christian Senft
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Patrick N Harter
- Neurological Institute (Edinger Institute), Goethe University, Frankfurt, Germany
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas M Freiman
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Volker Seifert
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Florian Gessler
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| |
Collapse
|
27
|
Park M, Kim JW, Ahn SJ, Suh SH. Evaluation of brain tumors using NODDI technique: A promising tool. J Neuroradiol 2021; 47:185-186. [PMID: 32359664 DOI: 10.1016/j.neurad.2020.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mina Park
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Eonjuro 211, Gangnam-gu, Seoul, South Korea.
| | - Jin Woo Kim
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Eonjuro 211, Gangnam-gu, Seoul, South Korea
| | - Sun Jun Ahn
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Eonjuro 211, Gangnam-gu, Seoul, South Korea
| | - Sang Hyun Suh
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Eonjuro 211, Gangnam-gu, Seoul, South Korea
| |
Collapse
|
28
|
Koehler A, Karve A, Desai P, Arbiser J, Plas DR, Qi X, Read RD, Sasaki AT, Gawali VS, Toukam DK, Bhattacharya D, Kallay L, Pomeranz Krummel DA, Sengupta S. Reuse of Molecules for Glioblastoma Therapy. Pharmaceuticals (Basel) 2021; 14:99. [PMID: 33525329 PMCID: PMC7912673 DOI: 10.3390/ph14020099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly malignant primary brain tumor. The current standard of care for GBM is the Stupp protocol which includes surgical resection, followed by radiotherapy concomitant with the DNA alkylator temozolomide; however, survival under this treatment regimen is an abysmal 12-18 months. New and emerging treatments include the application of a physical device, non-invasive 'tumor treating fields' (TTFs), including its concomitant use with standard of care; and varied vaccines and immunotherapeutics being trialed. Some of these approaches have extended life by a few months over standard of care, but in some cases are only available for a minority of GBM patients. Extensive activity is also underway to repurpose and reposition therapeutics for GBM, either alone or in combination with the standard of care. In this review, we present select molecules that target different pathways and are at various stages of clinical translation as case studies to illustrate the rationale for their repurposing-repositioning and potential clinical use.
Collapse
Affiliation(s)
- Abigail Koehler
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Aniruddha Karve
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (A.K.); (P.D.)
| | - Pankaj Desai
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (A.K.); (P.D.)
| | - Jack Arbiser
- Department of Dermatology, Emory School of Medicine, Atlanta, GA 30322, USA;
- Atlanta Veterans Administration Medical Center, Decatur, GA 30033, USA
| | - David R. Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Xiaoyang Qi
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (X.Q.); (A.T.S.)
| | - Renee D. Read
- Department of Pharmacology and Chemical Biology, Emory School of Medicine, Atlanta, GA 30322, USA;
| | - Atsuo T. Sasaki
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (X.Q.); (A.T.S.)
| | - Vaibhavkumar S. Gawali
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Donatien K. Toukam
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Laura Kallay
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Daniel A. Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| |
Collapse
|
29
|
Silva VDCJD, Silva RDNO, Colli LG, Carvalho MHCD, Rodrigues SF. Gold nanoparticles carrying or not anti-VEGF antibody do not change glioblastoma multiforme tumor progression in mice. Heliyon 2020; 6:e05591. [PMID: 33294714 PMCID: PMC7701192 DOI: 10.1016/j.heliyon.2020.e05591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/20/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022] Open
Abstract
Aims Glioblastoma multiforme (GBM) is the most devastating malignant primary brain tumor known. Life expectance is around 15 months after diagnosis. Several events contribute to the GBM progression such as uncontrolled genetic cancer cells proliferation, angiogenesis (mostly vascular endothelial growth factor (VEGF)-mediated), tissue invasion, glioma stem cell activity, immune system failure, and a hypoxic and inflammatory tumor microenvironment. Tumor cells antiproliferative effect of 20 nm citrate-covered gold nanoparticles (cit-AuNP) has been reported, along with anti-inflammatory and anti-oxidative effects. We aimed to test whether either chronic treatment with 20 nm cit-AuNP or anti-VEGF antibody (Ig)-covered AuNP could reduce GBM progression in mice. Main methods Effect of the gold nanoparticles on the GL261 glioblastoma cells proliferation in vitro, and on the GL261-induced glioblastoma cell growth in C57BL/6 mice in vivo were tested. Besides, fluorophore-conjugated gold nanoparticles penetration through the GL261 plasma cell membrane, gold labelling in brain parenchyma of glioblastoma-carrying mice, and VEGF expression into the tumor were evaluated. Key findings We observed cit-AuNP did no change the GL261 cells proliferation. Similarly, we demonstrated chronic treatment with either cit-AuNP or anti-VEGF Ig-covered AuNP did not modify the GL261 cells-induced GBM progression in mice. By the end, we showed AuNPs did not trespass in appreciable amount both the GL261 plasma cell membrane and the tumoral blood brain barrier (BBB), and did not change the VEGF expression into the tumor. Significance 20 nm cit-AuNP or anti-VEGF Ig covered-AuNP are not good tools to reduce GBM in mice, probably because they do not penetrate both tumor cells and BBB in enough amount to reduce tumor growing.
