1
|
Gao MZ, Zeng JY, Chen XJ, Shi L, Hong FY, Lin M, Luo JW, Chen H. Dimethyl fumarate ameliorates oxidative stress-induced acute kidney injury after traumatic brain injury by activating Keap1-Nrf2/HO-1 signaling pathway. Heliyon 2024; 10:e32377. [PMID: 38947486 PMCID: PMC11214498 DOI: 10.1016/j.heliyon.2024.e32377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Acute kidney injury (AKI) frequently emerges as a consequential non-neurological sequel to traumatic brain injury (TBI), significantly contributing to heightened mortality risks. The intricate interplay of oxidative stress in the pathophysiology of TBI underscores the centrality of the Keap1-Nrf2/HO-1 signaling pathway as a pivotal regulator in this context. This study endeavors to elucidate the involvement of the Keap1-Nrf2/HO-1 pathway in modulating oxidative stress in AKI subsequent to TBI and concurrently explore the therapeutic efficacy of dimethyl fumarate (DMF). A rat model of TBI was established via the Feeney free-fall method, incorporating interventions with varying concentrations of DMF. Assessment of renal function ensued through measurements of serum creatinine and neutrophil gelatinase-associated lipocalin. Morphological evaluation of renal pathology was conducted employing quantitative hematoxylin and eosin staining. The inflammatory response was scrutinized by quantifying interleukin (IL)-6, IL-1β, and tumor necrosis factor-α levels. Oxidative stress levels were discerned through quantification of malondialdehyde and superoxide dismutase. The apoptotic cascade was examined via the terminal deoxynucleotidyl transferase dUTP deletion labeling assay. Western blotting provided insights into the expression dynamics of proteins affiliated with the Keap1-Nrf2/HO-1 pathway and apoptosis. The findings revealed severe kidney injury, heightened oxidative stress, inflammation, and apoptosis in the traumatic brain injury model. Treatment with DMF effectively reversed these changes, alleviating oxidative stress by activating the Keap1-Nrf2/HO-1 signaling pathway, ultimately conferring protection against AKI. Activating Keap1-Nrf2/HO-1 signaling pathway may be a potential therapeutic strategy for attenuating oxidative stress-induced AKI after TBI.
Collapse
Affiliation(s)
- Mei-zhu Gao
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Jing-yi Zeng
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Xue-jing Chen
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Lan Shi
- Department of Intensive Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Fu-yuan Hong
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Miao Lin
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Jie-wei Luo
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Han Chen
- The Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, 350001, China
| |
Collapse
|
2
|
Doubovikov ED, Aksenov DP. Brain Tissue Oxygen Dynamics Under Localised Hypoxia in the Awake State and the Physical Neuroprotective Effects of General Anaesthesia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1463:35-39. [PMID: 39400796 DOI: 10.1007/978-3-031-67458-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Brain health directly depends on maintaining a level of tissue oxygen that is high enough to avoid global hypoxia and local brain ischaemia. It is well documented that general anaesthesia has an anti-hypoxic neuroprotective effect. Previous studies of this effect primarily assessed the biochemical actions of anaesthetics. Physical actions were not well studied because the quantification of oxygen dynamics has only recently been described. Based on known oxygen, blood, and neuronal measurements, under various anaesthesia protocols and in the awake state, we mathematically analysed physical anaesthesia effects on oxygen distribution for localised hypoxia. From this, we built a universal equation of oxygen dynamics which can be applied to both animal and human subjects in awake and anaesthetised states, under normoxia, hyperoxia, and hypoxia. Using this equation, we determined that a proper anaesthesia protocol can protect up to 167 mm3 of local hypoxic cortical brain tissue via oxygen diffusion from healthy neighbouring areas.
Collapse
Affiliation(s)
- E D Doubovikov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, USA
| | - D P Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, USA.
- Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL, USA.
- University of Chicago, Pritzker School of Medicine, Chicago, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
3
|
Ehrenreich H, Gassmann M, Poustka L, Burtscher M, Hammermann P, Sirén AL, Nave KA, Miskowiak K. Exploiting moderate hypoxia to benefit patients with brain disease: Molecular mechanisms and translational research in progress. NEUROPROTECTION 2023; 1:9-19. [PMID: 37671067 PMCID: PMC7615021 DOI: 10.1002/nep3.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 09/07/2023]
Abstract
Hypoxia is increasingly recognized as an important physiological driving force. A specific transcriptional program, induced by a decrease in oxygen (O2) availability, for example, inspiratory hypoxia at high altitude, allows cells to adapt to lower O2 and limited energy metabolism. This transcriptional program is partly controlled by and partly independent of hypoxia-inducible factors. Remarkably, this same transcriptional program is stimulated in the brain by extensive motor-cognitive exercise, leading to a relative decrease in O2 supply, compared to the acutely augmented O2 requirement. We have coined the term "functional hypoxia" for this important demand-responsive, relative reduction in O2 availability. Functional hypoxia seems to be critical for enduring adaptation to higher physiological challenge that includes substantial "brain hardware upgrade," underlying advanced performance. Hypoxia-induced erythropoietin expression in the brain likely plays a decisive role in these processes, which can be imitated by recombinant human erythropoietin treatment. This article review presents hints of how inspiratory O2 manipulations can potentially contribute to enhanced brain function. It thereby provides the ground for exploiting moderate inspiratory plus functional hypoxia to treat individuals with brain disease. Finally, it sketches a planned multistep pilot study in healthy volunteers and first patients, about to start, aiming at improved performance upon motor-cognitive training under inspiratory hypoxia.
Collapse
Affiliation(s)
- Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Max Gassmann
- Institute of Veterinary Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Burtscher
- Faculty of Sports Science, University of Innsbruck, Innsbruck, Austria
| | | | - Anna-Leena Sirén
- Departments of Neurophysiology and Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kamilla Miskowiak
- Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
The Impact of Short-Term Hyperoxia on Cerebral Metabolism: A Systematic Review and Meta-Analysis. Neurocrit Care 2022; 37:547-557. [PMID: 35641804 DOI: 10.1007/s12028-022-01529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cerebral ischemia due to hypoxia is a major cause of secondary brain injury and is associated with higher morbidity and mortality in patients with acute brain injury. Hyperoxia could improve energetic dysfunction in the brain in this setting. Our objectives were to perform a systematic review and meta-analysis of the current literature and to assess the impact of normobaric hyperoxia on brain metabolism by using cerebral microdialysis. METHODS We searched Medline and Scopus, following the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement; we searched for retrospective and prospective observational studies, interventional studies, and randomized clinical trials that performed a hyperoxia challenge in patients with acute brain injury who were concomitantly monitored with cerebral microdialysis. This study was registered in PROSPERO (CRD420211295223). RESULTS We included a total of 17 studies, with a total of 311 patients. A statistically significant reduction in cerebral lactate values (pooled standardized mean difference [SMD] - 0.38 [- 0.53 to - 0.23]) and lactate to pyruvate ratio values (pooled SMD - 0.20 [- 0.35 to - 0.05]) was observed after hyperoxia. However, glucose levels (pooled SMD - 0.08 [- 0.23 to 0.08]) remained unchanged after hyperoxia. CONCLUSIONS Normobaric hyperoxia may improve cerebral metabolic disturbances in patients with acute brain injury. The clinical impact of such effects needs to be further elucidated.
Collapse
|
5
|
Normobaric oxygen treatment for mild-to-moderate depression: a randomized, double-blind, proof-of-concept trial. Sci Rep 2021; 11:18911. [PMID: 34556722 PMCID: PMC8460750 DOI: 10.1038/s41598-021-98245-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
Oxygen enriched air may increase oxygen pressure in brain tissue and have biochemical effects even in subjects without lung disease. Consistently, several studies demonstrated that normobaric oxygen treatment has clinical benefits in some neurological conditions. This study examined the efficacy of normobaric oxygen treatment in subjects with depression. In a randomized, double-blind trial, 55 participants aged 18-65 years with mild to moderate depression (had a Hamilton Rating Scale for Depression [HRSD] score of ≥ 8) were recruited to the study from the Southern district in Israel. Participants underwent a psychiatric inclusion assessment at baseline and then were randomly assigned to either normobaric oxygen treatment of 35% fraction of inspired oxygen or 21% fraction of inspired oxygen (room air) through a nasal tube, for 4 weeks, during the night. Evaluations were performed at baseline, 2 and 4 weeks after commencement of study interventions, using the following tools: HRSD; Clinical Global Impression (CGI) questionnaire; World Health Organization-5 questionnaire for the estimation of Quality of Life (WHO-5-QOL); Sense of Coherence (SOC) 13-item questionnaire; and, Sheehan Disability Scale (SDS). A multivariate regression analysis showed that the mean ± standard deviation [SD] changes in the HRSD scores from baseline to week four were - 4.2 ± 0.3 points in the oxygen-treated group and - 0.7 ± 0.6 in the control group, for a between-group difference of 3.5 points (95% confidence interval [CI] - 5.95 to - 1.0; P = 0.007). Similarly, at week four there was a between-group difference of 0.71 points in the CGI score (95% CI - 1.00 to - 0.29; P = 0.001). On the other hand, the analysis revealed that there were no significant differences in WHO-5-QOL, SOC-13 or SDS scores between the groups. This study showed a significant beneficial effect of oxygen treatment on some symptoms of depression.Trial registration: NCT02149563 (29/05/2014).
Collapse
|
6
|
Patrono D, Roggio D, Mazzeo AT, Catalano G, Mazza E, Rizza G, Gambella A, Rigo F, Leone N, Elia V, Dondossola D, Lonati C, Fanelli V, Romagnoli R. Clinical assessment of liver metabolism during hypothermic oxygenated machine perfusion using microdialysis. Artif Organs 2021; 46:281-295. [PMID: 34516020 PMCID: PMC9292750 DOI: 10.1111/aor.14066] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/17/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022]
Abstract
Background While growing evidence supports the use of hypothermic oxygenated machine perfusion (HOPE) in liver transplantation, its effects on liver metabolism are still incompletely understood. Methods To assess liver metabolism during HOPE using microdialysis (MD), we conducted an open‐label, observational pilot study on 10 consecutive grafts treated with dual‐HOPE (D‐HOPE). Microdialysate and perfusate levels of glucose, lactate, pyruvate, glutamate, and flavin mononucleotide (FMN) were measured during back table preparation and D‐HOPE and correlated to graft function and patient outcome. Results Median (IQR) MD and D‐HOPE time was 228 (210, 245) and 116 (103, 143) min. Three grafts developed early allograft dysfunction (EAD), with one requiring retransplantation. During D‐HOPE, MD glucose and lactate levels increased (ANOVA = 9.88 [p = 0.01] and 3.71 [p = 0.08]). Their 2nd‐hour levels were higher in EAD group and positively correlated with L‐GrAFT score. 2nd‐hour MD glucose and lactate were also positively correlated with cold ischemia time, macrovesicular steatosis, weight gain during D‐HOPE, and perfusate FMN. These correlations were not apparent when perfusate levels were considered. In contrast, MD FMN levels invariably dropped steeply after D‐HOPE start, whereas perfusate FMN was higher in dysfunctioning grafts. Conclusion MD glucose and lactate during D‐HOPE are markers of hepatocellular injury and could represent additional elements of the viability assessment.
