1
|
Marcotulli M, Barbetta A, Scarpa E, Bini F, Marinozzi F, Ruocco G, Casciola CM, Scognamiglio C, Carugo D, Cidonio G. Jingle Cell Rock: Steering Cellular Activity With Low-Intensity Pulsed Ultrasound (LIPUS) to Engineer Functional Tissues in Regenerative Medicine. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1973-1986. [PMID: 39289118 DOI: 10.1016/j.ultrasmedbio.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
Acoustic manipulation or perturbation of biological soft matter has emerged as a promising clinical treatment for a number of applications within regenerative medicine, ranging from bone fracture repair to neuromodulation. The potential of ultrasound (US) endures in imparting mechanical stimuli that are able to trigger a cascade of molecular signals within unscathed cells. Particularly, low-intensity pulsed ultrasound (LIPUS) has been associated with bio-effects such as activation of specific cellular pathways and alteration of cell morphology and gene expression, the extent of which can be modulated by fine tuning of LIPUS parameters including intensity, frequency and exposure time. Although the molecular mechanisms underlying LIPUS are not yet fully elucidated, a number of studies clearly define the modulation of specific ultrasonic parameters as a means to guide the differentiation of a specific set of stem cells towards adult and fully differentiated cell types. Herein, we outline the applications of LIPUS in regenerative medicine and the in vivo and in vitro studies that have confirmed the unbounded clinical potential of this platform. We highlight the latest developments aimed at investigating the physical and biological mechanisms of action of LIPUS, outlining the most recent efforts in using this technology to aid tissue engineering strategies for repairing tissue or modelling specific diseases. Ultimately, we detail tissue-specific applications harnessing LIPUS stimuli, offering insights over the engineering of new constructs and therapeutic modalities. Overall, we aim to lay the foundation for a deeper understanding of the mechanisms governing LIPUS-based therapy, to inform the development of safer and more effective tissue regeneration strategies in the field of regenerative medicine.
Collapse
Affiliation(s)
- Martina Marcotulli
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy; Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Andrea Barbetta
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Edoardo Scarpa
- Infection Dynamics Laboratory, Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; National Institute of Molecular Gentics (INGM), Milan, Italy; Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Fabiano Bini
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ruocco
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy
| | - Carlo Massimo Casciola
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy
| | - Chiara Scognamiglio
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy
| | - Dario Carugo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Gianluca Cidonio
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy; Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK; Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Hassan OI, Takamiya S, Asgarihafshejani A, Fehlings MG. Bridging the gap: a translational perspective in spinal cord injury. Exp Biol Med (Maywood) 2024; 249:10266. [PMID: 39391076 PMCID: PMC11464315 DOI: 10.3389/ebm.2024.10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating and complex condition to treat with no curative options. In the past few decades, rapid advancements in our understanding of SCI pathophysiology as well as the mergence of new treatments has created more optimism. Focusing on clinical translation, this paper provides a comprehensive overview of SCI through its epidemiology, pathophysiology, currently employed management strategies, and emerging therapeutic approaches. Additionally, it emphasizes the importance of addressing the heavy quality of life (QoL) challenges faced by SCI patients and their desires, providing a basis to tailor patient-centric forms of care. Furthermore, this paper discusses the frequently encountered barriers in translation from preclinical models to clinical settings. It also seeks to summarize significant completed and ongoing SCI clinical trials focused on neuroprotective and neuroregenerative strategies. While developing a cohesive regenerative treatment strategy remains challenging, even modest improvements in sensory and motor function can offer meaningful benefits and motivation for patients coping with this highly debilitating condition.
Collapse
Affiliation(s)
- Omar Imad Hassan
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Soichiro Takamiya
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Azam Asgarihafshejani
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Wang S, Liu A, Xu C, Hou J, Hong J. GLP-1(7-36) protected against oxidative damage and neuronal apoptosis in the hippocampal CA region after traumatic brain injury by regulating ERK5/CREB. Mol Biol Rep 2024; 51:313. [PMID: 38374452 PMCID: PMC10876747 DOI: 10.1007/s11033-024-09244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) (7-36) amide, an endogenous active form of GLP-1, has been shown to modulate oxidative stress and neuronal cell survival in various neurological diseases. OBJECTIVE This study investigated the potential effects of GLP-1(7-36) on oxidative stress and apoptosis in neuronal cells following traumatic brain injury (TBI) and explored the underlying mechanisms. METHODS Traumatic brain injury (TBI) models were established in male SD rats for in vivo experiments. The extent of cerebral oedema was assessed using wet-to-dry weight ratios following GLP-1(7-36) intervention. Neurological dysfunction and cognitive impairment were evaluated through behavioural experiments. Histopathological changes in the brain were observed using haematoxylin and eosin staining. Oxidative stress levels in hippocampal tissues were measured. TUNEL staining and Western blotting were employed to examine cell apoptosis. In vitro experiments evaluated the extent of oxidative stress and neural apoptosis following ERK5 phosphorylation activation. Immunofluorescence colocalization of p-ERK5 and NeuN was analysed using immunofluorescence cytochemistry. RESULTS Rats with TBI exhibited neurological deterioration, increased oxidative stress, and enhanced apoptosis, which were ameliorated by GLP-1(7-36) treatment. Notably, GLP-1(7-36) induced ERK5 phosphorylation in TBI rats. However, upon ERK5 inhibition, oxidative stress and neuronal apoptosis levels were elevated, even in the presence of GLP-1(7-36). CONCLUSION In summary, this study suggested that GLP-1(7-36) suppressed oxidative damage and neuronal apoptosis after TBI by activating ERK5/CREB.
Collapse
Affiliation(s)
- Shuwei Wang
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Aijun Liu
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Chaopeng Xu
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Jingxuan Hou
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Jun Hong
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China.
| |
Collapse
|
4
|
Hasanzadeh A, Moghaddam HS, Shakiba M, Jalali AH, Firouznia K. The Role of Multimodal Imaging in Differentiating Vasogenic from Infiltrative Edema: A Systematic Review. Indian J Radiol Imaging 2023; 33:514-521. [PMID: 37811185 PMCID: PMC10556327 DOI: 10.1055/s-0043-1772466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Background High-grade gliomas (HGGs) are the most prevalent primary malignancy of the central nervous system. The tumor results in vasogenic and infiltrative edema . Exact anatomical differentiation of these edemas is so important for surgical planning. Multimodal imaging could be used to differentiate the edema type. Purpose The aim of this study was to investigate the role of multimodal imaging in the differentiation of vasogenic edema from infiltrative edema in patients with HGG (grade III and grade IV). Data Sources A search on PubMed, EMBASE, Scopus, and ISI Web of Science Core Collection up to June 2022 using terms related to (a) multimodal imaging AND (b) HGG AND (c) edema. (PROSPERO registration number: CRD42022336131) Study Selection Two reviewers screened the articles and independently extracted the data. We included original articles assessing the role of multimodal imaging in differentiating vasogenic from infiltrative edema in patients with HGG. Six high-quality articles remained for the narrative synthesis. Data Synthesis Dynamic susceptibility contrast imaging showed that relative cerebral blood volume and relative cerebral blood flow were higher in the infiltrative edema component than in the vasogenic edema component. Diffusion tensor imaging revealed a dispute on fractional anisotropy. The apparent diffusion coefficient was comparable between the two edematous components. Magnetic resonance spectroscopy exhibited an increment in choline/creatinine ratio and choline/N-acetyl aspartate ratio in the infiltrative edema component. Limitations Strict study selection, low sample size of relevant published studies, and heterogeneity in endpoint variables were the major drawbacks. Conclusions Multimodal imaging, including dynamic susceptibility contrast and magnetic resonance spectroscopy, might help differentiate between vasogenic and infiltrative edema.
Collapse
Affiliation(s)
- Alireza Hasanzadeh
- Medical School, Tehran University of Medical Sciences, Tehran, Iran
- Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Sanjari Moghaddam
- Medical School, Tehran University of Medical Sciences, Tehran, Iran
- Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Madjid Shakiba
- Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Jalali
- Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kavous Firouznia
- Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Turkin AM, Melnikova-Pitskhelauri TV, Fadeeva LM, Kozlov AV, Oshorov AV, Kravchuk AD, Kozlova YA, Petryaikin AV, Ryzhova MV, Pronin IN. [Perifocal edema and glymphatic system dysfunction: quantitative assessment based on diffusion tensor magnetic resonance imaging]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2023; 87:45-54. [PMID: 37830468 DOI: 10.17116/neiro20238705145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
BACKGROUND Pathogenesis of peritumoral cerebral edema is unclear and potentially associated with glymphatic system dysfunction. Diffusion tensor MRI (DT-MRI) with analysis of ALPS (Analysis along the Perivascular Space) index may be valuable for assessment of edema. This approach visualizes fluid flow along perivascular spaces of deep cerebral veins. OBJECTIVE To assess glymphatic system function in supratentorial tumors and healthy volunteers using DT-MRI. MATERIAL AND METHODS There were 52 patients (59% men) aged 43 (28-64) years with supratentorial tumors (meningioma - 20, grade 3-4 glioma - 15, metastases - 9, lymphoma - 8). Tumors and perifocal edema did not involve deep cerebral veins. The control group included 6 healthy volunteers aged 34-66 years. MRI protocol (Signa HDxt, 3 T) contained standard T1, T2, T2FLAIR, DWI and post-contrast T1 (3D BRAVO). DT-MRI had the following parameters: TR=10 000 ms, TEmin=102 ms, FOV=240 mm, isotropic voxel size 3×3×3 mm3, 60 directions of diffusion gradients. Measurements were carried out at b-factor 0 and 1000 s/mm2. Analysis was carried out in the ReadyView software. RESULTS Right- and left-sided ALPS indices were similar in the control group (p=0.917). Perifocal edema (regardless of histological type of tumor) in the ipsilateral hemisphere was accompanied by significantly lower ALPS index (p<0.005), while these values in contralateral (intact) hemisphere were similar in both groups (p=0.7). CONCLUSION We found significantly lower ALPS index in deep parts of the affected hemisphere in patients with perifocal edema. These data can indicate the role of glymphatic system dysfunction in pathogenesis of this pathology.