Collapse
Affiliation(s)
- Viviane de Cassia Jesus da Silva
- Laboratory of Vascular Nanopharmacology, Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Renee de Nazare O Silva
- Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Lucas Giglio Colli
- Laboratory of Hypertension, Diabetes and Vascular Biology, Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria Helena Catelli de Carvalho
- Laboratory of Hypertension, Diabetes and Vascular Biology, Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Stephen Fernandes Rodrigues
- Laboratory of Vascular Nanopharmacology, Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, SP, Brazil.,Laboratory of Hypertension, Diabetes and Vascular Biology, Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
30
|
Dalby T, Wohl E, Dinsmore M, Unger Z, Chowdhury T, Venkatraghavan L. Pathophysiology of Cerebral Edema—A Comprehensive Review. JOURNAL OF NEUROANAESTHESIOLOGY AND CRITICAL CARE 2020. [DOI: 10.1055/s-0040-1721165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
AbstractCerebral edema is a condition where an excess of cerebral water accumulates due to primary neurological or non-neurological causes. Cerebral edema complicates many brain pathologies causing additional injury often in excess of the original neurological insult. Classic descriptions divide cerebral edema into cytotoxic, vasogenic, interstitial, and osmotic subtypes. The interplay of different mechanisms is important in the clinical manifestations. Recent research has advanced our understanding of the molecular pathophysiology of cerebral edema, exposing the central role of aquaporins and specific ion channels. The aim of this review is to provide a comprehensive overview of the molecular pathophysiology of cerebral edema including unique disease specific mechanisms.
Collapse
Affiliation(s)
- Tara Dalby
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Elyana Wohl
- Department of Anesthesia, Notre-Dame Hospital, Montreal, Quebec, Canada
| | - Michael Dinsmore
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Zoe Unger
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Tumul Chowdhury
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Lakshmikumar Venkatraghavan
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| |
Collapse
|
31
|
Lang ST, Gan LS, McLennan C, Monchi O, Kelly JJP. Impact of Peritumoral Edema During Tumor Treatment Field Therapy: A Computational Modelling Study. IEEE Trans Biomed Eng 2020; 67:3327-3338. [PMID: 32286953 DOI: 10.1109/tbme.2020.2983653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Tumor treatment fields (TTFie-lds) are an approved adjuvant therapy for glioblastoma (GBM). The magnitude of applied electrical field has been shown to be related to the anti-tumoral response. However, peritumoral edema may result in shunting of electrical current around the tumor, thereby reducing the intra-tumoral electric field. In this study, we systematically address this issue with computational simulations. METHODS Finite element models are created of a human head with varying amounts of peritumoral edema surrounding a virtual tumor. The electric field distribution was simulated using the standard TTFields electrode montage. Electric field magnitude was extracted from the tumor and related to edema thickness. Two patient specific models were created to confirm these results. RESULTS The inclusion of peritumoral edema decreased the average magnitude of the electric field within the tumor. In the model considering a frontal tumor and an anterior-posterior electrode configuration, ≥6 mm of peritumoral edema decreased the electric field by 52%. In the patient specific models, peritumoral edema decreased the electric field magnitude within the tumor by an average of 26%. The effect of peritumoral edema on the electric field distribution was spatially heterogenous, being most significant at the tissue interface between edema and tumor. CONCLUSIONS The inclusion of peritumoral edema during TTFields modelling may have a dramatic effect on the predicted electric field magnitude within the tumor. Given the importance of electric field magnitude for the anti-tumoral effects of TTFields, the presence of edema should be considered both in future modelling studies and when planning TTField therapy.
Collapse
|
32
|
KOZLER P, HERYNEK V, MAREŠOVÁ D, PEREZ P, ŠEFC L, POKORNÝ J. Effect of Methylprednisolone on Experimental Brain Edema in Magnetic Resonance Imaging. Physiol Res 2020; 69:919-926. [DOI: 10.33549/physiolres.934460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging has been used for evaluating of a brain edema in experimental animals to assess cytotoxic and vasogenic edema by the apparent diffusion coefficient (ADC) and T2 imaging. This paper brings information about the effectiveness of methylprednisolone (MP) on experimental brain edema. A total of 24 rats were divided into three groups of 8 animals each. Rats with cytotoxic/intracellular brain edema induced by water intoxication were assigned to the group WI. These rats also served as the additional control group CG when measured before the induction of edema. A third group (WIMP) was intraperitoneally administered with methylprednisolone 100 mg/kg during water intoxication treatment. The group WI+MP was injected with methylprednisolone 50 mg/kg into the carotid artery within two hours after the water intoxication treatment. We evaluated the results in four groups. Two control groups (CG, WI) and two experimental groups (WIMP, WI+MP). Rats were subjected to MR scanning 24 h after edema induction. We observed significantly increased ADC values in group WI in both evaluated areas – cortex and hippocampus, which proved the occurrence of experimental vasogenic edema, while ADC values in groups WIMP and WI+MP were not increased, indicating that the experimental edema was not developed and thus confirming the protective effect of MP.