Collapse
Affiliation(s)
- Damiano Patrono
- General Surgery 2U - Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Dorotea Roggio
- General Surgery 2U - Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Anna Teresa Mazzeo
- Anaesthesia, Critical Care and Emergency, A.O.U. Department of Surgical Sciences, Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy.,Anesthesia and Intensive Care, Department of Adult and Pediatric Pathology, University of Messina, Messina, Italy
| | - Giorgia Catalano
- General Surgery 2U - Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Elena Mazza
- General Surgery 2U - Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Giorgia Rizza
- General Surgery 2U - Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Alessandro Gambella
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Federica Rigo
- General Surgery 2U - Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Nicola Leone
- General Surgery 2U - Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Vincenzo Elia
- Anaesthesia, Critical Care and Emergency, A.O.U. Department of Surgical Sciences, Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi of Milan, Milan, Italy
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Vito Fanelli
- Anaesthesia, Critical Care and Emergency, A.O.U. Department of Surgical Sciences, Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Renato Romagnoli
- General Surgery 2U - Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Svedung Wettervik TM, Lewén A, Enblad P. Fine Tuning of Traumatic Brain Injury Management in Neurointensive Care-Indicative Observations and Future Perspectives. Front Neurol 2021; 12:638132. [PMID: 33716941 PMCID: PMC7943830 DOI: 10.3389/fneur.2021.638132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/20/2021] [Indexed: 01/01/2023] Open
Abstract
Neurointensive care (NIC) has contributed to great improvements in clinical outcomes for patients with severe traumatic brain injury (TBI) by preventing, detecting, and treating secondary insults and thereby reducing secondary brain injury. Traditional NIC management has mainly focused on generally applicable escalated treatment protocols to avoid high intracranial pressure (ICP) and to keep the cerebral perfusion pressure (CPP) at sufficiently high levels. However, TBI is a very heterogeneous disease regarding the type of injury, age, comorbidity, secondary injury mechanisms, etc. In recent years, the introduction of multimodality monitoring, including, e.g., pressure autoregulation, brain tissue oxygenation, and cerebral energy metabolism, in addition to ICP and CPP, has increased the understanding of the complex pathophysiology and the physiological effects of treatments in this condition. In this article, we will present some potential future approaches for more individualized patient management and fine-tuning of NIC, taking advantage of multimodal monitoring to further improve outcome after severe TBI.
Collapse
Affiliation(s)
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Humaloja J, Skrifvars MB, Raj R, Wilkman E, Pekkarinen PT, Bendel S, Reinikainen M, Litonius E. The Association Between Arterial Oxygen Level and Outcome in Neurocritically Ill Patients is not Affected by Blood Pressure. Neurocrit Care 2021; 34:413-422. [PMID: 33403587 PMCID: PMC8128839 DOI: 10.1007/s12028-020-01178-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/04/2020] [Indexed: 11/27/2022]
Abstract
Background In neurocritically ill patients, one early mechanism behind secondary brain injury is low systemic blood pressure resulting in inadequate cerebral perfusion and consequent hypoxia. Intuitively, higher partial pressures of arterial oxygen (PaO2) could be protective in case of inadequate cerebral circulation related to hemodynamic instability. Study purpose We examined whether the association between PaO2 and mortality is different in patients with low compared to normal and high mean arterial pressure (MAP) in patients after various types of brain injury. Methods We screened the Finnish Intensive Care Consortium database for mechanically ventilated adult (≥ 18) brain injury patients treated in several tertiary intensive care units (ICUs) between 2003 and 2013. Admission diagnoses included traumatic brain injury, cardiac arrest, subarachnoid and intracranial hemorrhage, and acute ischemic stroke. The primary exposures of interest were PaO2 (recorded in connection with the lowest measured PaO2/fraction of inspired oxygen ratio) and the lowest MAP, recorded during the first 24 h in the ICU. PaO2 was grouped as follows: hypoxemia (< 8.2 kPa, the lowest 10th percentile), normoxemia (8.2–18.3 kPa), and hyperoxemia (> 18.3 kPa, the highest 10th percentile), and MAP was divided into equally sized tertiles (< 60, 60–68, and > 68 mmHg). The primary outcome was 1-year mortality. We tested the association between hyperoxemia, MAP, and mortality with a multivariable logistic regression model, including the PaO2, MAP, and interaction of PaO2*MAP, adjusting for age, admission diagnosis, premorbid physical performance, vasoactive use, intracranial pressure monitoring use, and disease severity. The relationship between predicted 1-year mortality and PaO2 was visualized with locally weighted scatterplot smoothing curves (Loess) for different MAP levels. Results From a total of 8290 patients, 3912 (47%) were dead at 1 year. PaO2 was not an independent predictor of mortality: the odds ratio (OR) for hyperoxemia was 1.16 (95% CI 0.85–1.59) and for hypoxemia 1.24 (95% CI 0.96–1.61) compared to normoxemia. Higher MAP predicted lower mortality: OR for MAP 60–68 mmHg was 0.73 (95% CI 0.64–0.84) and for MAP > 68 mmHg 0.80 (95% CI 0.69–0.92) compared to MAP < 60 mmHg. The interaction term PaO2*MAP was nonsignificant. In Loess visualization, the relationship between PaO2 and predicted mortality appeared similar in all MAP tertiles. Conclusions During the first 24 h of ICU treatment in mechanically ventilated brain injured patients, the association between PaO2 and mortality was not different in patients with low compared to normal MAP. Supplementary Information The online version of this article (10.1007/s12028-020-01178-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaana Humaloja
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Erika Wilkman
- Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pirkka T Pekkarinen
- Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Stepani Bendel
- Department of Anesthesiology and Intensive Care, Kuopio University Hospital & University of Eastern Finland, Kuopio, Finland
| | - Matti Reinikainen
- Department of Anesthesiology and Intensive Care, Kuopio University Hospital & University of Eastern Finland, Kuopio, Finland
| | - Erik Litonius
- Division of Anesthesiology, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
9
|
Wettervik TS, Engquist H, Howells T, Lenell S, Rostami E, Hillered L, Enblad P, Lewén A. Arterial Oxygenation in Traumatic Brain Injury-Relation to Cerebral Energy Metabolism, Autoregulation, and Clinical Outcome. J Intensive Care Med 2020; 36:1075-1083. [PMID: 32715850 PMCID: PMC8343201 DOI: 10.1177/0885066620944097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Ischemic and hypoxic secondary brain insults are common and detrimental in traumatic brain injury (TBI). Treatment aims to maintain an adequate cerebral blood flow with sufficient arterial oxygen content. It has been suggested that arterial hyperoxia may be beneficial to the injured brain to compensate for cerebral ischemia, overcome diffusion barriers, and improve mitochondrial function. In this study, we investigated the relation between arterial oxygen levels and cerebral energy metabolism, pressure autoregulation, and clinical outcome. Methods: This retrospective study was based on 115 patients with severe TBI treated in the neurointensive care unit, Uppsala university hospital, Sweden, 2008 to 2018. Data from cerebral microdialysis (MD), arterial blood gases, hemodynamics, and intracranial pressure were analyzed the first 10 days post-injury. The first day post-injury was studied in particular. Results: Arterial oxygen levels were higher and with greater variability on the first day post-injury, whereas it was more stable the following 9 days. Normal-to-high mean pO2 was significantly associated with better pressure autoregulation/lower pressure reactivity index (P = .02) and lower cerebral MD-lactate (P = .04) on day 1. Patients with limited cerebral energy metabolic substrate supply (MD-pyruvate below 120 µM) and metabolic disturbances with MD-lactate-/pyruvate ratio (LPR) above 25 had significantly lower arterial oxygen levels than those with limited MD-pyruvate supply and normal MD-LPR (P = .001) this day. Arterial oxygenation was not associated with clinical outcome. Conclusions: Maintaining a pO2 above 12 kPa and higher may improve oxidative cerebral energy metabolism and pressure autoregulation, particularly in cases of limited energy substrate supply in the early phase of TBI. Evaluating the cerebral energy metabolic profile could yield a better patient selection for hyperoxic treatment in future trials.
Collapse
Affiliation(s)
| | - Henrik Engquist
- Department of Surgical Sciences/Anesthesia and Intensive Care, 8097Uppsala University, Uppsala, Sweden
| | - Timothy Howells
- Department of Neuroscience, Section of Neurosurgery, 8097Uppsala University, Uppsala, Sweden
| | - Samuel Lenell
- Department of Neuroscience, Section of Neurosurgery, 8097Uppsala University, Uppsala, Sweden
| | - Elham Rostami
- Department of Neuroscience, Section of Neurosurgery, 8097Uppsala University, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, Section of Neurosurgery, 8097Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, 8097Uppsala University, Uppsala, Sweden
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, 8097Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Ding SQ, Chen J, Wang SN, Duan FX, Chen YQ, Shi YJ, Hu JG, Lü HZ. Identification of serum exosomal microRNAs in acute spinal cord injured rats. Exp Biol Med (Maywood) 2019; 244:1149-1161. [PMID: 31450959 DOI: 10.1177/1535370219872759] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is important to find specific and easily detectable diagnostic markers in acute stage of spinal cord injury for guiding treatment and estimating prognosis. Although, microRNAs are attractive biomarkers, there is still no uniform standard for clinical evaluation of spinal cord injury based on “free circulation” miRNA spectrum. The reason may be that miRNA analysis from biological fluids is influenced by many pre-analysis variables. Exosome miRNAs are widely distributed in body fluids and have many advantages comparing with free miRNAs. The specific miRNAs in the central nervous system can be transported to the peripheral circulation and concentrated in exosomes. Therefore, we hypothesized that there might be some physiological changes associated with spinal cord injury in serum exosomal miRNAs. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and acute spinal cord injury rats were analyzed, and integrative bioinformatics were used to analyze the function and regulation of putative target genes. The results showed that acute spinal cord injury can lead to changes in miRNA expression in the circulating exosomes. The changed miRNAs and their associated pathways may explain the pathology of acute spinal cord injury. More importantly, we determined serum exosomal miR-125b-5p, miR-152-3p, and miR-130a-3p are specific and easily detectable diagnostic markers in acute spinal cord injury. More interestingly, we also found some valuable known and novel miRNAs. Further bioinformatics analysis and functional research will be of great help to make clear their role in the pathological process of spinal cord injury and judging whether they can be used as diagnostic markers. Impact statement This research hypothesized that there might be some physiological changes associated with SCI in serum exosomal miRNAs. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and acute SCI rats were analyzed, and integrative bioinformatics were used to analyze the function and regulation of putative target genes. The results showed that acute SCI can lead to changes in miRNA expression in the circulating exosomes. The changed miRNAs and their associated pathways may explain the pathology of acute SCI. More importantly, we determined serum exosomal miR-125b-5p, miR-152-3p, and miR-130a-3p are specific and easily detectable diagnostic markers in acute SCI.
Collapse
Affiliation(s)
- Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - Jing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| | - Sai-Nan Wang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| | - Fei-Xiang Duan
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - Yu-Qing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| | - Yu-Jiao Shi
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| |
Collapse
|
11
|
Elsherif M, Moreddu R, Hassan MU, Yetisen AK, Butt H. Real-time optical fiber sensors based on light diffusing microlens arrays. LAB ON A CHIP 2019; 19:2060-2070. [PMID: 31114826 DOI: 10.1039/c9lc00242a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The applications of optical fibers are impeded in implantable medical diagnostics due to incompatibility with biological tissues, and immune reaction in vivo. The utilization of biocompatible materials to construct a photonic sensing platform can reduce the immune response in in vivo medical diagnostics. Here, we developed real-time optical fiber sensors to determine the volumetric modulation of stimuli-responsive polymers. Asymmetric microlens structures were replicated on stimuli-sensitive hydrogels as stand-alone sensors and were chemically attached to the tips of silica and biocompatible optical fibers. Quantitative measurements were carried out using a smartphone to demonstrate the ease, simplicity, and practicality of the readout methodology. To demonstrate the utility in real-time sensing, the fiber probe was investigated in various concentrations of ethanol, propan-2-ol, and dimethyl sulfoxide. Also, the fiber probe showed a rapid response to pH in the acidic region with a sensitivity of 40 nW pH-1. To develop biocompatible probes for physiological applications, a microlens array-imprinted polymer was attached to the tip of a hydrogel optical fiber. The optical fiber probe in the refection configuration showed a sensitivity of 7 nW pH-1. The developed hydrogel fiber probes may have application in point-of-care diagnostics, continuous biomarker monitoring, and critical care sensing devices.
