1
|
Conedera FM, Kokona D, Zinkernagel MS, Stein JV, Lin CP, Alt C, Enzmann V. Macrophages coordinate immune response to laser-induced injury via extracellular traps. J Neuroinflammation 2024; 21:68. [PMID: 38500151 PMCID: PMC10949579 DOI: 10.1186/s12974-024-03064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Retinal degeneration results from disruptions in retinal homeostasis due to injury, disease, or aging and triggers peripheral leukocyte infiltration. Effective immune responses rely on coordinated actions of resident microglia and recruited macrophages, critical for tissue remodeling and repair. However, these phagocytes also contribute to chronic inflammation in degenerated retinas, yet the precise coordination of immune response to retinal damage remains elusive. Recent investigations have demonstrated that phagocytic cells can produce extracellular traps (ETs), which are a source of self-antigens that alter the immune response, which can potentially lead to tissue injury. METHODS Innovations in experimental systems facilitate real-time exploration of immune cell interactions and dynamic responses. We integrated in vivo imaging with ultrastructural analysis, transcriptomics, pharmacological treatments, and knockout mice to elucidate the role of phagocytes and their modulation of the local inflammatory response through extracellular traps (ETs). Deciphering these mechanisms is essential for developing novel and enhanced immunotherapeutic approaches that can redirect a specific maladaptive immune response towards favorable wound healing in the retina. RESULTS Our findings underscore the pivotal role of innate immune cells, especially macrophages/monocytes, in regulating retinal repair and inflammation. The absence of neutrophil and macrophage infiltration aids parenchymal integrity restoration, while their depletion, particularly macrophages/monocytes, impedes vascular recovery. We demonstrate that macrophages/monocytes, when recruited in the retina, release chromatin and granular proteins, forming ETs. Furthermore, the pharmacological inhibition of ETosis support retinal and vascular repair, surpassing the effects of blocking innate immune cell recruitment. Simultaneously, the absence of ETosis reshapes the inflammatory response, causing neutrophils, helper, and cytotoxic T-cells to be restricted primarily in the superficial capillary plexus instead of reaching the damaged photoreceptor layer. CONCLUSIONS Our data offer novel insights into innate immunity's role in responding to retinal damage and potentially help developing innovative immunotherapeutic approaches that can shift the immune response from maladaptive to beneficial for retinal regeneration.
Collapse
Affiliation(s)
- Federica M Conedera
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland.
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Despina Kokona
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Alt
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Jones TB, Mackey T, Juba AN, Amin K, Atyam A, McDole M, Yancy J, Thomas TC, Buhlman LM. Mild traumatic brain injury in Drosophila melanogaster alters reactive oxygen and nitrogen species in a sex-dependent manner. Exp Neurol 2024; 372:114621. [PMID: 38029809 PMCID: PMC10872660 DOI: 10.1016/j.expneurol.2023.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Traumatic brain injury (TBI) is an outside force causing a modification in brain function and/or structural brain pathology that upregulates brain inducible nitric oxide synthase (iNOS), instigating increased levels of nitric oxide activity which is implicated in secondary pathology leading to behavioral deficits (Hall et al., 2012; Garry et al., 2015; Kozlov et al., 2017). In mammals, TBI-induced NO production activates an immune response and potentiates metabolic crisis through mitochondrial dysfunction coupled with vascular dysregulation; however, the direct influence on pathology is complicated by the activation of numerous secondary cascades and activation of other reactive oxygen species. Drosophila TBI models have demonstrated key features of mammalian TBI, including temporary incapacitation, disorientation, motor deficits, activation of innate immunity (inflammation), and autophagy responses observed immediately after injury (Katzenberger et al., 2013; Barekat et al., 2016; Simon et al., 2017; Anderson et al., 2018; Buhlman et al., 2021b). We hypothesized that acute behavioral phenotypes would be associated with deficits in climbing behavior and increased oxidative stress. Because flies lack mammalian-like cardiovascular and adaptive immune systems, we were able to make our observations in the absence of vascular disruption and adaptive immune system interference in a system where highly targeted interventions can be rapidly evaluated. To demonstrate the induction of injury, ten-day-old transgenic flies received an injury of increasing angles from a modified high impact trauma (HIT) device where angle-dependent increases occurred for acute neurological behavior assessments and twenty-four-hour mortality, and survival was significantly decreased. Injury caused sex-dependent effects on climbing activity and measures of oxidative stress. Specifically, after a single 60-degree HIT, female flies exhibited significant impairments in climbing activity beyond that observed in male flies. We also found that several measures of oxidative stress, including Drosophila NOS (dNOS) expression, protein nitration, and hydrogen peroxide production were significantly decreased in female flies. Interestingly, protein nitration was also decreased in males, but surpassed sham levels with a more severe injury. We also observed decreased autophagy demand in vulnerable dopaminergic neurons in female, but not male flies. In addition, mitophagy initiation was decreased in females. Collectively, our data suggest that TBI in flies induces acute behavioral phenotypes and climbing deficits that are analogous to mammalian TBI. We also observed that various indices of oxidative stress, including dNOS expression, protein tyrosine nitration, and hydrogen peroxide levels, as well as basal levels of autophagy, are altered in response to injury, an effect that is more pronounced in female flies.
Collapse
Affiliation(s)
- T Bucky Jones
- College of Graduate Studies, Midwestern University, Glendale, AZ, USA; Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Tracy Mackey
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Amber N Juba
- College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Kush Amin
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Amruth Atyam
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Madison McDole
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Jarod Yancy
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Phoenix VA Health Care System, Phoenix, AZ, USA.
| | - Lori M Buhlman
- College of Graduate Studies, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
3
|
Fesharaki-Zadeh A. Oxidative Stress in Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms232113000. [PMID: 36361792 PMCID: PMC9657447 DOI: 10.3390/ijms232113000] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Traumatic Brain Injury (TBI) remains a major cause of disability worldwide. It involves a complex neurometabolic cascade, including oxidative stress. The products of this manuscript is examining the underlying pathophysiological mechanism, including reactive oxygen species (ROS) and reactive nitrogen species (RNS). This process in turn leads to secondary injury cascade, which includes lipid peroxidation products. These reactions ultimately play a key role in chronic inflammation and synaptic dysfunction in a synergistic fashion. Although there are no FDA approved antioxidant therapy for TBI, there is a number of antioxidant therapies that have been tested and include free radical scavengers, activators of antioxidant systems, inhibitors of free radical generating enzymes, and antioxidant enzymes. Antioxidant therapies have led to cognitive and functional recovery post TBI, and they offer a promising treatment option for patients recovering from TBI. Current major challenges in treatment of TBI symptoms include heterogenous nature of injury, as well as access to timely treatment post injury. The inherent benefits of antioxidant therapies include minimally reported side effects, and relative ease of use in the clinical setting. The current review also provides a highlight of the more studied anti-oxidant regimen with applicability for TBI treatment with potential use in the real clinical setting.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Yale School of Medicine, Department of Neurology, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
4
|
Tripathi R, Gupta R, Sahu M, Srivastava D, Das A, Ambasta RK, Kumar P. Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62160-62207. [PMID: 34617231 DOI: 10.1007/s11356-021-16693-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Recent advancements and growing attention about free radicals (ROS) and redox signaling enable the scientific fraternity to consider their involvement in the pathophysiology of inflammatory diseases, metabolic disorders, and neurological defects. Free radicals increase the concentration of reactive oxygen and nitrogen species in the biological system through different endogenous sources and thus increased the overall oxidative stress. An increase in oxidative stress causes cell death through different signaling mechanisms such as mitochondrial impairment, cell-cycle arrest, DNA damage response, inflammation, negative regulation of protein, and lipid peroxidation. Thus, an appropriate balance between free radicals and antioxidants becomes crucial to maintain physiological function. Since the 1brain requires high oxygen for its functioning, it is highly vulnerable to free radical generation and enhanced ROS in the brain adversely affects axonal regeneration and synaptic plasticity, which results in neuronal cell death. In addition, increased ROS in the brain alters various signaling pathways such as apoptosis, autophagy, inflammation and microglial activation, DNA damage response, and cell-cycle arrest, leading to memory and learning defects. Mounting evidence suggests the potential involvement of micro-RNAs, circular-RNAs, natural and dietary compounds, synthetic inhibitors, and heat-shock proteins as therapeutic agents to combat neurological diseases. Herein, we explain the mechanism of free radical generation and its role in mitochondrial, protein, and lipid peroxidation biology. Further, we discuss the negative role of free radicals in synaptic plasticity and axonal regeneration through the modulation of various signaling molecules and also in the involvement of free radicals in various neurological diseases and their potential therapeutic approaches. The primary cause of free radical generation is drug overdosing, industrial air pollution, toxic heavy metals, ionizing radiation, smoking, alcohol, pesticides, and ultraviolet radiation. Excessive generation of free radicals inside the cell R1Q1 increases reactive oxygen and nitrogen species, which causes oxidative damage. An increase in oxidative damage alters different cellular pathways and processes such as mitochondrial impairment, DNA damage response, cell cycle arrest, and inflammatory response, leading to pathogenesis and progression of neurodegenerative disease other neurological defects.
Collapse
Affiliation(s)
- Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India.
- , Delhi, India.
- Molecular Neuroscience and Functional Genomics Laboratory, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
5
|
Shin SS, Hwang M, Diaz-Arrastia R, Kilbaugh TJ. Inhalational Gases for Neuroprotection in Traumatic Brain Injury. J Neurotrauma 2021; 38:2634-2651. [PMID: 33940933 PMCID: PMC8820834 DOI: 10.1089/neu.2021.0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite multiple prior pharmacological trials in traumatic brain injury (TBI), the search for an effective, safe, and practical treatment of these patients remains ongoing. Given the ease of delivery and rapid absorption into the systemic circulation, inhalational gases that have neuroprotective properties will be an invaluable resource in the clinical management of TBI patients. In this review, we perform a systematic review of both pre-clinical and clinical reports describing inhalational gas therapy in the setting of TBI. Hyperbaric oxygen, which has been investigated for many years, and some of the newest developments are reviewed. Also, promising new therapies such as hydrogen gas, hydrogen sulfide gas, and nitric oxide are discussed. Moreover, novel therapies such as xenon and argon gases and delivery methods using microbubbles are explored.
Collapse
Affiliation(s)
- Samuel S. Shin
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Misun Hwang
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Tsui CT, MacGillivray SR, Weber SM, McAllister L, Churchward MA, Dennison CR, Todd KG. Applying a novel 3D hydrogel cell culture to investigate activation of microglia due to rotational kinematics associated with mild traumatic brain injury. J Mech Behav Biomed Mater 2020; 114:104176. [PMID: 33184015 DOI: 10.1016/j.jmbbm.2020.104176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/25/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Many investigations on mild traumatic brain injury (mTBI) aim to further understand how cells in the brain react to the mechanical forces associated with the injury. While it is known that rapid head rotation is a mechanism contributing to mTBI, establishing definitive thresholds for head rotation has proved challenging. One way to advance determining mechanisms and thresholds for injury is through in vitro models. Here, an apparatus has been designed that is capable of delivering rotational forces to three-dimensional (3D) hydrogel cell cultures. Using an in vitro model, we test the hypothesis that rotational kinematics can activate microglia suspended in a 3-dimensional mixed glia environment (absent neurons). The impact apparatus was able to deliver peak angular velocities of approximately 45 rad/s, a magnitude for angular velocity that in select literature is associated with diffuse brain injury. However, no measurable glial cell reactivity was observed in response to the rotational kinematics through any of the chosen metrics (nitric oxide, pro-inflammatory cytokine release and proportion of amoeboid activated microglia). The results generated from this study suggest that rotation of the glia alone did not cause activation - in future work we will investigate the effect of neuronal contributions in activating glia.