Collapse
Affiliation(s)
- P KOZLER
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - V HERYNEK
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - D MAREŠOVÁ
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - P PEREZ
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - L ŠEFC
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J POKORNÝ
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
33
|
Zakharova NE, Pronin IN, Batalov AI, Shults EI, Tyurina AN, Baev AA, Fadeeva LM. [Modern standards for magnetic resonance imaging of the brain tumors]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:102-112. [PMID: 32649820 DOI: 10.17116/neiro202084031102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuroimaging is essential in survey of patients with brain tumors. An important objectives of neuroimaging are highly reliable non-invasive diagnosis, treatment planning and evaluation of treatment outcomes. Magnetic resonance imaging (MRI) is one of the modern neuroimaging methods. This technique ensures analysis of structural cerebral changes, vascular and metabolic characteristics of brain tumors. It is necessary to standardize imaging parameters and unify protocols and methods considering a widespread use of MRI for brain tumors. In our practice, we use our own experience, world literature data and evidence-based international guidelines on the diagnosis of various brain diseases. The purpose of this review is to study the modern principles of magnetic resonance imaging in adults with brain tumors in neurosurgical practice.
Collapse
Affiliation(s)
| | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A I Batalov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - E I Shults
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A N Tyurina
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A A Baev
- Burdenko Neurosurgical Center, Moscow, Russia
| | - L M Fadeeva
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
34
|
Wingrove E, Liu ZZ, Patel KD, Arnal-Estapé A, Cai WL, Melnick MA, Politi K, Monteiro C, Zhu L, Valiente M, Kluger HM, Chiang VL, Nguyen DX. Transcriptomic Hallmarks of Tumor Plasticity and Stromal Interactions in Brain Metastasis. Cell Rep 2020; 27:1277-1292.e7. [PMID: 31018140 DOI: 10.1016/j.celrep.2019.03.085] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 11/06/2018] [Accepted: 03/22/2019] [Indexed: 01/08/2023] Open
Abstract
The brain is a major site of relapse for several cancers, yet deciphering the mechanisms of brain metastasis remains a challenge because of the complexity of the brain tumor microenvironment (TME). To define the molecular landscape of brain metastasis from intact tissue in vivo, we employ an RNA-sequencing-based approach, which leverages the transcriptome of xenografts and distinguishes tumor cell and stromal gene expression with improved sensitivity and accuracy. Our data reveal shifts in epithelial and neuronal-like lineage programs in malignant cells as they adapt to the brain TME and the reciprocal neuroinflammatory response of the stroma. We identify several transcriptional hallmarks of metastasis that are specific to particular regions of the brain, induced across multiple tumor types, and confirmed in syngeneic models and patient biopsies. These data may serve as a resource for exploring mechanisms of TME co-adaptation within, as well as across, different subtypes of brain metastasis.
Collapse
Affiliation(s)
- Emily Wingrove
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Zongzhi Z Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Kiran D Patel
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Anna Arnal-Estapé
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Wesley L Cai
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Mary-Ann Melnick
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Katerina Politi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Cátia Monteiro
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Lucía Zhu
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Veronica L Chiang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Don X Nguyen
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
35
|
Ding H, Huang Y, Li Z, Li S, Chen Q, Xie C, Zhong Y. Prediction of IDH Status Through MRI Features and Enlightened Reflection on the Delineation of Target Volume in Low-Grade Gliomas. Technol Cancer Res Treat 2020; 18:1533033819877167. [PMID: 31564237 PMCID: PMC6767744 DOI: 10.1177/1533033819877167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Isocitrate dehydrogenase mutational status defines distinct biologic behavior and
clinical outcomes in low-grade gliomas. We sought to determine magnetic resonance imaging
characteristics associated with isocitrate dehydrogenase mutational status to evaluate the
predictive roles of magnetic resonance imaging features in isocitrate dehydrogenase
mutational status and therefore their potential impact on the determination of clinical
target volume in radiotherapy. Forty-eight isocitrate dehydrogenase-mutant and 28
isocitrate dehydrogenase–wild-type low-grade gliomas were studied. Isocitrate
dehydrogenase mutation was related to more frequency of cortical involvement compared to
isocitrate dehydrogenase–wild-type group (34/46 vs 6/24, P = .0001).
Peritumoral edema was less frequent in isocitrate dehydrogenase–mutant tumors (32.6% vs
58.3% for isocitrate dehydrogenase–wild-type tumors, P = .0381).
Isocitrate dehydrogenase–wild-type tumors were more likely to have a nondefinable border,
while isocitrate dehydrogenase–mutant tumors had well-defined borders (66.7% vs 39.1%,
P = .0287). Only 8 (17.4%) of 46 of the isocitrate dehydrogenase–mutant
tumors demonstrated marked enhancement, while this was 66.7% in isocitrate–wild-type
tumors (P < .0001). Choline–creatinine ratio for isocitrate
dehydrogenase–wild-type tumors was significantly higher than that for isocitrate
dehydrogenase–mutant tumors. In conclusion, frontal location, well-defined border,
cortical involvement, less peritumoral edema, lack of enhancement, and low
choline–creatinine ratio were predictive for the definition of isocitrate
dehydrogenase–mutant low-grade gliomas. Magnetic resonance imaging can provide an
advantage in the detection of isocitrate dehydrogenase status indirectly and indicate the
need to explore new design for treatment planning in gliomas. Choline–creatinine ratio in
magnetic resonance spectroscopy could be a potential more reasonable reference for the new
design of delineation of target volume in low-grade gliomas.