Collapse
Affiliation(s)
- A M Turkin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - L M Fadeeva
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A V Kozlov
- Burdenko Neurosurgical Center, Moscow, Russia
- Andijan State Medical Institute, Andijan, Uzbekistan
| | - A V Oshorov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - Yu A Kozlova
- Botkin Moscow City Clinical Hospital, Moscow, Russia
| | - A V Petryaikin
- Research Practical Clinical Center for Diagnostics and Telemedicine Technologies, Moscow, Russia
| | - M V Ryzhova
- Burdenko Neurosurgical Center, Moscow, Russia
| | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
6
|
Bernardini A, Trovatelli M, Kłosowski MM, Pederzani M, Zani DD, Brizzola S, Porter A, Rodriguez Y Baena F, Dini D. Reconstruction of ovine axonal cytoarchitecture enables more accurate models of brain biomechanics. Commun Biol 2022; 5:1101. [PMID: 36253409 PMCID: PMC9576772 DOI: 10.1038/s42003-022-04052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
There is an increased need and focus to understand how local brain microstructure affects the transport of drug molecules directly administered to the brain tissue, for example in convection-enhanced delivery procedures. This study reports a systematic attempt to characterize the cytoarchitecture of commissural, long association and projection fibres, namely the corpus callosum, the fornix and the corona radiata, with the specific aim to map different regions of the tissue and provide essential information for the development of accurate models of brain biomechanics. Ovine samples are imaged using scanning electron microscopy combined with focused ion beam milling to generate 3D volume reconstructions of the tissue at subcellular spatial resolution. Focus is placed on the characteristic cytological feature of the white matter: the axons and their alignment in the tissue. For each tract, a 3D reconstruction of relatively large volumes, including a significant number of axons, is performed and outer axonal ellipticity, outer axonal cross-sectional area and their relative perimeter are measured. The study of well-resolved microstructural features provides useful insight into the fibrous organization of the tissue, whose micromechanical behaviour is that of a composite material presenting elliptical tortuous tubular axonal structures embedded in the extra-cellular matrix. Drug flow can be captured through microstructurally-based models using 3D volumes, either reconstructed directly from images or generated in silico using parameters extracted from the database of images, leading to a workflow to enable physically-accurate simulations of drug delivery to the targeted tissue. Imaging and reconstruction of sheep brain axonal cytoarchitecture provides insight for brain biomechanics models that simulate drug delivery and other biological processes governed by interstitial fluid flow and transport.
Collapse
Affiliation(s)
- Andrea Bernardini
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - Marco Trovatelli
- Faculty of Veterinary Medicine, Università degli Studi di Milano Statale, 26900, Lodi, Italy
| | | | - Matteo Pederzani
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milan, Italy
| | - Davide Danilo Zani
- Faculty of Veterinary Medicine, Università degli Studi di Milano Statale, 26900, Lodi, Italy
| | - Stefano Brizzola
- Faculty of Veterinary Medicine, Università degli Studi di Milano Statale, 26900, Lodi, Italy
| | - Alexandra Porter
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | | | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
Hu Y, Tao W. Microenvironmental Variations After Blood-Brain Barrier Breakdown in Traumatic Brain Injury. Front Mol Neurosci 2021; 14:750810. [PMID: 34899180 PMCID: PMC8662751 DOI: 10.3389/fnmol.2021.750810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is linked to several pathologies. The blood-brain barrier (BBB) breakdown is considered to be one of the initial changes. Further, the microenvironmental alteration following TBI-induced BBB breakdown can be multi-scaled, constant, and dramatic. The microenvironmental variations after disruption of BBB includes several pathological changes, such as cerebral blood flow (CBF) alteration, brain edema, cerebral metabolism imbalances, and accumulation of inflammatory molecules. The modulation of the microenvironment presents attractive targets for TBI recovery, such as reducing toxic substances, inhibiting inflammation, and promoting neurogenesis. Herein, we briefly review the pathological alterations of the microenvironmental changes following BBB breakdown and outline potential interventions for TBI recovery based on microenvironmental modulation.
Collapse
Affiliation(s)
- Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Tao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke. Int J Mol Sci 2021; 22:ijms22179486. [PMID: 34502395 PMCID: PMC8431165 DOI: 10.3390/ijms22179486] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022] Open
Abstract
Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood–brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communication. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation within the brain. Then, we focus on the lymphatic vessels surrounding the brain and their ability to coordinate both immune response and fluid homeostasis within the brain after stroke. Finally, we discuss how therapeutic manipulation of peripheral systems may provide new mechanisms to treat stroke injury.
Collapse
|
9
|
Richard SA, Sackey M. Elucidating the Pivotal Neuroimmunomodulation of Stem Cells in Spinal Cord Injury Repair. Stem Cells Int 2021; 2021:9230866. [PMID: 34341666 PMCID: PMC8325586 DOI: 10.1155/2021/9230866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/03/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a distressing incident with abrupt onset of the motor as well as sensory dysfunction, and most often, the injury occurs as result of high-energy or velocity accidents as well as contact sports and falls in the elderly. The key challenges associated with nerve repair are the lack of self-repair as well as neurotrophic factors and primary and secondary neuronal apoptosis, as well as factors that prevent the regeneration of axons locally. Neurons that survive the initial traumatic damage may be lost due to pathogenic activities like neuroinflammation and apoptosis. Implanted stem cells are capable of differentiating into neural cells that replace injured cells as well as offer local neurotrophic factors that aid neuroprotection, immunomodulation, axonal sprouting, axonal regeneration, and remyelination. At the microenvironment of SCI, stem cells are capable of producing growth factors like brain-derived neurotrophic factor and nerve growth factor which triggers neuronal survival as well as axonal regrowth. Although stem cells have proven to be of therapeutic value in SCI, the major disadvantage of some of the cell types is the risk for tumorigenicity due to the contamination of undifferentiated cells prior to transplantation. Local administration of stem cells via either direct cellular injection into the spinal cord parenchyma or intrathecal administration into the subarachnoid space is currently the best transplantation modality for stem cells during SCI.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Medicine, Princefield University, P.O. Box MA128, Ho, Ghana
| | - Marian Sackey
- Department of Pharmacy, Ho Teaching Hospital, P.O. Box MA-374, Ho, Ghana
| |
Collapse
|
10
|
Chen J, Wang L, Xu H, Wang Y, Liang Q. The lymphatic drainage system of the CNS plays a role in lymphatic drainage, immunity, and neuroinflammation in stroke. J Leukoc Biol 2021; 110:283-291. [PMID: 33884651 DOI: 10.1002/jlb.5mr0321-632r] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
The lymphatic drainage system of the central nervous system (CNS) plays an important role in maintaining interstitial fluid balance and regulating immune responses and immune surveillance. The impaired lymphatic drainage system of the CNS might be involved in the onset and progression of various neurodegenerative diseases, neuroinflammation, and cerebrovascular diseases. A significant immune response and brain edema are observed after stroke, resulting from disrupted homeostasis in the brain. Thus, understanding the lymphatic drainage system of the CNS in stroke may lead to the development of new approaches for therapeutic interventions in the future. Here, we review recent evidence implicating the lymphatic drainage system of the CNS in stroke.
Collapse
Affiliation(s)
- Jinman Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of theory and therapy of muscles and bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Linmei Wang
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of theory and therapy of muscles and bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of theory and therapy of muscles and bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of theory and therapy of muscles and bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| |
Collapse
|
11
|
Jin LY, Li J, Wang KF, Xia WW, Zhu ZQ, Wang CR, Li XF, Liu HY. Blood-Spinal Cord Barrier in Spinal Cord Injury: A Review. J Neurotrauma 2021; 38:1203-1224. [PMID: 33292072 DOI: 10.1089/neu.2020.7413] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The blood-spinal cord barrier (BSCB), a physical barrier between the blood and spinal cord parenchyma, prevents the toxins, blood cells, and pathogens from entering the spinal cord and maintains a tightly controlled chemical balance in the spinal environment, which is necessary for proper neural function. A BSCB disruption, however, plays an important role in primary and secondary injury processes related to spinal cord injury (SCI). After SCI, the structure of the BSCB is broken down, which leads directly to leakage of blood components. At the same time, the permeability of the BSCB is also increased. Repairing the disruption of the BSCB could alleviate the SCI pathology. We review the morphology and pathology of the BSCB and progression of therapeutic methods targeting BSCB in SCI.
Collapse
Affiliation(s)
- Lin-Yu Jin
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China
| | - Kai-Feng Wang
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Wei-Wei Xia
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Zhen-Qi Zhu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Chun-Ru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xin-Feng Li
- Department of Spinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Hai-Ying Liu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| |
Collapse
|
12
|
Kojic M, Milosevic M, Simic V, Milicevic B, Geroski V, Nizzero S, Ziemys A, Filipovic N, Ferrari M. Smeared Multiscale Finite Element Models for Mass Transport and Electrophysiology Coupled to Muscle Mechanics. Front Bioeng Biotechnol 2020; 7:381. [PMID: 31921800 PMCID: PMC6914730 DOI: 10.3389/fbioe.2019.00381] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/15/2019] [Indexed: 11/22/2022] Open
Abstract
Mass transport represents the most fundamental process in living organisms. It includes delivery of nutrients, oxygen, drugs, and other substances from the vascular system to tissue and transport of waste and other products from cells back to vascular and lymphatic network and organs. Furthermore, movement is achieved by mechanical forces generated by muscles in coordination with the nervous system. The signals coming from the brain, which have the character of electrical waves, produce activation within muscle cells. Therefore, from a physics perspective, there exist a number of physical fields within the body, such as velocities of transport, pressures, concentrations of substances, and electrical potential, which is directly coupled to biochemical processes of transforming the chemical into mechanical energy and further internal forces for motion. The overall problems of mass transport and electrophysiology coupled to mechanics can be investigated theoretically by developing appropriate computational models. Due to the enormous complexity of the biological system, it would be almost impossible to establish a detailed computational model for the physical fields related to mass transport, electrophysiology, and coupled fields. To make computational models feasible for applications, we here summarize a concept of smeared physical fields, with coupling among them, and muscle mechanics, which includes dependence on the electrical potential. Accuracy of the smeared computational models, also with coupling to muscle mechanics, is illustrated with simple example, while their applicability is demonstrated on a liver model with tumors present. The last example shows that the introduced methodology is applicable to large biological systems.