Collapse
Affiliation(s)
- Christopher T Tsui
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada.
| | - Samantha R MacGillivray
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Savannah M Weber
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Lowell McAllister
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Matthew A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Christopher R Dennison
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Kathryn G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada.
| |
Collapse
|
7
|
Anodal Transcranial Direct Current Stimulation Improves Impaired Cerebrovascular Reactivity in Traumatized Mouse Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1232:47-53. [PMID: 31893393 DOI: 10.1007/978-3-030-34461-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cerebrovascular reactivity (CVR) is a compensatory mechanism where blood vessels dilate in response to a vasodilatory stimulus, and is a biomarker of vascular reserve and microvascular health. Impaired CVR indicates microvascular hemodynamic dysfunction, which is implicated in traumatic brain injury (TBI) and associated with long-term neurological deficiency. Recently we have shown that anodal transcranial direct current stimulation (tDCS) caused prolonged dilatation of cerebral arterioles that increased brain microvascular flow and tissue oxygenation in traumatized mouse brain and was associated with neurologic improvement. Here we evaluate the effects of tDCS on impaired CVR and microvascular cerebral blood flow (mCBF) regulation after TBI. TBI was induced in mice by controlled cortical impact (CCI). Cortical microvascular tone, mCBF, and tissue oxygen supply (by nicotinamide adenine dinucleotide, NADH) were measured by two-photon laser scanning microscopy before and after anodal tDCS (0.1 mA/15 min). CVR and mCBF regulation were evaluated by measuring changes in arteriolar diameters and NADH during hypercapnia test before and after tDCS. Transient hypercapnia was induced by 60-s increase of CO2 concentration in the inhalation mixture to 10%. As previously, anodal tDCS dilated arterioles which increased arteriolar blood flow volume that led to an increase in capillary flow velocity and the number of functioning capillaries, thereby improving tissue oxygenation in both traumatized and sham animals. In sham mice, transient hypercapnia caused transient dilatation of cerebral arterioles with constant NADH, reflecting intact CVR and mCBF regulation. In TBI animals, arteriolar dilatation response to hypercapnia was diminished while the NADH level increased (tissue oxygen supply decreased), reflecting impaired CVR and mCBF regulation. Anodal tDCS enhanced reactivity in parenchymal arterioles in both groups (especially in TBI mice) and restored CVR thereby prevented the reduction in tissue oxygen supply during hypercapnia. CVR has been shown to be related to nitric oxide elevation due to nitric oxide synthases activation, which can be sensitive to the electrical field induced by tDCS.
Collapse
|
8
|
Cassol G, Godinho DB, de Zorzi VN, Farinha JB, Della-Pace ID, de Carvalho Gonçalves M, Oliveira MS, Furian AF, Fighera MR, Royes LFF. Potential therapeutic implications of ergogenic compounds on pathophysiology induced by traumatic brain injury: A narrative review. Life Sci 2019; 233:116684. [DOI: 10.1016/j.lfs.2019.116684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
|
9
|
Ott C, Bosch A, Winzer N, Friedrich S, Schinzel R, Tegtmeier F, Schmieder RE. Effects of the nitric oxide synthase inhibitor ronopterin (VAS203) on renal function in healthy volunteers. Br J Clin Pharmacol 2019; 85:900-907. [PMID: 30666700 PMCID: PMC6475696 DOI: 10.1111/bcp.13870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 12/26/2022] Open
Abstract
AIMS Reduced nitric oxide (NO) availability may adversely affect renal perfusion and glomerular filtration. The aim of the present study was to characterize in detail the pharmacological effects of VAS203, an inhibitor of NO synthase, on renal haemodynamics in humans. METHODS This double-blind, randomized, placebo-controlled, cross-over phase-I-study comprised 18 healthy men. Renal haemodynamics were assessed with constant-infusion input-clearance technique with p-aminohippurate and inulin for renal plasma flow (RPF) and glomerular filtration rate (GFR), respectively. After baseline measurement, a constant infusion of the tetrahydrobiopterin analogue ronopterin (VAS203, total 10 mg/kg body weight) or placebo was administered at random order for 6 hours additionally. After a wash-out phase of 28 days, the second course was applied. In parallel, markers of early kidney injury and renal function were assessed repeatedly up to 48 hours after starting VAS203/placebo-infusion. RESULTS VAS203-infusion resulted in a significant decrease of RPF (P < .0001) and GFR (P < .001) compared to placebo, but magnitude was within the physiological range. RPF and GFR recovered partly 2 hours after end of VAS203-infusion and was normal at beginning of the second infusion period. Compared to placebo, preglomerular resistance (P < .0001), and to lesser extent postglomerular resistance (P < .0001) increased, resulting in a decrease of intraglomerular pressure (P < .01). No treatment related effect on markers of early kidney injury, and on renal function (P for all >.20) have been observed. CONCLUSIONS Our phase-I-study in healthy humans indicates that VAS203 (10 mg/kg body weight) reduces renal perfusion and glomerular function within the physiological range mainly due to vasoconstriction at the preglomerular site.
Collapse
Affiliation(s)
- Christian Ott
- Department of Nephrology and HypertensionFriedrich‐Alexander University Erlangen‐NürnbergGermany
- Department of Nephrology and HypertensionParacelsus Medical UniversityNürnbergGermany
| | - Agnes Bosch
- Department of Nephrology and HypertensionFriedrich‐Alexander University Erlangen‐NürnbergGermany
| | - Nicole Winzer
- Department of Nephrology and HypertensionFriedrich‐Alexander University Erlangen‐NürnbergGermany
| | - Stephanie Friedrich
- Department of Nephrology and HypertensionFriedrich‐Alexander University Erlangen‐NürnbergGermany
| | | | | | - Roland E. Schmieder
- Department of Nephrology and HypertensionFriedrich‐Alexander University Erlangen‐NürnbergGermany
| |
Collapse
|
10
|
Oliveira KM, Binda NS, Lavor MSL, Silva CMO, Rosado IR, Gabellini ELA, Da Silva JF, Oliveira CM, Melo MM, Gomez MV, Melo EG. Conotoxin MVIIA improves cell viability and antioxidant system after spinal cord injury in rats. PLoS One 2018; 13:e0204948. [PMID: 30286181 PMCID: PMC6171875 DOI: 10.1371/journal.pone.0204948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/16/2018] [Indexed: 12/12/2022] Open
Abstract
This study evaluates whether intrathecal MVIIA injection after spinal cord injury (SCI) elicits neuroprotective effects. The test rats were randomly distributed into six groups— sham, placebo, MVIIA 2.5 μM, MVIIA 5 μM, MVIIA 10 μM, and MVIIA 20 μM—and were administered the treatment four hours after SCI. After the optimal MVIIA dose (MVIIA 10 μM) was defined, the best time for application, one or four hours, was analyzed. Locomotor hind limb function and side effects were assessed. Forty-eight hours after the injury and immediately after euthanasia, spinal cord segments were removed from the test rats. Cell viability, reactive oxygen species, lipid peroxidation, and glutamate release were investigated. To examine the MVIIA mechanism of action, the gene expressions of pro-apoptotic (Bax, nNOS, and caspase-3, -8, -9, -12) and anti-apoptotic (Bcl-xl) factors in the spinal cord tissue samples were determined by real-time PCR, and the activities of antioxidant enzymes were also investigated. Application of intrathecal MVIIA 10 μM four hours after SCI prompted a neuroprotective effect: neuronal death decreased (22.46%), oxidative stress diminished, pro-apoptotic factors (Bax, nNOS, and caspase-3, -8) were expressed to a lesser extent, and mitochondrial viability as well as anti-apoptotic factor (Bcl-xl) expression increased. These results suggested that MVIIA provided neuroprotection through antioxidant effects. Indeed, superoxide dismutase (188.41%), and glutathione peroxidase (199.96%), reductase (193.86%), and transferase (175.93%) expressions increased. Therefore, intrathecal MVIIA (MVIIA 10 μM, 4 h) application has neuroprotective potential, and the possible mechanisms are related to antioxidant agent modulation and to intrinsic and extrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Karen M. Oliveira
- Clinical and Surgery Department, Veterinary School, Minas Gerais Federal University, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| | - Nancy S. Binda
- Laboratory of Toxins, Institute of Education and Research, Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| | - Mário Sérgio L. Lavor
- Department of Agrarian and Environmental Sciences, Santa Cruz State University, Ilhéus, Bahia, Brazil
| | - Carla M. O. Silva
- Clinical and Surgery Department, Veterinary School, Minas Gerais Federal University, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Isabel R. Rosado
- Veterinary Medicine Department, Uberaba University, Uberada, Minas Gerais, Brazil
| | | | - Juliana F. Da Silva
- Laboratory of Toxins, Institute of Education and Research, Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| | | | - Marília M. Melo
- Clinical and Surgery Department, Veterinary School, Minas Gerais Federal University, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Marcus Vinícius Gomez
- Laboratory of Toxins, Institute of Education and Research, Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| | - Eliane G. Melo
- Clinical and Surgery Department, Veterinary School, Minas Gerais Federal University, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
11
|
Hekierski H, Pastor P, Curvello V, Armstead WM. Inhaled Nitric Oxide Protects Cerebral Autoregulation and Reduces Hippocampal Neuronal Cell Necrosis after Traumatic Brain Injury in Newborn and Juvenile Pigs. J Neurotrauma 2018; 36:630-638. [PMID: 30051755 DOI: 10.1089/neu.2018.5824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) contributes to morbidity in children, and boys are disproportionately represented. Cerebral blood flow (CBF) is reduced and autoregulation is impaired after TBI, contributing to poor outcome. Cerebral perfusion pressure (CPP) is often normalized by use of vasoactive agents to increase mean arterial pressure (MAP). In prior studies of male and female newborn and juvenile pigs, we observed that phenylephrine, norepinephrine, epinephrine, and dopamine demonstrated different sex- and age-dependent abilities to prevent impairment of cerebral autoregulation and limit histopathology after TBI, despite equivalent CPP values. This observation complicated treatment choice. Alternatively, administration of a cerebral vasodilator may improve cerebral hemodynamics after TBI by increasing CBF. In prior studies, intravenous sodium nitroprusside, a nitric oxide (NO) releaser, elevated CBF after TBI but failed to prevent impairment of cerebral autoregulation due to a confounding decrease in MAP, which lowered CPP. We presently test the hypothesis that inhaled NO (iNO) will protect cerebral autoregulation and prevent hippocampal histopathology after TBI. Results show that iNO administered at 30 min or 2 h after TBI protected cerebral autoregulation and prevented neuronal cell necrosis in CA1 and CA3 hippocampus equivalently in male and female newborn and juvenile pigs without change in MAP. Protection lasted for at least 2 h after iNO administration was stopped. Papaverine-induced dilation was unchanged by TBI and iNO. These data indicate that iNO offers the opportunity to have a single therapeutic that uniformly protects autoregulation and limits hippocampal neuronal cell necrosis across both ages and sexes.
