1
|
Granerud IL, Fabritius ML, Jensen HR, Møller K, Sørensen MK. Cerebral microdialysis values in healthy brain tissue - a scoping review. Acta Neurochir (Wien) 2025; 167:62. [PMID: 40055196 PMCID: PMC11889025 DOI: 10.1007/s00701-025-06424-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/02/2025] [Indexed: 03/12/2025]
Abstract
BACKGROUND Intracerebral microdialysis is an advanced method to guide clinicians during intensive care of patients with severe acute brain injury. Using intracerebral microdialysis, markers of brain metabolism and homeostasis can be analysed. Currently, trends are considered more important in clinical decision-making than absolute values. Establishing absolute reference values in healthy brain tissue may facilitate an earlier detection of abnormal brain tissue metabolism and provide better decision support for clinicians. However, the current evidence on normal values in the uninjured human brain has not previously been summarized. The aim of this study was to summarise the literature regarding microdialysate concentrations of common markers of brain energy metabolism (glucose, lactate, pyruvate, glutamate, and glycerol) in vivo in healthy brain tissue of humans and gyrencephalic animals. METHOD MEDLINE, Embase, CENTRAL, CINAHL, and Web of Science were searched for published studies that report values of microdialysis in healthy brain tissue. In order to identify unpublished studies, we searched ClinicalTrials.gov, WHO International Clinical Trials Registry Platform (ICTRP), and EU Clinical Trials Register. Study quality was evaluated using a pre-specified protocol. RESULT Out of 3257 studies identified, 39 studies were included. Six of these studies were in humans (total n = 54), 26 in pigs/swine (n = 432), two on monkeys (n = 10), one in sheep (n = 15), and one in dogs (n = 10). We found a high degree of clinical and methodological heterogeneity in both human and gyrencephalic animal studies. CONCLUSION This scoping review identified studies that applied microdialysis to measure common biomarkers in healthy brain tissue. The clinical and methodological heterogeneity between the measured values was substantial, limiting any conclusions. Furthermore, the quality of several human studies was moderate at best. Methodologically comparable studies are warranted to establish reference values for markers of brain energy metabolism using intracerebral microdialysate.
Collapse
Affiliation(s)
- Ingrid Løchen Granerud
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| | - Maria Louise Fabritius
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Helene Ravnholt Jensen
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kirsten Møller
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Kryspin Sørensen
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
2
|
Mayer S, Saxena P, Crayen MA, Treue S. Establishing In-vivo brain microdialysis for comparing concentrations of a variety of cortical neurotransmitters in the awake rhesus macaque between different cognitive states. J Neurosci Methods 2025; 415:110361. [PMID: 39798806 DOI: 10.1016/j.jneumeth.2025.110361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Neuronal activity is modulated by behavior and cognitive processes. The combination of several neurotransmitter systems, acting directly or indirectly on specific populations of neurons, underlie such modulations. Most studies with non-human primates (NHPs) fail to capture this complexity, partly due to the lack of adequate methods for reliably and simultaneously measuring a broad spectrum of neurotransmitters while the animal engages in behavioral tasks. NEW METHOD To address this gap, we introduce a novel implementation of brain microdialysis (MD), employing semi-chronically implanted guides and probes in awake, behaving NHPs facilitated by removable insets within a standard recording chamber over extrastriate visual cortex (here, the visual middle temporal area (MT)). This approach allows flexible access to diverse brain regions, including areas deep within the sulcus. RESULTS Reliable concentration measurements of GABA, glutamate, norepinephrine, epinephrine, dopamine, serotonin, and choline were achieved from small sample volumes (<20 µl) using ultra-performance liquid chromatography with electrospray ionization-mass spectrometry (UPLC-ESI-MS). Comparing two behavioral states - 'active' and 'inactive', we observe subtle concentration variations between the two behavioral states and a greater variability of concentrations in the active state. Additionally, we find positively and negatively correlated concentration changes for neurotransmitter pairs between the behavioral states. CONCLUSIONS Therefore, this MD setup allows insights into the neurochemical dynamics in awake primates, facilitating comprehensive investigations into the roles and the complex interplay of neurotransmitters in cognitive and behavioral functions.