Collapse
Affiliation(s)
- Milos Kojic
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States.,Bioengineering Research and Development Center BioIRC Kragujevac, Kragujevac, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Miljan Milosevic
- Bioengineering Research and Development Center BioIRC Kragujevac, Kragujevac, Serbia.,Faculty of Information Technologies, Belgrade Metropolitan University, Belgrade, Serbia
| | - Vladimir Simic
- Bioengineering Research and Development Center BioIRC Kragujevac, Kragujevac, Serbia
| | - Bogdan Milicevic
- Bioengineering Research and Development Center BioIRC Kragujevac, Kragujevac, Serbia
| | - Vladimir Geroski
- Bioengineering Research and Development Center BioIRC Kragujevac, Kragujevac, Serbia
| | - Sara Nizzero
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States.,Applied Physics Graduate Program, Rice University, Houston, TX, United States
| | - Arturas Ziemys
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Nenad Filipovic
- Faculty for Engineering Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
13
|
Wood T, Nance E. Disease-directed engineering for physiology-driven treatment interventions in neurological disorders. APL Bioeng 2019; 3:040901. [PMID: 31673672 PMCID: PMC6811362 DOI: 10.1063/1.5117299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
Neurological disease is killing us. While there have long been attempts to develop therapies for both acute and chronic neurological diseases, no current treatments are curative. Additionally, therapeutic development for neurological disease takes 15 years and often costs several billion dollars. More than 96% of these therapies will fail in late stage clinical trials. Engineering novel treatment interventions for neurological disease can improve outcomes and quality of life for millions; however, therapeutics should be designed with the underlying physiology and pathology in mind. In this perspective, we aim to unpack the importance of, and need to understand, the physiology of neurological disease. We first dive into the normal physiological considerations that should guide experimental design, and then assess the pathophysiological factors of acute and chronic neurological disease that should direct treatment design. We provide an analysis of a nanobased therapeutic intervention that proved successful in translation due to incorporation of physiology at all stages of the research process. We also provide an opinion on the importance of keeping a high-level view to designing and administering treatment interventions. Finally, we close with an implementation strategy for applying a disease-directed engineering approach. Our assessment encourages embracing the complexity of neurological disease, as well as increasing efforts to provide system-level thinking in our development of therapeutics for neurological disease.
Collapse
|
14
|
Measurement of Tumor Pressure and Strategies of Imaging Tumor Pressure for Radioimmunotherapy. Nucl Med Mol Imaging 2019; 53:235-241. [PMID: 31456855 PMCID: PMC6694369 DOI: 10.1007/s13139-019-00598-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/10/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor interstitial pressure is a fundamental feature of cancer biology. Elevation in tumor pressure affects the efficacy of cancer treatment and results in the heterogenous intratumoral distribution of drugs and macromolecules. Monoclonal antibodies (mAb) play a prominent role in cancer therapy and molecular nuclear imaging. Therapy using mAb labeled with radionuclides—also known as radioimmunotherapy (RIT)—is an effective form of cancer treatment. RIT is clinically effective for the treatment of lymphoma and other blood cancers; however, its clinical use for solid tumor was limited because their high interstitial pressure prevents mAb from penetrating into the tumor. This pressure can be decreased using anti-cancer drugs or additional external therapy. In this paper, we reviewed the intratumoral pressure using direct tumor-pressure measurement strategies, such as the wick-in-needle and pressure catheter transducer method, and indirect tumor-pressure measurement strategies via magnetic resonance.
Collapse
|
15
|
Reulen HJ, Suero Molina E, Zeidler R, Gildehaus FJ, Böning G, Gosewisch A, Stummer W. Intracavitary radioimmunotherapy of high-grade gliomas: present status and future developments. Acta Neurochir (Wien) 2019; 161:1109-1124. [PMID: 30980242 DOI: 10.1007/s00701-019-03882-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/20/2019] [Indexed: 02/07/2023]
Abstract
There is a distinct need for new and second-line therapies to delay or prevent local tumor regrowth after current standard of care therapy. Intracavitary radioimmunotherapy, in combination with radiotherapy, is discussed in the present review as a therapeutic strategy of high potential. We performed a systematic literature search following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). The available body of literature on intracavitary radioimmunotherapy (iRIT) in glioblastoma and anaplastic astrocytomas is presented. Several past and current phase I and II clinical trials, using mostly an anti-tenascin monoclonal antibody labeled with I-131, have shown median overall survival of 19-25 months in glioblastoma, while adverse events remain low. Tenascin, followed by EGFR and variants, or smaller peptides have been used as targets, and most clinical studies were performed with I-131 or Y-90 as radionuclides while only recently Re-188, I-125, and Bi-213 were applied. The pharmacokinetics of iRIT, as well as the challenges encountered with this therapy, is comprehensively discussed. This promising approach deserves further exploration in future studies by incorporating several innovative modifications.
Collapse
Affiliation(s)
| | - Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany.
| | - Reinhard Zeidler
- Helmholtz-Zentrum Munich, German Research Center for Environmental Health, Research Group Gene Vectors, Munich, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | | | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Astrid Gosewisch
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| |
Collapse
|
16
|
Ironside N, Chen CJ, Ding D, Mayer SA, Connolly ES. Perihematomal Edema After Spontaneous Intracerebral Hemorrhage. Stroke 2019; 50:1626-1633. [PMID: 31043154 DOI: 10.1161/strokeaha.119.024965] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Natasha Ironside
- From the Department of Neurological Surgery, Columbia University Medical Center, New York, NY (N.I., E.S.C.)
| | - Ching-Jen Chen
- Department of Neurological Surgery, University of Virginia, Charlottesville (C.-J.C.)
| | - Dale Ding
- Department of Neurological Surgery, University of Louisville School of Medicine, KY (D.D.)
| | - Stephan A Mayer
- Department of Neurology, Henry Ford Health System, Detroit, MI (S.A.M.)
| | - Edward Sander Connolly
- From the Department of Neurological Surgery, Columbia University Medical Center, New York, NY (N.I., E.S.C.)
| |
Collapse
|
17
|
Tóth L, Szöllősi D, Kis-Petik K, Adorján I, Erdélyi F, Kálmán M. The First Postlesion Minutes: An In Vivo Study of Extravasation and Perivascular Astrocytes Following Cerebral Lesions in Various Experimental Mouse Models. J Histochem Cytochem 2018; 67:29-39. [PMID: 30047826 DOI: 10.1369/0022155418788390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The immediate alterations following lesions cannot be investigated by using fixed tissues. Here, we employed two-photon microscopy to study the alterations to the permeability of blood-brain barrier and to glio-vascular connections in vivo during the first minutes following cortical lesions in mice. Four models were used: (1) cryogenic lesion, (2) photodisruption using laser pulses, (3) photothrombosis, and (4) bilateral carotid ligation. Sulforhodamine101 was used for supravital labeling of astrocytes and dextran-bound fluorescein isothiocyanate for the assessment of extravasation. Transgenic mice, in which the endothelium and astrocytes expressed a yellow fluorescent protein, were also used. Astrocytic labeling in vivo was verified with postmortem immunostaining against glial fibrillary acidic protein (GFAP). Summary of results: (1) the glio-vascular connections were stable in the intact brain with no sign of spontaneous dynamic attachment/detachment of glial end-feet; (2) only direct vascular damage (photodisruption or cryogenic) resulted in prompt extravasation; (3) even direct damage failed to provoke a prompt astroglial response. In conclusion, the results indicate that a detachment of the astrocytic end-feet does not precede the breakdown of blood-brain barrier following lesions. Whereas vasogenic edema develops immediately after the lesions, this is not the case with cytotoxic edemas. Time-lapse recordings and three-dimensional reconstructions are presented as supplemental materials.
Collapse
Affiliation(s)
- László Tóth
- Department of Anatomy, Histology and Embryology (LT, DS, IA, MK).,Department of Biophysics and Radiation Biology, MTA-SE Molecular Biology Research Group (DS, KK-P).,Semmelweis University, Budapest, Hungary, and Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary (FE)
| | - Dávid Szöllősi
- Department of Anatomy, Histology and Embryology (LT, DS, IA, MK).,Department of Biophysics and Radiation Biology, MTA-SE Molecular Biology Research Group (DS, KK-P).,Semmelweis University, Budapest, Hungary, and Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary (FE)
| | - Katalin Kis-Petik
- Department of Anatomy, Histology and Embryology (LT, DS, IA, MK).,Department of Biophysics and Radiation Biology, MTA-SE Molecular Biology Research Group (DS, KK-P).,Semmelweis University, Budapest, Hungary, and Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary (FE)
| | - István Adorján
- Department of Anatomy, Histology and Embryology (LT, DS, IA, MK).,Department of Biophysics and Radiation Biology, MTA-SE Molecular Biology Research Group (DS, KK-P).,Semmelweis University, Budapest, Hungary, and Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary (FE)
| | - Ferenc Erdélyi
- Department of Anatomy, Histology and Embryology (LT, DS, IA, MK).,Department of Biophysics and Radiation Biology, MTA-SE Molecular Biology Research Group (DS, KK-P).,Semmelweis University, Budapest, Hungary, and Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary (FE)
| | - Mihály Kálmán
- Department of Anatomy, Histology and Embryology (LT, DS, IA, MK).,Department of Biophysics and Radiation Biology, MTA-SE Molecular Biology Research Group (DS, KK-P).,Semmelweis University, Budapest, Hungary, and Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary (FE)
| |
Collapse
|
18
|
Kojic M, Milosevic M, Simic V, Koay EJ, Kojic N, Ziemys A, Ferrari M. Multiscale smeared finite element model for mass transport in biological tissue: From blood vessels to cells and cellular organelles. Comput Biol Med 2018; 99:7-23. [PMID: 29807251 DOI: 10.1016/j.compbiomed.2018.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/19/2018] [Accepted: 05/19/2018] [Indexed: 11/16/2022]
Abstract
One of the basic and vital processes in living organisms is mass exchange, which occurs on several levels: it goes from blood vessels to cells and organelles within cells. On that path, molecules, as oxygen, metabolic products, drugs, etc. Traverse different macro and micro environments - blood, extracellular/intracellular space, and interior of organelles; and also biological barriers such as walls of blood vessels and membranes of cells and organelles. Many aspects of this mass transport remain unknown, particularly the biophysical mechanisms governing drug delivery. The main research approach relies on laboratory and clinical investigations. In parallel, considerable efforts have been directed to develop computational tools for additional insight into the intricate process of mass exchange and transport. Along these lines, we have recently formulated a composite smeared finite element (CSFE) which is composed of the smeared continuum pressure and concentration fields of the capillary and lymphatic system, and of these fields within tissue. The element offers an elegant and simple procedure which opens up new lines of inquiry and can be applied to large systems such as organs and tumors models. Here, we extend this concept to a multiscale scheme which concurrently couples domains that span from large blood vessels, capillaries and lymph, to cell cytosol and further to organelles of nanometer size. These spatial physical domains are coupled by the appropriate connectivity elements representing biological barriers. The composite finite element has "degrees of freedom" which include pressures and concentrations of all compartments of the vessels-tissue assemblage. The overall model uses the standard, measurable material properties of the continuum biological environments and biological barriers. It can be considered as a framework into which we can incorporate various additional effects (such as electrical or biochemical) for transport through membranes or within cells. This concept and the developed FE software within our package PAK offers a computational tool that can be applied to whole-organ systems, while also including specific domains such as tumors. The solved examples demonstrate the accuracy of this model and its applicability to large biological systems.