Collapse
Affiliation(s)
- Hugh Hekierski
- 1 Department of Anesthesiology and Critical Care, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Philip Pastor
- 1 Department of Anesthesiology and Critical Care, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Victor Curvello
- 1 Department of Anesthesiology and Critical Care, University of Pennsylvania , Philadelphia, Pennsylvania
| | - William M Armstead
- 1 Department of Anesthesiology and Critical Care, University of Pennsylvania , Philadelphia, Pennsylvania.,2 Department of Pharmacology, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Asghari A, Hosseini M, Beheshti F, Shafei MN, Mehri S. Inducible nitric oxide inhibitor aminoguanidine, ameliorated oxidative stress, interleukin-6 concentration and improved brain-derived neurotrophic factor in the brain tissues of neonates born from titanium dioxide nanoparticles exposed rats. J Matern Fetal Neonatal Med 2018; 32:3962-3973. [PMID: 29788817 DOI: 10.1080/14767058.2018.1480602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Introduction: An interaction between oxidative stress, neuroinflammation, and nitric oxide (NO) has been suggested to have a role neurotoxicity. The aim of current research was to investigate the effect of aminoguanidine (AG) as an inducible NO synthase (iNOS) inhibitor, on brain-derived neurotrophic factor (BDNF), oxidative stress, and interleukin-6 (IL-6) concentrations in the brain tissues of neonates born from the rats exposed to titanium dioxide nanoparticles (TiO2 NPs) during gestation. Methods: The pregnant rats were grouped into three and received: (1) saline, (2) TiO2 (200 mg/kg, gavage), and (3) TiO2-AG [200 mg/kg intraperitoneal (IP)]. The treatment was started since the second gestation day up to the delivery time. The neonates born from the rats were deeply anesthetized, sacrificed, and the brains were collected for biochemical evaluations. Results: The neonates born from the rats exposed to TiO2 showed a lower BDNF (p < .001) but a higher IL-6 (p < .01) concentrations in their hippocampal tissue. TiO2 exposure also increased malondialdehyde (MDA) (p < .001) and NO metabolites (p < .001), while diminished thiol (p < .001), superoxide (SOD) (p < .001), and catalase (CAT) (p < .001) in all hippocampal, cortical, and cerebellar tissues. Administration of AG improved BDNF (p < .01) but attenuated IL-6 (p < .01) concentrations in the hippocampal tissue. AG also decreased MDA (p < .001) and NO metabolites (p < .01-p < .001), while increased thiol (p < .01-p < .001), SOD (p < .001), and CAT (p < .05-p < .001) in all cerebellar, hippocampal, cortical, and tissues. Conclusion: The results of the current research revealed that iNOS inhibitor AG, ameliorated oxidative stress, IL-6 concentration, and improved BDNF in the brain tissues of neonates born from TiO2 NPs exposed rats.
Collapse
Affiliation(s)
- Amir Asghari
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Farimah Beheshti
- Department of Basic Sciences and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences , Torbat Heydariyeh , Iran
| | - Mohammad Naser Shafei
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
13
|
Che X, Fang Y, Si X, Wang J, Hu X, Reis C, Chen S. The Role of Gaseous Molecules in Traumatic Brain Injury: An Updated Review. Front Neurosci 2018; 12:392. [PMID: 29937711 PMCID: PMC6002502 DOI: 10.3389/fnins.2018.00392] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/22/2018] [Indexed: 01/12/2023] Open
Abstract
Traumatic brain injury (TBI) affects millions of people in China each year. TBI has a high mortality and often times a serious prognosis. The causative mechanisms of TBI during development and recovery from an injury remain vague, leaving challenges for the medical community to provide treatment options that improve prognosis and provide an optimal recovery. Biological gaseous molecules including nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and molecular hydrogen (H2) have been found to play critical roles in physiological and pathological conditions in mammals. Accumulating evidence has found that these gaseous molecules can execute neuroprotection in many central nervous system (CNS) conditions due to their highly permeable properties allowing them to enter the brain. Considering the complicated mechanisms and the serious prognosis of TBI, effective and adequate therapeutic approaches are urgently needed. These four gaseous molecules can be potential attractive therapeutic intervention on TBI. In this review, we will present a comprehensive overview on the role of these four biological gasses in the development of TBI and their potential therapeutic applications.
Collapse
Affiliation(s)
- Xiaoru Che
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoli Si
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianfeng Wang
- Department of Neurosurgery, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Xiaoming Hu
- Department of Neurosurgery, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States.,Department of Preventive Medicine, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| |
Collapse
|
14
|
Liu YW, Li S, Dai SS. Neutrophils in traumatic brain injury (TBI): friend or foe? J Neuroinflammation 2018; 15:146. [PMID: 29776443 PMCID: PMC5960133 DOI: 10.1186/s12974-018-1173-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Our knowledge of the pathophysiology about traumatic brain injury (TBI) is still limited. Neutrophils, as the most abundant leukocytes in circulation and the first-line transmigrated immune cells at the sites of injury, are highly involved in the initiation, development, and recovery of TBI. Nonetheless, our understanding about neutrophils in TBI is obsolete, and mounting evidences from recent studies have challenged the conventional views. This review summarizes what is known about the relationships between neutrophils and pathophysiology of TBI. In addition, discussions are made on the complex roles as well as the controversial views of neutrophils in TBI.
Collapse
Affiliation(s)
- Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, People's Republic of China.,Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Song Li
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, People's Republic of China. .,Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
15
|
Insights on Localized and Systemic Delivery of Redox-Based Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2468457. [PMID: 29636836 PMCID: PMC5832094 DOI: 10.1155/2018/2468457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022]
Abstract
Reactive oxygen and nitrogen species are indispensable in cellular physiology and signaling. Overproduction of these reactive species or failure to maintain their levels within the physiological range results in cellular redox dysfunction, often termed cellular oxidative stress. Redox dysfunction in turn is at the molecular basis of disease etiology and progression. Accordingly, antioxidant intervention to restore redox homeostasis has been pursued as a therapeutic strategy for cardiovascular disease, cancer, and neurodegenerative disorders among many others. Despite preliminary success in cellular and animal models, redox-based interventions have virtually been ineffective in clinical trials. We propose the fundamental reason for their failure is a flawed delivery approach. Namely, systemic delivery for a geographically local disease limits the effectiveness of the antioxidant. We take a critical look at the literature and evaluate successful and unsuccessful approaches to translation of redox intervention to the clinical arena, including dose, patient selection, and delivery approach. We argue that when interpreting a failed antioxidant-based clinical trial, it is crucial to take into account these variables and importantly, whether the drug had an effect on the redox status. Finally, we propose that local and targeted delivery hold promise to translate redox-based therapies from the bench to the bedside.
Collapse
|
16
|
Somayaji MR, Przekwas AJ, Gupta RK. Combination Therapy for Multi-Target Manipulation of Secondary Brain Injury Mechanisms. Curr Neuropharmacol 2018; 16:484-504. [PMID: 28847295 PMCID: PMC6018188 DOI: 10.2174/1570159x15666170828165711] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/10/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a major healthcare problem that affects millions of people worldwide. Despite advances in understanding and developing preventative and treatment strategies using preclinical animal models, clinical trials to date have failed, and a 'magic bullet' for effectively treating TBI-induced damage does not exist. Thus, novel pharmacological strategies to effectively manipulate the complex and heterogeneous pathophysiology of secondary injury mechanisms are needed. Given that goal, this paper discusses the relevance and advantages of combination therapies (COMTs) for 'multi-target manipulation' of the secondary injury cascade by administering multiple drugs to achieve an optimal therapeutic window of opportunity (e.g., temporally broad window) and compares these regimens to monotherapies that manipulate a single target with a single drug at a given time. Furthermore, we posit that integrated mechanistic multiscale models that combine primary injury biomechanics, secondary injury mechanobiology/neurobiology, physiology, pharmacology and mathematical programming techniques could account for vast differences in the biological space and time scales and help to accelerate drug development, to optimize pharmacological COMT protocols and to improve treatment outcomes.
Collapse
Affiliation(s)
| | | | - Raj K. Gupta
- Department of Defense Blast Injury Research Program Coordinating Office, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA
| |
Collapse
|
17
|
Effects of Dimeric PSD-95 Inhibition on Excitotoxic Cell Death and Outcome After Controlled Cortical Impact in Rats. Neurochem Res 2017; 42:3401-3413. [PMID: 28828633 DOI: 10.1007/s11064-017-2381-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 12/20/2022]
Abstract
Therapeutic effects of PSD-95 inhibition have been demonstrated in numerous studies of stroke; however only few studies have assessed the effects of PSD-95 inhibitors in traumatic brain injury (TBI). As the pathophysiology of TBI partially overlaps with that of stroke, PSD-95 inhibition may also be an effective therapeutic strategy in TBI. The objectives of the present study were to assess the effects of a dimeric inhibitor of PSD-95, UCCB01-144, on excitotoxic cell death in vitro and outcome after experimental TBI in rats in vivo. In addition, the pharmacokinetic parameters of UCCB01-144 were investigated in order to assess uptake of the drug into the central nervous system of rats. After a controlled cortical impact rats were randomized to receive a single injection of either saline or two different doses of UCCB01-144 (10 or 20 mg/kg IV) immediately after injury. Spatial learning and memory were assessed in a water maze at 2 weeks post-trauma, and at 4 weeks lesion volumes were estimated. Overall, UCCB01-144 did not protect against NMDA-toxicity in neuronal cultures or experimental TBI in rats. Important factors that should be investigated further in future studies assessing the effects of PSD-95 inhibitors in TBI are discussed.