Collapse
Affiliation(s)
- Stella Mayer
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Goettingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, University of Goettingen, Goettingen, Germany; Faculty of Biology and Psychology, University of Goettingen, Goettingen 37077 Germany.
| | - Pankhuri Saxena
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Goettingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, University of Goettingen, Goettingen, Germany; Faculty of Biology and Psychology, University of Goettingen, Goettingen 37077 Germany
| | - Max Arwed Crayen
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Goettingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, University of Goettingen, Goettingen, Germany; Faculty of Biology and Psychology, University of Goettingen, Goettingen 37077 Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Faculty of Biology and Psychology, University of Goettingen, Goettingen 37077 Germany
| |
Collapse
|
3
|
Svedung Wettervik T, Hånell A, Ahlgren KM, Hillered L, Lewén A. Preliminary Observations of the Loke Microdialysis in an Experimental Pig Model: Are We Ready for Continuous Monitoring of Brain Energy Metabolism? Neurocrit Care 2025; 42:222-231. [PMID: 39085507 PMCID: PMC11811243 DOI: 10.1007/s12028-024-02080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Brain energy metabolism is often disturbed after acute brain injuries. Current neuromonitoring methods with cerebral microdialysis (CMD) are based on intermittent measurements (1-4 times/h), but such a low frequency could miss transient but important events. The solution may be the recently developed Loke microdialysis (MD), which provides high-frequency data of glucose and lactate. Before clinical implementation, the reliability and stability of Loke remain to be determined in vivo. The purpose of this study was to validate Loke MD in relation to the standard intermittent CMD method. METHODS Four pigs aged 2-3 months were included. They received two adjacent CMD catheters, one for standard intermittent assessments and one for continuous (Loke MD) assessments of glucose and lactate. The standard CMD was measured every 15 min. Continuous Loke MD was sampled every 2-3 s and was averaged over corresponding 15-min intervals for the statistical comparisons with standard CMD. Intravenous glucose injections and intracranial hypertension by inflation of an intracranial epidural balloon were performed to induce variations in intracranial pressure, cerebral perfusion pressure, and systemic and cerebral glucose and lactate levels. RESULTS In a linear mixed-effect model of standard CMD glucose (mM), there was a fixed effect value (± standard error [SE]) at 0.94 ± 0.07 (p < 0.001) for Loke MD glucose (mM), with an intercept at - 0.19 ± 0.15 (p = 0.20). The model showed a conditional R2 at 0.81 and a marginal R2 at 0.72. In a linear mixed-effect model of standard CMD lactate (mM), there was a fixed effect value (± SE) at 0.41 ± 0.16 (p = 0.01) for Loke MD lactate (mM), with an intercept at 0.33 ± 0.21 (p = 0.25). The model showed a conditional R2 at 0.47 and marginal R2 at 0.17. CONCLUSIONS The established standard CMD glucose thresholds may be used as for Loke MD with some caution, but this should be avoided for lactate.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden.
| | - Anders Hånell
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden
| | - Kerstin M Ahlgren
- Department of Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Lars Hillered
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden
| | - Anders Lewén
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden
| |
Collapse
|
4
|
Srichawla BS. Future of neurocritical care: Integrating neurophysics, multimodal monitoring, and machine learning. World J Crit Care Med 2024; 13:91397. [PMID: 38855276 PMCID: PMC11155497 DOI: 10.5492/wjccm.v13.i2.91397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/27/2024] [Accepted: 03/06/2024] [Indexed: 06/03/2024] Open
Abstract
Multimodal monitoring (MMM) in the intensive care unit (ICU) has become increasingly sophisticated with the integration of neurophysical principles. However, the challenge remains to select and interpret the most appropriate combination of neuromonitoring modalities to optimize patient outcomes. This manuscript reviewed current neuromonitoring tools, focusing on intracranial pressure, cerebral electrical activity, metabolism, and invasive and noninvasive autoregulation monitoring. In addition, the integration of advanced machine learning and data science tools within the ICU were discussed. Invasive monitoring includes analysis of intracranial pressure waveforms, jugular venous oximetry, monitoring of brain tissue oxygenation, thermal diffusion flowmetry, electrocorticography, depth electroencephalography, and cerebral microdialysis. Noninvasive measures include transcranial Doppler, tympanic membrane displacement, near-infrared spectroscopy, optic nerve sheath diameter, positron emission tomography, and systemic hemodynamic monitoring including heart rate variability analysis. The neurophysical basis and clinical relevance of each method within the ICU setting were examined. Machine learning algorithms have shown promise by helping to analyze and interpret data in real time from continuous MMM tools, helping clinicians make more accurate and timely decisions. These algorithms can integrate diverse data streams to generate predictive models for patient outcomes and optimize treatment strategies. MMM, grounded in neurophysics, offers a more nuanced understanding of cerebral physiology and disease in the ICU. Although each modality has its strengths and limitations, its integrated use, especially in combination with machine learning algorithms, can offer invaluable information for individualized patient care.