Collapse
Affiliation(s)
- Mohamed Elsherif
- School of Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | | | |
Collapse
|
12
|
Norouzirad R, Ghanbari M, Bahadoran Z, Abdollahifar MA, Rasouli N, Ghasemi A. Hyperoxia improves carbohydrate metabolism by browning of white adipocytes in obese type 2 diabetic rats. Life Sci 2019; 220:58-68. [DOI: 10.1016/j.lfs.2019.01.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/20/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
|
13
|
Feasibility of lung microdialysis to assess metabolism during clinical ex vivo lung perfusion. J Heart Lung Transplant 2019; 38:267-276. [DOI: 10.1016/j.healun.2018.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 11/20/2022] Open
|
14
|
Immediate anterior open reduction and plate fixation in the management of lower cervical dislocation with facet interlocking. Sci Rep 2019; 9:1286. [PMID: 30718730 PMCID: PMC6362197 DOI: 10.1038/s41598-018-37742-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/12/2018] [Indexed: 11/23/2022] Open
Abstract
Lower cervical dislocation with facet interlocking is one of the most drastic injuries to the cervical spine. The early reduction is thought critical in preventing progressive secondary spinal cord injury. The authors report a new surgical procedure in the management of lower cervical dislocation with facet interlocking. A total of twenty-one cases received immediate single-staged anterior open reduction, realignment and plate fixation under general anesthesia. After the procedures, most cases exhibited improved neurological function. All patients showed stable fusion at 1-year follow-up. Loss of spinal alignment or kyphotic deformity was not found in any case. Hardware failure including screw loosening or penetrating was not observed. In conclusion, the immediate anterior open reduction and plate fixation is a safe and effective procedure in the management of lower cervical dislocation with facet interlocking.
Collapse
|
15
|
Jones JM, DePaul MA, Gregory CR, Lang BT, Xie H, Zhu M, Rutten MJ, Mays RW, Busch SA, Pati S, Gregory KW. Multipotent Adult Progenitor Cells, but Not Tissue Inhibitor of Matrix Metalloproteinase-3, Increase Tissue Sparing and Reduce Urological Complications following Spinal Cord Injury. J Neurotrauma 2018; 36:1416-1427. [PMID: 30251917 DOI: 10.1089/neu.2018.5727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Following spinal cord injury (SCI), inflammation amplifies damage beyond the initial insult, providing an opportunity for targeted treatments. An ideal protective therapy would reduce both edema within the lesion area and the activation/infiltration of detrimental immune cells. Previous investigations demonstrated the efficacy of intravenous injection of multipotent adult progenitor cells (MAPC®) to modulate immune response following SCI, leading to significant improvements in tissue sparing, locomotor and urological functions. Separate studies have demonstrated that tissue inhibitor of matrix metalloproteinase-3 (TIMP3) reduces blood-brain barrier permeability following traumatic brain injury in a mouse model, leading to improved functional recovery. This study examined whether TIMP3, delivered alone or in concert with MAPC cells, improves functional recovery from a contusion SCI in a rat model. The results suggest that intravenous delivery of MAPC cell therapy 1 day following acute SCI significantly improves tissue sparing and impacts functional recovery. TIMP3 treatment provided no significant benefit, and further, when co-administered with MAPC cells, it abrogated the therapeutic effects of MAPC cell therapy. Importantly, this study demonstrated for the first time that acute treatment of SCI with MAPC cells can significantly reduce the incidence of urinary tract infection (UTI) and the use of antibiotics for UTI treatment.
Collapse
Affiliation(s)
- James M Jones
- 1 Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon
| | - Marc A DePaul
- 2 Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
| | - Cynthia R Gregory
- 1 Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon.,3 Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon
| | | | - Hua Xie
- 1 Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon.,5 Department of Surgery, Oregon Health and Science University, Portland, Oregon
| | - Meihua Zhu
- 1 Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon
| | - Michael J Rutten
- 1 Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon
| | | | | | - Shibani Pati
- 6 Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Kenton W Gregory
- 1 Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon.,7 Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
16
|
Ramirez de Noriega F, Manley GT, Moscovici S, Itshayek E, Tamir I, Fellig Y, Shkara RA, Rosenthal G. A swine model of intracellular cerebral edema - Cerebral physiology and intracranial compliance. J Clin Neurosci 2018; 58:192-199. [PMID: 30454689 DOI: 10.1016/j.jocn.2018.10.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
Abstract
Cerebral edema leading to elevated intracranial pressure (ICP) is a fundamental concern after severe traumatic brain injury (TBI), stroke, and severe acute hyponatremia. We describe a swine model of water intoxication and its cerebral histological and physiological sequela. We studied female swine weighing 35-45 kg. Four serum sodium intervals were designated: baseline, mild, moderate, and severe hyponatremia attained by infusing hypotonic saline. Intracranial fluid injections were performed to assess intracranial compliance. At baseline and following water intoxication wedge biopsy was obtained for pathological examination and electron microscopy. We studied 8 swine and found an increase in ICP that was strongly related to the decrease in serum sodium level. Mean ICP rose from a baseline of 6 ± 2 to 28 ± 6 mm Hg during severe hyponatremia, while cerebral perfusion pressure (CPP) decreased from 72 ± 10 to 46 ± 11 mm Hg. Brain tissue oxygen tension (PbtO2) decreased from 18.4 ± 8.9 to 5.3 ± 3.0 mm Hg. Electron microscopy demonstrated intracellular edema and astrocytic foot process swelling following water intoxication. With severe hyponatremia, 2 cc intracranial fluid injection resulted in progressively greater ICP dose, indicating a worsening intracranial compliance. Our model leads to graded and sustained elevation of ICP, lower CPP, and decreased PbtO2, all of which cross clinically relevant thresholds. Intracranial compliance worsens with increased cerebral swelling. This model may serve as a platform to study which therapeutic interventions best improve the cerebral physiological profile in the face of severe brain edema.
Collapse
Affiliation(s)
| | - Geoffrey T Manley
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Samuel Moscovici
- Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eyal Itshayek
- Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Idit Tamir
- Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ramiz Abu Shkara
- Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Guy Rosenthal
- Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Spotlight on Neurotrauma Research in Canada's Leading Academic Centers. J Neurotrauma 2018; 35:1986-2004. [PMID: 30074875 DOI: 10.1089/neu.2018.29017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Zeiler FA, Thelin EP, Helmy A, Czosnyka M, Hutchinson PJA, Menon DK. A systematic review of cerebral microdialysis and outcomes in TBI: relationships to patient functional outcome, neurophysiologic measures, and tissue outcome. Acta Neurochir (Wien) 2017; 159:2245-2273. [PMID: 28988334 PMCID: PMC5686263 DOI: 10.1007/s00701-017-3338-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To perform a systematic review on commonly measured cerebral microdialysis (CMD) analytes and their association to: (A) patient functional outcome, (B) neurophysiologic measures, and (C) tissue outcome; after moderate/severe TBI. The aim was to provide a foundation for next-generation CMD studies and build on existing pragmatic expert guidelines for CMD. METHODS We searched MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library (inception to October 2016). Strength of evidence was adjudicated using GRADE. RESULTS (A) Functional Outcome: 55 articles were included, assessing outcome as mortality or Glasgow Outcome Scale (GOS) at 3-6 months post-injury. Overall, there is GRADE C evidence to support an association between CMD glucose, glutamate, glycerol, lactate, and LPR to patient outcome at 3-6 months. (B) Neurophysiologic Measures: 59 articles were included. Overall, there currently exists GRADE C level of evidence supporting an association between elevated CMD measured mean LPR, glutamate and glycerol with elevated ICP and/or decreased CPP. In addition, there currently exists GRADE C evidence to support an association between elevated mean lactate:pyruvate ratio (LPR) and low PbtO2. Remaining CMD measures and physiologic outcomes displayed GRADE D or no evidence to support a relationship. (C) Tissue Outcome: four studies were included. Given the conflicting literature, the only conclusion that can be drawn is acute/subacute phase elevation of CMD measured LPR is associated with frontal lobe atrophy at 6 months. CONCLUSIONS This systematic review replicates previously documented relationships between CMD and various outcome, which have driven clinical application of the technique. Evidence assessments do not address the application of CMD for exploring pathophysiology or titrating therapy in individual patients, and do not account for the modulatory effect of therapy on outcome, triggered at different CMD thresholds in individual centers. Our findings support clinical application of CMD and refinement of existing guidelines.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9 Canada
- Clinician Investigator Program, University of Manitoba, Winnipeg, Canada
- Department of Anesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
- Department of Clinical Neuroscience, Neurosurgical Research Laboratory, Karolinska University Hospital, Building R2:02, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
- Section of Brain Physics, Division of Neurosurgery, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Peter J. A. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| | - David K. Menon
- Department of Anesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
- Neurosciences Critical Care Unit, Addenbrooke’s Hospital, Cambridge, UK
- Queens’ College, Cambridge, UK
- National Institute for Health Research, Southampton, UK
| |
Collapse
|
19
|
Gantois G, Parmentier-Decrucq E, Duburcq T, Favory R, Mathieu D, Poissy J. Prognosis at 6 and 12 months after self-attempted hanging. Am J Emerg Med 2017; 35:1672-1676. [DOI: 10.1016/j.ajem.2017.05.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022] Open
|
20
|
Hadgaonkar S, Shah K, Khurjekar K, Krishnan V, Shyam A, Sancheti P. A Levering Technique Using Small Parallel Rods for Open Reduction of High-Grade Thoracolumbar Dislocation. Global Spine J 2017; 7:302-308. [PMID: 28815157 PMCID: PMC5546679 DOI: 10.1177/2192568217699184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
STUDY DESIGN Technical report. OBJECTIVE Dorsolumbar vertebral dislocations, with or without associated fractures, occur secondary to very high velocity trauma. The reduction procedures and techniques, which may be adopted in these situations, have been multifariously discussed in the literature. Our objective was to assess the outcome of a novel reduction maneuver, using parallel rods which we have employed in reduction of high-grade thoracolumbar fractures to achieve precise sagittal balance as well as accurate vertebral alignment with minimal soft tissue damage. METHODS The study included a total of 11 cases of thoracolumbar dislocations, who had presented to our emergency spine services following high-velocity trauma. After appropriate systemic stabilization and necessary investigations, all patients were surgically treated using the described technique. RESULTS There were no surgical complications at 2-year follow-up. Radiographs showed good reduction and maintained sagittal balance. CONCLUSION We believe that this technique is an excellent means of achieving safer, easier, and accurate reduction for restoration of sagittal/coronal balance and alignment in high-grade thoracolumbar dislocations. It is easily reproducible and predictable.