Collapse
|
18
|
Lourenço CF, Ledo A, Barbosa RM, Laranjinha J. Neurovascular-neuroenergetic coupling axis in the brain: master regulation by nitric oxide and consequences in aging and neurodegeneration. Free Radic Biol Med 2017; 108:668-682. [PMID: 28435052 DOI: 10.1016/j.freeradbiomed.2017.04.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
Abstract
The strict energetic demands of the brain require that nutrient supply and usage be fine-tuned in accordance with the specific temporal and spatial patterns of ever-changing levels of neuronal activity. This is achieved by adjusting local cerebral blood flow (CBF) as a function of activity level - neurovascular coupling - and by changing how energy substrates are metabolized and shuttled amongst astrocytes and neurons - neuroenergetic coupling. Both activity-dependent increase of CBF and O2 and glucose utilization by active neural cells are inextricably linked, establishing a functional metabolic axis in the brain, the neurovascular-neuroenergetic coupling axis. This axis incorporates and links previously independent processes that need to be coordinated in the normal brain. We here review evidence supporting the role of neuronal-derived nitric oxide (•NO) as the master regulator of this axis. Nitric oxide is produced in tight association with glutamatergic activation and, diffusing several cell diameters, may interact with different molecular targets within each cell type. Hemeproteins such as soluble guanylate cyclase, cytochrome c oxidase and hemoglobin, with which •NO reacts at relatively fast rates, are but a few of the key in determinants of the regulatory role of •NO in the neurovascular-neuroenergetic coupling axis. Accordingly, critical literature supporting this concept is discussed. Moreover, in view of the controversy regarding the regulation of catabolism of different neural cells, we further discuss key aspects of the pathways through which •NO specifically up-regulates glycolysis in astrocytes, supporting lactate shuttling to neurons for oxidative breakdown. From a biomedical viewpoint, derailment of neurovascular-neuroenergetic axis is precociously linked to aberrant brain aging, cognitive impairment and neurodegeneration. Thus, we summarize current knowledge of how both neurovascular and neuroenergetic coupling are compromised in aging, traumatic brain injury, epilepsy and age-associated neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, suggesting that a shift in cellular redox balance may contribute to divert •NO bioactivity from regulation to dysfunction.
Collapse
Affiliation(s)
- Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rui M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
19
|
Dong N, Diao Y, Ding M, Cao B, Jiang D. The effects of 7-nitroindazole on serum neuron-specific enolase and astroglia-derived protein (S100β) levels after traumatic brain injury. Exp Ther Med 2017; 13:3183-3188. [PMID: 28587392 PMCID: PMC5450618 DOI: 10.3892/etm.2017.4411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/14/2016] [Indexed: 12/29/2022] Open
Abstract
We investigated the possible role of 7-nitroindazole (7-NI) in regulating serum neuron-specific enolase (NSE) and S100β levels in a rat model of traumatic brain injury (TBI). We also explored the possible mechanism by which 7-NI may affect the level of NSE and S100β. A total of 160 healthy adult male Sprague-Dawley rats were randomly divided into 2 groups: i) The saline-treated group and ii) the 7-NI-treated group. Using the random number table, the groups were further divided into four subgroups: i) The sham-injured group; ii) the TBI 6 h group; iii) the TBI 12 h group; and iv) the TBI 24 h group (n=20). Controlled cortical impact in rats was established. Serum NSE and S100β levels, nitric oxide (NO) level, water content, Evans blue (EB) content, malondialdehyde (MDA) level and total superoxide dismutase (T-SOD) level in the brain tissue were measured. NO synthase (NOS) activity was measured at 6, 12 and 24 h after TBI. Pathological changes in brain tissue were studied by hematoxylin and eosin (H&E) staining at each time-point. NSE and S100β levels, NO content, water content, EB content and MDA level in the brain tissue increased significantly after TBI. NOS activity was also increased significantly after TBI while T-SOD content in brain tissue was significantly reduced after TBI. H&E staining showed that brain damage was aggravated gradually after TBI. We concluded that the early application of 7-NI significantly reduced serum NSE and S100β levels after TBI. The neuroprotective effects of 7-NI may be associated with reduced NOS activity, reduced NO content, alleviated brain edema, lower blood-brain barrier permeability and oxidative stress. Serum NSE and S100β levels can reflect the therapeutic effect of 7-NI, which suggest a good diagnostic value.
Collapse
Affiliation(s)
- Nan Dong
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Yi Diao
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Maohua Ding
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Baoqiang Cao
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Dehua Jiang
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
20
|
|
21
|
The anti-inflammatory properties of Satureja khuzistanica Jamzad essential oil attenuate the effects of traumatic brain injuries in rats. Sci Rep 2016; 6:31866. [PMID: 27535591 PMCID: PMC4989136 DOI: 10.1038/srep31866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 07/26/2016] [Indexed: 01/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health concern affecting the general public as well as military personnel. However, there is no FDA-approved therapy for the treatment of TBIs. In this work, we investigated the neurotherapeutic effects of the well-known natural Iranian medicine Satureja Khuzistanica Jamzad (SKJ) essential oil (SKEO) on the outcomes of diffused experimental TBI, with particular attention paid to its anti-inflammatory and anti-apoptotic effects. Male Wistar rats were treated with doses of 50, 100 and 200 (mg/kg, i.p) SKEO after induction of diffused TBIs. The results showed that injecting SKEO (200 mg/kg) 30 minutes after TBI significantly reduced brain oedema and damage to the blood-brain barrier (BBB) and limited the post-TBI increase in intracranial pressure. The veterinary coma scale (VCS) scores significantly improved in the treatment group. Also, inflammatory marker assays showed reduced levels of TNF-α, IL-1β, and IL-6 and increased IL-10 in the treated groups. Moreover, the immunohistochemical results indicated that SKEO not only reduced neuronal death and BBB permeability but also affected astrocytic activation. Overall, our data indicate potential clinical neurological applications for SKEO.
Collapse
|
22
|
Jullienne A, Obenaus A, Ichkova A, Savona-Baron C, Pearce WJ, Badaut J. Chronic cerebrovascular dysfunction after traumatic brain injury. J Neurosci Res 2016; 94:609-22. [PMID: 27117494 PMCID: PMC5415378 DOI: 10.1002/jnr.23732] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/11/2016] [Accepted: 02/28/2016] [Indexed: 12/12/2022]
Abstract
Traumatic brain injuries (TBI) often involve vascular dysfunction that leads to long-term alterations in physiological and cognitive functions of the brain. Indeed, all the cells that form blood vessels and that are involved in maintaining their proper function can be altered by TBI. This Review focuses on the different types of cerebrovascular dysfunction that occur after TBI, including cerebral blood flow alterations, autoregulation impairments, subarachnoid hemorrhage, vasospasms, blood-brain barrier disruption, and edema formation. We also discuss the mechanisms that mediate these dysfunctions, focusing on the cellular components of cerebral blood vessels (endothelial cells, smooth muscle cells, astrocytes, pericytes, perivascular nerves) and their known and potential roles in the secondary injury cascade. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amandine Jullienne
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Andre Obenaus
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California Riverside, Riverside, California
| | | | | | - William J Pearce
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Jerome Badaut
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California
- CNRS UMR5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
23
|
Brennan JH, Bernard S, Cameron PA, Olaussen A, Fitzgerald MC, Rosenfeld JV, Mitra B. Ethanol exposure and isolated traumatic brain injury. J Clin Neurosci 2015; 22:1928-32. [DOI: 10.1016/j.jocn.2015.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/09/2015] [Indexed: 11/26/2022]
|
24
|
Kertmen H, Gürer B, Yilmaz ER, Kanat MA, Arikok AT, Ergüder BI, Hasturk AE, Ergil J, Sekerci Z. Antioxidant and antiapoptotic effects of darbepoetin-α against traumatic brain injury in rats. Arch Med Sci 2015; 11:1119-28. [PMID: 26528358 PMCID: PMC4624756 DOI: 10.5114/aoms.2015.54869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/14/2013] [Accepted: 10/04/2013] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION In this study, we tried to determine whether darbepoetin-α would protect the brain from oxidative stress and apoptosis in a rat traumatic brain injury model. MATERIAL AND METHODS The animals were randomized into four groups; group 1 (sham), group 2 (trauma), group 3 (darbepoetin α), group 4 (methylprednisolone). In the sham group only the skin incision was performed. In all the other groups, a moderate traumatic brain injury modelwas applied. RESULTS Following trauma both glutathione peroxidase, superoxide dismutase levels decreased (p < 0.001 for both); darbepoetin-α increased the activity of both antioxidant enzymes (p = 0.001 and p < 0.001 respectively). Trauma caused significant elevation in the nitric oxide synthetase and xanthine oxidase levels (p < 0.001 for both). Administration of darbepoetin-α significantly decreased the levels of nitric oxide synthetase and xanthine oxidase (p < 0.001 for both). Also, trauma caused significant elevation in the nitric oxide levels (p < 0.001); darbepoetin-α administration caused statistically significant reduction in the nitric oxide levels (p < 0.001). On the other hand, malondialdehyde levels were increased following trauma (p < 0.001), and darbepoetin α significantly reduced the malondialdehyde levels (p < 0.001). Due to the elevated apoptotic activity following the injury, caspase-3 activity increased significantly. Darbepoetin-α treatment significantly inhibited apoptosis by lowering the caspase-3 activity (p < 0.001). In the darbepoetin group, histopathological score was lower than the trauma group (p = 0.016). CONCLUSIONS In this study, darbepoetin-α was shown to be at least as effective as methylprednisolone in protecting brain from oxidative stress, lipid peroxidation and apoptosis.
Collapse
Affiliation(s)
- Hayri Kertmen
- Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| | - Bora Gürer
- Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| | - Erdal Resit Yilmaz
- Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| | - Mehmet Ali Kanat
- Ministry of Health, Refik Saydam National Public Health Agency, Ankara, Turkey
| | - Ata Türker Arikok
- Department of Pathology, Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | | | - Askin Esen Hasturk
- Department of Neurosurgery, Ministry of Health, Oncology Training and Research Hospital, Ankara, Turkey
| | - Julide Ergil
- Department of Anesthesiology, Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | - Zeki Sekerci
- Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| |
Collapse
|
25
|
Lu Q, Harris VA, Rafikov R, Sun X, Kumar S, Black SM. Nitric oxide induces hypoxia ischemic injury in the neonatal brain via the disruption of neuronal iron metabolism. Redox Biol 2015. [PMID: 26209813 PMCID: PMC4804102 DOI: 10.1016/j.redox.2015.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have recently shown that increased hydrogen peroxide (H2O2) generation is involved in hypoxia–ischemia (HI)-mediated neonatal brain injury. H2O2 can react with free iron to form the hydroxyl radical, through Fenton Chemistry. Thus, the objective of this study was to determine if there was a role for the hydroxyl radical in neonatal HI brain injury and to elucidate the underlying mechanisms. Our data demonstrate that HI increases the deposition of free iron and hydroxyl radical formation, in both P7 hippocampal slice cultures exposed to oxygen–glucose deprivation (OGD), and the neonatal rat exposed to HI. Both these processes were found to be nitric oxide (NO) dependent. Further analysis demonstrated that the NO-dependent increase in iron deposition was mediated through increased transferrin receptor expression and a decrease in ferritin expression. This was correlated with a reduction in aconitase activity. Both NO inhibition and iron scavenging, using deferoxamine administration, reduced hydroxyl radical levels and neuronal cell death. In conclusion, our results suggest that increased NO generation leads to neuronal cell death during neonatal HI, at least in part, by altering iron homeostasis and hydroxyl radical generation. HI increases the deposition of free iron and hydroxyl radical formation in the neonatal brain. Both these processes are NO dependent. Increased iron deposition is mediated via increased TfR and decreased ferritin expression. These processes are involved in the neuronal cell death associated with neonatal HI.