Collapse
Affiliation(s)
- Bahadar S Srichawla
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| |
Collapse
|
5
|
Zimphango C, Alimagham FC, Hutter T, Hutchinson PJ, Carpenter KL. Quantification of pyruvate in-vitro using mid-infrared spectroscopy: Developing a system for microdialysis monitoring in traumatic brain injury patients. BRAIN & SPINE 2023; 3:102686. [PMID: 38021004 PMCID: PMC10668092 DOI: 10.1016/j.bas.2023.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023]
Abstract
Introduction Complex metabolic disruption is a major aspect of the pathophysiology of traumatic brain injury (TBI). Pyruvate is an intermediate in glucose metabolism and considered one of the most clinically informative metabolites during neurocritical care of TBI patients, especially in deducing the lactate/pyruvate ratio (LPR) - a widely-used metric for probing the brain's metabolic redox state. LPR is conventionally measured offline on a bedside analyzer, on hourly accumulations of brain microdialysate. However, there is increasing interest within the field to quantify microdialysate pyruvate and LPR continuously in near-real-time within its pathophysiological range. We have previously measured pure standard pyruvate in-vitro using mid-infrared transmission, employing a commercially available external cavity-quantum cascade laser (EC-QCL) and a microfluidic flow cell and reported a limit of detection (LOD) of 0.1 mM. Research question The present study was to test whether the current commercially available state-of-the-art mid-infrared transmission system, can detect pyruvate levels lower than previously reported. Materials and methods We measured pyruvate in perfusion fluid on the mid-infrared transmission system also equipped with an EC-QCL and microfluidic flow cells, tested at three pathlengths. Results We characterised the system to extract its relevant figures-of-merit and report the LOD of 0.07 mM. Discussion and conclusion The reported LOD of 0.07 mM represents a clinically recognised threshold and is the lowest value reported in the field for a sensor that can be coupled to microdialysis. While work is ongoing for a definitive evaluation of the system to measuring pyruvate, these preliminary results set a good benchmark and reference against which future developments can be examined.
Collapse
Affiliation(s)
- Chisomo Zimphango
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Farah C. Alimagham
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Tanya Hutter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Peter J. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Keri L.H. Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| |
Collapse
|
6
|
Lin IH, Kamnaksh A, Aniceto R, McCullough J, Bekdash R, Eklund M, Ghatan PH, Risling M, Svensson M, Bellander BM, Nelson DW, Thelin EP, Agoston DV. Time-Dependent Changes in the Biofluid Levels of Neural Injury Markers in Severe Traumatic Brain Injury Patients-Cerebrospinal Fluid and Cerebral Microdialysates: A Longitudinal Prospective Pilot Study. Neurotrauma Rep 2023; 4:107-117. [PMID: 36895820 PMCID: PMC9989523 DOI: 10.1089/neur.2022.0076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Monitoring protein biomarker levels in the cerebrospinal fluid (CSF) can help assess injury severity and outcome after traumatic brain injury (TBI). Determining injury-induced changes in the proteome of brain extracellular fluid (bECF) can more closely reflect changes in the brain parenchyma, but bECF is not routinely available. The aim of this pilot study was to compare time-dependent changes of S100 calcium-binding protein B (S100B), neuron-specific enolase (NSE), total Tau, and phosphorylated Tau (p-Tau) levels in matching CSF and bECF samples collected at 1, 3, and 5 days post-injury from severe TBI patients (n = 7; GCS 3-8) using microcapillary-based western analysis. We found that time-dependent changes in CSF and bECF levels were most pronounced for S100B and NSE, but there was substantial patient-to-patient variability. Importantly, the temporal pattern of biomarker changes in CSF and bECF samples showed similar trends. We also detected two different immunoreactive forms of S100B in both CSF and bECF samples, but the contribution of the different immunoreactive forms to total immunoreactivity varied from patient to patient and time point to time point. Our study is limited, but it illustrates the value of both quantitative and qualitative analysis of protein biomarkers and the importance of serial sampling for biofluid analysis after severe TBI.
Collapse
Affiliation(s)
- I-Hsuan Lin
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Alaa Kamnaksh
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Roxanne Aniceto
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Jesse McCullough
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Ramsey Bekdash
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Michael Eklund
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Per Hamid Ghatan
- Department of Neuroscience, Uppsala University Hospital, Uppsala, Sweden
| | - Mårten Risling
- Department of Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - David W Nelson
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden.,Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Nordström CH, Forsse A, Jakobsen RP, Mölström S, Nielsen TH, Toft P, Ungerstedt U. Bedside interpretation of cerebral energy metabolism utilizing microdialysis in neurosurgical and general intensive care. Front Neurol 2022; 13:968288. [PMID: 36034291 PMCID: PMC9399721 DOI: 10.3389/fneur.2022.968288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
The microdialysis technique was initially developed for monitoring neurotransmitters in animals. In 1995 the technique was adopted to clinical use and bedside enzymatic analysis of glucose, pyruvate, lactate, glutamate and glycerol. Under clinical conditions microdialysis has also been used for studying cytokines, protein biomarkers, multiplex proteomic and metabolomic analyses as well as for pharmacokinetic studies and evaluation of blood-brain barrier function. This review focuses on the variables directly related to cerebral energy metabolism and the possibilities and limitations of microdialysis during routine neurosurgical and general intensive care. Our knowledge of cerebral energy metabolism is to a large extent based on animal experiments performed more than 40 years ago. However, the different biochemical information obtained from various techniques should be recognized. The basic animal studies analyzed brain tissue homogenates while the microdialysis technique reflects the variables in a narrow zone of interstitial fluid surrounding the probe. Besides the difference of the volume investigated, the levels of the biochemical variables differ in different compartments. During bedside microdialysis cerebral energy metabolism is primarily reflected in measured levels of glucose, lactate and pyruvate and the lactate to pyruvate (LP) ratio. The LP ratio reflects cytoplasmatic redox-state which increases instantaneously during insufficient aerobic energy metabolism. Cerebral ischemia is characterized by a marked increase in intracerebral LP ratio at simultaneous decreases in intracerebral levels of pyruvate and glucose. Mitochondrial dysfunction is characterized by a moderate increase in LP ratio at a very marked increase in cerebral lactate and normal or elevated levels of pyruvate and glucose. The patterns are of importance in particular for interpretations in transient cerebral ischemia. A new technique for evaluating global cerebral energy metabolism by microdialysis of the draining cerebral venous blood is discussed. In experimental studies it has been shown that pronounced global cerebral ischemia is reflected in venous cerebral blood. Jugular bulb microdialysis has been investigated in patients suffering from subarachnoid hemorrhage, during cardiopulmonary bypass and resuscitation after out of hospital cardiac arrest. Preliminary results indicate that the new technique may give valuable information of cerebral energy metabolism in clinical conditions when insertion of an intracerebral catheter is contraindicated.