Collapse
Affiliation(s)
- Shailesh Hadgaonkar
- Sancheti Institute for Orthopaedics and Rehabilitation, Pune, Maharashtra, India
| | - Kunal Shah
- Sancheti Institute for Orthopaedics and Rehabilitation, Pune, Maharashtra, India,Kunal Shah, Sancheti Institute for Orthopaedics and Rehabilitation, 16, Shivajinagar, Pune, Maharashtra, India.
| | - Ketan Khurjekar
- Sancheti Institute for Orthopaedics and Rehabilitation, Pune, Maharashtra, India
| | - Vibhu Krishnan
- Sancheti Institute for Orthopaedics and Rehabilitation, Pune, Maharashtra, India
| | - Ashok Shyam
- Sancheti Institute for Orthopaedics and Rehabilitation, Pune, Maharashtra, India
| | - Parag Sancheti
- Sancheti Institute for Orthopaedics and Rehabilitation, Pune, Maharashtra, India
| |
Collapse
|
21
|
Vidal-Jorge M, Sánchez-Guerrero A, Mur-Bonet G, Castro L, Rădoi A, Riveiro M, Fernández-Prado N, Baena J, Poca MA, Sahuquillo J. Does Normobaric Hyperoxia Cause Oxidative Stress in the Injured Brain? A Microdialysis Study Using 8-Iso-Prostaglandin F2α as a Biomarker. J Neurotrauma 2017; 34:2731-2742. [PMID: 28323516 DOI: 10.1089/neu.2017.4992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Significant controversy exists regarding the potential clinical benefit of normobaric hyperoxia (NBO) in patients with traumatic brain injury (TBI). This study consisted of two aims: 1) to assess whether NBO improves brain oxygenation and metabolism and 2) to determine whether this therapy may increase the risk of oxidative stress (OxS), using 8-iso-Prostaglandin F2α (PGF2α) as a biomarker. Thirty-one patients with a median admission Glasgow Coma Scale score of 4 (min: 3, max: 12) were monitored with cerebral microdialysis and brain tissue oxygen sensors and treated with fraction of inspired oxygen (FiO2) of 1.0 for 4 h. Patients were divided into two groups according to the area monitored by the probes: normal injured brain and traumatic penumbra/traumatic core. NBO maintained for 4 h did not induce OxS in patients without preOxS at baseline, except in one case. However, for patients in whom OxS was detected at baseline, NBO induced a significant increase in 8-iso-PGF2α. The results of our study showed that NBO did not change energy metabolism in the whole group of patients. In the five patients with brain lactate concentration ([Lac]brain) > 3.5 mmol/L at baseline, NBO induced a marked reduction in both [Lac]brain and lactate-to-pyruvate ratio. Although these differences were not statistically significant, together with the results of our previous study, they suggest that TBI patients would benefit from receiving NBO when they show indications of disturbed brain metabolism. These findings, in combination with increasing evidence that TBI metabolic crises are common without brain ischemia, open new possibilities for the use of this accessible therapeutic strategy in TBI patients.
Collapse
Affiliation(s)
- Marian Vidal-Jorge
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain
| | - Angela Sánchez-Guerrero
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain
| | - Gemma Mur-Bonet
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain
| | - Lidia Castro
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain
| | - Andreea Rădoi
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain
| | - Marilyn Riveiro
- 2 Neurotraumatology Intensive Care Unit, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Natalia Fernández-Prado
- 2 Neurotraumatology Intensive Care Unit, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jacinto Baena
- 2 Neurotraumatology Intensive Care Unit, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria-Antonia Poca
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain .,3 Department of Neurosurgery, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Sahuquillo
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain .,3 Department of Neurosurgery, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Drozdov KA, Drozdov AL. Anaerobic glycolysis in sea urchins as adaptation to life in a habitat lacking oxygen. BIOL BULL+ 2017. [DOI: 10.1134/s1062359016060066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Nyanzu M, Siaw-Debrah F, Ni H, Xu Z, Wang H, Lin X, Zhuge Q, Huang L. Improving on Laboratory Traumatic Brain Injury Models to Achieve Better Results. Int J Med Sci 2017; 14:494-505. [PMID: 28539826 PMCID: PMC5441042 DOI: 10.7150/ijms.18075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/31/2017] [Indexed: 11/30/2022] Open
Abstract
Experimental modeling of traumatic brain injury (TBI) in animals has identified several potential means and interventions that might have beneficial applications for treating traumatic brain injury clinically. Several of these interventions have been applied and tried with humans that are at different phases of testing (completed, prematurely terminated and others in progress). The promising results achieved in the laboratory with animal models have not been replicated with human trails as expected. This review will highlight some insights and significance attained via laboratory animal modeling of TBI as well as factors that require incorporation into the experimental studies that could help in translating results from laboratory to the bedside. Major progress has been made due to laboratory studies; in explaining the mechanisms as well as pathophysiological features of brain damage after TBI. Attempts to intervene in the cascade of events occurring after TBI all rely heavily on the knowledge from basic laboratory investigations. In looking to discover treatment, this review will endeavor to sight and state some central discrepancies between laboratory models and clinical scenarios.
Collapse
Affiliation(s)
- Mark Nyanzu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Felix Siaw-Debrah
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Haoqi Ni
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhu Xu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hua Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lijie Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
24
|
Mawson AR, Radford NT, Jacob B. Toward a Theory of Stuttering. Eur Neurol 2016; 76:244-251. [PMID: 27750253 DOI: 10.1159/000452215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 09/30/2016] [Indexed: 11/19/2022]
Abstract
Stuttering affects about 1% of the general population and from 8 to 11% of children. The onset of persistent developmental stuttering (PDS) typically occurs between 2 and 4 years of age. The etiology of stuttering is unknown and a unifying hypothesis is lacking. Clues to the pathogenesis of stuttering include the following observations: PDS is associated with adverse perinatal outcomes and birth-associated trauma; stuttering can recur or develop in adulthood following traumatic events such as brain injury and stroke; PDS is associated with structural and functional abnormalities in the brain associated with speech and language; and stuttering resolves spontaneously in a high percentage of affected children. Evidence marshaled from the literature on stuttering and from related sources suggests the hypothesis that stuttering is a neuro-motor disorder resulting from perinatal or later-onset hypoxic-ischemic injury (HII), and that chronic stuttering and its behavioral correlates are manifestations of recurrent transient ischemic episodes affecting speech-motor pathways. The hypothesis could be tested by comparing children who stutter and nonstutterers (controls) in terms of the occurrence of perinatal trauma, based on birth records, and by determining rates of stuttering in children exposed to HII during the perinatal period. Subject to testing, the hypothesis suggests that interventions to increase brain perfusion directly could be effective both in the treatment of stuttering and its prevention at the time of birth or later trauma.
Collapse
Affiliation(s)
- Anthony R Mawson
- Department of Epidemiology and Biostatistics, School of Public Health (Initiative), Jackson State University, Jackson, Miss., USA
| | | | | |
Collapse
|
25
|
Mullah SH, Abutarboush R, Moon-Massat PF, Saha BK, Haque A, Walker PB, Auker CR, Arnaud FG, McCarron RM, Scultetus AH. Sanguinate's effect on pial arterioles in healthy rats and cerebral oxygen tension after controlled cortical impact. Microvasc Res 2016; 107:83-90. [PMID: 27287870 DOI: 10.1016/j.mvr.2016.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 01/18/2023]
Abstract
Sanguinate, a polyethylene glycol-conjugated carboxyhemoglobin, was investigated for cerebral vasoactivity in healthy male Sprague-Dawley rats (Study 1) and for its ability to increase brain tissue oxygen pressure (PbtO2) after controlled cortical impact (CCI) - traumatic brain injury (TBI) (Study 2). In both studies ketamine-acepromazine anesthetized rats were ventilated with 40% O2. In Study 1, a cranial window was used to measure the diameters of medium - (50-100μm) and small-sized (<50μm) pial arterioles before and after four serial infusions of Sanguinate (8mL/kg/h, cumulative 16mL/kg IV), volume-matched Hextend, or normal saline. In Study 2, PbtO2 was measured using a phosphorescence quenching method before TBI, 15min after TBI (T15) and then every 10min thereafter for 155min. At T15, rats received either 8mL/kg IV Sanguinate (40mL/kg/h) or no treatment (saline, 4mL/kg/h). Results showed: 1) in healthy rats, percentage changes in pial arteriole diameter were the same among the groups, 2) in TBI rats, PbtO2 decreased from 36.5±3.9mmHg to 19.8±3.0mmHg at T15 in both groups after TBI and did not recover in either group for the rest of the study, and 3) MAP increased 16±4mmHg and 36±5mmHg after Sanguinate in healthy and TBI rats, respectively, while MAP was unchanged in control groups. In conclusion, Sanguinate did not cause vasoconstriction in the cerebral pial arterioles of healthy rats but it also did not acutely increase PbtO2 when administered after TBI. Sanguinate was associated with an increase in MAP in both studies.
Collapse
Affiliation(s)
- Saad H Mullah
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Rania Abutarboush
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Paula F Moon-Massat
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Biswajit K Saha
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Ashraful Haque
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Peter B Walker
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Charles R Auker
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Francoise G Arnaud
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA; Uniformed Services University of the Health Sciences, Department of Surgery, Bethesda, MD 20814, USA.
| | - Richard M McCarron
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA; Uniformed Services University of the Health Sciences, Department of Surgery, Bethesda, MD 20814, USA.
| | - Anke H Scultetus
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA; Uniformed Services University of the Health Sciences, Department of Surgery, Bethesda, MD 20814, USA.
| |
Collapse
|
26
|
Hinzman JM, Wilson JA, Mazzeo AT, Bullock MR, Hartings JA. Excitotoxicity and Metabolic Crisis Are Associated with Spreading Depolarizations in Severe Traumatic Brain Injury Patients. J Neurotrauma 2016; 33:1775-1783. [PMID: 26586606 DOI: 10.1089/neu.2015.4226] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cerebral microdialysis has enabled the clinical characterization of excitotoxicity (glutamate >10 μM) and non-ischemic metabolic crisis (lactate/pyruvate ratio [LPR] >40) as important components of secondary damage in severe traumatic brain injury (TBI). Spreading depolarizations (SD) are pathological waves that occur in many patients in the days following TBI and, in animal models, cause elevations in extracellular glutamate, increased anaerobic metabolism, and energy substrate depletion. Here, we examined the association of SD with changes in cerebral neurochemistry by placing a microdialysis probe alongside a subdural electrode strip in peri-lesional cortex of 16 TBI patients requiring neurosurgery. In 107 h (median; range: 76-117 h) of monitoring, 135 SDs were recorded in six patients. Glutamate (50 μmol/L) and lactate (3.7 mmol/L) were significantly elevated on day 0 in patients with SD compared with subsequent days and with patients without SD, whereas pyruvate was decreased in the latter group on days 0 and 1 (two-way analysis of variance [ANOVA], p values <0.05). In patients with SD, both glutamate and LPR increased in a dose-dependent manner with the number of SDs in the microdialysis sampling period (0, 1, ≥2 SD) [glutamate: 2.1→7.0→52.3 μmol/L; LPR: 27.8→29.9→45.0, p values <0.05]. In these patients, there was a 10% probability of SD occurring when glutamate and LPR were in normal ranges, but a 60% probability when both variables were abnormal (>10 μmol/L and >40 μmol/L, respectively). Taken together with previous studies, these preliminary clinical results suggest SDs are a key pathophysiological process of secondary brain injury associated with non-ischemic glutamate excitotoxicity and severe metabolic crisis in severe TBI patients.