Collapse
Affiliation(s)
- Qing Lu
- Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | - Valerie A Harris
- Vascular Biology Center, Georgia Regents University, Augusta, GA 30912, USA
| | - Ruslan Rafikov
- Division of Translational and Regenerative Medicine, Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Xutong Sun
- Division of Translational and Regenerative Medicine, Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Sanjiv Kumar
- Vascular Biology Center, Georgia Regents University, Augusta, GA 30912, USA
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, Department of Medicine, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
26
|
Brennan JH, Bernard S, Cameron PA, Rosenfeld JV, Mitra B. Ethanol and isolated traumatic brain injury. J Clin Neurosci 2015; 22:1375-81. [PMID: 26067542 DOI: 10.1016/j.jocn.2015.02.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 11/27/2022]
Abstract
The aim of this systematic review was to determine whether ethanol is neuroprotective or associated with adverse effects in the context of traumatic brain injury (TBI). Approximately 30-60% of TBI patients are intoxicated with ethanol at the time of injury. We performed a systematic review of the literature using a combination of keywords for ethanol and TBI. Manuscripts were included if the population studied was human subjects with isolated moderate to severe TBI, acute ethanol intoxication was studied as an exposure variable and mortality reported as an outcome. The included studies were assessed for heterogeneity. A meta-analysis was performed and the pooled odds ratio (OR) for the association between ethanol and in-hospital mortality reported. There were seven studies eligible for analysis. A statistically significant association favouring reduced mortality with ethanol intoxication was found (OR 0.78; 95% confidence interval 0.73-0.83). Heterogeneity among selected studies was not statistically significant (p=0.25). Following isolated moderate-severe TBI, ethanol intoxication was associated with reduced in-hospital mortality. The retrospective nature of the studies, varying definitions of brain injury, degree of intoxication and presence of potential confounders limits our confidence in this conclusion. Further research is recommended to explore the potential use of ethanol as a therapeutic strategy following TBI.
Collapse
Affiliation(s)
- James H Brennan
- Emergency & Trauma Centre, The Alfred Hospital, Commercial Road, Melbourne, VIC 3004, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Clayton, VIC, Australia.
| | - Stephen Bernard
- Department of Epidemiology and Preventive Medicine, Monash University, Clayton, VIC, Australia; Intensive Care Unit, The Alfred Hospital, Melbourne, VIC, Australia
| | - Peter A Cameron
- Emergency & Trauma Centre, The Alfred Hospital, Commercial Road, Melbourne, VIC 3004, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Clayton, VIC, Australia; Emergency Medicine, Hamad Medical Corporation, Doha, Qatar; National Trauma Research Institute, The Alfred Hospital, Melbourne, VIC, Australia
| | - Jeffrey V Rosenfeld
- National Trauma Research Institute, The Alfred Hospital, Melbourne, VIC, Australia; Department of Neurosurgery, The Alfred Hospital, Melbourne, VIC, Australia; Department of Surgery, Monash University, Clayton, VIC, Australia; Department of Surgery, F. Edward Hébert School of Medicine, Uniformed Services University of The Health Sciences, Bethesda, MD, USA
| | - Biswadev Mitra
- Emergency & Trauma Centre, The Alfred Hospital, Commercial Road, Melbourne, VIC 3004, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Clayton, VIC, Australia; National Trauma Research Institute, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Schwarzmaier SM, Terpolilli NA, Dienel A, Gallozzi M, Schinzel R, Tegtmeier F, Plesnila N. Endothelial nitric oxide synthase mediates arteriolar vasodilatation after traumatic brain injury in mice. J Neurotrauma 2015; 32:731-8. [PMID: 25363688 DOI: 10.1089/neu.2014.3650] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Brain edema and increased cerebral blood volume (CBV) contribute to intracranial hypertension and hence to unfavorable outcome after traumatic brain injury (TBI). The increased post-traumatic CBV may be caused in part by arterial vasodilatation. The aim of the current study was to uncover the largely unknown mechanisms of post-traumatic arteriolar vasodilatation. The diameter of pial arterioles and venules was monitored by intravital fluorescence microscopy before (baseline) and for 30 min after controlled cortical impact in C57BL/6 and endothelial nitric oxide synthase (eNOS)-/- mice (n=5-6/group) and in C57BL/6 mice (n=6/group) receiving vehicle (phosphate-buffered saline [PBS]) or 4-amino-tetrahydro-L-biopterine (VAS203), a NOS inhibitor previously shown to reduce post-traumatic intracranial hypertension. Temperature, end-tidal partial pressure of carbon dioxide (pCO₂), and mean arterial blood pressure were kept within the physiological range throughout the experiments. Arteriolar diameters were stable during baseline monitoring but increased significantly in C57BL/6 mice after controlled cortical impact (136±7% of baseline; p<0.001 vs. baseline). This response was reduced by 78% in eNOS-/- mice (108±3% of baseline; p<0.005 vs. wild-type). Application of VAS203, a NOS inhibitor, or PBS did not affect vessels diameter before TBI. After trauma, however, administration of VAS203 reduced arteriolar diameter to 92±2% of baseline (p<0.05). The diameter of pial veins was not affected. Our results suggest that arteriolar vasodilatation after TBI is largely mediated by excess production of endothelial nitric oxide. Accordingly, our data may explain the beneficial effects of the NOS inhibitor VAS203 in the early phase after TBI and suggest that inhibition of excess endothelial nitric oxide production may represent a novel therapeutic strategy following TBI.
Collapse
Affiliation(s)
- Susanne M Schwarzmaier
- 1 Laboratory of Experimental Neurosurgery, University of Munich Medical Center , Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Ansari MA, Roberts KN, Scheff SW. A time course of NADPH-oxidase up-regulation and endothelial nitric oxide synthase activation in the hippocampus following neurotrauma. Free Radic Biol Med 2014; 77:21-9. [PMID: 25224032 PMCID: PMC4313124 DOI: 10.1016/j.freeradbiomed.2014.08.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 01/13/2023]
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase (NADPH-oxidase; NOX) is a complex enzyme responsible for increased levels of reactive oxygen species (ROS), superoxide (O2(•-)). NOX-derived O2(•-) is a key player in oxidative stress and inflammation-mediated multiple secondary injury cascades (SIC) following traumatic brain injury (TBI). The O2(•-) reacts with nitric oxide (NO), produces various reactive nitrogen species (RNS), and contributes to apoptotic cell death. Following a unilateral cortical contusion, young adult rats were killed at various times postinjury (1, 3, 6, 12, 24, 48, 72, and 96 h). Fresh tissue from the hippocampus was analyzed for NOX activity, and level of O2(•-). In addition we evaluated the translocation of cytosolic NOX proteins (p67(Phox), p47(Phox), and p40(Phox)) to the membrane, along with total NO and the activation (phosphorylation) of endothelial nitric oxide synthase (p-eNOS). Results show that both enzymes and levels of O2(•-) and NO have time-dependent injury effects in the hippocampus. Translocation of cytosolic NOX proteins into membrane, NOX activity, and O2(•-) were also increased in a time-dependent fashion. Both NOX activity and O2(•-) were increased at 6 h. Levels of p-eNOS increased within 1h, with significant elevation of NO at 12h post-TBI. Levels of NO failed to show a significant association with p-eNOS, but did associate with O2(•-). NOX up-regulation strongly associated with both the levels of O2(•-) and the total NO. The initial 12 h post-TBI are very important as a possible window of opportunity to interrupt SIC. It may be important to selectively target the translocation of cytosolic subunits for the modulation of NOX function.
Collapse
Affiliation(s)
- Mubeen A Ansari
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, USA.
| | - Kelly N Roberts
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, USA.
| | - Stephen W Scheff
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, USA; Spinal Cord Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0230, USA.
| |
Collapse
|
29
|
Shock wave trauma leads to inflammatory response and morphological activation in macrophage cell lines, but does not induce iNOS or NO synthesis. Acta Neurochir (Wien) 2014; 156:2365-78. [PMID: 25305089 DOI: 10.1007/s00701-014-2243-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Experimental CNS trauma results in post-traumatic inflammation for which microglia and macrophages are vital. Experimental brain contusion entails iNOS synthesis and formation of free radicals, NO and peroxynitrite. Shock wave trauma can be used as a model of high-energy trauma in cell culture. It is known that shock wave trauma causes sub-lytic injury and inflammatory activation in endothelial cells. Mechanical disruption of red blood cells can induce iNOS synthesis in experimental systems. However, it is not known whether trauma can induce activation and iNOS synthesis in inflammatory cell lines with microglial or macrophage lineage. We studied the response and activation in two macrophage cell lines and the consequence for iNOS and NO formation after shock wave trauma. METHODS Two macrophage cell lines from rat (NR8383) and mouse (RAW264.7) were exposed to shock wave trauma by the Flyer Plate method. The cellular response was investigated by Affymetrix gene arrays. Cell survival and morphological activation was monitored for 24 h in a Cell-IQ live cell imaging system. iNOS induction and NO synthesis were analyzed by Western blot, in cell Western IR-immunofluorescence, and Griess nitrite assay. RESULTS Morphological signs of activation were detected in both macrophage cell lines. The activation of RAW264.7 was statistically significant (p < 0.05), but activation of NR8383 did not pass the threshold of statistical significance alpha (p > 0.05). The growth rate of idle cells was unaffected and growth arrest was not seen. Trauma did not result in iNOS synthesis or NO induction. Gene array analyses showed high enrichment for inflammatory response, G-protein coupled signaling, detection of stimulus and chemotaxis. Shock wave trauma combined with low LPS stimulation instead led to high enrichment in apoptosis, IL-8 signaling, mitosis and DNA-related activities. LPS/IFN-ɣ stimulation caused iNOS and NO induction and morphological activation in both cell lines. CONCLUSIONS Shock wave trauma by the Flyer Plate method caused an inflammatory response and morphological signs of activation in two macrophage cell lines, while iNOS induction appeared to require humoral signaling by LPS/IFN-ɣ. Our findings indicated that direct energy transfer by trauma can activate macrophages directly without humoral mediators, which comprises a novel activation mechanism of macrophages.