Collapse
Affiliation(s)
- Carl-Henrik Nordström
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- *Correspondence: Carl-Henrik Nordström
| | - Axel Forsse
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Rasmus Peter Jakobsen
- Department of Anesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark
| | - Simon Mölström
- Department of Anesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark
| | | | - Palle Toft
- Department of Anesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark
| | - Urban Ungerstedt
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
8
|
Geminiani A, Mockevičius A, D’Angelo E, Casellato C. Cerebellum Involvement in Dystonia During Associative Motor Learning: Insights From a Data-Driven Spiking Network Model. Front Syst Neurosci 2022; 16:919761. [PMID: 35782305 PMCID: PMC9243665 DOI: 10.3389/fnsys.2022.919761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive movements, postures, or both. Although dystonia is traditionally associated with basal ganglia dysfunction, recent evidence has been pointing to a role of the cerebellum, a brain area involved in motor control and learning. Cerebellar abnormalities have been correlated with dystonia but their potential causative role remains elusive. Here, we simulated the cerebellar input-output relationship with high-resolution computational modeling. We used a data-driven cerebellar Spiking Neural Network and simulated a cerebellum-driven associative learning task, Eye-Blink Classical Conditioning (EBCC), which is characteristically altered in relation to cerebellar lesions in several pathologies. In control simulations, input stimuli entrained characteristic network dynamics and induced synaptic plasticity along task repetitions, causing a progressive spike suppression in Purkinje cells with consequent facilitation of deep cerebellar nuclei cells. These neuronal processes caused a progressive acquisition of eyelid Conditioned Responses (CRs). Then, we modified structural or functional local neural features in the network reproducing alterations reported in dystonic mice. Either reduced olivocerebellar input or aberrant Purkinje cell burst-firing resulted in abnormal learning curves imitating the dysfunctional EBCC motor responses (in terms of CR amount and timing) of dystonic mice. These behavioral deficits might be due to altered temporal processing of sensorimotor information and uncoordinated control of muscle contractions. Conversely, an imbalance of excitatory and inhibitory synaptic densities on Purkinje cells did not reflect into significant EBCC deficit. The present work suggests that only certain types of alterations, including reduced olivocerebellar input and aberrant PC burst-firing, are compatible with the EBCC changes observed in dystonia, indicating that some cerebellar lesions can have a causative role in the pathogenesis of symptoms.
Collapse
Affiliation(s)
- Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Aurimas Mockevičius
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Casault C, Couillard P, Kromm J, Rosenthal E, Kramer A, Brindley P. Multimodal brain monitoring following traumatic brain injury: A primer for intensive care practitioners. J Intensive Care Soc 2022; 23:191-202. [PMID: 35615230 PMCID: PMC9125434 DOI: 10.1177/1751143720980273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
Traumatic brain injury (TBI) is common and potentially devastating. Traditional examination-based patient monitoring following TBI may be inadequate for frontline clinicians to reduce secondary brain injury through individualized therapy. Multimodal neurologic monitoring (MMM) offers great potential for detecting early injury and improving outcomes. By assessing cerebral oxygenation, autoregulation and metabolism, clinicians may be able to understand neurophysiology during acute brain injury, and offer therapies better suited to each patient and each stage of injury. Hence, we offer this primer on brain tissue oxygen monitoring, pressure reactivity index monitoring and cerebral microdialysis. This narrative review serves as an introductory guide to the latest clinically-relevant evidence regarding key neuromonitoring techniques.