Collapse
Affiliation(s)
- Jason M Hinzman
- 1 Department of Neurosurgery, University of Cincinnati (UC) College of Medicine , Cincinnati, Ohio
| | - J Adam Wilson
- 1 Department of Neurosurgery, University of Cincinnati (UC) College of Medicine , Cincinnati, Ohio
| | - Anna Teresa Mazzeo
- 2 Division of Neurosurgery, Virginia Commonwealth University , Richmond, Virginia.,3 Department Anesthesia and Intensive Care, University of Torino , Torino, Italy
| | - M Ross Bullock
- 2 Division of Neurosurgery, Virginia Commonwealth University , Richmond, Virginia.,4 Department of Neurosurgery, University of Miami , Miami, Florida
| | - Jed A Hartings
- 1 Department of Neurosurgery, University of Cincinnati (UC) College of Medicine , Cincinnati, Ohio.,5 Neurotrauma Center, UC Neuroscience Institute , Cincinnati, Ohio.,6 Mayfield Clinic , Cincinnati, Ohio
| |
Collapse
|
27
|
Taher A, Pilehvari Z, Poorolajal J, Aghajanloo M. Effects of Normobaric Hyperoxia in Traumatic Brain Injury: A Randomized Controlled Clinical Trial. Trauma Mon 2016; 21:e26772. [PMID: 27218057 PMCID: PMC4869427 DOI: 10.5812/traumamon.26772] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 11/21/2015] [Indexed: 01/22/2023] Open
Abstract
Background Traumatic brain injury (TBI) is one of the important causes of morbidity and mortality throughout the world, especially in young people. In recent years normobaric hyperoxia has become an important and useful step for recovery and improvement of outcome in TBI. Objectives The purpose of this study was to evaluate the effects of normobaric hyperoxia on clinical neurological outcomes of patients with severe traumatic brain injuries. We used the Glasgow outcome scale (GOS), barthel index, and modified rankin scale (mRS) to measure the outcomes of patients with TBI. Patients and Methods Sixty-eight consecutive patients with severe TBI (mean Glasgow coma scale [GCS] score: 7.4) who met the inclusion criteria were entered in this randomized controlled clinical trial. The patients were randomized into two groups, as follows: 1) experimental: received 80% oxygen via mechanical ventilator in the first 6 hours of admission, 2) control: received 50% oxygen by mechanical ventilator in the first 6 hours of admission and then standard medical care. We measured the GOS, Barthel Index, and mRS at the time of discharge from hospital and reassessed these measurements at the 6-month follow-up after injury. Results According to our study, there were no significant sex or age differences between the two groups (P = 0.595 and 0.074). The number of days in the intensive care unit (ICU) in the control group and experimental group were 11.4 and 9.4 days, respectively (P = 0.28), while the numbers of days of general ward admission were 13.9 and 11.4 days (P = 0.137) respectively. The status of GOS at time of discharge were severe = 13 and 10, moderate = 16 and 19, and low = 5 and 5 in the control and experimental groups, respectively (P = 0.723); 6 months after injury, the scores were as follows: moderate = 16 and 9, low = 15 and 25, and severe = 3 and 0 (P = 0.024). The Barthel index scores in the control and experimental groups were 59.7 and 63.9 at time of discharge (P = 0.369) and 82.7 and 91.3 at 6 months after injury (P = 0.018), respectively. The mRS results were 2.6 and 2.3 at time of discharge (P = 0.320) and 1.6 and 0.7 at 6 months after injury (P = 0.006) for the control and experimental groups, respectively. Conclusions According to the results of this study, oxygen therapy by mechanical ventilator in the first 6 hours after injury in patients with severe TBI can improve the final GOS, Barthel index, and mRS scores. It could also improve long-term outcomes and enhance rehabilitation and the quality of life.
Collapse
Affiliation(s)
- Abbas Taher
- Department of Anesthesiology and Critical Care, Hamadan University of Medical Sciences, Hamadan, IR Iran
| | - Zahra Pilehvari
- Department of Anesthesiology and Critical Care, Hamadan University of Medical Sciences, Hamadan, IR Iran
- Corresponding author: Zahra Pilehvari, Department of Anesthesiology and Critical Care, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, IR Iran. Tel: +98-9123878776, Fax: +98-2177053308, E-mail:
| | - Jalal Poorolajal
- Department of Epidemiology, Modeling of Noncommunicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, IR Iran
| | - Mashhood Aghajanloo
- Department of Neurosurgery, Hamadan University of Medical Sciences, Hamadan, IR Iran
| |
Collapse
|
28
|
Hawryluk GWJ, Phan N, Ferguson AR, Morabito D, Derugin N, Stewart CL, Knudson MM, Manley G, Rosenthal G. Brain tissue oxygen tension and its response to physiological manipulations: influence of distance from injury site in a swine model of traumatic brain injury. J Neurosurg 2016; 125:1217-1228. [PMID: 26848909 DOI: 10.3171/2015.7.jns15809] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The optimal site for placement of tissue oxygen probes following traumatic brain injury (TBI) remains unresolved. The authors used a previously described swine model of focal TBI and studied brain tissue oxygen tension (PbtO2) at the sites of contusion, proximal and distal to contusion, and in the contralateral hemisphere to determine the effect of probe location on PbtO2 and to assess the effects of physiological interventions on PbtO2 at these different sites. METHODS A controlled cortical impact device was used to generate a focal lesion in the right frontal lobe in 12 anesthetized swine. PbtO2 was measured using Licox brain tissue oxygen probes placed at the site of contusion, in pericontusional tissue (proximal probe), in the right parietal region (distal probe), and in the contralateral hemisphere. PbtO2 was measured during normoxia, hyperoxia, hypoventilation, and hyperventilation. RESULTS Physiological interventions led to expected changes, including a large increase in partial pressure of oxygen in arterial blood with hyperoxia, increased intracranial pressure (ICP) with hypoventilation, and decreased ICP with hyperventilation. Importantly, PbtO2 decreased substantially with proximity to the focal injury (contusion and proximal probes), and this difference was maintained at different levels of fraction of inspired oxygen and partial pressure of carbon dioxide in arterial blood. In the distal and contralateral probes, hypoventilation and hyperventilation were associated with expected increased and decreased PbtO2 values, respectively. However, in the contusion and proximal probes, these effects were diminished, consistent with loss of cerebrovascular CO2 reactivity at and near the injury site. Similarly, hyperoxia led to the expected rise in PbtO2 only in the distal and contralateral probes, with little or no effect in the proximal and contusion probes, respectively. CONCLUSIONS PbtO2 measurements are strongly influenced by the distance from the site of focal injury. Physiological alterations, including hyperoxia, hyperventilation, and hypoventilation substantially affect PbtO2 values distal to the site of injury but have little effect in and around the site of contusion. Clinical interpretations of brain tissue oxygen measurements should take into account the spatial relation of probe position to the site of injury. The decision of where to place a brain tissue oxygen probe in TBI patients should also take these factors into consideration.
Collapse
Affiliation(s)
- Gregory W J Hawryluk
- Department of Neurological Surgery, University of Utah, Salt Lake City, Utah.,Department of Neurological Surgery.,Brain and Spinal Injury Center, and
| | - Nicolas Phan
- Brain and Spinal Injury Center, and.,Division of Neurological Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Adam R Ferguson
- Department of Neurological Surgery.,Brain and Spinal Injury Center, and
| | - Diane Morabito
- Department of Neurological Surgery.,Brain and Spinal Injury Center, and
| | - Nikita Derugin
- Department of Neurological Surgery.,Brain and Spinal Injury Center, and
| | - Campbell L Stewart
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - M Margaret Knudson
- Department of General Surgery, University of California, San Francisco, California
| | - Geoffrey Manley
- Department of Neurological Surgery.,Brain and Spinal Injury Center, and
| | - Guy Rosenthal
- Department of Neurological Surgery.,Brain and Spinal Injury Center, and.,Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
29
|
Gronbeck KR, Rodrigues CMP, Mahmoudi J, Bershad EM, Ling G, Bachour SP, Divani AA. Application of Tauroursodeoxycholic Acid for Treatment of Neurological and Non-neurological Diseases: Is There a Potential for Treating Traumatic Brain Injury? Neurocrit Care 2016; 25:153-66. [DOI: 10.1007/s12028-015-0225-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Perfluorocarbon NVX-108 increased cerebral oxygen tension after traumatic brain injury in rats. Brain Res 2016; 1634:132-139. [PMID: 26794250 DOI: 10.1016/j.brainres.2016.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/23/2015] [Accepted: 01/08/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hypoxia is a critical secondary injury mechanism in traumatic brain injury (TBI), and early intervention to alleviate post-TBI hypoxia may be beneficial. NVX-108, a dodecafluoropentane perfluorocarbon, was screened for its ability to increase brain tissue oxygen tension (PbtO2) when administered soon after TBI. METHODS Ketamine-acepromazine anesthetized rats ventilated with 40% oxygen underwent moderate controlled cortical impact (CCI)-TBI at time 0 (T0). Rats received either no treatment (NON, n=8) or 0.5 ml/kg intravenous (IV) NVX-108 (NVX, n=9) at T15 (15 min after TBI) and T75. RESULTS Baseline cortical PbtO2 was 28±3 mm Hg and CCI-TBI resulted in a 46±6% reduction in PbtO2 at T15 (P<0.001). Significant differences in time-group interactions (P=0.013) were found when comparing either absolute or percentage change of PbtO2 to post-injury (mixed-model ANOVA) suggesting that administration of NVX-108 increased PbtO2 above injury levels while it remained depressed in the NON group. Specifically in the NVX group, PbtO2 increased to a peak 143% of T15 (P=0.02) 60 min after completion of NVX-108 injection (T135). Systemic blood pressure was not different between the groups. CONCLUSION NVX-108 caused an increase in PbtO2 following CCI-TBI in rats and should be evaluated further as a possible immediate treatment for TBI.
Collapse
|
31
|
International multidisciplinary consensus conference on multimodality monitoring: cerebral metabolism. Neurocrit Care 2015; 21 Suppl 2:S148-58. [PMID: 25208673 DOI: 10.1007/s12028-014-0035-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microdialysis is a powerful technique, which enables the chemistry of the extracellular space to be measured directly. Applying this technique to patients in neurointensive care has increased our understanding of the pathophysiology of traumatic brain injury and spontaneous hemorrhage. In parallel, it is important to determine the place of microdialysis in assisting in the management of patients on an individual intention to treat basis. This is made possible by the availability of analyzers which can measure the concentration of glucose, pyruvate, lactate, and glutamate at the bedside. Samples can then be stored for later analysis of other substrate and metabolites e.g., other amino acids and cytokines. The objective of this paper is to review the fundamental literature pertinent to the clinical application of microdialysis in neurointensive care and to give recommendations on how the technique can be applied to assist in patient management and contribute to outcome. A literature search detected 1,933 publications of which 55 were used for data abstraction and analysis. The role of microdialysis was evaluated in three conditions (traumatic brain injury, subarachnoid hemorrhage, and intracerebral hemorrhage) and recommendations focused on three fundamental areas (relationship to outcome, application of microdialysis to guide therapy, and the ability of microdialysis to predict secondary deterioration).
Collapse
|
32
|
Abstract
Maintenance of adequate oxygenation is a mainstay of intensive care, however, recommendations on the safety, accuracy, and the potential clinical utility of invasive and non-invasive tools to monitor brain and systemic oxygenation in neurocritical care are lacking. A literature search was conducted for English language articles describing bedside brain and systemic oxygen monitoring in neurocritical care patients from 1980 to August 2013. Imaging techniques e.g., PET are not considered. A total of 281 studies were included, the majority described patients with traumatic brain injury (TBI). All tools for oxygen monitoring are safe. Parenchymal brain oxygen (PbtO2) monitoring is accurate to detect brain hypoxia, and it is recommended to titrate individual targets of cerebral perfusion pressure (CPP), ventilator parameters (PaCO2, PaO2), and transfusion, and to manage intracranial hypertension, in combination with ICP monitoring. SjvO2 is less accurate than PbtO2. Given limited data, NIRS is not recommended at present for adult patients who require neurocritical care. Systemic monitoring of oxygen (PaO2, SaO2, SpO2) and CO2 (PaCO2, end-tidal CO2) is recommended in patients who require neurocritical care.
Collapse
|
33
|
A Prospective Randomized Study of Brain Tissue Oxygen Pressure-Guided Management in Moderate and Severe Traumatic Brain Injury Patients. BIOMED RESEARCH INTERNATIONAL 2015; 2015:529580. [PMID: 26413530 PMCID: PMC4564619 DOI: 10.1155/2015/529580] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to compare the effect of PbtO2-guided therapy with traditional intracranial pressure- (ICP-) guided treatment on the management of cerebral variables, therapeutic interventions, survival rates, and neurological outcomes of moderate and severe traumatic brain injury (TBI) patients. From 2009 to 2010, TBI patients with a Glasgow coma scale <12 were recruited from 6 collaborative hospitals in northern Taiwan, excluding patients with severe systemic injuries, fixed and dilated pupils, and other major diseases. In total, 23 patients were treated with PbtO2-guided management (PbtO2 > 20 mmHg), and 27 patients were treated with ICP-guided therapy (ICP < 20 mmHg and CPP > 60 mmHg) in the neurosurgical intensive care unit (NICU); demographic characteristics were similar across groups. The survival rate in the PbtO2-guided group was also significantly increased at 3 and 6 months after injury. Moreover, there was a significant correlation between the PbtO2 signal and Glasgow outcome scale-extended in patients from 1 to 6 months after injury. This finding demonstrates that therapy directed by PbtO2 monitoring is valuable for the treatment of patients with moderate and severe TBI and that increasing PaO2 to 150 mmHg may be efficacious for preventing cerebral hypoxic events after brain trauma.