Collapse
Affiliation(s)
- Haixia Ding
- Department of Chemotherapy and Radiation Therapy, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuchang District, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Yong Huang
- Department of Chemotherapy and Radiation Therapy, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuchang District, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Zhiqiang Li
- Department of Neurologic Surgery, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, China
| | - Qiongrong Chen
- Department of Pathology, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, China
| | - Conghua Xie
- Department of Chemotherapy and Radiation Therapy, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuchang District, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Yahua Zhong
- Department of Chemotherapy and Radiation Therapy, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuchang District, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| |
Collapse
|
36
|
Provider views on perioperative steroid use for patients with newly diagnosed pediatric brain tumors. J Neurooncol 2020; 147:205-212. [PMID: 32026434 DOI: 10.1007/s11060-020-03416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE Cerebral edema from brain tumors can cause neurological impairment. Steroids treat edema but with possible adverse effects. We surveyed providers regarding steroid use in newly diagnosed patients with brain tumors to determine if practices are standard or markedly variable. METHODS An anonymous voluntary online survey was sent to members of neuro-oncology consortiums. Four clinical scenarios were provided and questions regarding initiation of steroids, type, dose, formulation, and duration were asked. Demographic information was collected. RESULTS 369 providers received the survey, 76 responded (20.6% response rate). The proportion of providers who would start steroids significantly differed among scenarios (scenario 1 vs 2, p < 0.001; 2 vs 3, p < 0.001; 1 vs 3, p < 0.001). 75 (98.7%) providers would start steroids for vasogenic edema (scenario 1) and 55 (72.4%) for obstructive hydrocephalus (scenario 2). 16 (21.1%) would start steroids for vasogenic edema but not obstructive hydrocephalus. The odds of choosing to start steroids in patients with obstructive hydrocephalus were 7.59 times more (95% CI: 2.29, 25.13) if providers felt symptoms would improve within 24 h. All would use dexamethasone. A significant difference was seen between the proportion of providers who would give a loading dose if vasogenic edema with neurological deficits were noted versus vasogenic edema alone (57.9% vs 43.4%; p = 0.002). CONCLUSIONS These results suggest that providers recommend dexamethasone for patients with vasogenic edema and obstructive hydrocephalus. Variability remains with dosing schedule. Further studies are needed to identify the most appropriate use of steroids for newly diagnosed CNS tumor patients with the goal to create steroid management guidelines.
Collapse
|
37
|
Mazurek M, Litak J, Kamieniak P, Kulesza B, Jonak K, Baj J, Grochowski C. Metformin as Potential Therapy for High-Grade Glioma. Cancers (Basel) 2020; 12:E210. [PMID: 31952173 PMCID: PMC7016983 DOI: 10.3390/cancers12010210] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Metformin (MET), 1,1-dimethylbiguanide hydrochloride, is a biguanide drug used as the first-line medication in the treatment of type 2 diabetes. The recent years have brought many observations showing metformin in its new role. The drug, commonly used in the therapy of diabetes, may also find application in the therapy of a vast variety of tumors. Its effectiveness has been demonstrated in colon, breast, prostate, pancreatic cancer, leukemia, melanoma, lung and endometrial carcinoma, as well as in gliomas. This is especially important in light of the poor options offered to patients in the case of high-grade gliomas, which include glioblastoma (GBM). A thorough understanding of the mechanism of action of metformin can make it possible to discover new drugs that could be used in neoplasm therapy.
Collapse
Affiliation(s)
- Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.M.); (J.L.); (P.K.); (B.K.)
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.M.); (J.L.); (P.K.); (B.K.)
- Department of Immunology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.M.); (J.L.); (P.K.); (B.K.)
| | - Bartłomiej Kulesza
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.M.); (J.L.); (P.K.); (B.K.)
| | - Katarzyna Jonak
- Department of Foregin Languages, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Cezary Grochowski
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
38
|
Ma Q, Schlegel F, Bachmann SB, Schneider H, Decker Y, Rudin M, Weller M, Proulx ST, Detmar M. Lymphatic outflow of cerebrospinal fluid is reduced in glioma. Sci Rep 2019; 9:14815. [PMID: 31616011 PMCID: PMC6794292 DOI: 10.1038/s41598-019-51373-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/28/2019] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma is a malignant brain tumor with mean overall survival of less than 15 months. Blood vessel leakage and peritumoral edema lead to increased intracranial pressure and augment neurological deficits which profoundly decrease the quality of life of glioblastoma patients. It is unknown how the dynamics of cerebrospinal fluid (CSF) turnover are affected during this process. By monitoring the transport of CSF tracers to the systemic blood circulation after infusion into the cisterna magna, we demonstrate that the outflow of CSF is dramatically reduced in glioma-bearing mice. Using a combination of magnetic resonance imaging (MRI) and near-infrared (NIR) imaging, we found that the circulation of CSF tracers was hindered after cisterna magna injection with reduced signals along the exiting cranial nerves and downstream lymph nodes, which represent the major CSF outflow route in mice. Due to blockage of the normal routes of CSF bulk flow within and from the cranial cavity, CSF tracers were redirected into the spinal space. In some mice, impaired CSF clearance from the cranium was compensated by a lymphatic outflow from the sacral spine.
Collapse
Affiliation(s)
- Qiaoli Ma
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Felix Schlegel
- Institute of Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Samia B Bachmann
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Hannah Schneider
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Yann Decker
- Department of Neurology, University of the Saarland, Homburg, Germany
| | - Markus Rudin
- Institute of Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland.