Collapse
Affiliation(s)
- Colin Casault
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
| | - Philippe Couillard
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
- Department of Clinical
Neurosciences, University of Calgary, Calgary, Canada
| | - Julie Kromm
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
- Department of Clinical
Neurosciences, University of Calgary, Calgary, Canada
| | - Eric Rosenthal
- Department of Critical Care
Medicine, University of Alberta, Edmonton, Canada
| | - Andreas Kramer
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
- Department of Clinical
Neurosciences, University of Calgary, Calgary, Canada
| | - Peter Brindley
- Department of Neurology, Harvard
University, Boston, MA, USA
| |
Collapse
|
10
|
Zimphango C, Alimagham FC, Carpenter KLH, Hutchinson PJ, Hutter T. Monitoring Neurochemistry in Traumatic Brain Injury Patients Using Microdialysis Integrated with Biosensors: A Review. Metabolites 2022; 12:metabo12050393. [PMID: 35629896 PMCID: PMC9146878 DOI: 10.3390/metabo12050393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
In a traumatically injured brain, the cerebral microdialysis technique allows continuous sampling of fluid from the brain’s extracellular space. The retrieved brain fluid contains useful metabolites that indicate the brain’s energy state. Assessment of these metabolites along with other parameters, such as intracranial pressure, brain tissue oxygenation, and cerebral perfusion pressure, may help inform clinical decision making, guide medical treatments, and aid in the prognostication of patient outcomes. Currently, brain metabolites are assayed on bedside analysers and results can only be achieved hourly. This is a major drawback because critical information within each hour is lost. To address this, recent advances have focussed on developing biosensing techniques for integration with microdialysis to achieve continuous online monitoring. In this review, we discuss progress in this field, focusing on various types of sensing devices and their ability to quantify specific cerebral metabolites at clinically relevant concentrations. Important points that require further investigation are highlighted, and comments on future perspectives are provided.
Collapse
Affiliation(s)
- Chisomo Zimphango
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
- Correspondence:
| | - Farah C. Alimagham
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
| | - Keri L. H. Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
| | - Peter J. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
| | - Tanya Hutter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
11
|
Jorda A, Armogida M, Lackner E, Saikumar S, Sucharski F, Weber M, Zeitlinger M. Diclofenac in vitro microdialysis study comparing different experimental setups to improve quantitative recovery. Basic Clin Pharmacol Toxicol 2022; 130:468-480. [PMID: 35048557 PMCID: PMC9305941 DOI: 10.1111/bcpt.13709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
Abstract
Several studies investigated diclofenac tissue concentrations using microdialysis (MD). However, thorough evaluations of the optimal MD set‐up for diclofenac are unavailable. Thus, this in vitro MD study aimed to compare different set‐ups to improve quantitative recovery of diclofenac. In forward and reverse in vitro MD experiments with diclofenac at two concentrations (1 and 100 ng/ml), the perfusion solutions physiological saline 0.9% (PS) and human albumin 1% (HSA) were compared using tissue probes (10‐mm membrane) and customized intravenous (iv) probes (30‐mm membrane). Using PS, the mean relative recovery of diclofenac at 1 ng/ml was 1.6% ± 0.04% and 3.12% ± 0.00% with the tissue probe and the iv probe, respectively. The respective mean relative recovery for diclofenac at 100 ng/ml was 0.02% ± 0.01% and 0.21% ± 0.11%. Using HSA, the mean relative recovery was 314% ± 25% (tissue probe) and 1064% ± 97% (iv probe) for diclofenac at 1 ng/ml and 444% ± 91% and 1415% ± 217% for diclofenac at 100 ng/ml. In reverse dialysis using PS, the mean relative loss of diclofenac was 99.2% ± 0.5% (tissue probe) and 95.8% ± 1.7% (iv probe). Using HSA, the mean relative loss was −4.4% ± 7.2% and 0.2% ± 7.5%, respectively. PS and HSA were not suitable perfusion solutions for quantification of absolute diclofenac concentrations. Despite methodological challenges, HSA may be used for comparative experiments or bioequivalence studies.