Collapse
|
34
|
Normobaric oxygen worsens outcome after a moderate traumatic brain injury. J Cereb Blood Flow Metab 2015; 35:1137-44. [PMID: 25690469 PMCID: PMC4640244 DOI: 10.1038/jcbfm.2015.18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/12/2015] [Accepted: 01/16/2015] [Indexed: 11/08/2022]
Abstract
Traumatic brain injury (TBI) is a multifaceted injury and a leading cause of death in children, young adults, and increasingly in Veterans. However, there are no neuroprotective agents clinically available to counteract damage or promote repair after brain trauma. This study investigated the neuroprotective effects of normobaric oxygen (NBO) after a controlled cortical impact in rats. The central hypothesis was that NBO treatment would reduce lesion volume and functional deficits compared with air-treated animals after TBI by increasing brain oxygenation thereby minimizing ischemic injury. In a randomized double-blinded design, animals received either NBO (n = 8) or normal air (n = 8) after TBI. Magnetic resonance imaging (MRI) was performed 0 to 3 hours, and 1, 2, 7, and 14 days after an impact to the primary forelimb somatosensory cortex. Behavioral assessments were performed before injury induction and before MRI scans on days 2, 7, and 14. Nissl staining was performed on day 14 to corroborate the lesion volume detected from MRI. Contrary to our hypothesis, we found that NBO treatment increased lesion volume in a rat model of moderate TBI and had no positive effect on behavioral measures. Our results do not promote the acute use of NBO in patients with moderate TBI.
Collapse
|
35
|
Thelin EP, Bellander BM, Nekludov M. Biochemical response to hyperbaric oxygen treatment of a transhemispheric penetrating cerebral gunshot injury. Front Neurol 2015; 6:62. [PMID: 25852640 PMCID: PMC4369642 DOI: 10.3389/fneur.2015.00062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/10/2015] [Indexed: 11/23/2022] Open
Abstract
Hyperbaric oxygen (HBO) therapy has been suggested a treatment option in order to reduce the development of secondary insults succeeding traumatic brain injury. This case report studied the course of a 23-year-old gentleman with a close range transhemispheric gunshot wound. The biochemical parameters, using a multi-modal monitoring in the neuro-intensive care unit, improved following HBO treatment.
Collapse
Affiliation(s)
- Eric Peter Thelin
- Section for Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Bo-Michael Bellander
- Section for Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Michael Nekludov
- Department of Pharmacology and Physiology, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
36
|
The Potential for iPS-Derived Stem Cells as a Therapeutic Strategy for Spinal Cord Injury: Opportunities and Challenges. J Clin Med 2014; 4:37-65. [PMID: 26237017 PMCID: PMC4470238 DOI: 10.3390/jcm4010037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/28/2014] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating trauma causing long-lasting disability. Although advances have occurred in the last decade in the medical, surgical and rehabilitative treatments of SCI, the therapeutic approaches are still not ideal. The use of cell transplantation as a therapeutic strategy for the treatment of SCI is promising, particularly since it can target cell replacement, neuroprotection and regeneration. Cell therapies for treating SCI are limited due to several translational roadblocks, including ethical and practical concerns regarding cell sources. The use of iPSCs has been particularly attractive, since they avoid the ethical and moral concerns that surround other stem cells. Furthermore, various cell types with potential for application in the treatment of SCI can be created from autologous sources using iPSCs. For applications in SCI, the iPSCs can be differentiated into neural precursor cells, neurons, oligodendrocytes, astrocytes, neural crest cells and mesenchymal stromal cells that can act by replacing lost cells or providing environmental support. Some methods, such as direct reprogramming, are being investigated to reduce tumorigenicity and improve reprogramming efficiencies, which have been some of the issues surrounding the use of iPSCs clinically to date. Recently, iPSCs have entered clinical trials for use in age-related macular degeneration, further supporting their promise for translation in other conditions, including SCI.
Collapse
|
37
|
Damiani E, Adrario E, Girardis M, Romano R, Pelaia P, Singer M, Donati A. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care 2014; 18:711. [PMID: 25532567 PMCID: PMC4298955 DOI: 10.1186/s13054-014-0711-x] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/08/2014] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The safety of arterial hyperoxia is under increasing scrutiny. We performed a systematic review of the literature to determine whether any association exists between arterial hyperoxia and mortality in critically ill patient subsets. METHODS Medline, Thomson Reuters Web of Science and Scopus databases were searched from inception to June 2014. Observational or interventional studies evaluating the relationship between hyperoxia (defined as a supranormal arterial O2 tension) and mortality in adult intensive care unit (ICU) patients were included. Studies primarily involving patients with exacerbations of chronic pulmonary disease, acute lung injury and perioperative administration were excluded. Adjusted odds ratio (OR) of patients exposed versus those not exposed to hyperoxia were extracted, if available. Alternatively, unadjusted outcome data were recorded. Data on patients, study characteristics and the criteria used for defining hyperoxia exposure were also extracted. Random-effects models were used for quantitative synthesis of the data, with a primary outcome of hospital mortality. RESULTS In total 17 studies (16 observational, 1 prospective before-after) were identified in different patient categories: mechanically ventilated ICU (number of studies (k) = 4, number of participants (n) = 189,143), post-cardiac arrest (k = 6, n = 19,144), stroke (k = 2, n = 5,537), and traumatic brain injury (k = 5, n = 7,488). Different criteria were used to define hyperoxia in terms of PaO2 value (first, highest, worst, mean), time of assessment and predetermined cutoffs. Data from studies on ICU patients were not pooled because of extreme heterogeneity (inconsistency (I(2)) 96.73%). Hyperoxia was associated with increased mortality in post-cardiac arrest patients (OR = 1.42 (1.04 to 1.92) I(2) 67.73%) stroke (OR = 1.23 (1.06 to 1.43) I(2) 0%) and traumatic brain injury (OR = 1.41 (1.03 to 1.94) I(2) 64.54%). However, these results are limited by significant heterogeneity between studies. CONCLUSIONS Hyperoxia may be associated with increased mortality in patients with stroke, traumatic brain injury and those resuscitated from cardiac arrest. However, these results are limited by the high heterogeneity of the included studies.
Collapse
Affiliation(s)
- Elisa Damiani
- Anaesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 60126, Torrette di Ancona, Italy.
| | - Erica Adrario
- Anaesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 60126, Torrette di Ancona, Italy.
| | - Massimo Girardis
- Department of Anaesthesia and Intensive Care, University Hospital of Modena, Via del Pozzo 71, 41124, Modena, Italy.
| | - Rocco Romano
- Anaesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 60126, Torrette di Ancona, Italy.
| | - Paolo Pelaia
- Anaesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 60126, Torrette di Ancona, Italy.
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Abele Donati
- Anaesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 60126, Torrette di Ancona, Italy.
| |
Collapse
|
38
|
Jeon SB, Choi HA, Badjatia N, Schmidt JM, Lantigua H, Claassen J, Connolly ES, Mayer SA, Lee K. Hyperoxia may be related to delayed cerebral ischemia and poor outcome after subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 2014; 85:1301-7. [PMID: 24860138 DOI: 10.1136/jnnp-2013-307314] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To determine the association between exposure to hyperoxia and the risk of delayed cerebral ischaemia (DCI) after subarachnoid haemorrhage (SAH). METHODS We analysed data from a single centre, prospective, observational cohort database. Patient inclusion criteria were age ≥18 years, aneurysmal SAH, endotracheal intubation with mechanical ventilation, and arterial partial pressure of oxygen (PaO2) measurements. Hyperoxia was defined as the highest quartile of an area under the curve of PaO2, until the development of DCI (PaO2≥173 mm Hg). Poor outcome was defined as modified Rankin Scale 4-6 at 3 months after SAH. RESULTS Of 252 patients, there were no differences in baseline characteristics between the hyperoxia and control group. Ninety-seven (38.5%) patients developed DCI. The hyperoxia group had a higher incidence of DCI (p<0.001) and poor outcome (p=0.087). After adjusting for modified Fisher scale, rebleeding, global cerebral oedema, intracranial pressure crisis, pneumonia and sepsis, hyperoxia was independently associated with DCI (OR, 3.16; 95% CI 1.69 to 5.92; p<0.001). After adjusting for age, Hunt-Hess grade, aneurysm size, Acute Physiology and Chronic Health Evaluation II score, rebleeding, pneumonia and sepsis, hyperoxia was independently associated with poor outcome (OR, 2.30; 95% CI 1.03 to 5.12; p=0.042). CONCLUSIONS In SAH patients, exposure to hyperoxia was associated with DCI. Our findings suggest that exposure to excess oxygen after SAH may represent a modifiable factor for morbidity and mortality in this population.
Collapse
Affiliation(s)
- Sang-Beom Jeon
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea Departments of Neurology and Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas, USA Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - H Alex Choi
- Departments of Neurology and Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas, USA Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Neeraj Badjatia
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J Michael Schmidt
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Hector Lantigua
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Jan Claassen
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - E Sander Connolly
- Departments of Neurosurgery, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Stephan A Mayer
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Kiwon Lee
- Departments of Neurology and Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas, USA Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
39
|
Narotam PK, Morrison JF, Schmidt MD, Nathoo N. Physiological complexity of acute traumatic brain injury in patients treated with a brain oxygen protocol: utility of symbolic regression in predictive modeling of a dynamical system. J Neurotrauma 2014; 31:630-41. [PMID: 24195645 DOI: 10.1089/neu.2013.3104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Predictive modeling of emergent behavior, inherent to complex physiological systems, requires the analysis of large complex clinical data streams currently being generated in the intensive care unit. Brain tissue oxygen protocols have yielded outcome benefits in traumatic brain injury (TBI), but the critical physiological thresholds for low brain oxygen have not been established for a dynamical patho-physiological system. High frequency, multi-modal clinical data sets from 29 patients with severe TBI who underwent multi-modality neuro-clinical care monitoring and treatment with a brain oxygen protocol were analyzed. The inter-relationship between acute physiological parameters was determined using symbolic regression (SR) as the computational framework. The mean patient age was 44.4±15 with a mean admission GCS of 6.6±3.9. Sixty-three percent sustained motor vehicle accidents and the most common pathology was intra-cerebral hemorrhage (50%). Hospital discharge mortality was 21%, poor outcome occurred in 24% of patients, and good outcome occurred in 56% of patients. Criticality for low brain oxygen was intracranial pressure (ICP) ≥22.8 mm Hg, for mortality at ICP≥37.1 mm Hg. The upper therapeutic threshold for cerebral perfusion pressure (CPP) was 75 mm Hg. Eubaric hyperoxia significantly impacted partial pressure of oxygen in brain tissue (PbtO2) at all ICP levels. Optimal brain temperature (Tbr) was 34-35°C, with an adverse effect when Tbr≥38°C. Survivors clustered at [Formula: see text] Hg vs. non-survivors [Formula: see text] 18 mm Hg. There were two mortality clusters for ICP: High ICP/low PbtO2 and low ICP/low PbtO2. Survivors maintained PbtO2 at all ranges of mean arterial pressure in contrast to non-survivors. The final SR equation for cerebral oxygenation is: [Formula: see text]. The SR-model of acute TBI advances new physiological thresholds or boundary conditions for acute TBI management: PbtO2≥25 mmHg; ICP≤22 mmHg; CPP≈60-75 mmHg; and Tbr≈34-37°C. SR is congruous with the emerging field of complexity science in the modeling of dynamical physiological systems, especially during pathophysiological states. The SR model of TBI is generalizable to known physical laws. This increase in entropy reduces uncertainty and improves predictive capacity. SR is an appropriate computational framework to enable future smart monitoring devices.