Collapse
|
30
|
Ferreira APO, Rodrigues FS, Della-Pace ID, Mota BC, Oliveira SM, de Campos Velho Gewehr C, Bobinski F, de Oliveira CV, Brum JS, Oliveira MS, Furian AF, de Barros CSL, dos Santos ARS, Ferreira J, Fighera MR, Royes LFF. HOE-140, an antagonist of B2 receptor, protects against memory deficits and brain damage induced by moderate lateral fluid percussion injury in mice. Psychopharmacology (Berl) 2014; 231:1935-48. [PMID: 24202114 DOI: 10.1007/s00213-013-3336-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/14/2013] [Indexed: 12/14/2022]
Abstract
RATIONALE There are evidences indicating the role of kinins in pathophysiology of traumatic brain injury, but little is known about their action on memory deficits. OBJECTIVES Our aim was to establish the role of bradykinin receptors B₁ (B₁R) and B₂ (B₂R) on the behavioral, biochemical, and histologic features elicited by moderate lateral fluid percussion injury (mLFPI) in mice. METHODS The role of kinin B₁ and B₂ receptors in brain damage, neuromotor, and cognitive deficits induced by mLFPI, was evaluated by means of subcutaneous injection of B₂R antagonist (HOE-140; 1 or 10 nmol/kg) or B₁R antagonist (des-Arg9-[Leu8]-bradykinin (DAL-Bk; 1 or 10 nmol/kg) 30 min and 24 h after brain injury. Brain damage was evaluated in the cortex, being considered as lesion volume, inflammatory, and oxidative damage. The open field and elevated plus maze tests were performed to exclude the nonspecific effects on object recognition memory test. RESULTS Our data revealed that HOE-140 (10 nmol/kg) protected against memory impairment. This treatment attenuated the brain edema, interleukin-1β, tumor necrosis factor-α, and nitric oxide metabolites content elicited by mLFPI. Accordingly, HOE-140 administration protected against the increase of nicotinamide adenine dinucleotide phosphate oxidase activity, thiobarbituric-acid-reactive species, protein carbonylation generation, and Na⁺ K⁺ ATPase inhibition induced by trauma. Histologic analysis showed that HOE-140 reduced lesion volume when analyzed 7 days after brain injury. CONCLUSIONS This study suggests the involvement of the B₂ receptor in memory deficits and brain damage caused by mLFPI in mice.
Collapse
Affiliation(s)
- Ana Paula Oliveira Ferreira
- Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brasil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jung CS, Wispel C, Zweckberger K, Beynon C, Hertle D, Sakowitz OW, Unterberg AW. Endogenous nitric-oxide synthase inhibitor ADMA after acute brain injury. Int J Mol Sci 2014; 15:4088-103. [PMID: 24663083 PMCID: PMC3975386 DOI: 10.3390/ijms15034088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/14/2014] [Accepted: 03/03/2014] [Indexed: 02/02/2023] Open
Abstract
Previous results on nitric oxide (NO) metabolism after traumatic brain injury (TBI) show variations in NO availability and controversial effects of exogenous nitric oxide synthase (NOS)-inhibitors. Furthermore, elevated levels of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA) were reported in cerebro-spinal fluid (CSF) after traumatic subarachnoid hemorrhage (SAH). Therefore, we examined whether ADMA and the enzymes involved in NO- and ADMA-metabolism are expressed in brain tissue after TBI and if time-dependent changes occur. TBI was induced by controlled cortical impact injury (CCII) and neurological performance was monitored. Expression of NOS, ADMA, dimethylarginine dimethylaminohydrolases (DDAH) and protein-arginine methyltransferase 1 (PRMT1) was determined by immunostaining in different brain regions and at various time-points after CCII. ADMA and PRMT1 expression decreased in all animals after TBI compared to the control group, while DDAH1 and DDAH2 expression increased in comparison to controls. Furthermore, perilesionally ADMA is positively correlated with neuroscore performance, while DDAH1 and DDAH2 are negatively correlated. ADMA and its metabolizing enzymes show significant temporal changes after TBI and may be new targets in TBI treatment.
Collapse
Affiliation(s)
- Carla S Jung
- Department of Neurosurgery, University of Heidelberg, Heidelberg D-69120, Germany.
| | - Christian Wispel
- Department of Neurosurgery, University of Heidelberg, Heidelberg D-69120, Germany.
| | - Klaus Zweckberger
- Department of Neurosurgery, University of Heidelberg, Heidelberg D-69120, Germany.
| | - Christopher Beynon
- Department of Neurosurgery, University of Heidelberg, Heidelberg D-69120, Germany.
| | - Daniel Hertle
- Department of Neurosurgery, University of Heidelberg, Heidelberg D-69120, Germany.
| | - Oliver W Sakowitz
- Department of Neurosurgery, University of Heidelberg, Heidelberg D-69120, Germany.
| | - Andreas W Unterberg
- Department of Neurosurgery, University of Heidelberg, Heidelberg D-69120, Germany.
| |
Collapse
|
32
|
Zhou YF, Li WT, Han HC, Gao DK, He XS, Li L, Song JN, Fei Z. Allicin protects rat cortical neurons against mechanical trauma injury by regulating nitric oxide synthase pathways. Brain Res Bull 2014; 100:14-21. [DOI: 10.1016/j.brainresbull.2013.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/21/2013] [Indexed: 01/01/2023]
|
33
|
Abstract
Traumatic brain injury (TBI) affects all age groups in a population and is an injury generating scientific interest not only as an acute event, but also as a complex brain disease with several underlying neurobehavioral and neuropathological characteristics. We review early and long-term alterations after juvenile and adult TBI with a focus on changes in the neurovascular unit (NVU), including neuronal interactions with glia and blood vessels at the blood-brain barrier (BBB). Post-traumatic changes in cerebral blood-flow, BBB structures and function, as well as mechanistic pathways associated with brain aging and neurodegeneration are presented from clinical and experimental reports. Based on the literature, increased attention on BBB changes should be integrated in studies characterizing TBI outcome and may provide a meaningful therapeutic target to resolve detrimental post-traumatic dysfunction.
Collapse
Affiliation(s)
- V Pop
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92354 USA
| | | |
Collapse
|
34
|
Badaut J, Bix GJ. Vascular neural network phenotypic transformation after traumatic injury: potential role in long-term sequelae. Transl Stroke Res 2013; 5:394-406. [PMID: 24323723 DOI: 10.1007/s12975-013-0304-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/11/2023]
Abstract
The classical neurovascular unit (NVU), composed primarily of endothelium, astrocytes, and neurons, could be expanded to include smooth muscle and perivascular nerves present in both the up- and downstream feeding blood vessels (arteries and veins). The extended NVU, which can be defined as the vascular neural network (VNN), may represent a new physiological unit to consider for therapeutic development in stroke, traumatic brain injury, and other brain disorders (Zhang et al., Nat Rev Neurol 8(12):711-716, 2012). This review is focused on traumatic brain injury and resultant post-traumatic changes in cerebral blood flow, smooth muscle cells, matrix, blood-brain barrier structures and function, and the association of these changes with cognitive outcomes as described in clinical and experimental reports. We suggest that studies characterizing TBI outcomes should increase their focus on changes to the VNN, as this may yield meaningful therapeutic targets to resolve posttraumatic dysfunction.
Collapse
Affiliation(s)
- J Badaut
- Department of Pediatrics, Loma Linda University School of Medicine, Coleman Pavilion, Room A1120, 11175 Campus Street, Loma Linda, CA, 92354, USA,
| | | |
Collapse
|
35
|
Jullienne A, Badaut J. Molecular contributions to neurovascular unit dysfunctions after brain injuries: lessons for target-specific drug development. FUTURE NEUROLOGY 2013; 8:677-689. [PMID: 24489483 PMCID: PMC3904383 DOI: 10.2217/fnl.13.55] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The revised 'expanded' neurovascular unit (eNVU) is a physiological and functional unit encompassing endothelial cells, pericytes, smooth muscle cells, astrocytes and neurons. Ischemic stroke and traumatic brain injury are acute brain injuries directly affecting the eNVU with secondary damage, such as blood-brain barrier (BBB) disruption, edema formation and hypoperfusion. BBB dysfunctions are observed at an early postinjury time point, and are associated with eNVU activation of proteases, such as tissue plasminogen activator and matrix metalloproteinases. BBB opening is accompanied by edema formation using astrocytic AQP4 as a key protein regulating water movement. Finally, nitric oxide dysfunction plays a dual role in association with BBB injury and dysregulation of cerebral blood flow. These mechanisms are discussed including all targets of eNVU encompassing endothelium, glial cells and neurons, as well as larger blood vessels with smooth muscle. In fact, the feeding blood vessels should also be considered to treat stroke and traumatic brain injury. This review underlines the importance of the eNVU in drug development aimed at improving clinical outcome after stroke and traumatic brain injury.
Collapse
Affiliation(s)
- Amandine Jullienne
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Jérôme Badaut
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| |
Collapse
|
36
|
Jungner M, Lundblad C, Bentzer P. Rosuvastatin in experimental brain trauma: improved capillary patency but no effect on edema or cerebral blood flow. Microvasc Res 2013; 88:48-55. [PMID: 23538316 DOI: 10.1016/j.mvr.2013.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/14/2013] [Accepted: 03/17/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Microvascular dysfunction, characterized by edema formation secondary to increased blood-brain barrier (BBB) permeability and decreased blood flow, contributes to poor outcome following brain trauma. Recent studies have indicated that statins may counteract edema formation following brain trauma but little is known about other circulatory effects of statins in this setting. The objective of this study was to investigate whether statin treatment improves brain microcirculation early after traumatic brain injury, and whether microvascular effects are associated with altered production of nitric oxide and prostacyclin. METHODS After fluid percussion injury, rats were randomized to intravenous treatment with 20mg/kg of rosuvastatin or vehicle. Brain edema (wet/dry weight), BBB integrity ((51)Cr-EDTA blood to brain transfer), cerebral blood flow ((14)C-iodoantipyrine autoradiography), and number of perfused cortical capillaries (FITC-albumin fluorescence microscopy), were measured at 4 and 24h. NO and prostacyclin production was estimated from plasma concentration of the degradation products NO2- and NO3- (NOx) and 6-keto-PGF1-alpha, respectively. Sham injured animals were treated with vehicle and analyzed at 4h. RESULTS Trauma resulted in brain edema, BBB dysfunction, and reduced cortical blood flow, with no effect of statin treatment. Trauma also induced a reduction in the number of perfused capillaries, which was improved by statin treatment. Statin treatment led to increased NOx levels and reduced mean arterial blood pressure. 6-Keto-PGF1-alpha levels tended to increase after trauma, and were significantly reduced by rosuvastatin. CONCLUSIONS Rosuvastatin treatment may improve microcirculation after traumatic brain injury by preserved patency of cerebral capillaries. This effect is associated with increased NO and reduced prostacyclin production. No effect on brain edema or BBB integrity was found.
Collapse
Affiliation(s)
- M Jungner
- Department of Anesthesiology and Intensive Care, Lund University Hospital, SE-22185 Lund, Sweden.
| | | | | |
Collapse
|
37
|
Terpolilli NA, Kim SW, Thal SC, Kuebler WM, Plesnila N. Inhaled nitric oxide reduces secondary brain damage after traumatic brain injury in mice. J Cereb Blood Flow Metab 2013; 33. [PMID: 23188422 PMCID: PMC3564204 DOI: 10.1038/jcbfm.2012.176] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ischemia, especially pericontusional ischemia, is one of the leading causes of secondary brain damage after traumatic brain injury (TBI). So far efforts to improve cerebral blood flow (CBF) after TBI were not successful because of various reasons. We previously showed that nitric oxide (NO) applied by inhalation after experimental ischemic stroke is transported to the brain and induces vasodilatation in hypoxic brain regions, thus improving regional ischemia, thereby improving brain damage and neurological outcome. As regional ischemia in the traumatic penumbra is a key mechanism determining secondary posttraumatic brain damage, the aim of the current study was to evaluate the effect of NO inhalation after experimental TBI. NO inhalation significantly improved CBF and reduced intracranial pressure after TBI in male C57 Bl/6 mice. Long-term application (24 hours NO inhalation) resulted in reduced lesion volume, reduced brain edema formation and less blood-brain barrier disruption, as well as improved neurological function. No adverse effects, e.g., on cerebral auto-regulation, systemic blood pressure, or oxidative damage were observed. NO inhalation might therefore be a safe and effective treatment option for TBI patients.