Collapse
Affiliation(s)
- Anselm Jorda
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | | | - Edith Lackner
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | | | | | - Maria Weber
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| |
Collapse
|
12
|
Stangler LA, Kouzani A, Bennet KE, Dumee L, Berk M, Worrell GA, Steele S, Burns TC, Howe CL. Microdialysis and microperfusion electrodes in neurologic disease monitoring. Fluids Barriers CNS 2021; 18:52. [PMID: 34852829 PMCID: PMC8638547 DOI: 10.1186/s12987-021-00292-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022] Open
Abstract
Contemporary biomarker collection techniques in blood and cerebrospinal fluid have to date offered only modest clinical insights into neurologic diseases such as epilepsy and glioma. Conversely, the collection of human electroencephalography (EEG) data has long been the standard of care in these patients, enabling individualized insights for therapy and revealing fundamental principles of human neurophysiology. Increasing interest exists in simultaneously measuring neurochemical biomarkers and electrophysiological data to enhance our understanding of human disease mechanisms. This review compares microdialysis, microperfusion, and implanted EEG probe architectures and performance parameters. Invasive consequences of probe implantation are also investigated along with the functional impact of biofouling. Finally, previously developed microdialysis electrodes and microperfusion electrodes are reviewed in preclinical and clinical settings. Critically, current and precedent microdialysis and microperfusion probes lack the ability to collect neurochemical data that is spatially and temporally coincident with EEG data derived from depth electrodes. This ultimately limits diagnostic and therapeutic progress in epilepsy and glioma research. However, this gap also provides a unique opportunity to create a dual-sensing technology that will provide unprecedented insights into the pathogenic mechanisms of human neurologic disease.
Collapse
Affiliation(s)
- Luke A Stangler
- School of Engineering, Deakin University, 3216, Geelong, Victoria, Australia
- Division of Engineering, Mayo Clinic, 55905, Rochester, MN, USA
| | - Abbas Kouzani
- School of Engineering, Deakin University, 3216, Geelong, Victoria, Australia
| | - Kevin E Bennet
- School of Engineering, Deakin University, 3216, Geelong, Victoria, Australia
- Division of Engineering, Mayo Clinic, 55905, Rochester, MN, USA
| | - Ludovic Dumee
- School of Engineering, Deakin University, 3216, Geelong, Victoria, Australia
| | - Michael Berk
- School of Medicine, Deakin University, 3216, Geelong, Victoria, Australia
| | | | - Steven Steele
- Division of Engineering, Mayo Clinic, 55905, Rochester, MN, USA
| | - Terence C Burns
- Department of Neurosurgery, Mayo Clinic, 55905, Rochester, MN, USA
| | - Charles L Howe
- Department of Neurology, Mayo Clinic, 55905, Rochester, MN, USA.
- Division of Experimental Neurology, Mayo Clinic, 55905, Rochester, MN, USA.
- Center for MS and Autoimmune Neurology, Mayo Clinic, 55905, Rochester, MN, USA.
| |
Collapse
|
13
|
Forsse A, Nielsen TH, Mølstrøm S, Hjelmborg J, Nielsen KS, Nygaard KH, Yilmaz S, Nordström CH, Poulsen FR. A Prospective Observational Feasibility Study of Jugular Bulb Microdialysis in Subarachnoid Hemorrhage. Neurocrit Care 2021; 33:241-255. [PMID: 31845174 DOI: 10.1007/s12028-019-00888-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cerebral metabolic perturbations are common in aneurysmal subarachnoid hemorrhage (aSAH). Monitoring cerebral metabolism with intracerebral microdialysis (CMD) allows early detection of secondary injury and may guide decisions on neurocritical care interventions, affecting outcome. However, CMD is a regional measuring technique that is influenced by proximity to focal lesions. Continuous microdialysis of the cerebral venous drainage may provide information on global cerebral metabolism relevant for the care of aSAH patients. This observational study aimed to explore the feasibility of jugular bulb microdialysis (JBMD) in aSAH and describe the output characteristics in relation to conventional multimodal monitoring. METHODS Patients with severe aSAH were included at admission or after in-house deterioration when local clinical guidelines prompted extended multimodal monitoring. Non-dominant frontal CMD, intracranial pressure (ICP), partial brain tissue oxygenation pressure (PbtO2), and cerebral perfusion pressure (CPP) were recorded every hour. The dominant jugular vein was accessed by retrograde insertion of a microdialysis catheter with the tip placed in the jugular bulb under ultrasound guidance. Glucose, lactate, pyruvate, lactate/pyruvate ratio, glycerol, and glutamate were studied for correlation to intracranial measurements. Modified Rankin scale was assessed at 6 months. RESULTS Twelve adult aSAH patients were monitored during a mean 4.2 ± 2.6 days yielding 22,041 data points for analysis. No complications related to JBMD were observed. Moderate or strong significant monotonic CMD-to-JBMD correlations were observed most often for glucose (7 patients), followed by lactate (5 patients), and pyruvate, glycerol, and glutamate (3 patients). Moderate correlation for lactate/pyruvate ratio was only seen in one patient. Analysis of critical periods defined by ICP > 20, CPP < 65, or PbtO2 < 15 revealed a tendency toward stronger CMD-to-JBMD associations in patients with many or long critical periods. Possible time lags between CMD and JBMD measurements were only identified in 6 out of 60 patient variables. With the exception of pyruvate, a dichotomized outcome was associated with similar metabolite patterns in JBMD and CMD. A nonsignificant tendency toward greater differences between outcome groups was seen in JBMD. CONCLUSIONS Continuous microdialysis monitoring of the cerebral drainage in the jugular bulb is feasible and safe. JBMD-to-CMD correlation is influenced by the type of metabolite measured, with glucose and lactate displaying the strongest associations. JBMD lactate correlated more often than CMD lactate to CPP, implying utility for detection of global cerebral metabolic perturbations. Studies comparing JBMD to other global measures of cerebral metabolism, e.g., PET CT or Xenon CT, are warranted.