Collapse
|
40
|
Veenith TV, Carter EL, Grossac J, Newcombe VF, Outtrim JG, Nallapareddy S, Lupson V, Correia MM, Mada MM, Williams GB, Menon DK, Coles JP. Use of diffusion tensor imaging to assess the impact of normobaric hyperoxia within at-risk pericontusional tissue after traumatic brain injury. J Cereb Blood Flow Metab 2014; 34:1622-7. [PMID: 25005875 PMCID: PMC4269721 DOI: 10.1038/jcbfm.2014.123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/15/2014] [Accepted: 06/09/2014] [Indexed: 12/31/2022]
Abstract
Ischemia and metabolic dysfunction remain important causes of neuronal loss after head injury, and we have shown that normobaric hyperoxia may rescue such metabolic compromise. This study examines the impact of hyperoxia within injured brain using diffusion tensor imaging (DTI). Fourteen patients underwent DTI at baseline and after 1 hour of 80% oxygen. Using the apparent diffusion coefficient (ADC) we assessed the impact of hyperoxia within contusions and a 1 cm border zone of normal appearing pericontusion, and within a rim of perilesional reduced ADC consistent with cytotoxic edema and metabolic compromise. Seven healthy volunteers underwent imaging at 21%, 60%, and 100% oxygen. In volunteers there was no ADC change with hyperoxia, and contusion and pericontusion ADC values were higher than volunteers (P<0.01). There was no ADC change after hyperoxia within contusion, but an increase within pericontusion (P<0.05). We identified a rim of perilesional cytotoxic edema in 13 patients, and hyperoxia resulted in an ADC increase towards normal (P=0.02). We demonstrate that hyperoxia may result in benefit within the perilesional rim of cytotoxic edema. Future studies should address whether a longer period of hyperoxia has a favorable impact on the evolution of tissue injury.
Collapse
Affiliation(s)
- Tonny V Veenith
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, Cambridgeshire, UK
| | - Eleanor L Carter
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, Cambridgeshire, UK
| | - Julia Grossac
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, Cambridgeshire, UK
| | - Virginia F Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, Cambridgeshire, UK
| | - Joanne G Outtrim
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, Cambridgeshire, UK
| | - Sridhar Nallapareddy
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, Cambridgeshire, UK
| | - Victoria Lupson
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, Cambridgeshire, UK
| | - Marta M Correia
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, Cambridgeshire, UK
| | - Marius M Mada
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, Cambridgeshire, UK
| | - Guy B Williams
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, Cambridgeshire, UK
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, Cambridgeshire, UK
| | - Jonathan P Coles
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, Cambridgeshire, UK
| |
Collapse
|
41
|
Lactate and the lactate-to-pyruvate molar ratio cannot be used as independent biomarkers for monitoring brain energetic metabolism: a microdialysis study in patients with traumatic brain injuries. PLoS One 2014; 9:e102540. [PMID: 25025772 PMCID: PMC4099374 DOI: 10.1371/journal.pone.0102540] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/20/2014] [Indexed: 12/11/2022] Open
Abstract
Background For decades, lactate has been considered an excellent biomarker for oxygen limitation and therefore of organ ischemia. The aim of the present study was to evaluate the frequency of increased brain lactate levels and the LP ratio (LPR) in a cohort of patients with severe or moderate traumatic brain injury (TBI) subjected to brain microdialysis monitoring to analyze the agreement between these two biomarkers and to indicate brain energy metabolism dysfunction. Methods Forty-six patients with an admission Glasgow coma scale score of ≤13 after resuscitation admitted to a dedicated 10-bed Neurotraumatology Intensive Care Unit were included, and 5305 verified samples of good microdialysis data were analyzed. Results Lactate levels were above 2.5 mmol/L in 56.9% of the samples. The relationships between lactate and the LPR could not be adequately modeled by any linear or non-linear model. Neither Cohen’s kappa nor Gwet’s statistic showed an acceptable agreement between both biomarkers to classify the samples in regard to normal or abnormal metabolism. The dataset was divided into four patterns defined by the lactate concentrations and the LPR. A potential interpretation for these patterns is suggested and discussed. Pattern 4 (low pyruvate levels) was found in 10.7% of the samples and was characterized by a significantly low concentration of brain glucose compared with the other groups. Conclusions Our study shows that metabolic abnormalities are frequent in the macroscopically normal brain in patients with traumatic brain injuries and a very poor agreement between lactate and the LPR when classifying metabolism. The concentration of lactate in the dialysates must be interpreted while taking into consideration the LPR to distinguish between anaerobic metabolism and aerobic hyperglycolysis.
Collapse
|
42
|
O'Boynick CP, Kurd MF, Darden BV, Vaccaro AR, Fehlings MG. Timing of surgery in thoracolumbar trauma: is early intervention safe? Neurosurg Focus 2014; 37:E7. [DOI: 10.3171/2014.5.focus1473] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The understanding of the optimal surgical timing for stabilization in thoracolumbar fractures is severely limited. Thoracolumbar spine fractures can be devastating injuries and are often associated with significant morbidity and mortality. The role of early surgical stabilization (within 48–72 hours of injury) as a vehicle to improve outcomes in these patients has generated significant interest. Goals of early stabilization include improved neurological recovery, faster pulmonary recovery, improved pain control, and decreased health care costs. Opponents cite the potential for increased bleeding, hypotension, and the risk of further cord injury as a few factors that weigh against early stabilization. The concept of spinal cord injury and its relationship to surgical timing remains in question. However, when neurological outcomes are eliminated from the equation, certain measures have shown positive influences from prompt surgical fixation.
Early fixation of thoracolumbar spine fractures can significantly decrease the duration of hospital stay and the number of days in the intensive care unit. Additionally, prompt stabilization can reduce rates of pulmonary complications. This includes decreased rates of pneumonia and fewer days on ventilator support. Cost analysis revealed as much as $80,000 in savings per patient with early stabilization. All of these benefits come without an increase in morbidity or evidence of increased mortality. In addition, there is no evidence that early stabilization has any ill effect on the injured or uninjured spinal cord. Based on the existing data, early fixation of thoracolumbar fractures has been linked with positive outcomes without clear evidence of negative impacts on the patient's neurological status, associated morbidities, or mortality. These procedures can be viewed as “damage control” and may consist of simple posterior instrumentation or open reductions with internal fixation as indicated. Based on the current literature it is advisable to proceed with early surgical stabilization of thoracolumbar fractures in a well-resuscitated patient, unless extenuating medical conditions would prevent it.
Collapse
Affiliation(s)
| | - Mark F. Kurd
- 2OrthoCarolina Spine Center, Orthopaedic Surgery, Charlotte, North Carolina
| | - Bruce V. Darden
- 2OrthoCarolina Spine Center, Orthopaedic Surgery, Charlotte, North Carolina
| | - Alexander R. Vaccaro
- 3Thomas Jefferson University Hospital, Rothman Institute, Philadelphia, Pennsylvania; and
| | | |
Collapse
|
43
|
Domínguez-Berrot AM, González-Vaquero M, Díaz-Domínguez FJ, Robla-Costales J. [Multimodal neuromonitoring in traumatic brain injury: contribution of PTiO2]. Med Intensiva 2014; 38:513-21. [PMID: 24793091 DOI: 10.1016/j.medin.2014.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/01/2014] [Accepted: 02/19/2014] [Indexed: 11/26/2022]
Abstract
The main goal of exhaustively monitoring neurocritical patients is to avoid secondary injury. In the last few years we have witnessed an increase in brain monitoring tools, beyond the checking of intracranial and brain perfusion pressures. These widely used systems offer valuable but possibly insufficient information. Awareness and correction of brain hypoxia is a useful and interesting measure, not only for diagnostic purposes but also when deciding treatment, and to predict an outcome. In this context, it would be of great interest to use all the information gathered from brain oxygenation monitoring systems in conjunction with other available multimodal monitoring devices, in order to offer individualized treatment for each patient.
Collapse
|
44
|
Rosenthal G, Furmanov A, Itshayek E, Shoshan Y, Singh V. Assessment of a noninvasive cerebral oxygenation monitor in patients with severe traumatic brain injury. J Neurosurg 2014; 120:901-7. [DOI: 10.3171/2013.12.jns131089] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Development of a noninvasive monitor to assess cerebral oxygenation has long been a goal in neurocritical care. The authors evaluated the feasibility and utility of a noninvasive cerebral oxygenation monitor, the CerOx 3110, which uses near-infrared spectroscopy and ultrasound to measure regional cerebral tissue oxygenation in patients with severe traumatic brain injury (TBI), and compared measurements obtained using this device to those obtained using invasive cerebral monitoring.
Methods
Patients with severe TBI admitted to the intensive care unit at Hadassah-Hebrew University Hospital requiring intracranial pressure (ICP) monitoring and advanced neuromonitoring were included in this study. The authors assessed 18 patients with severe TBI using the CerOx monitor and invasive advanced cerebral monitors.
Results
The mean age of the patients was 45.3 ± 23.7 years and the median Glasgow Coma Scale score on admission was 5 (interquartile range 3–7). Eight patients underwent unilateral decompressive hemicraniectomy and 1 patient underwent craniotomy. Sixteen patients underwent insertion of a jugular bulb venous catheter, and 18 patients underwent insertion of a Licox brain tissue oxygen monitor. The authors found a strong correlation (r = 0.60, p < 0.001) between the jugular bulb venous saturation from the venous blood gas and the CerOx measure of regional cerebral tissue saturation on the side ipsilateral to the catheter. A multivariate analysis revealed that among the physiological parameters of mean arterial blood pressure, ICP, brain tissue oxygen tension, and CerOx measurements on the ipsilateral and contralateral sides, only ipsilateral CerOx measurements were significantly correlated to jugular bulb venous saturation (p < 0.001).
Conclusions
Measuring regional cerebral tissue oxygenation with the CerOx monitor in a noninvasive manner is feasible in patients with severe TBI in the neurointensive care unit. The correlation between the CerOx measurements and the jugular bulb venous measurements of oxygen saturation indicate that the CerOx may be able to provide an estimation of cerebral oxygenation status in a noninvasive manner.
Collapse
Affiliation(s)
- Guy Rosenthal
- 1Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; and
| | - Alex Furmanov
- 1Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; and
| | - Eyal Itshayek
- 1Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; and
| | - Yigal Shoshan
- 1Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; and
| | - Vineeta Singh
- 2Department of Neurology, University of California, San Francisco, California
| |
Collapse
|
45
|
Jaeger M, Lang EW. Cerebrovascular pressure reactivity and cerebral oxygen regulation after severe head injury. Neurocrit Care 2014; 19:69-73. [PMID: 23702694 DOI: 10.1007/s12028-013-9857-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND To investigate the relationship between cerebrovascular pressure reactivity and cerebral oxygen regulation after head injury. METHODS Continuous monitoring of the partial pressure of brain tissue oxygen (PbrO2), mean arterial blood pressure (MAP), and intracranial pressure (ICP) in 11 patients. The cerebrovascular pressure reactivity index (PRx) was calculated as the moving correlation coefficient between MAP and ICP. For assessment of the cerebral oxygen regulation system a brain tissue oxygen response (TOR) was calculated, where the response of PbrO2 to an increase of the arterial oxygen through ventilation with 100 % oxygen for 15 min is tested. Arterial blood gas analysis was performed before and after changing ventilator settings. RESULTS Arterial oxygen increased from 108 ± 6 mmHg to 494 ± 68 mmHg during ventilation with 100 % oxygen. PbrO2 increased from 28 ± 7 mmHg to 78 ± 29 mmHg, resulting in a mean TOR of 0.48 ± 0.24. Mean PRx was 0.05 ± 0.22. The correlation between PRx and TOR was r = 0.69, P = 0.019. The correlation of PRx and TOR with the Glasgow outcome scale at 6 months was r = 0.47, P = 0.142; and r = -0.33, P = 0.32, respectively. CONCLUSIONS The results suggest a strong link between cerebrovascular pressure reactivity and the brain's ability to control for its extracellular oxygen content. Their simultaneous impairment indicates that their common actuating element for cerebral blood flow control, the cerebral resistance vessels, are equally impaired in their ability to regulate for MAP fluctuations and changes in brain oxygen.