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
39
|
Galli R, Uckermann O, Sehm T, Leipnitz E, Hartmann C, Sahm F, Koch E, Schackert G, Steiner G, Kirsch M. Identification of distinctive features in human intracranial tumors by label-free nonlinear multimodal microscopy. JOURNAL OF BIOPHOTONICS 2019; 12:e201800465. [PMID: 31194284 DOI: 10.1002/jbio.201800465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/08/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Nonlinear multimodal microscopy offers a series of label-free techniques with potential for intraoperative identification of tumor borders in situ using novel endoscopic devices. Here, we combined coherent anti-Stokes Raman scattering, two-photon excited fluorescence (TPEF) and second harmonic generation imaging to analyze biopsies of different human brain tumors, with the aim to understand whether the morphological information carried by single field of view images, similar to what delivered by present endoscopic systems, is sufficient for tumor recognition. We imaged 40 human biopsies of high and low grade glioma, meningioma, as well as brain metastases of melanoma, breast, lung and renal carcinoma, in comparison with normal brain parenchyma. Furthermore, five biopsies of schwannoma were analyzed and compared with nonpathological nerve tissue. Besides the high cellularity, the typical features of tumor, which were identified and quantified, are intracellular and extracellular lipid droplets, aberrant vessels, extracellular matrix collagen and diffuse TPEF. Each tumor type displayed a particular morphochemistry characterized by specific patterns of the above-mentioned features. Nonlinear multimodal microscopy performed on fresh unprocessed biopsies confirmed that the technique has the ability to visualize tumor structures and discern normal from neoplastic tissue likewise in conditions close to in situ.
Collapse
Affiliation(s)
- Roberta Galli
- Clinical Sensoring and Monitoring, Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ortrud Uckermann
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tina Sehm
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Elke Leipnitz
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School (MHH), Hannover, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg, Heidelberg, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gabriele Schackert
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gerald Steiner
- Clinical Sensoring and Monitoring, Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Matthias Kirsch
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
40
|
Altieri R, Raimondo S, Tiddia C, Sammarco D, Cofano F, Zeppa P, Monticelli M, Melcarne A, Junemann C, Zenga F, Savastano R, Garbossa D, Certo F, Barbagallo G. Glioma surgery: From preservation of motor skills to conservation of cognitive functions. J Clin Neurosci 2019; 70:55-60. [PMID: 31537460 DOI: 10.1016/j.jocn.2019.08.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/17/2019] [Accepted: 08/25/2019] [Indexed: 11/17/2022]
Abstract
The first step of glioma treatment is surgery. Extent of resection (EOR) improves patient survival if surgery does not negatively impair a patient's neurological status. However, how surgery affects the patient's quality of life (QOL) has been less studied, especially as regards cognitive aspects. In our study, we retrospectively analyzed our cases with awake surgery. In all patients, surgical excision was stopped when active functions were intraoperatively identified. A neuropsychological assessment was performed both before and after surgery (5 days and 1 month after). Writing, motor speech, comprehension, expression, reading, pragmatics, attention, memory, problem solving and visuoperceptive functions were evaluated and scored with the NOMS scale. We found no differences in the median values of writing and motor speech, while there was a difference in the following variables: comprehension, expression, reading, pragmatics, attention, memory, problem solving and visuoperceptive functions. Moreover, the Dunn test did not show any difference between preoperative evaluation and evaluation performed 30 days after surgery regarding comprehension, expression, reading, pragmatics, attention, problem solving and visuoperceptive functions. However, there was a difference between preoperative and postoperative evaluation for memory. This retrospective study shows that awake surgery could be a reasonable possibility to preserve a patient's QOL achieving an EOR >82% of the Total Tumor Volume (Fluid-attenuated inversion recovery (FLAIR) hyperintense region in low-grade gliomas and enhancing nodules plus FLAIR hyperintense region in high-grade gliomas). In this series memory was the only aspect that had an impairment after surgery without a complete recovery at one month after surgery.
Collapse
Affiliation(s)
- Roberto Altieri
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy; Division of Neurosurgery, Department of Neurosciences, Policlinico "G.Rodolico" University Hospital, Catania, Italy.