Collapse
Affiliation(s)
- Axel Forsse
- Department of Neurosurgery, Odense University Hospital, Sønder Boulevard 29, 5000, Odense, Denmark. .,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Troels Halfeld Nielsen
- Department of Neurosurgery, Odense University Hospital, Sønder Boulevard 29, 5000, Odense, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Simon Mølstrøm
- Department of Anesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark
| | - Jacob Hjelmborg
- Department of Biostatistics and Epidemiology, University of Southern Denmark, Odense, Denmark
| | - Kasper Stokbro Nielsen
- Department of Oral and Maxillofacial Surgery, Odense University Hospital, Odense, Denmark
| | - Kevin Hebøll Nygaard
- Department of Neurosurgery, Odense University Hospital, Sønder Boulevard 29, 5000, Odense, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Sibel Yilmaz
- Department of Neurosurgery, Odense University Hospital, Sønder Boulevard 29, 5000, Odense, Denmark
| | - Carl-Henrik Nordström
- Department of Neurosurgery, Odense University Hospital, Sønder Boulevard 29, 5000, Odense, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, Sønder Boulevard 29, 5000, Odense, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Jaquins-Gerstl A, Michael AC. Dexamethasone-Enhanced Microdialysis and Penetration Injury. Front Bioeng Biotechnol 2020; 8:602266. [PMID: 33364231 PMCID: PMC7752925 DOI: 10.3389/fbioe.2020.602266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/11/2020] [Indexed: 01/25/2023] Open
Abstract
Microdialysis probes, electrochemical microsensors, and neural prosthetics are often used for in vivo monitoring, but these are invasive devices that are implanted directly into brain tissue. Although the selectivity, sensitivity, and temporal resolution of these devices have been characterized in detail, less attention has been paid to the impact of the trauma they inflict on the tissue or the effect of any such trauma on the outcome of the measurements they are used to perform. Factors affecting brain tissue reaction to the implanted devices include: the mechanical trauma during insertion, the foreign body response, implantation method, and physical properties of the device (size, shape, and surface characteristics. Modulation of the immune response is an important step toward making these devices with reliable long-term performance. Local release of anti-inflammatory agents such as dexamethasone (DEX) are often used to mitigate the foreign body response. In this article microdialysis is used to locally deliver DEX to the surrounding brain tissue. This work discusses the immune response resulting from microdialysis probe implantation. We briefly review the principles of microdialysis and the applications of DEX with microdialysis in (i) neuronal devices, (ii) dopamine and fast scan cyclic voltammetry, (iii) the attenuation of microglial cells, (iv) macrophage polarization states, and (v) spreading depolarizations. The difficulties and complexities in these applications are herein discussed.
Collapse
|
15
|
Tigchelaar F, Groen H, Westgren M, Huinink KD, Cremers T, van den Berg PP. A new microdialysis probe for continuous lactate measurement during fetal monitoring: Proof of concept in an animal model. Acta Obstet Gynecol Scand 2020; 99:1411-1416. [PMID: 32274792 PMCID: PMC7540415 DOI: 10.1111/aogs.13865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Cardiotocography (CTG) is currently the most commonly used method for intrapartum fetal monitoring during labor. However, a high false-positive rate of fetal acidosis indicated by CTG leads to an increase in obstetric interventions. We developed a microdialysis probe that is integrated into a fetal scalp electrode allowing continuous measurement of lactate subcutaneously, thus giving instant information about the oxygenation status of the fetus. Our aim was to establish proof of concept in an animal model using a microdialysis probe to monitor lactate subcutaneously. MATERIAL AND METHODS We performed an in vivo study in adult male wild-type Wistar rats. We modified electrodes used for CTG monitoring in human fetuses to incorporate a microdialysis membrane. Optimum flow rates for microdialysis were determined in vitro. For the in vivo experiment, a microdialysis probe was inserted into the skin on the back of the animal. De-oxygenation and acidosis were induced by lowering the inspiratory oxygen pressure. Oxygenation and heart rate were monitored. A jugular vein cannula was inserted to draw blood samples for analysis of lactate, pH, pco2 , and saturation. Lactate levels in dialysate were compared with plasma lactate levels. RESULTS Baseline blood lactate levels were around 1 mmol/L. Upon de-oxygenation, oxygen saturation fell to below 40% for 1 h and blood lactate levels increased 2.5-fold. Correlation of dialysate lactate levels with plasma lactate levels was 0.89 resulting in an R2 of .78 in the corresponding linear regression. CONCLUSIONS In this animal model, lactate levels in subcutaneous fluid collected by microdialysis closely reflected blood lactate levels upon transient de-oxygenation, indicating that our device is suitable for subcutaneous measurement of lactate. Microdialysis probe technology allows the measurement of multiple compounds in the dialysate, such as glucose, albumin, or inflammatory mediators, so this technique may offer the unique possibility to shed light on fetal physiology during the intrapartum period.