Collapse
Affiliation(s)
- Matthias Jaeger
- Department of Neurosurgery, Liverpool Hospital, University of New South Wales and University of Western Sydney, Locked Bag 7103, Liverpool BC, NSW, 1871, Australia.
| | | |
Collapse
|
46
|
Abstract
Oxygen treatment has been a cornerstone of acute medical care for numerous pathological states. Initially, this was supported by the assumed need to avoid hypoxaemia and tissue hypoxia. Most acute treatment algorithms, therefore, recommended the liberal use of a high fraction of inspired oxygen, often without first confirming the presence of a hypoxic insult. However, recent physiological research has underlined the vasoconstrictor effects of hyperoxia on normal vasculature and, consequently, the risk of significant blood flow reduction to the at-risk tissue. Positive effects may be claimed simply by relief of an assumed local tissue hypoxia, such as in acute cardiovascular disease, brain ischaemia due to, for example, stroke or shock or carbon monoxide intoxication. However, in most situations, a generalized hypoxia is not the problem and a risk of negative hyperoxaemia-induced local vasoconstriction effects may instead be the reality. In preclinical studies, many important positive anti-inflammatory effects of both normobaric and hyperbaric oxygen have been repeatedly shown, often as surrogate end-points such as increases in gluthatione levels, reduced lipid peroxidation and neutrophil activation thus modifying ischaemia-reperfusion injury and also causing anti-apoptotic effects. However, in parallel, toxic effects of oxygen are also well known, including induced mucosal inflammation, pneumonitis and retrolental fibroplasia. Examining the available 'strong' clinical evidence, such as usually claimed for randomized controlled trials, few positive studies stand up to scrutiny and a number of trials have shown no effect or even been terminated early due to worse outcomes in the oxygen treatment arm. Recently, this has led to less aggressive approaches, even to not providing any supplemental oxygen, in several acute care settings, such as resuscitation of asphyxiated newborns, during acute myocardial infarction or after stroke or cardiac arrest. The safety of more advanced attempts to deliver increased oxygen levels to hypoxic or ischaemic tissues, such as with hyperbaric oxygen therapy, is therefore also being questioned. Here, we provide an overview of the present knowledge of the physiological effects of oxygen in relation to its therapeutic potential for different medical conditions, as well as considering the potential for harm. We conclude that the medical use of oxygen needs to be further examined in search of solid evidence of benefit in many of the current clinical settings in which it is routinely used.
Collapse
Affiliation(s)
- F Sjöberg
- Departments of Hand and Plastic Surgery and Intensive Care, Burn Center, Linköping County Council, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | |
Collapse
|
47
|
Narotam PK. Eubaric hyperoxia: controversies in the management of acute traumatic brain injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:197. [PMID: 24499710 PMCID: PMC4056002 DOI: 10.1186/cc13065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Controversy exists on the role of hyperoxia in major trauma with brain injury. Hyperoxia on arterial blood gas has been associated with acute lung injury and pulmonary complications, impacting clinical outcome. The hyperoxia could be reflective of the physiological interventions following major systemic trauma. Despite the standard resuscitation of patients with acute traumatic brain injury, up to 60% demonstrate low brain oxygen upon admission to the ICU. While eubaric hyperoxia has been beneficial in experimental studies, clinical brain oxygen protocols incorporating intracranial pressure control, maintenance of cerebral perfusion pressure, and the effective use of fraction of inspired oxygen adjustments to maintain cerebral oxygenation levels >20 to 25 mmHg have demonstrated mortality reductions and improved clinical outcomes. The risk of low brain oxygen is most acute in the first 24 to 48 hours after injury. The administration of a high fraction of inspired oxygen (0.6 to 1.0) in the emergency room may be justifiable until ICU admission for the placement of invasive neurocritical care monitoring systems. Thereafter, fraction of inspired oxygen levels need to be careful titrated to prevent low brain oxygen levels.
Collapse
|
48
|
Rostami E, Rocksén D, Ekberg NR, Goiny M, Ungerstedt U. Brain metabolism and oxygenation in healthy pigs receiving hypoventilation and hyperoxia. Respir Physiol Neurobiol 2013; 189:537-42. [PMID: 24013004 DOI: 10.1016/j.resp.2013.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/09/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022]
Abstract
Modulation in ventilatory settings is one of the approaches and interventions used to treat and prevent secondary brain damage after traumatic brain injury (TBI). Here we investigate the effect of hyperoxia in combination with hypoventilation on brain oxygenation, metabolism and intracranial pressure. Twelve pigs were divided into three groups; group1-100% hyperoxia (n=4), group 2-100% hyperoxia and 20% decrease in minute volume (MV) (n=4) and group 3-100% hyperoxia and 50% decrease in MV (n=4). Neither of the ventilator settings affected the lactate/pyruvate ratio significantly. However, there was a significant decrease of brain lactate (2.6±1.7 to 1.8±1.6mM) and a rapid and marked increase in brain oxygenation (7.9±0.7 to 61.3±17.6mmHg) in group 3. Intracranial pressure (ICP) was not significantly affected in this group, however, the ICP increased significantly in group 2 with 100% hyperoxia plus 20% reduction in minute volume. We conclude that hyperoxia in combination with 50% decrease in MV showed pronounced increase in partial brain oxygen tension (pbrO2) and decrease in brain lactate. The ventilatory modification, used in this study should be considered for further investigation as a possible therapeutic intervention for TBI patients.
Collapse
Affiliation(s)
- Elham Rostami
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
49
|
Hyperbaric oxygen does not improve cerebral function when started 2 or 4 hours after cerebral arterial gas embolism in swine. Crit Care Med 2013; 41:1719-27. [PMID: 23632435 DOI: 10.1097/ccm.0b013e31828a3e00] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Hyperbaric oxygenation is the accepted treatment for cerebral arterial gas embolism. Although earlier start of hyperbaric oxygenation is associated with better outcome, it is unknown how much delay can be tolerated before start of hyperbaric oxygenation. This study investigates the effect of hyperbaric oxygenation on cerebral function in swine when initiated 2 or 4 hours after cerebral arterial gas embolism. DESIGN Prospective interventional animal study. SETTING Surgical laboratory and hyperbaric chamber. SUBJECTS Twenty-two Landrace pigs. INTERVENTIONS Under general anesthesia, probes to measure intracranial pressure, brain oxygen tension (PbtO2), and brain microdialysis, and electrodes for electroencephalography were placed. The electroencephalogram (quantified using temporal brain symmetry index) was suppressed during 1 hour by repeated injection of air boluses through a catheter placed in the right ascending pharyngeal artery. Hyperbaric oxygenation was administered using U.S. Navy Treatment Table 6 after 2- or 4-hour delay. Control animals were maintained on an inspiratory oxygen fraction of 0.4. MEASUREMENTS AND MAIN RESULTS Intracranial pressure increased to a mean maximum of 19 mm Hg (SD, 4.5 mm Hg) due to the embolization procedure. Hyperbaric oxygenation significantly increased PbtO2 in both groups treated with hyperbaric oxygenation (mean maximum PbtO2, 390 torr; SD, 177 torr). There were no significant differences between groups with regard to temporal brain symmetry index (control vs 2-hr delay, p = 0.078; control vs 4-hr delay, p = 0.150), intracranial pressure, and microdialysis values. CONCLUSIONS We did not observe an effect of hyperbaric oxygenation on cerebral function after a delay of 2 or 4 hours. The injury caused in our model could be too severe for a single session of hyperbaric oxygenation to be effective. Our study should not change current hyperbaric oxygenation strategies for cerebral arterial gas embolism, but further research is necessary to elucidate our results. Whether less severe injury benefits from hyperbaric oxygenation should be investigated in models using smaller amounts of air and clinical outcome measures.
Collapse
|
50
|
Raj R, Bendel S, Reinikainen M, Kivisaari R, Siironen J, Lång M, Skrifvars M. Hyperoxemia and long-term outcome after traumatic brain injury. Crit Care 2013; 17:R177. [PMID: 23958227 PMCID: PMC4056982 DOI: 10.1186/cc12856] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/06/2013] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION The relationship between hyperoxemia and outcome in patients with traumatic brain injury (TBI) is controversial. We sought to investigate the independent relationship between hyperoxemia and long-term mortality in patients with moderate-to-severe traumatic brain injury. METHODS The Finnish Intensive Care Consortium database was screened for mechanically ventilated patients with a moderate-to-severe TBI. Patients were categorized, according to the highest measured alveolar-arterial O₂ gradient or the lowest measured PaO₂ value during the first 24 hours of ICU admission, to hypoxemia (<10.0 kPa), normoxemia (10.0 to 13.3 kPa) and hyperoxemia (>13.3 kPa). We adjusted for markers of illness severity to evaluate the independent relationship between hyperoxemia and 6-month mortality. RESULTS A total of 1,116 patients were included in the study, of which 16% (n = 174) were hypoxemic, 51% (n = 567) normoxemic and 33% (n = 375) hyperoxemic. The total 6-month mortality was 39% (n = 435). A significant association between hyperoxemia and a decreased risk of mortality was found in univariate analysis (P = 0.012). However, after adjusting for markers of illness severity in a multivariate logistic regression model hyperoxemia showed no independent relationship with 6-month mortality (hyperoxemia vs. normoxemia OR 0.88, 95% CI 0. 63 to 1.22, P = 0.43; hyperoxemia vs. hypoxemia OR 0.97, 95% CI 0.63 to 1.50, P = 0.90). CONCLUSION Hyperoxemia in the first 24 hours of ICU admission after a moderate-to-severe TBI is not predictive of 6-month mortality.
Collapse
Affiliation(s)
- Rahul Raj
- Department of Neurosurgery, Helsinki University Central Hospital, Topeliuksenkatu 5 FI-00029 HUS Helsinki,Finland
| | - Stepani Bendel
- Department of Intensive Care Medicine, Kuopio University Hospital and Kuopio University, Puijonlaaksontie 2, 70211 Kuopio, Finland
| | - Matti Reinikainen
- Department of Intensive Care Medicine, North Karelia Central Hospital, Tikkamäentie 16, 80210 Joensuu, Finland
| | - Riku Kivisaari
- Department of Neurosurgery, Helsinki University Central Hospital, Topeliuksenkatu 5 FI-00029 HUS Helsinki,Finland
| | - Jari Siironen
- Department of Neurosurgery, Helsinki University Central Hospital, Topeliuksenkatu 5 FI-00029 HUS Helsinki,Finland
| | - Maarit Lång
- Department of Intensive Care Medicine, Kuopio University Hospital and Kuopio University, Puijonlaaksontie 2, 70211 Kuopio, Finland
| | - Markus Skrifvars
- Department of Neurosurgery, Helsinki University Central Hospital, Topeliuksenkatu 5 FI-00029 HUS Helsinki,Finland
- Department of Anesthesiology and Intensive Care Medicine, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|