Collapse
Affiliation(s)
- M Kojic
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7-117, Houston, TX, 77030, USA; Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400 Kragujevac, Serbia; Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000, Belgrade, Serbia.
| | - M Milosevic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400 Kragujevac, Serbia
| | - V Simic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400 Kragujevac, Serbia
| | - E J Koay
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - N Kojic
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - A Ziemys
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7-117, Houston, TX, 77030, USA
| | - M Ferrari
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7-117, Houston, TX, 77030, USA
| |
Collapse
|
19
|
Fiedler L, Kellner M, Gosewisch A, Oos R, Böning G, Lindner S, Albert N, Bartenstein P, Reulen HJ, Zeidler R, Gildehaus F. Evaluation of 177Lu[Lu]-CHX-A″-DTPA-6A10 Fab as a radioimmunotherapy agent targeting carbonic anhydrase XII. Nucl Med Biol 2018; 60:55-62. [DOI: 10.1016/j.nucmedbio.2018.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/05/2018] [Accepted: 02/18/2018] [Indexed: 01/15/2023]
|
20
|
Riveros-Perez E, Riveros R. Water in the human body: An anesthesiologist's perspective on the connection between physicochemical properties of water and physiologic relevance. Ann Med Surg (Lond) 2017; 26:1-8. [PMID: 29904607 PMCID: PMC5904784 DOI: 10.1016/j.amsu.2017.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/10/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022] Open
Abstract
The unique structure and multifaceted physicochemical properties of the water molecule, in addition to its universal presence in body compartments, make water a key player in multiple biological processes in human physiology. Since anesthesiologists deal with physiologic processes where water molecules are critical at different levels, and administer medications whose pharmacokinetics and pharmacodynamics depend on interaction with water molecules, we consider that exploration of basic science aspects related to water and its role in physiology and pharmacology is relevant to the practice of anesthesiology. The purpose of this paper is to delineate the physicochemical basis of water that are critical in enabling it to support various homeostatic processes. The role of water in the formation of solutions, modulation of surface tension and in homeostasis of body temperature, acid-base status and osmolarity, is analyzed. Relevance of molecular water interactions to the anesthesiologist is not limited to the realm of physiology and pathophysiology. Deep knowledge of the importance of water in volatile anesthetic effects on neurons opens a window to a new comprehensive understanding of complex cellular mechanisms underlying the practice of anesthesiology.
Collapse
Affiliation(s)
- Efraín Riveros-Perez
- Department of Anesthesiology and Perioperative Medicine, Augusta University, USA
| | - Ricardo Riveros
- Pediatric Anesthesiologist Nemours Children's Health System, Orlando, FL, USA
| |
Collapse
|
21
|
Low-intensity pulsed ultrasound improves behavioral and histological outcomes after experimental traumatic brain injury. Sci Rep 2017; 7:15524. [PMID: 29138458 PMCID: PMC5686128 DOI: 10.1038/s41598-017-15916-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/03/2017] [Indexed: 12/22/2022] Open
Abstract
The purpose of this study was to investigate the neuroprotective effects of low-intensity pulsed ultrasound (LIPUS) on behavioral and histological outcomes in a mouse model of traumatic brain injury (TBI). Mice subjected to controlled cortical impact injury were treated with LIPUS in the injured region daily for a period of 4 weeks. The effects of LIPUS on edema were observed by MR imaging in the mouse brain at 1 and 4 days following TBI. Brain water content, blood-brain barrier permeability, histology analysis, and behavioral studies were performed to assess the effects of LIPUS. Two-way analysis of variance and Student t test were used for statistical analyses, with a significant level of 0.05. Treatment with LIPUS significantly attenuated brain edema, blood-brain barrier permeability, and neuronal degeneration beginning at day 1. Compared with the TBI group, LIPUS also significantly improved functional recovery and reduced contusion volumes up to post-injury day 28. Post-injury LIPUS treatment reduced brain edema and improved behavioral and histological outcomes following TBI. The neuroprotective effects of LIPUS may be a promising new technique for treating TBI.
Collapse
|
22
|
Lang GE, Vella D, Waters SL, Goriely A. Mathematical modelling of blood-brain barrier failure and oedema. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2017; 34:391-414. [PMID: 27305934 DOI: 10.1093/imammb/dqw009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 01/25/2023]
Abstract
Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier (BBB) permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic oedema. Although the initial injury may be localized, the resulting oedema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of BBB permeability changes within a region of brain tissue and the onset of vasogenic oedema. We find that such localized changes can indeed result in brain tissue swelling and suggest that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear oedema fluid.
Collapse
Affiliation(s)
- Georgina E Lang
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Dominic Vella
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
23
|
Kálmán M, Tóth L, Szöllosi D, Oszwald E, Mahalek J, Sadeghian S. Correlation Between Extravasation and Alterations of Cerebrovascular Laminin and β-Dystroglycan Immunoreactivity Following Cryogenic Lesions in Rats. J Neuropathol Exp Neurol 2017; 76:929-941. [PMID: 29044412 DOI: 10.1093/jnen/nlx081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The blood-brain barrier becomes "leaky" following lesions. Former studies revealed that following lesions the immunoreactivity of cerebrovascular laminin becomes detectable whereas that of β-dystroglycan disappears. These alterations may be indicators of glio-vascular decoupling that may result in the impairment of the blood-brain-barrier. This study investigates correlation between the post-lesion extravasation and the above-mentioned immunohistochemical alterations. Following cryogenic lesions, the survival periods lasted 5, 10, 30 minutes, 1 or 12 hours, or 1 day. Some brains were fixed immediately post-lesion. Immunofluorescent reactions were performed in floating sections. The extravasation was detected with immunostaining for plasma fibronectin and rat immunoglobulins. When the survival period was 30 minutes or longer, the area of extravasation corresponded to the area of altered laminin and β-dystroglycan immunoreactivities. Following immediate fixation some laminin immunoreactivity was already detected. The extravasation seemed to precede this early appearance of laminin immunoreactivity. The β-dystroglycan immunoreactivity disappeared later. When the extravasation spread into the corpus callosum, vascular laminin immunoreactivity appeared but the β-dystroglycan immunoreactivity persisted. It seems that extravasation separates the glial and vascular basal laminae, which results in the appearance of laminin immunoreactivity. The disappearance of β-dystroglycan immunoreactivity is neither a condition nor an inevitable consequence of the 2 other phenomena.
Collapse
Affiliation(s)
- Mihály Kálmán
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - László Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Dávid Szöllosi
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Erzsébet Oszwald
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Judit Mahalek
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Sam Sadeghian
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Oros-Peusquens A, Loução R, Zimmermann M, Langen KJ, Shah N. Methods for molecular imaging of brain tumours in a hybrid MR-PET context: Water content, T 2 ∗ , diffusion indices and FET-PET. Methods 2017; 130:135-151. [DOI: 10.1016/j.ymeth.2017.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/22/2017] [Accepted: 07/27/2017] [Indexed: 11/27/2022] Open
|
25
|
Stone JL, Bailes JE, Hassan AN, Sindelar B, Patel V, Fino J. Brainstem Monitoring in the Neurocritical Care Unit: A Rationale for Real-Time, Automated Neurophysiological Monitoring. Neurocrit Care 2017; 26:143-156. [PMID: 27484878 DOI: 10.1007/s12028-016-0298-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Patients with severe traumatic brain injury or large intracranial space-occupying lesions (spontaneous cerebral hemorrhage, infarction, or tumor) commonly present to the neurocritical care unit with an altered mental status. Many experience progressive stupor and coma from mass effects and transtentorial brain herniation compromising the ascending arousal (reticular activating) system. Yet, little progress has been made in the practicality of bedside, noninvasive, real-time, automated, neurophysiological brainstem, or cerebral hemispheric monitoring. In this critical review, we discuss the ascending arousal system, brain herniation, and shortcomings of our current management including the neurological exam, intracranial pressure monitoring, and neuroimaging. We present a rationale for the development of nurse-friendly-continuous, automated, and alarmed-evoked potential monitoring, based upon the clinical and experimental literature, advances in the prognostication of cerebral anoxia, and intraoperative neurophysiological monitoring.
Collapse
Affiliation(s)
- James L Stone
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, IL, USA. .,Departments of Neurology and Neurological Surgery, University of Illinois at Chicago, Chicago, IL, USA. .,Division of Neurosurgery, Department of Surgery, Cook County Stroger Hospital, Chicago, IL, USA.
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Ahmed N Hassan
- Departments of Neurology and Neurological Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Brian Sindelar
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, IL, USA.,Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Vimal Patel
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - John Fino
- Departments of Neurology and Neurological Surgery, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Kojic M, Milosevic M, Simic V, Koay E, Fleming J, Nizzero S, Kojic N, Ziemys A, Ferrari M. A composite smeared finite element for mass transport in capillary systems and biological tissue. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2017; 324:413-437. [PMID: 29200531 PMCID: PMC5703437 DOI: 10.1016/j.cma.2017.06.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
One of the key processes in living organisms is mass transport occurring from blood vessels to tissues for supplying tissues with oxygen, nutrients, drugs, immune cells, and - in the reverse direction - transport of waste products of cell metabolism to blood vessels. The mass exchange from blood vessels to tissue and vice versa occurs through blood vessel walls. This vital process has been investigated experimentally over centuries, and also in the last decades by the use of computational methods. Due to geometrical and functional complexity and heterogeneity of capillary systems, it is however not feasible to model in silico individual capillaries (including transport through the walls and coupling to tissue) within whole organ models. Hence, there is a need for simplified and robust computational models that address mass transport in capillary-tissue systems. We here introduce a smeared modeling concept for gradient-driven mass transport and formulate a new composite smeared finite element (CSFE). The transport from capillary system is first smeared to continuous mass sources within tissue, under the assumption of uniform concentration within capillaries. Here, the fundamental relation between capillary surface area and volumetric fraction is derived as the basis for modeling transport through capillary walls. Further, we formulate the CSFE which relies on the transformation of the one-dimensional (1D) constitutive relations (for transport within capillaries) into the continuum form expressed by Darcy's and diffusion tensors. The introduced CSFE is composed of two volumetric parts - capillary and tissue domains, and has four nodal degrees of freedom (DOF): pressure and concentration for each of the two domains. The domains are coupled by connectivity elements at each node. The fictitious connectivity elements take into account the surface area of capillary walls which belongs to each node, as well as the wall material properties (permeability and partitioning). The overall FE model contains geometrical and material characteristics of the entire capillary-tissue system, with physiologically measurable parameters assigned to each FE node within the model. The smeared concept is implemented into our implicit-iterative FE scheme and into FE package PAK. The first three examples illustrate accuracy of the CSFE element, while the liver and pancreas models demonstrate robustness of the introduced methodology and its applicability to real physiological conditions.