| | - Simona Raimondo
- ENT Unit, Department of Surgery, University of Turin, Turin, Italy
| | - Cristiana Tiddia
- ENT Unit, Department of Surgery, University of Turin, Turin, Italy
| | - Diego Sammarco
- ENT Unit, Department of Surgery, University of Turin, Turin, Italy
| | - Fabio Cofano
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Pietro Zeppa
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Matteo Monticelli
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Antonio Melcarne
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Carola Junemann
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Francesco Zenga
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | | | - Diego Garbossa
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Francesco Certo
- Division of Neurosurgery, Department of Neurosciences, Policlinico "G.Rodolico" University Hospital, Catania, Italy; Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Giuseppe Barbagallo
- Division of Neurosurgery, Department of Neurosciences, Policlinico "G.Rodolico" University Hospital, Catania, Italy; Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| |
Collapse
|
41
|
Chow KKH, Meola A, Chang SD. Commentary: Peritumoral Edema/Tumor Volume Ratio: A Strong Survival Predictor for Posterior Fossa Metastases. Neurosurgery 2019; 85:E18-E19. [DOI: 10.1093/neuros/nyy281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/31/2018] [Indexed: 11/14/2022] Open
|
42
|
Scherer M, Jungk C, Götz M, Kickingereder P, Reuss D, Bendszus M, Maier-Hein K, Unterberg A. Early postoperative delineation of residual tumor after low-grade glioma resection by probabilistic quantification of diffusion-weighted imaging. J Neurosurg 2019; 130:2016-2024. [PMID: 30052158 DOI: 10.3171/2018.2.jns172951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/23/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE In WHO grade II low-grade gliomas (LGGs), early postoperative MRI (epMRI) may overestimate residual tumor on FLAIR sequences. Consequently, MRI at 3-6 months follow-up (fuMRI) is used for delineation of residual tumor. This study sought to evaluate if integration of apparent diffusion coefficient (ADC) maps permits an accurate estimation of residual tumor early on epMRI. METHODS From a consecutive cohort, 43 cases with an initial surgery for an LGG, and complete epMRI (< 72 hours after resection) and fuMRI including ADC maps, were retrospectively identified. Residual FLAIR hyperintense tumor was manually segmented on epMRI and corresponding ADC maps were coregistered. Using an expectation maximization algorithm, residual tumor segments were probabilistically clustered into areas of residual tumor, ischemia, or normal white matter (NWM) by fitting a mixture model of superimposed Gaussian curves to the ADC histogram. Tumor volumes from epMRI, clustering, and fuMRI were statistically compared and agreement analysis was performed. RESULTS Mean FLAIR hyperintensity suggesting residual tumor was significantly larger on epMRI compared to fuMRI (19.4 ± 16.5 ml vs 8.4 ± 10.2 ml, p < 0.0001). Probabilistic clustering of corresponding ADC histograms on epMRI identified subsegments that were interpreted as mean residual tumor (7.6 ± 10.2 ml), ischemia (8.1 ± 5.9 ml), and NWM (3.7 ± 4.9 ml). Therefore, mean tumor quantification error between epMRI and fuMRI was significantly reduced (11.0 ± 10.6 ml vs -0.8 ± 3.7 ml, p < 0.0001). Mean clustered tumor volumes on epMRI were no longer significantly different from the fuMRI reference (7.6 ± 10.2 ml vs 8.4 ± 10.2 ml, p = 0.16). Correlation (Pearson r = 0.96, p < 0.0001), concordance correlation coefficient (0.89, 95% confidence interval 0.83), and Bland-Altman analysis suggested strong agreement between both measures after clustering. CONCLUSIONS Probabilistic segmentation of ADC maps facilitates accurate assessment of residual tumor within 72 hours after LGG resection. Multiparametric image analysis detected FLAIR signal alterations attributable to surgical trauma, which led to overestimation of residual LGG on epMRI compared to fuMRI. The prognostic value and clinical impact of this method has to be evaluated in larger case series in the future.
Collapse
Affiliation(s)
| | | | - Michael Götz
- 2Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - David Reuss
- 4Neuropathology, Heidelberg University Hospital; and
| | | | - Klaus Maier-Hein
- 2Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
43
|
Cenciarini M, Valentino M, Belia S, Sforna L, Rosa P, Ronchetti S, D'Adamo MC, Pessia M. Dexamethasone in Glioblastoma Multiforme Therapy: Mechanisms and Controversies. Front Mol Neurosci 2019; 12:65. [PMID: 30983966 PMCID: PMC6449729 DOI: 10.3389/fnmol.2019.00065] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/26/2019] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant of the glial tumors. The world-wide estimates of new cases and deaths annually are remarkable, making GBM a crucial public health issue. Despite the combination of radical surgery, radio and chemotherapy prognosis is extremely poor (median survival is approximately 1 year). Thus, current therapeutic interventions are highly unsatisfactory. For many years, GBM-induced brain oedema and inflammation have been widely treated with dexamethasone (DEX), a synthetic glucocorticoid (GC). A number of studies have reported that DEX also inhibits GBM cell proliferation and migration. Nevertheless, recent controversial results provided by different laboratories have challenged the widely accepted dogma concerning DEX therapy for GBM. Here, we have reviewed the main clinical features and genetic and epigenetic abnormalities underlying GBM. Finally, we analyzed current notions and concerns related to DEX effects on cerebral oedema, cancer cell proliferation and migration and clinical outcome.
Collapse
Affiliation(s)
- Marta Cenciarini
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia School of Medicine, Perugia, Italy
| | - Mario Valentino
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Silvia Belia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Luigi Sforna
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia School of Medicine, Perugia, Italy
| | - Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Polo Pontino, Latina, Italy
| | - Simona Ronchetti
- Section of Pharmacology, Department of Medicine, University of Perugia School of Medicine, Perugia, Italy
| | - Maria Cristina D'Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Mauro Pessia
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia School of Medicine, Perugia, Italy.,Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
44
|
Arami H, Patel CB, Madsen SJ, Dickinson PJ, Davis RM, Zeng Y, Sturges BK, Woolard KD, Habte FG, Akin D, Sinclair R, Gambhir SS. Nanomedicine for Spontaneous Brain Tumors: A Companion Clinical Trial. ACS NANO 2019; 13:2858-2869. [PMID: 30714717 PMCID: PMC6584029 DOI: 10.1021/acsnano.8b04406] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nanoparticles' enhanced permeation and retention (EPR) variations due to tumor heterogeneity in naturally occurring brain tumors are commonly neglected in preclinical nanomedicine studies. Recent pathological studies have shown striking similarities between brain tumors in humans and dogs, indicating that canine brain tumors may be a valuable model to evaluate nanoparticles' EPR in this context. We recruited canine clinical cases with spontaneous brain tumors to investigate nanoparticles' EPR in different brain tumor pathologies using surface-enhanced Raman spectroscopy (SERS). We used gold nanoparticles due to their surface plasmon effect that enables their sensitive and microscopic resolution detection using the SERS technique. Raman microscopy of the resected tumors showed heterogeneous EPR of nanoparticles into oligodendrogliomas and meningiomas of different grades, without any detectable traces in necrotic parts of the tumors or normal brain. Raman observations were confirmed by scanning electron microscopy (SEM) and X-ray elemental analyses, which enabled localization of individual nanoparticles embedded in tumor tissues. Our results demonstrate nanoparticles' EPR and its variations in clinically relevant, spontaneous brain tumors. Such heterogeneities should be considered alongside routine preoperative imaging and histopathological analyses in order to accelerate clinical management of brain tumors using nanomedicine approaches.