Collapse
Affiliation(s)
- Nicole A Terpolilli
- Department of Neurosurgery, University of Munich Medical Center, Munich, Germany
| | | | | | | | | |
Collapse
|
38
|
Xiong Y, Mahmood A, Meng Y, Zhang Y, Zhang ZG, Morris DC, Chopp M. Neuroprotective and neurorestorative effects of thymosin β4 treatment following experimental traumatic brain injury. Ann N Y Acad Sci 2013; 1270:51-8. [PMID: 23050817 DOI: 10.1111/j.1749-6632.2012.06683.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Traumatic brain injury (TBI) remains a leading cause of mortality and morbidity worldwide. No effective pharmacological treatments are available for TBI because all phase II/III TBI clinical trials have failed. This highlights a compelling need to develop effective treatments for TBI. Endogenous neurorestoration occurs in the brain after TBI, including angiogenesis, neurogenesis, synaptogenesis, oligodendrogenesis, and axonal remodeling, which may be associated with spontaneous functional recovery after TBI. However, the endogenous neurorestoration following TBI is limited. Treatments amplifying these neurorestorative processes may promote functional recovery after TBI. Thymosin beta 4 (Tβ4) is the major G-actin-sequestering molecule in eukaryotic cells. In addition, Tβ4 has other properties including antiapoptosis and anti-inflammation, promotion of angiogenesis, wound healing, stem/progenitor cell differentiation, and cell migration and survival, which provide the scientific foundation for the corneal, dermal, and cardiac wound repair multicenter clinical trials. Here, we describe Tβ4 as a neuroprotective and neurorestorative candidate for treatment of TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Departments of Neurosurgery, Henry Ford Health System, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Kanbak G, Kartkaya K, Ozcelik E, Guvenal AB, Kabay SC, Arslan G, Durmaz R. The neuroprotective effect of acute moderate alcohol consumption on caspase-3 mediated neuroapoptosis in traumatic brain injury: the role of lysosomal cathepsin L and nitric oxide. Gene 2012; 512:492-5. [PMID: 23099040 DOI: 10.1016/j.gene.2012.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 06/25/2012] [Accepted: 10/10/2012] [Indexed: 11/19/2022]
Abstract
Our aim in this study was to investigate the effect of moderate acute alcohol administration on cysteine protease mediated neuronal apoptosis and nitric oxide production in the traumatic brain injury. A total of 29 adult Sprague-Dawley male rats weighing 250-300 g were used. The rats were allocated into four groups. The first group was the control (sham-operated) group in which only a craniotomy was performed, the others were alcohol, trauma and trauma+alcohol groups. Caspase-3 enzyme activity in the trauma group increased significantly in comparison with the control group. The alcohol given group showed a decreased caspase-3 enzyme activity compared to the trauma group. The level of caspase-3 enzyme activity in the alcohol+trauma group decreased in comparison to the trauma group. SF/FEL ratio of cathepsin-L enzyme activity in the trauma group was significantly higher than in the control group. Our results indicate that moderate alcohol consumption may have protective effects on apoptotic cell death after traumatic brain injury. Protective effects of moderate ethanol consumption might be related to inhibition of lysosomal protease release and nitric oxide production.
Collapse
Affiliation(s)
- Gungor Kanbak
- Eskisehir Osmangazi University, The Medical School, Department of Biochemistry, Turkey
| | | | | | | | | | | | | |
Collapse
|
40
|
Ohta M, Higashi Y, Yawata T, Kitahara M, Nobumoto A, Ishida E, Tsuda M, Fujimoto Y, Shimizu K. Attenuation of axonal injury and oxidative stress by edaravone protects against cognitive impairments after traumatic brain injury. Brain Res 2012; 1490:184-92. [PMID: 22982593 DOI: 10.1016/j.brainres.2012.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/30/2012] [Accepted: 09/07/2012] [Indexed: 12/21/2022]
Abstract
Traumatic axonal injury (TAI), a feature of traumatic brain injury (TBI), progressively evolves over hours through impaired axonal transport and is thought to be a major contributor to cognitive dysfunction. In spite of various studies suggesting that pharmacologic or physiologic interventions might reduce TAI, clinical neuroprotective treatments are still unavailable. Edaravone, a free radical scavenger, has been shown to exert neuroprotective effects in animal models of several brain disorders. In this study, to evaluate whether edaravone suppresses TAI following TBI, mice were subjected to weight drop injury and had either edaravone (3.0mg/kg) or saline administered intravenously immediately after impact. Axonal injury and oxidative stress were assessed using immunohistochemistry with antibodies against amyloid precursor protein, a marker of impaired axonal transport, and with 8-hydroxy-2'-deoxyguanosine, a marker of oxidative DNA damage. Edaravone significantly suppressed axonal injury and oxidative stress in the cortex, corpus callosum, and hippocampus 24h after injury. The neuroprotective effects of edaravone were observed in mice receiving 1.0, 3.0, or 10mg/kg of edaravone immediately after impact, but not after 0.3mg/kg of edaravone. With treatment 1h after impact, axonal injury was also significantly suppressed and this therapeutic effect persisted up to 6h after impact. Furthermore, behavioral tests performed 9 days after injury showed memory deficits in saline-treated traumatized mice, which were not evident in the edaravone-treated group. These results suggest that edaravone protects against memory deficits following TBI and that this protection is mediated by suppression of TAI and oxidative stress.
Collapse
Affiliation(s)
- Manabu Ohta
- Department of Neurosurgery, Kochi Medical School, Kohasu, Okoh-cho, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hall ED, Wang JA, Miller DM. Relationship of nitric oxide synthase induction to peroxynitrite-mediated oxidative damage during the first week after experimental traumatic brain injury. Exp Neurol 2012; 238:176-82. [PMID: 22960186 DOI: 10.1016/j.expneurol.2012.08.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/31/2012] [Accepted: 08/21/2012] [Indexed: 11/17/2022]
Abstract
We have previously shown the pathophysiological importance of the reactive nitrogen species peroxynitrite (PN) formed from the reaction of nitric oxide (•NO) and superoxide (O(2)(•-)) radicals and its involvement in lipid peroxidation (LP) and protein nitration damage in brain tissue following traumatic brain injury (TBI). Nitric oxide is produced by at least three isoforms of the enzyme nitric oxide synthase (NOS) including: endothelial NOS (eNOS) in the CNS vasculature, neuronal NOS (nNOS), and inducible NOS (iNOS) in macrophages/microglia. In view of the requirement of •NO synthesis for PN formation, we sought to address the time course of NOS expression (mRNA by real time quantitative PCR and protein by western blot) after TBI in comparison with the time course of PN-mediated protein nitration (3-nitrotyrosine, 3-NT) in ipsilateral cortex (CTX) and hippocampus (HIPP) between 3 hours and 1 week post-injury using a controlled cortical impact (CCI) mouse model of TBI in young adult CF-1 mice. Protein nitration showed a progressive posttraumatic increase that became significant in CTX at 24 hours and then peaked at 72 hours in both CTX and HIPP. During the increase in PN-derived 3-NT, there was no increase in either CTX or HIPP eNOS mRNA levels, whereas eNOS protein levels were significantly (p<0.05) increased at 48 and 72 hours in both brain regions. There was a significant decrease in HIPP, but not CTX nNOS mRNA; however, nNOS protein did not change except for a significant increase in CTX at 1 week. There was significantly increased CTX and HIPP iNOS mRNA levels at 24, 48, and 72 hours (p<.05) post-injury. In contrast, no change was seen in CTX or HIPP iNOS protein at any timepoint. Taken together, eNOS protein expression and iNOS mRNA appear to bear a coincident temporal relationship to the time course of PN-mediated protein nitrative damage after CCI-TBI suggesting that both constitutive and inducible NOS isoforms contribute •NO for PN formation and 3-NT protein modification after TBI.
Collapse
Affiliation(s)
- Edward D Hall
- Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, KY 40536‐0509, USA.
| | | | | |
Collapse
|
42
|
Melatonin Antioxidative Defense: Therapeutical Implications for Aging and Neurodegenerative Processes. Neurotox Res 2012; 23:267-300. [DOI: 10.1007/s12640-012-9337-4] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 12/12/2022]
|
43
|
Kang WH, Simon MJ, Gao S, Banta S, Morrison B. Attenuation of astrocyte activation by TAT-mediated delivery of a peptide JNK inhibitor. J Neurotrauma 2012; 28:1219-28. [PMID: 21510821 DOI: 10.1089/neu.2011.1879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Astrocyte activation contributes to the brain's response to disease and injury. Activated astrocytes generate harmful radicals that exacerbate brain damage including nitric oxide, peroxides and superoxides. Furthermore, reactive astrocytes hinder regeneration of damaged neural circuits by secreting neuro-developmental inhibitors and glycosaminoglycans (GAGs), which physically block growth cone extension. Therefore, targeted therapeutic strategies to limit astrocyte activation may enhance recovery from many neurodegenerative states. Previously, we demonstrated that the HIV-1 TAT cell-penetrating peptide, a short non-toxic peptide from the full-length TAT protein, delivered a protein cargo to astrocytes in a process dependent on cell-surface GAG. Since activated astrocytes produce GAG, in this study we tested whether TAT could transduce activated astrocytes, deliver a biologically active cargo, and produce a physiological effect. Astrocyte activation was induced by IL-1β, lipopolysaccharide (LPS), or mechanical stretch injury, and quantified by increased GAG and nitrite content. TAT-mediated delivery of a mock therapeutic protein, GFP, increased significantly after activation. Nitrite production, GAG expression, and GFP-TAT transduction were significantly attenuated by inhibitors of JNK, p38, or ERK. TAT fused to a peptide JNK inhibitor delivered the peptide inhibitor to activated astrocytes and significantly reduced activation. Our study is the first to report significant and direct modulation of astrocyte activation with a peptide JNK inhibitor. Our promising in vitro results warrant in vivo follow-up, as TAT-mediated protein delivery may have broad therapeutic potential for preventing astrocyte activation with the possibility of limiting off-target, negative side effects.