Collapse
Affiliation(s)
- M. Kojic
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7-117, Houston, TX 77030
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400 Kragujevac, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
- Corresponding author: Milos Kojic, Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7-117, Houston, TX 77030, , phone: 713 441 7355; fax: 713 441 7438
| | - M. Milosevic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400 Kragujevac, Serbia
| | - V. Simic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400 Kragujevac, Serbia
| | - E.J. Koay
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030
| | - J.B. Fleming
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX 77030
| | - S. Nizzero
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7-117, Houston, TX 77030
- Applied Physics Graduate Program, Rice University, Houston, TX 77005
| | - N. Kojic
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - A. Ziemys
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7-117, Houston, TX 77030
| | - M. Ferrari
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7-117, Houston, TX 77030
| |
Collapse
|
27
|
Lafuente JV, Sharma A, Muresanu DF, Ozkizilcik A, Tian ZR, Patnaik R, Sharma HS. Repeated Forced Swim Exacerbates Methamphetamine-Induced Neurotoxicity: Neuroprotective Effects of Nanowired Delivery of 5-HT3-Receptor Antagonist Ondansetron. Mol Neurobiol 2017; 55:322-334. [DOI: 10.1007/s12035-017-0744-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Value of quantitative magnetic resonance imaging T1-relaxometry in predicting contrast-enhancement in glioblastoma patients. Oncotarget 2017; 8:53542-53551. [PMID: 28881830 PMCID: PMC5581129 DOI: 10.18632/oncotarget.18612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/22/2017] [Indexed: 11/25/2022] Open
Abstract
SUMMARIZING THE IMPORTANCE OF THE STUDY The repetitive usage of gadolinium-based contrast agents (GBCA) is critical for magnetic resonance imaging (MRI) evaluation of tumor burden in glioblastoma patients. It is also a crucial tool for determination of radiographical response to treatment. GBCA injection, however, comes with a 2.4% rate of adverse events including life-threatening conditions such as nephrogenic systemic fibrosis (NSF). Moreover, GBCA have been shown to be deposited in brain tissue of patients even with an intact blood-brain barrier (BBB). The present study explores quantitative T1 relaxometry as an alternative non-invasive imaging technique detection of tumor burden and determination of radiographical response. This technique exploits specific properties of brain tissue with impaired BBB. With a sensitivity and specificity as high as 86% and 80%, respectively, quantitative T1-relaxometry allows for detecting contrast-enhancing areas without the use of GBCA. This method could make it unnecessary to subject patients to the risk of adverse events associated with the use of GBCA. Nonetheless, a large-scale analysis is needed to confirm our findings. Background Gadolinium-based contrast agents (GBCA) are crucial for magnetic resonance imaging (MRI)-based evaluation of tumor burden in glioblastoma (GBM). Serious adverse events of GBCA, even though uncommon, and gadolinium deposition in brain tissue could be avoided by novel imaging techniques not requiring GBCA. Altered tissue composition in areas with impaired blood-brain-barrier also alters the quantified T1 relaxation time (qT1), so that qT1 analysis could replace GBCA-based MRI for the analysis of tumor burden and response. Methods As a part of a prospective pilot MRI-relaxometry trial, patients with newly-diagnosed GBM who relapsed under standard radiochemotherapy were selected for this study. At recurrence, subtraction of qT1 maps pre and post-GBCA application (ΔqT1 maps) was used to determine areas of contrast-enhancement. With the contrast-enhancement on ΔqT1 maps as reference, ROC analysis served to detect an optimal qT1 cut-off on qT1 maps prior to GBCA to distinguish between contrast-enhancing tissue and its surroundings. Results Ten patients were included. A qT1 value >2051ms predicted contrast-enhancing tumor tissue with a sensitivity of 86% and specificity of 80% (AUC, 0.92; p<0.0001). Interestingly, qT1 prolongation >2051 ms that did not overlap with contrast-enhancing area transformed into contrast-enhancement later on (n=4). Conclusion T1-relaxometry may be a useful technique to assess tissue properties equivalent to contrast-enhancement without the need for GBCA application. It may also provide information on sites with future tumor progression. Nonetheless, large-scale studies are needed to confirm these findings.
Collapse
|
29
|
Nordström CH, Koskinen LO, Olivecrona M. Aspects on the Physiological and Biochemical Foundations of Neurocritical Care. Front Neurol 2017; 8:274. [PMID: 28674514 PMCID: PMC5474476 DOI: 10.3389/fneur.2017.00274] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/29/2017] [Indexed: 12/25/2022] Open
Abstract
Neurocritical care (NCC) is a branch of intensive care medicine characterized by specific physiological and biochemical monitoring techniques necessary for identifying cerebral adverse events and for evaluating specific therapies. Information is primarily obtained from physiological variables related to intracranial pressure (ICP) and cerebral blood flow (CBF) and from physiological and biochemical variables related to cerebral energy metabolism. Non-surgical therapies developed for treating increased ICP are based on knowledge regarding transport of water across the intact and injured blood-brain barrier (BBB) and the regulation of CBF. Brain volume is strictly controlled as the BBB permeability to crystalloids is very low restricting net transport of water across the capillary wall. Cerebral pressure autoregulation prevents changes in intracranial blood volume and intracapillary hydrostatic pressure at variations in arterial blood pressure. Information regarding cerebral oxidative metabolism is obtained from measurements of brain tissue oxygen tension (PbtO2) and biochemical data obtained from intracerebral microdialysis. As interstitial lactate/pyruvate (LP) ratio instantaneously reflects shifts in intracellular cytoplasmatic redox state, it is an important indicator of compromised cerebral oxidative metabolism. The combined information obtained from PbtO2, LP ratio, and the pattern of biochemical variables reveals whether impaired oxidative metabolism is due to insufficient perfusion (ischemia) or mitochondrial dysfunction. Intracerebral microdialysis and PbtO2 give information from a very small volume of tissue. Accordingly, clinical interpretation of the data must be based on information of the probe location in relation to focal brain damage. Attempts to evaluate global cerebral energy state from microdialysis of intraventricular fluid and from the LP ratio of the draining venous blood have recently been presented. To be of clinical relevance, the information from all monitoring techniques should be presented bedside online. Accordingly, in the future, the chemical variables obtained from microdialysis will probably be analyzed by biochemical sensors.
Collapse
Affiliation(s)
| | - Lars-Owe Koskinen
- Department of Clinical Neuroscience, Division of Neurosurgery, Umeå University, Umeå, Sweden
| | - Magnus Olivecrona
- Faculty of Health and Medicine, Department of Anesthesia and Intensive Care, Section for Neurosurgery Örebro University Hospital, Örebro University, Örebro, Sweden
- Department for Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
30
|
Yamamoto Y, Danhof M, de Lange ECM. Microdialysis: the Key to Physiologically Based Model Prediction of Human CNS Target Site Concentrations. AAPS JOURNAL 2017; 19:891-909. [DOI: 10.1208/s12248-017-0050-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/25/2017] [Indexed: 01/03/2023]
|
31
|
Bailes JE, Patel V, Farhat H, Sindelar B, Stone J. Football fatalities: the first-impact syndrome. J Neurosurg Pediatr 2017; 19:116-121. [PMID: 27791701 DOI: 10.3171/2016.8.peds16355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Julian E Bailes
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, Illinois.,University of Chicago, Pritzker School of Medicine, Chicago, Illinois
| | - Vimal Patel
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, Illinois.,University of Chicago, Pritzker School of Medicine, Chicago, Illinois
| | - Hamad Farhat
- Department of Neurosurgery, Advocate Christ Medical Center, Oak Lawn, Illinois
| | - Brian Sindelar
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, Illinois.,Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - James Stone
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, Illinois.,Department of Neurosurgery, University of Illinois at Chicago, Illinois
| |
Collapse
|
32
|
Su WS, Tsai ML, Huang SL, Liu SH, Yang FY. Controllable permeability of blood-brain barrier and reduced brain injury through low-intensity pulsed ultrasound stimulation. Oncotarget 2016; 6:42290-9. [PMID: 26517350 PMCID: PMC4747225 DOI: 10.18632/oncotarget.5978] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022] Open
Abstract
It has been shown that the blood-brain barrier (BBB) can be locally disrupted by focused ultrasound (FUS) in the presence of microbubbles (MB) while sustaining little damage to the brain tissue. Thus, the safety issue associated with FUS-induced BBB disruption (BBBD) needs to be investigated for future clinical applications. This study demonstrated the neuroprotective effects induced by low-intensity pulsed ultrasound (LIPUS) against brain injury in the sonicated brain. Rats subjected to a BBB disruption injury received LIPUS exposure for 5 min after FUS/MB application. Measurements of BBB permeability, brain water content, and histological analysis were then carried out to evaluate the effects of LIPUS. The permeability and time window of FUS-induced BBBD can be effectively modulated with LIPUS. LIPUS also significantly reduced brain edema, neuronal death, and apoptosis in the sonicated brain. Our results show that brain injury in the FUS-induced BBBD model could be ameliorated by LIPUS and that LIPUS may be proposed as a novel treatment modality for controllable release of drugs into the brain.
Collapse
Affiliation(s)
- Wei-Shen Su
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Min-Lan Tsai
- Department of Pediatrics, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Sin-Luo Huang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Biomedical Engineering Research and Development Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
33
|
Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab 2016; 36:513-38. [PMID: 26661240 PMCID: PMC4776312 DOI: 10.1177/0271678x15617172] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/25/2022]
Abstract
Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema.