Collapse
Affiliation(s)
- Hamed Arami
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| | - Chirag B. Patel
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Steven J. Madsen
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Peter J. Dickinson
- Department of Surgical and Radiological Sciences, University of California at Davis, Davis, California 95616, United States
| | - Ryan M. Davis
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| | - Yitian Zeng
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Beverly K. Sturges
- Department of Surgical and Radiological Sciences, University of California at Davis, Davis, California 95616, United States
| | - Kevin D. Woolard
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California 95616, United States
| | - Frezghi G. Habte
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| | - Demir Akin
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| | - Robert Sinclair
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Sanjiv S. Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
- Stanford Neuroscience Institute, Stanford University School of Medicine, Stanford, California 94305, United States
- Corresponding Author (Sanjiv S. Gambhir).
| |
Collapse
|
45
|
Neoplastic and Non-Neoplastic Causes of Acute Intracerebral Hemorrhage on CT : The Diagnostic Value of Perihematomal Edema. Clin Neuroradiol 2019; 30:271-278. [PMID: 30899965 DOI: 10.1007/s00062-019-00774-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the diagnostic value of perihematomal edema (PHE) volume in non-enhanced computed tomography (NECT) to discriminate neoplastic and non-neoplastic causes of acute intracerebral hemorrhage (ICH). METHODS In this retrospective study, from 560 patients with acute ICH 91 patients fulfilled the inclusion criteria and were classified into neoplastic and non-neoplastic ICH. For each patient, ICH and total hemorrhage volume (ICH + PHE) were segmented semiautomatically. The PHE volume and relative PHE were further calculated and all parameters were compared between the different groups. Additionally, hematoma density was measured and compared between the groups. RESULTS The PHE volume and relative PHE on NECT were significantly higher in neoplastic vs. the non-neoplastic ICH (p = 0.003 and p < 0.001, respectively). Absolute ICH volume, symptom time onset to CT and ICH localization showed no significant difference between the two groups (p > 0.1). Univariate receiver operating characteristics (ROC) analysis revealed a high diagnostic performance for relative PHE in the discrimination of neoplastic and non-neoplastic ICH with an optimal cut-off of 0.50 (area under the curve, AUC 0.81, 60.0% sensitivity, 91.8% specificity), followed by PHE (AUC 0.69) and hematoma density (AUC 0.68). CONCLUSION Relative PHE with a cut-off of >0.50 is a specific and simple indicator for neoplastic causes of acute ICH and a potential tool for clinical implementation. This observation needs to be validated in an independent patient cohort.
Collapse
|
46
|
Förster A, Brehmer S, Seiz-Rosenhagen M, Mildenberger I, Giordano FA, Wenz H, Reuss D, Hänggi D, Groden C. Heterogeneity of glioblastoma with gliomatosis cerebri growth pattern on diffusion and perfusion MRI. J Neurooncol 2018; 142:103-109. [PMID: 30565029 DOI: 10.1007/s11060-018-03068-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/30/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND PURPOSE Gliomatosis cerebri (GC) is a rare growth pattern of glioblastoma whose diffuse nature is reflected by unspecific, relatively uniform findings on conventional MRI. In the present study we sought to evaluate the additional value of diffusion (DWI) and perfusion weighted (PWI) MRI for a more detailed characterization. METHODS We analyzed the MRI findings in patients with histologically proven glioblastoma with GC growth pattern with a specific emphasis on T2 lesion pattern, volume, relative apparent diffusion coefficient (rACD), and relative cerebral blood volume (rCBV) and compared these to age-/gender-matched patients with localized glioblastoma. RESULTS Overall, 16 patients (median age 59.5 years, 4 male) were included in the study. Of these, 8 patients had a glioblastoma with GC growth pattern, and 8 a classical localized growth pattern. While the median rADC (1.27 [IQR 1.12-1.41]) within the T2 lesion was significant lower in glioblastoma with GC growth pattern compared to localized glioblastoma (1.74 [IQR 1.45-1.96]; p = 0.003), the median T2 lesion volume and rCBV within the T2 lesion did not differ significantly. Furthermore, six patients with glioblastoma with GC growth pattern showed focal areas with significantly reduced rADC (p = 0.043), and/or increased rCBV (p = 0.028). CONCLUSIONS Lower rADC in glioblastoma with GC growth pattern might reflect the diffuse tumor cell infiltration whereas focal areas with decreased rADC and/or increased rCBV probably indicate high tumor cell density and/or abnormal tumor vessels which may be useful for biopsy guidance.