Collapse
Affiliation(s)
- Woo Hyeun Kang
- Department of Biomedical, Columbia University, 1210 Amsterdam Avenue, New York, NY 10027, USA.
| | | | | | | | | |
Collapse
|
44
|
Arnberg F, Gahm C, Mathiesen T. L-N-iminoethyl-lysine after experimental brain trauma attenuates cellular proliferation and astrocyte differentiation. Acta Neurochir (Wien) 2012; 154:681-7. [PMID: 22297397 DOI: 10.1007/s00701-012-1282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 01/12/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND The effects, and thereby possible benefit, of inhibiting nitric oxide synthases (NOS) after brain injury are not fully understood. Nitric oxide (NO) has both neuroprotective and damaging features, and its effect on the cellular proliferation and differentiation that occurs in response to traumatic brain injury (TBI) is largely unknown. This study was undertaken to investigate the effects of the selective inducible NOS-inhibitor, L-N-iminoethyl-lysine (L-NIL), on proliferating cell populations in rat brain areas with self-renewing capacity. METHODS A brain contusion was produced using a weight-drop model in rats. Animals received treatment with L-NIL or saline, and were killed after 6 days. Brain sections were stained with a cell marker of proliferation, Ki67, to detect dividing cells in the hippocampus, perilesional zone and the subventricular zone (SVZ). RESULTS A significant decrease of proliferating cells was seen in the SVZ bilaterally in L-NIL-treated animals compared to controls. Hippocampal proliferation showed a tendency to decrease in L-NIL-treated animals that did not reach statistical significance. Perilesional proliferation was equal in the treatment group and controls. The percentage of proliferating GFAP expressing cells was, however, lower in L-NIL-treated animals. The proliferating cell populations were predominantly immunoreactive for GFAP, while a smaller population was immunoreactive for Nestin. The inhibition of inducible NOS with L-NIL attenuated the level of cellular proliferation and influenced the differentiation of astrocytes at 6 days after experimental brain contusion. CONCLUSIONS Our results confirmed that reactive glial cells dominated the proliferating cell population after TBI and suggested that NO-regulated mechanisms are relevant for post-traumatic cellular proliferation and differentiation, since NO inhibition decreased the number of proliferating cells in the SVZ and the proportion of proliferating cells expressing GFAP, a marker of glial proliferation.
Collapse
|
45
|
Günther M, Al Nimer F, Gahm C, Piehl F, Mathiesen T. iNOS-mediated secondary inflammatory response differs between rat strains following experimental brain contusion. Acta Neurochir (Wien) 2012; 154:689-97. [PMID: 22362050 DOI: 10.1007/s00701-012-1297-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/30/2012] [Indexed: 12/23/2022]
Abstract
BACKGROUND Nitric oxide is a key mediator of post-traumatic inflammation in the brain. We examined the expressions of iNOS, nNOS, and eNOS in inbred DA and PVGa rat strains where DA is susceptible to autoimmune neuroinflammation and PVGa-resistant. METHODS Parietal contusions using a weight drop model were produced in five rats per genotype. After 24 h, the brains were removed and analyzed using a range of immunohistochemical methods. RESULTS PVGa presented significantly increased iNOS expression in infiltrating inflammatory cells in the perilesional area compared to DA (p < 0.05). The amount of w3/13-positive infiltrating inflammatory cells did not differ between strains. eNOS and nNOS expression did not differ between strains. iNOS-positive cells coexpressed neuronal (NeuN), macrophage (ED-1), and leucocyte (w3/13) markers. MnSOD was significantly increased in PVGa (p < 0.05). 3-Nitrotyrosine, a measure of peroxynitrite levels, and fluoro-jade stained neuronal degeneration, did not differ between strains. CONCLUSIONS Two inbred rat strains with genetically determined differences in susceptibility to develop autoimmune disease displayed different levels of the inflammatory and anti-inflammatory mediators iNOS and MnSOD, indicating genetic regulation. Interestingly, the increased levels of iNOS did not lead to elevated expression of the neuronal cell-death marker fluoro-jade. The increased iNOS expression was correlated with increased expression of superoxide scavenger MnSOD. Excessive peroxynitrite formation was probably prevented by limitation of available superoxide. Subsequently, the higher expression of potentially deleterious iNOS in PVGa did not result in increased neuronal death.
Collapse
Affiliation(s)
- Mattias Günther
- Department of Clinical Neuroscience, Section of Neurosurgery and Neuroimmunology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
46
|
Abstract
In vitro models of traumatic brain injury (TBI) are helping elucidate the pathobiological mechanisms responsible for dysfunction and delayed cell death after mechanical stimulation of the brain. Researchers have identified compounds that have the potential to break the chain of molecular events set in motion by traumatic injury. Ultimately, the utility of in vitro models in identifying novel therapeutics will be determined by how closely the in vitro cascades recapitulate the sequence of cellular events that play out in vivo after TBI. Herein, the major in vitro models are reviewed, and a discussion of the physical injury mechanisms and culture preparations is employed. A comparison between the efficacy of compounds tested in vitro and in vivo is presented as a critical evaluation of the fidelity of in vitro models to the complex pathobiology that is TBI. We conclude that in vitro models were greater than 88% predictive of in vivo results.
Collapse
Affiliation(s)
- Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | | | | | | |
Collapse
|
47
|
Jeter CB, Hergenroeder GW, Ward NH, Moore AN, Dash PK. Human Traumatic Brain Injury Alters Circulating L-Arginine and Its Metabolite Levels: Possible Link to Cerebral Blood Flow, Extracellular Matrix Remodeling, and Energy Status. J Neurotrauma 2012; 29:119-27. [DOI: 10.1089/neu.2011.2029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Cameron B. Jeter
- Department of Neurobiology & Anatomy, The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas
| | - Georgene W. Hergenroeder
- Department of Neurobiology & Anatomy, The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas
| | - Norman H. Ward
- Department of Neurobiology & Anatomy, The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas
| | - Anthony N. Moore
- Department of Neurobiology & Anatomy, The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas
| | - Pramod K. Dash
- Department of Neurobiology & Anatomy, The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas
| |
Collapse
|
48
|
Berrout J, Jin M, O'Neil RG. Critical role of TRPP2 and TRPC1 channels in stretch-induced injury of blood-brain barrier endothelial cells. Brain Res 2011; 1436:1-12. [PMID: 22192412 DOI: 10.1016/j.brainres.2011.11.044] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 11/14/2011] [Accepted: 11/19/2011] [Indexed: 12/23/2022]
Abstract
The microvessels of the brain are very sensitive to mechanical stresses such as observed in traumatic brain injury (TBI). Such stresses can quickly lead to dysfunction of the microvessel endothelial cells, including disruption of blood-brain barrier (BBB). It is now evident that elevation of cytosolic calcium levels ([Ca2+]i) can compromise the BBB integrity, however the mechanism by which mechanical injury can produce a [Ca2+]i increase in brain endothelial cells is unclear. To assess the effects of mechanical/stretch injury on [Ca2+]i signaling, mouse brain microvessel endothelial cells (bEnd3) were grown to confluency on elasticized membranes and [Ca2+]i monitored using fura 2 fluorescence imaging. Application of an injury, using a pressure/stretch pulse of 50 ms, induced a rapid transient increase in [Ca2+]i. In the absence of extracellular Ca2+, the injury-induced [Ca2+]i transient was greatly reduced, but not fully eliminated, while unloading of Ca2+ stores by thapsigargin treatment in the absence of extracellular Ca2+ abolished the injury transient. Application of LOE-908 and amiloride, TRPC and TRPP2 channel blockers, respectively, both reduced the transient [Ca2+]i increase. Further, siRNA knockdown assays directed at TRPC1 and TRPP2 expression also resulted in a reduction of the injury-induced [Ca2+]i response. In addition, stretch injury induced increases of NO production and actin stress fiber formation, both of which were markedly reduced upon treatment with LOE908 and/or amiloride. We conclude that mechanical injury of brain endothelial cells induces a rapid influx of calcium, mediated by TRPC1 and TRPP2 channels, which leads to NO synthesis and actin cytoskeletal rearrangement.
Collapse
Affiliation(s)
- Jonathan Berrout
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
49
|
Obulesu M, Venu R, Somashekhar R. Lipid peroxidation in Alzheimer's disease: emphasis on metal-mediated neurotoxicity. Acta Neurol Scand 2011; 124:295-301. [PMID: 21303349 DOI: 10.1111/j.1600-0404.2010.01483.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite the crucial role of redox active metals like copper and iron in central biological reactions, their elevated levels are involved in the pathogenesis of Alzheimer's Disease (AD). Similarly reactive oxygen/nitrogen species (ROS/RNS) produced during normal metabolic activities, specifically oxidative phosphorylation of the cell, are scavenged by antioxidant enzymes like superoxide dismutase (SOD), catalase but impaired metabolic pathways tend to generate elevated levels of these ROS/RNS. Iron, copper, and zinc are some of the metals, which intensify this process and contribute for the pathogenesis of AD. This review summarizes the mechanism of ROS/RNS production and their role in lipid peroxidation. The factors, which make brain vulnerable for lipid peroxidation, have been discussed. It also focuses on possible treatment options and future directions.
Collapse
Affiliation(s)
- M Obulesu
- Department of Biotechnology, Capital College, Bangalore, India.
| | | | | |
Collapse
|
50
|
Dagtekin A, Comelekoglu U, Bagdatoglu O, Yilmaz N, Dagtekin O, Koseoglu A, Vayisoglu Y, Karatas D, Korkutan S, Avci E, Bagdatoglu C, Talas D. Comparison of the effects of different electrocautery applications to peripheral nerves: an experimental study. Acta Neurochir (Wien) 2011; 153:2031-9. [PMID: 21644008 DOI: 10.1007/s00701-011-1060-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 05/24/2011] [Indexed: 01/07/2023]
Abstract
BACKGROUND This study was designed to investigate the effects of bipolar and mononopolar electrocauterization on peripheral nerve tissue. The comparison on the deleterious effects of the different cautery modalities and the importance of probe tip placement are evaluated using electrophysiological, electron microscopic and biochemical assessment parameters. METHODS Ninety-eight male Wistar albino rats, each weighing 250-275 g, were randomly divided into 14 groups. Each group consisted of seven animals. Monopolar and bipolar electrocautery were performed at 15 watts. The application was performed either directly on the nerve or 1 mm lateral to the longitudinal axis of the nerve for 'near the nerve groups', respectively. RESULTS The electrophysiological findings showed that the mean amplitudes were at the lowest value in the first day for all the groups. At the end of the 3rd week, we recognised that the electrophysiological recovery continued. Electron microscopic evaluation showed myelin disruption in all groups. Myelin disruption of healthy neurons was at the highest level in the 1st day of application in accordance with the electrophysiological findings. Biochemical evaluation revealed statistical significance between the control and the two of the 'near the nerve groups' (GIII and GV) for NO (nitrite and nitrate) serum level. CONCLUSION The data of the present study might suggest that electrocautery, independent of the type and form of application, may result in significant damage in histological and electrophysological basis. Although the relative proportions cannot be ascertained, the time course of recovery suggests that both axon and myelin damage have occurred. The probable electrocautery damage may be of substantial importance for the situation that the nerves are displaced by tumor masses or atypical neural traces.
Collapse
Affiliation(s)
- Ahmet Dagtekin
- Department of Neurosurgery, Faculty of Medicine, Mersin University, İhsaniye mah. 4935 sok No:3, 33079, Mersin, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|