Collapse
Affiliation(s)
- Jesse A Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, USA Department of Pathology, University of Maryland School of Medicine, Baltimore, USA Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
34
|
Fung C, Murek M, Klinger-Gratz PP, Fiechter M, Z’Graggen WJ, Gautschi OP, El-Koussy M, Gralla J, Schaller K, Zbinden M, Arnold M, Fischer U, Mattle HP, Raabe A, Beck J. Effect of Decompressive Craniectomy on Perihematomal Edema in Patients with Intracerebral Hemorrhage. PLoS One 2016; 11:e0149169. [PMID: 26872068 PMCID: PMC4752325 DOI: 10.1371/journal.pone.0149169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/07/2016] [Indexed: 12/01/2022] Open
Abstract
Background Perihematomal edema contributes to secondary brain injury in the course of intracerebral hemorrhage. The effect of decompressive surgery on perihematomal edema after intracerebral hemorrhage is unknown. This study analyzed the course of PHE in patients who were or were not treated with decompressive craniectomy. Methods More than 100 computed tomography images from our published cohort of 25 patients were evaluated retrospectively at two university hospitals in Switzerland. Computed tomography scans covered the time from admission until day 100. Eleven patients were treated by decompressive craniectomy and 14 were treated conservatively. Absolute edema and hematoma volumes were assessed using 3-dimensional volumetric measurements. Relative edema volumes were calculated based on maximal hematoma volume. Results Absolute perihematomal edema increased from 42.9 ml to 125.6 ml (192.8%) after 21 days in the decompressive craniectomy group, versus 50.4 ml to 67.2 ml (33.3%) in the control group (Δ at day 21 = 58.4 ml, p = 0.031). Peak edema developed on days 25 and 35 in patients with decompressive craniectomy and controls respectively, and it took about 60 days for the edema to decline to baseline in both groups. Eight patients (73%) in the decompressive craniectomy group and 6 patients (43%) in the control group had a good outcome (modified Rankin Scale score 0 to 4) at 6 months (P = 0.23). Conclusions Decompressive craniectomy is associated with a significant increase in perihematomal edema compared to patients who have been treated conservatively. Perihematomal edema itself lasts about 60 days if it is not treated, but decompressive craniectomy ameliorates the mass effect exerted by the intracerebral hemorrhage plus the perihematomal edema, as reflected by the reduced midline shift.
Collapse
Affiliation(s)
- Christian Fung
- Department of Neurosurgery, University Hospital Bern, Bern, Switzerland
- Department of Neurosurgery, University Hospital Geneva, Geneva, Switzerland
| | - Michael Murek
- Department of Neurosurgery, University Hospital Bern, Bern, Switzerland
| | - Pascal P. Klinger-Gratz
- Institute for Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Michael Fiechter
- Department of Neurosurgery, University Hospital Bern, Bern, Switzerland
| | | | - Oliver P. Gautschi
- Department of Neurosurgery, University Hospital Geneva, Geneva, Switzerland
| | - Marwan El-Koussy
- Institute for Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Jan Gralla
- Institute for Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Karl Schaller
- Department of Neurosurgery, University Hospital Geneva, Geneva, Switzerland
| | - Martin Zbinden
- Institute for Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Marcel Arnold
- Department of Neurology, University Hospital Bern, Bern, Switzerland
| | - Urs Fischer
- Department of Neurology, University Hospital Bern, Bern, Switzerland
| | | | - Andreas Raabe
- Department of Neurosurgery, University Hospital Bern, Bern, Switzerland
| | - Jürgen Beck
- Department of Neurosurgery, University Hospital Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
35
|
Alexander S. Transependymal Movement of Cerebrospinal Fluid in Neurological and Psychiatric Pathological Conditions. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 122:295-300. [PMID: 27165925 DOI: 10.1007/978-3-319-22533-3_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We retrospectively studied the anamnesis, in particular the etiology, the clinical picture, and computed tomography/magnetic resonance imaging/ultrasound data, in the dynamics of a heterogeneous group of 127 patients with neurological and psychiatric pathological conditions. We were interested in the reasons for the occurrence, the clinical value of various neuroimaging abnormalities in the white matter of the brain, including the periventricular zone, the communication of their occurrence with the possible exit of CSF outside of the limits of the ventricular system. In some of the patients investigations into the cerebral blood flow in dynamics using transcranial Doppler was studied. Also in this regard, indications for and the application of minimally invasive neurosurgery techniques for brain revascularization were investigated.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Autistic Disorder/diagnostic imaging
- Autistic Disorder/metabolism
- Brain Ischemia/diagnostic imaging
- Brain Ischemia/metabolism
- Cerebral Palsy/diagnostic imaging
- Cerebral Palsy/metabolism
- Cerebral Ventricles/diagnostic imaging
- Cerebrospinal Fluid/metabolism
- Cerebrovascular Circulation
- Child
- Child, Preschool
- Depressive Disorder, Major/diagnostic imaging
- Depressive Disorder, Major/metabolism
- Ependyma/metabolism
- Female
- Humans
- Hypoxia-Ischemia, Brain/diagnostic imaging
- Hypoxia-Ischemia, Brain/metabolism
- Infant
- Infant, Newborn
- Intracranial Arteriosclerosis/diagnostic imaging
- Intracranial Arteriosclerosis/metabolism
- Magnetic Resonance Imaging
- Male
- Mental Disorders/diagnostic imaging
- Mental Disorders/metabolism
- Middle Aged
- Nervous System Diseases/diagnostic imaging
- Nervous System Diseases/metabolism
- Persistent Vegetative State/diagnostic imaging
- Persistent Vegetative State/metabolism
- Tomography, X-Ray Computed
- Ultrasonography, Doppler, Transcranial
- White Matter/diagnostic imaging
- White Matter/metabolism
- Young Adult
Collapse
|
36
|
Endo T, Fujii Y, Sugiyama SI, Zhang R, Ogita S, Funamoto K, Saito R, Tominaga T. Properties of convective delivery in spinal cord gray matter: laboratory investigation and computational simulations. J Neurosurg Spine 2015; 24:359-366. [PMID: 26516661 DOI: 10.3171/2015.5.spine141148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Convection-enhanced delivery (CED) is a method for distributing small and large molecules locally into the interstitial space of the spinal cord. Delivering these molecules to the spinal cord is otherwise difficult due to the blood-spinal cord barrier. Previous research has proven the efficacy of CED for delivering molecules over long distances along the white matter tracts in the spinal cord. Conversely, the characteristics of CED for delivering molecules to the gray matter of the spinal cord remain unknown. The purpose of this study was to reveal regional distribution of macromolecules in the gray and white matter of the spinal cord with special attention to the differences between the gray and white matter. METHODS Sixteen rats (F344) underwent Evans blue dye CED to either the white matter (dorsal column, 8 rats) or the gray matter (ventral horn, 8 rats) of the spinal cord. The rates and total volumes of infusion were 0.2 μl/min and 2.0 μl, respectively. The infused volume of distribution was visualized and quantified histologically. Computational models of the rat spinal cord were also obtained to perform CED simulations in the white and gray matter. RESULTS The ratio of the volume of distribution to the volume of infusion in the gray matter of the spinal cord was 3.60 ± 0.69, which was comparable to that of the white matter (3.05 ± 0.88). When molecules were injected into the white matter, drugs remained in the white matter tract and rarely infused into the adjacent gray matter. Conversely, when drugs were injected into the gray matter, they infiltrated laterally into the white matter tract and traveled longitudinally and preferably along the white matter. In the infusion center, the areas were larger in the gray matter CED than in the white matter (Mann-Whitney U-test, p < 0.01). In computational simulations, the aforementioned characteristics of CED to the gray and white matter were reaffirmed. CONCLUSIONS In the spinal cord, the gray and white matter have distinct characteristics of drug distribution by CED. These differences between the gray and white matter should be taken into account when considering drug delivery to the spinal cord. Computational simulation is a useful tool for predicting drug distributions in the normal spinal cord.
Collapse
Affiliation(s)
- Toshiki Endo
- Department of Neurosurgery, Graduate School of Medicine, and
| | - Yushi Fujii
- Department of Neurosurgery, Graduate School of Medicine, and
| | | | - Rong Zhang
- Department of Neurosurgery, Graduate School of Medicine, and
| | - Shogo Ogita
- Department of Neurosurgery, Graduate School of Medicine, and
| | - Kenichi Funamoto
- Creative Flow Research Division, Institute of Fluid Science, Tohoku University, Sendai, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Graduate School of Medicine, and
| | - Teiji Tominaga
- Department of Neurosurgery, Graduate School of Medicine, and
| |
Collapse
|
37
|
Reulen HJ, Poepperl G, Goetz C, Gildehaus FJ, Schmidt M, Tatsch K, Pietsch T, Kraus T, Rachinger W. Long-term outcome of patients with WHO Grade III and IV gliomas treated by fractionated intracavitary radioimmunotherapy. J Neurosurg 2015; 123:760-70. [PMID: 26140493 DOI: 10.3171/2014.12.jns142168] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The aim in this study was to present long-term results regarding overall survival (OS), adverse effects, and toxicity following fractionated intracavitary radioimmunotherapy (RIT) with iodine-131- or yttrium-90-labeled anti-tenascin monoclonal antibody ((131)I-mAB or (90)Y-mAB) for the treatment of patients with malignant glioma. METHODS In 55 patients (15 patients with WHO Grade III anaplastic astrocytoma [AA] and 40 patients with WHO Grade IV glioblastoma multiforme [GBM]) following tumor resection and conventional radiotherapy, radioimmunoconjugate was introduced into the postoperative resection cavity. Patients received 5 cycles of (90)Y-mAB (Group A, average dose 18 mCi/cycle), 5 cycles of (131)I-mAB (Group B, average dose 30 mCi/cycle), or 3 cycles of (131)I-mAB (Group C, 50, 40, and 30 mCi). RESULTS Median OS of patients with AA was 77.2 months (95% CI 30.8 to > 120). Five AA patients (33%) are currently alive, with a median observation time of 162.2 months. Median OS of all 40 patients with GBM was 18.9 months (95% CI 15.8-25.3), and median OS was 25.3 months (95% CI18-30) forthose patients treated with the (131)I-mAB. Three GBM patients are currently alive. One-, 2-, and 3-year survival probabilities were 100%, 93.3%, and 66.7%, respectively, for AA patients and 82.5%, 42.5%, and 15.9%, respectively, for GBM patients. Restratification of GBM patients by recursive partitioning analysis (RPA) Classes III, IV, and V produced median OSs of 31.1, 18.9, and 14.5 months, respectively (p = 0.004), which was higher than expected. Multivariate analysis confirmed the role of RPA class, age, and treatment in predicting survival. No Grade 3 or 4 hematological, nephrologic, or hepatic toxic effects were observed; 4 patients developed Grade 3 neurological deficits. Radiological signs of radionecrosis were observed in 6 patients, who were all responding well to steroids. CONCLUSIONS Median OS of GBM and AA patients treated with (131)I-mABs reached 25.3 and 77.2 months, respectively, thus markedly exceeding that of historical controls. Adverse events remained well controllable with the fractionated dosage regimen.