Collapse
Affiliation(s)
- Alex Förster
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Stefanie Brehmer
- Department of Neurosurgery, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcel Seiz-Rosenhagen
- Department of Neurosurgery, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Iris Mildenberger
- Department of Neurology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Holger Wenz
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - David Reuss
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christoph Groden
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
47
|
Redmer T. Deciphering mechanisms of brain metastasis in melanoma - the gist of the matter. Mol Cancer 2018; 17:106. [PMID: 30053879 PMCID: PMC6064184 DOI: 10.1186/s12943-018-0854-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Metastasis to distant organs and particularly the brain still represents the most serious obstacle in melanoma therapies. Melanoma cells acquire a phenotype to metastasize to the brain and successfully grow there through complex mechanisms determined by microenvironmental than rather genetic cues. There do appear to be some prerequisites, including the presence of oncogenic BRAF or NRAS mutations and a loss of PTEN. Further mediators of the brain metastatic phenotype appear to be the high activation of the PI3K/AKT or STAT3 pathway or high levels of PLEKHA5 and MMP2 in metastatic cells. A yet undefined subset of brain metastases exhibit a high level of expression of CD271 that is associated with stemness, migration and survival. Hence, CD271 expression may determine specific properties of brain metastatic melanoma cells. Environmental cues - in particular those provided by brain parenchymal cells such as astrocytes - seem to help specifically guide melanoma cells that express CCR4 or CD271, potential "homing receptors". Upon entering the brain, these cells interact with brain parenchyma cells and are thereby reprogrammed to adopt a neurological phenotype. Several lines of evidence suggest that current therapies may have a negative effect by activating a program that drives tumor cells toward stemness and metastasis. Yet significant improvements have expanded the therapeutic options for treating brain metastases from melanoma, by combining potent BRAF inhibitors such as dabrafenib with checkpoint inhibitors or stereotactic surgery. Further progress toward developing new therapeutic strategies will require a more profound understanding of the mechanisms that underlie brain metastasis in melanoma.
Collapse
Affiliation(s)
- Torben Redmer
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany. .,Department of Medical Biochemistry, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
48
|
Peritumoral Edema Affects the Prognosis in Adult Pleomorphic Xanthoastrocytoma: Retrospective Analysis of 25 Patients. World Neurosurg 2018; 114:e457-e467. [DOI: 10.1016/j.wneu.2018.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 01/22/2023]
|
49
|
Bussat A, Proisy M, Bruneau B, Bouzillé G, Chappé C, Riffaud L. Edema of the optic tract in patients with tumors of the sellar region: clinical and visual implications in the pediatric population. J Neurosurg Pediatr 2018; 21:516-522. [PMID: 29498601 DOI: 10.3171/2017.11.peds17526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Tumor-related edema of the optic tract (EOT) corresponds to a preferential posterior distribution of peritumoral edema along the white matter tract of the visual system. To date, the consequences of EOT have never been evaluated specifically in the pediatric population. In this study, the authors attempted to identify clinical and radiological features associated with the development of EOT and the specific influence of this edema on visual function. METHODS A retrospective review was performed of data collected from patients younger than 18 years who underwent surgery for a tumor in the sellar region at the authors' institution between January 2005 and January 2016. Data were collected on patient characteristics, ophthalmological evaluations, and neuroimaging findings. To evaluate and compare visual function impairment, ophthalmological data were converted to a global visual function score, which took into account visual acuity, visual field evaluations, and laterality deficiencies. The visual acuity score was defined according to the International Classification of Diseases, 10th Revision. Visual field deficiencies were converted to a score of 0-2. Two opposing groups were then distinguished according to the presence or absence of EOT. Visual acuity, visual field results, and global scores were compared between groups before and after treatment. RESULTS Twenty-six patients were included in the study: 17 patients with craniopharyngioma, 3 patients with pilocytic astrocytoma, 2 patients with ganglioglioma, 2 patients with germ cell tumor, 1 patient with macroprolactinoma, and 1 patient with Rathke's cleft cyst. There were 11 children in the group with edema and 15 children in the group without edema. None of the following criteria were statistically different between the 2 groups: age, sex, clinical symptoms at presentation (endocrine deficiency or intracranial hypertension signs), incidence of hydrocephalus, compression of the optic tracts and mass effect on the optic chiasm, tumor size and localization, presence of intratumoral cysts, treatment, type of tumor, or recurrence. The median global visual function and visual acuity scores were not significantly different between the groups either at presentation or at final evaluation. The visual field score was lower (i.e., more deficiency) in the group with edema than in the group without edema (p < 0.05); 89% of the patients with edema had severe or mild visual field impairment versus only 40% of the patients without edema. At the final examination after treatment, the visual field scores were not different between the 2 groups. Although not significant, the number of patients with optic disc pallor was greater in the group without edema both at diagnosis and at final examination. CONCLUSIONS This study confirms that EOT in the context of sellar region tumor in children is not necessarily associated with a less-favorable visual prognosis.
Collapse
Affiliation(s)
| | | | | | - Guillaume Bouzillé
- 3Clinical Data Center, Rennes University Hospital, Rennes; and.,4Inserm U1099 LTSI, University of Rennes 1, Rennes, France
| | | | - Laurent Riffaud
- 4Inserm U1099 LTSI, University of Rennes 1, Rennes, France.,6Neurosurgery and
| |
Collapse
|
50
|
Multi-center study finds postoperative residual non-enhancing component of glioblastoma as a new determinant of patient outcome. J Neurooncol 2018; 139:125-133. [DOI: 10.1007/s11060-018-2850-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/25/2018] [Indexed: 10/17/2022]
|