Collapse
Affiliation(s)
| | | | | | | | - Michael Schmidt
- Munich Cancer Registry, Institute of Medical Informatics, Biometry, and Epidemiology, and
| | | | | | - Theo Kraus
- Department of Neuropathology, Ludwig Maximilian University Munich, Klinikum Grosshadern, Munich; and
| | | |
Collapse
|
38
|
Schwarzmaier SM, Gallozzi M, Plesnila N. Identification of the Vascular Source of Vasogenic Brain Edema following Traumatic Brain Injury Using In Vivo 2-Photon Microscopy in Mice. J Neurotrauma 2015; 32:990-1000. [PMID: 25585052 DOI: 10.1089/neu.2014.3775] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vasogenic brain edema due to vascular leakage is one of the most important factors determining the clinical outcome of patients following acute brain injury. To date, performing a detailed in vivo quantification of vascular leakage has not been possible. Here, we used in vivo 2-photon microscopy (2-PM) to determine the spatial (3D) and temporal development of vasogenic brain edema following traumatic brain injury (TBI) in mice; in addition, we identified the vessel types involved in vascular leakage. Thirteen male Tie2-GFP mice (6-8 weeks old) were subjected to controlled cortical impact (CCI) or a sham operation; subsequently, a cranial window was prepared adjacent to the injury site, and tetramethylrhodamine-dextran (TMRM, 40 mg/kg, MW 40,000) was injected intravenously to visualize blood plasma leakage. Parenchymal fluorescence intensity was monitored in three regions for 2-4 h post-CCI, reaching from the surface of the brain to a depth of 300 μm, and TMRM leakage was measured as an increase in TMRM fluorescence intensity outside the vessel lumen and in the parenchyma. In the CCI group, vascular leakage was detected in all investigated regions as early as 2.5 h post-injury. This leakage increased over time and was more pronounced proximal to the primary contusion. Both arterioles and venules contributed similarly to brain edema formation and their contribution was independent of vessel size; however, capillaries were the major contributor to leakage. In summary, using 2-PM to perform in vivo 3D deep-brain imaging, we found that TBI induces vascular leakage from capillaries, venules, and arterioles. Thus, all three vessel types are involved in trauma-induced brain edema and should be considered when developing novel therapies for preventing vasogenic brain edema.
Collapse
Affiliation(s)
- Susanne M Schwarzmaier
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland (RCSI) , Dublin, Ireland .,2 Department of Anesthesiology, University of Munich Medical Center , Germany .,3 Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center , Germany
| | - Micaela Gallozzi
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland (RCSI) , Dublin, Ireland
| | - Nikolaus Plesnila
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland (RCSI) , Dublin, Ireland .,3 Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center , Germany .,4 Munich Cluster of Symptoms Neurology (Synergy) , Munich, Germany
| |
Collapse
|
39
|
Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 2014; 11:26. [PMID: 25678956 PMCID: PMC4326185 DOI: 10.1186/2045-8118-11-26] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/21/2014] [Indexed: 01/08/2023] Open
Abstract
Interstitial fluid (ISF) surrounds the parenchymal cells of the brain and spinal cord while cerebrospinal fluid (CSF) fills the larger spaces within and around the CNS. Regulation of the composition and volume of these fluids is important for effective functioning of brain cells and is achieved by barriers that prevent free exchange between CNS and blood and by mechanisms that secrete fluid of controlled composition into the brain and distribute and reabsorb it. Structures associated with this regular fluid turnover include the choroid plexuses, brain capillaries comprising the blood-brain barrier, arachnoid villi and perineural spaces penetrating the cribriform plate. ISF flow, estimated from rates of removal of markers from the brain, has been thought to reflect rates of fluid secretion across the blood-brain barrier, although this has been questioned because measurements were made under barbiturate anaesthesia possibly affecting secretion and flow and because CSF influx to the parenchyma via perivascular routes may deliver fluid independently of blood-brain barrier secretion. Fluid secretion at the blood-brain barrier is provided by specific transporters that generate solute fluxes so creating osmotic gradients that force water to follow. Any flow due to hydrostatic pressures driving water across the barrier soon ceases unless accompanied by solute transport because water movements modify solute concentrations. CSF is thought to be derived primarily from secretion by the choroid plexuses. Flow rates measured using phase contrast magnetic resonance imaging reveal CSF movements to be more rapid and variable than previously supposed, even implying that under some circumstances net flow through the cerebral aqueduct may be reversed with net flow into the third and lateral ventricles. Such reversed flow requires there to be alternative sites for both generation and removal of CSF. Fluorescent tracer analysis has shown that fluid flow can occur from CSF into parenchyma along periarterial spaces. Whether this represents net fluid flow and whether there is subsequent flow through the interstitium and net flow out of the cortex via perivenous routes, described as glymphatic circulation, remains to be established. Modern techniques have revealed complex fluid movements within the brain. This review provides a critical evaluation of the data.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
40
|
Kuramitsu S, Motomura K, Natsume A, Wakabayashi T. Double-edged Sword in the Placement of Carmustine (BCNU) Wafers along the Eloquent Area: A Case Report. NMC Case Rep J 2014; 2:40-45. [PMID: 28663961 PMCID: PMC5364933 DOI: 10.2176/nmccrj.2014-0025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/22/2014] [Indexed: 11/28/2022] Open
Abstract
Although direct Gliadel® wafer implantation into the resection cavity has been shown to significantly improve survival in patients with high-grade gliomas, several complications have been associated with the implantations of Gliadel wafers, including brain edema, healing delay, cerebral spinal fluid leak, intracranial infections, and cyst formation. The brain edema that is associated with Gliadel wafer implantation might result in neurological deficits and significant morbidities and mortalities. In particular, it is not clear if they should be placed in the eloquent areas, such as language areas, motor areas, and areas related to cognitive function, even if these areas contain a remnant tumor. Here, we present a case of profound brain edema along the pyramidal tract due to Gliadel wafer implantation, which resulted in severe neurological deficits. This treatment represents a double-edged sword due to the possibility of severe symptomatic brain edema along the eloquent area, even though Gliadel wafers might be effective in controlling local tumor growth. We should keep in mind that Gliadel wafer placement in eloquent areas may result in severe disadvantages to patients and a loss of their quality of life.
Collapse
Affiliation(s)
- Shunichiro Kuramitsu
- Department of Neurosurgery, Nagoya University School of Medicine, Showa-ku, Nagoya, Aichi
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University School of Medicine, Showa-ku, Nagoya, Aichi
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine, Showa-ku, Nagoya, Aichi
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University School of Medicine, Showa-ku, Nagoya, Aichi
| |
Collapse
|
41
|
Lang GE, Stewart PS, Vella D, Waters SL, Goriely A. Is the Donnan effect sufficient to explain swelling in brain tissue slices? J R Soc Interface 2014; 11:20140123. [PMID: 24759543 DOI: 10.1098/rsif.2014.0123] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Brain tissue swelling is a dangerous consequence of traumatic injury and is associated with raised intracranial pressure and restricted blood flow. We consider the mechanical effects that drive swelling of brain tissue slices in an ionic solution bath, motivated by recent experimental results that showed that the volume change of tissue slices depends on the ionic concentration of the bathing solution. This result was attributed to the presence of large charged molecules that induce ion concentration gradients to ensure electroneutrality (the Donnan effect), leading to osmotic pressures and water accumulation. We use a mathematical triphasic model for soft tissue to characterize the underlying processes that could lead to the volume changes observed experimentally. We suggest that swelling is caused by an osmotic pressure increase driven by both non-permeating solutes released by necrotic cells, in addition to the Donnan effect. Both effects are necessary to explain the dependence of the tissue slice volume on the ionic bath concentration that was observed experimentally.
Collapse
|
42
|
Solid–extracellular fluid interaction and damage in the mechanical response of rat brain tissue under confined compression. J Mech Behav Biomed Mater 2014; 29:138-50. [DOI: 10.1016/j.jmbbm.2013.08.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/22/2013] [Accepted: 08/27/2013] [Indexed: 11/22/2022]
|
43
|
Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 2014. [PMID: 25678956 DOI: 10.1186/10.1186/2045-8118-11-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Interstitial fluid (ISF) surrounds the parenchymal cells of the brain and spinal cord while cerebrospinal fluid (CSF) fills the larger spaces within and around the CNS. Regulation of the composition and volume of these fluids is important for effective functioning of brain cells and is achieved by barriers that prevent free exchange between CNS and blood and by mechanisms that secrete fluid of controlled composition into the brain and distribute and reabsorb it. Structures associated with this regular fluid turnover include the choroid plexuses, brain capillaries comprising the blood-brain barrier, arachnoid villi and perineural spaces penetrating the cribriform plate. ISF flow, estimated from rates of removal of markers from the brain, has been thought to reflect rates of fluid secretion across the blood-brain barrier, although this has been questioned because measurements were made under barbiturate anaesthesia possibly affecting secretion and flow and because CSF influx to the parenchyma via perivascular routes may deliver fluid independently of blood-brain barrier secretion. Fluid secretion at the blood-brain barrier is provided by specific transporters that generate solute fluxes so creating osmotic gradients that force water to follow. Any flow due to hydrostatic pressures driving water across the barrier soon ceases unless accompanied by solute transport because water movements modify solute concentrations. CSF is thought to be derived primarily from secretion by the choroid plexuses. Flow rates measured using phase contrast magnetic resonance imaging reveal CSF movements to be more rapid and variable than previously supposed, even implying that under some circumstances net flow through the cerebral aqueduct may be reversed with net flow into the third and lateral ventricles. Such reversed flow requires there to be alternative sites for both generation and removal of CSF. Fluorescent tracer analysis has shown that fluid flow can occur from CSF into parenchyma along periarterial spaces. Whether this represents net fluid flow and whether there is subsequent flow through the interstitium and net flow out of the cortex via perivenous routes, described as glymphatic circulation, remains to be established. Modern techniques have revealed complex fluid movements within the brain. This review provides a critical evaluation of the data.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
44
|
Is M, Uzan M, Unal F, Kiris T, Tanriverdi T, Mengi M, Kilic N. Intraventricular albumin: an optional agent in experimental post-traumatic brain edema. Neurol Res 2013; 27:67-72. [PMID: 15829162 DOI: 10.1179/016164105x18296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
HYPOTHESIS Human albumin may be effective in the treatment of posttraumatic brain edema due to its hyperoncotic features. Therefore, the aim of the experimental study presented in this paper has two points: the first is to evaluate the efficacy of intraventricular hyperoncotic human albumin on post-traumatic brain edema and the second is to try to show the appropriate posttraumatic time window for albumin administration. METHOD Traumatic brain injury and subsequent edema was formed by a model of impact acceleration injury in rats. Human albumin was administered via intraventricular route by using a stereotactic head holder. All animals in each group were decapitated 24 hours after the procedure and the effect of albumin was evaluated by measurement of tissue specific gravity. RESULTS Tissue specific gravity decreased in edematous tissue (trauma indicator), increased after albumin administration at the 12th (p < 0.001), and both at the 1st and 12th hour of the trauma (edema treatment; p < 0.001). On the other hand, albumin administered at the 12th, and at both the 1st and 12th hours in the rats without trauma has caused the formation of the brain edema. CONCLUSION We conclude that human albumin is effective in cytotoxic, but not in vasogenic edema and exerts its best anti-edematous effect at the 12th hour of severe head trauma and this study may help future studies that will try to show the effects of albumin with different time modalities after severe head injury.
Collapse
Affiliation(s)
- Merih Is
- Department of Neurosurgery, Medical Faculty, Duzce Izzet Baysal University, Duzce, Turkey
| | | | | | | | | | | | | |
Collapse
|
45
|
Blasiak B, Barnes S, Foniok T, Rushforth D, Matyas J, Ponjevic D, Weglarz WP, Tyson R, Iqbal U, Abulrob A, Sutherland GR, Obenaus A, Tomanek B. Comparison of T2 and T2*-weighted MR molecular imaging of a mouse model of glioma. BMC Med Imaging 2013; 13:20. [PMID: 23865826 PMCID: PMC3726375 DOI: 10.1186/1471-2342-13-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/17/2013] [Indexed: 12/13/2022] Open
Abstract
Background Standard MRI has been used for high-grade gliomas detection, albeit with limited success as it does not provide sufficient specificity and sensitivity to detect complex tumor structure. Therefore targeted contrast agents based on iron oxide, that shorten mostly T2 relaxation time, have been recently applied. However pulse sequences for molecular imaging in animal models of gliomas have not been yet fully studied. The aim of this study was therefore to compare contrast-to-noise ratio (CNR) and explain its origin using spin-echo (SE), gradient echo (GE), GE with flow compensation (GEFC) as well as susceptibility weighted imaging (SWI) in T2 and T2* contrast-enhanced molecular MRI of glioma. Methods A mouse model was used. U87MGdEGFRvIII cells (U87MG), derived from a human tumor, were injected intracerebrally. A 9.4 T MRI system was used and MR imaging was performed on the 10 day after the inoculation of the tumor. The CNR was measured prior, 20 min, 2 hrs and 24 hrs post intravenous tail administration of glioma targeted paramagnetic nanoparticles (NPs) using SE, SWI, GE and GEFC pulse sequences. Results The results showed significant differences in CNR among all pulse sequences prior injection. GEFC provided higher CNR post contrast agent injection when compared to GE and SE. Post injection CNR was the highest with SWI and significantly different from any other pulse sequence. Conclusions Molecular MR imaging using targeted contrast agents can enhance the detection of glioma cells at 9.4 T if the optimal pulse sequence is used. Hence, the use of flow compensated pulse sequences, beside SWI, should to be considered in the molecular imaging studies.
Collapse
|
46
|
Mindermann T. Pressure gradients within the central nervous system. J Clin Neurosci 2012; 6:464-6. [PMID: 18639181 DOI: 10.1016/s0967-5868(99)90001-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/1998] [Accepted: 01/15/1999] [Indexed: 11/17/2022]
Abstract
The existence of clinically relevant pressure gradients within the central nervous system (CNS) is the subject of ongoing debate. Such gradients, if they do exist, would have significant implications for intracranial pressure (ICP) monitoring and ICP management in traumatic brain injury. As summarised in this short review, there is considerable experimental and clinical evidence that ICP is not evenly distributed within the central nervous system. Larger clinical trials on the implications of ICP gradients are warranted to address questions on the correct placement of ICP probes and on ICP management. It seems paradoxical to develop and employ ever more sophisticated monitoring devices in traumatic brain injury, such as monitoring of CNS metabolites with microdialysis or near-infrared spectroscopy, while fundamental issues such as the existence of ICP gradients remain unresolved.
Collapse
Affiliation(s)
- T Mindermann
- Department of Neurosurgery, University Hospitals Basel, Switzerland
| |
Collapse
|
47
|
Raghavan R, Brady M. Predictive models for pressure-driven fluid infusions into brain parenchyma. Phys Med Biol 2011; 56:6179-204. [PMID: 21891847 DOI: 10.1088/0031-9155/56/19/003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Direct infusions into brain parenchyma of biological therapeutics for serious brain diseases have been, and are being, considered. However, individual brains, as well as distinct cytoarchitectural regions within brains, vary in their response to fluid flow and pressure. Further, the tissue responds dynamically to these stimuli, requiring a nonlinear treatment of equations that would describe fluid flow and drug transport in brain. We here report in detail on an individual-specific model and a comparison of its prediction with simulations for living porcine brains. Two critical features we introduced into our model-absent from previous ones, but requirements for any useful simulation-are the infusion-induced interstitial expansion and the backflow. These are significant determinants of the flow. Another feature of our treatment is the use of cross-property relations to obtain individual-specific parameters that are coefficients in the equations. The quantitative results are at least encouraging, showing a high fraction of overlap between the computed and measured volumes of distribution of a tracer molecule and are potentially clinically useful. Several improvements are called for; principally a treatment of the interstitial expansion more fundamentally based on poroelasticity and a better delineation of the diffusion tensor of a particle confined to the interstitial spaces.
Collapse
Affiliation(s)
- Raghu Raghavan
- Therataxis, LLC, JHU Eastern Complex, Suite B305, 1101 E 33rd St, Baltimore, MD 21218, USA.
| | | |
Collapse
|
48
|
Sundberg LM, Herrera JJ, Narayana PA. Effect of vascular endothelial growth factor treatment in experimental traumatic spinal cord injury: in vivo longitudinal assessment. J Neurotrauma 2011; 28:565-78. [PMID: 21299336 DOI: 10.1089/neu.2010.1533] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is thought to provide neuroprotection to the traumatically injured spinal cord. We examined whether supplementing the injured environment with VEGF(165) via direct intraspinal injection into the lesion epicenter during the acute phase of spinal cord injury (SCI) results in improved outcome. The effect of treatment was investigated using longitudinal multi-modal magnetic resonance imaging (MRI), neurobehavioral assays, and end-point immunohistochemistry. We observed on MRI that rats treated with VEGF(165) after SCI had increased tissue sparing compared to vehicle-treated animals at the earlier time points. However, these favorable effects were not maintained into the chronic phase. Histology revealed that VEGF(165) treatment resulted in increased oligodendrogenesis and/or white matter sparing, and therefore may eventually lead to improved functional outcome. The increase in spared tissue as demonstrated by MRI, coupled with the possible remyelination and increased neurosensory sensitivity, suggests that VEGF(165) treatment may play a role in promoting plasticity in the sensory pathways following SCI. However, VEGF-treated animals also demonstrated an increased incidence of persistent allodynia, as indicated on the von Frey filament test.
Collapse
Affiliation(s)
- Laura M Sundberg
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | |
Collapse
|
49
|
Kotsarini C, Griffiths PD, Wilkinson ID, Hoggard N. A systematic review of the literature on the effects of dexamethasone on the brain from in vivo human-based studies: implications for physiological brain imaging of patients with intracranial tumors. Neurosurgery 2011; 67:1799-815; discussion 1815. [PMID: 21107211 DOI: 10.1227/neu.0b013e3181fa775b] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Among glucocorticoids, dexamethasone is most widely used for treatment of cerebral edema because of its long biological half-life and its low mineralocorticoid activity (sodium retaining). OBJECTIVE A systematic review of the literature on the effects of dexamethasone on the brain from in vivo studies in humans. METHODS A MEDLINE database search (via the PubMed interface) and an EMBASE database search (via the Dialog interface) of the past 35 years was performed. Every article relating to human use reported in English was included. In addition, references of all eligible articles were searched to identify other possible sources. RESULTS Twenty-four articles matched the eligibility criteria. There were disparate methodologies and conflicting results, although they tended to indicate a decrease in blood-tumor barrier permeability, decreased tumoral perfusion, decreased tumoral diffusivity, and the possibility of decreased perfusion in contralateral normal-appearing brain tissue. CONCLUSION Treatment with dexamethasone may alter imaging parameters from cerebral perfusion studies used in the management of brain tumors. In adequately powered studies, it may be possible to assess the longer term effects of dexamethasone on normal brain tissue to help optimize use with longer term survivors that are emerging as improvements in glioma treatment are made.
Collapse
Affiliation(s)
- Christina Kotsarini
- Academic Unit of Radiology, University of Sheffield, and Royal Hallamshire Hospital, Sheffield, United Kingdom
| | | | | | | |
Collapse
|
50
|
Brady M, Raghavan R, Chen ZJ, Broaddus WC. Quantifying fluid infusions and tissue expansion in brain. IEEE Trans Biomed Eng 2011; 58. [PMID: 21421430 DOI: 10.1109/tbme.2011.2128869] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The technique of direct infusions into brain tissue of therapeutic molecules that would otherwise not adequately cross the blood–brain barrier (BBB) continues to be used in clinical trials. As part of our research into understanding the transport of fluids and molecules in brain tissue, we performed infusions of a saline solution of the magnetic resonance (MR) marker Gadodiamide (Omniscan) into porcine brains. We use quantitative concentration measurements of contrast reagents from MR images to both measure the distribution profile of the infusate and to elucidate important determinants of fluid flow during infusions into brain parenchyma. Based on this, and from other MRI data collected during infusion, we give preliminary results for the quantification of the expansion of the volume fraction of the interstitium particularly in white matter regions of brain during infusion-induced edema. We claim this expansion, rather than an anisotropy of fluid conductivity, makes white matter tracts a preferred pathway for flow. We also comment briefly on other determinants that are currently being pursued such as the influence of the cerebrospinal fluid and perivascular spaces that may be elucidated with quantitative tracking of tracer, but which need further studies
Collapse
|