Collapse
Affiliation(s)
- Froukje Tigchelaar
- Faculty of Medical SciencesUniversity of GroningenGroningenthe Netherlands
| | - Henk Groen
- Department of EpidemiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | | | | | - Thomas Cremers
- CAN Holding B.V.Groningenthe Netherlands
- Department of Pharmaceutical AnalysisFaculty of Science and EngineeringUniversity of GroningenGroningenthe Netherlands
| | - Paul P. van den Berg
- Department of Obstetrics & GynecologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
16
|
Tobieson L, Czifra Z, Wåhlén K, Marklund N, Ghafouri B. Proteomic investigation of protein adsorption to cerebral microdialysis membranes in surgically treated intracerebral hemorrhage patients - a pilot study. Proteome Sci 2020; 18:7. [PMID: 32728348 PMCID: PMC7382826 DOI: 10.1186/s12953-020-00163-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background Cerebral microdialysis (CMD) is a minimally invasive technique for sampling the interstitial fluid in human brain tissue. CMD allows monitoring the metabolic state of tissue, as well as sampling macromolecules such as proteins and peptides. Recovery of proteins or peptides can be hampered by their adsorption to the CMD membrane as has been previously shown in-vitro, however, protein adsorption to CMD membranes has not been characterized following implantation in human brain tissue. Methods In this paper, we describe the pattern of proteins adsorbed to CMD membranes compared to that of the microdialysate and of cerebrospinal fluid (CSF). We retrieved CMD membranes from three surgically treated intracerebral hemorrhage (ICH) patients, and analyzed protein adsorption to the membranes using two-dimensional gel electrophoresis (2-DE) in combination with nano-liquid mass spectrometry. We compared the proteome profile of three compartments; the CMD membrane, the microdialysate and ventricular CSF collected at time of CMD removal. Results We found unique protein patterns in the molecular weight range of 10–35 kDa for each of the three compartments. Conclusion This study highlights the importance of analyzing the membranes in addition to the microdialysate when using CMD to sample proteins for biomarker investigation.
Collapse
Affiliation(s)
- Lovisa Tobieson
- Department of Neurosurgery in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, University Hospital, SE-581 85 Linköping, Sweden
| | - Zita Czifra
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Karin Wåhlén
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Niklas Marklund
- Department of Neurosurgery in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, University Hospital, SE-581 85 Linköping, Sweden.,Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Neurosurgery, Lund, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
17
|
Evaluation of Intrahepatic Lactate/Pyruvate Ratio As a Marker for Ischemic Complications Early After Liver Transplantation-A Clinical Study. Transplant Direct 2020; 5:e505. [PMID: 32095500 PMCID: PMC7004593 DOI: 10.1097/txd.0000000000000952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/25/2019] [Indexed: 12/04/2022] Open
Abstract
Background. Lactate/pyruvate ratio has been introduced as a sensitive marker for ischemia in the transplanted liver. In the present study, we aimed to evaluate lactate/pyruvate ratio measured in the liver by microdialysis as a marker for ischemic complications early after liver transplantation. Methods. Forty-five patients undergoing liver transplantation were included in the study. A microdialysis catheter was placed in the liver graft directly following liver transplantation and the metabolites lactate and pyruvate measured for up to 6 days and the lactate/pyruvate ratio calculated. The association between increased intrahepatic lactate/pyruvate ratio and ischemic complications was studied. Results. One of 45 patients developed hepatic arterial thrombosis. Forty-four events with increased lactate/pyruvate ratio were identified in 24 patients. In none of the 24 patients that had a raised lactate/pyruvate ratio could we detect occurrence of any ischemic complication. In the patient that did have hepatic arterial thrombosis, the lactate/pyruvate ratio did not show a significant prolonged rise. Conclusions. An increase in the intrahepatic lactate/pyruvate ratio is not necessarily indicative of ischemic complications and is thus not a reliable marker for monitoring of clinically significant ischemia in the liver early after transplantation.
Collapse
|
18
|
Feng S, Shirani E, Inglis DW. Droplets for Sampling and Transport of Chemical Signals in Biosensing: A Review. BIOSENSORS 2019; 9:E80. [PMID: 31226857 PMCID: PMC6627903 DOI: 10.3390/bios9020080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
The chemical, temporal, and spatial resolution of chemical signals that are sampled and transported with continuous flow is limited because of Taylor dispersion. Droplets have been used to solve this problem by digitizing chemical signals into discrete segments that can be transported for a long distance or a long time without loss of chemical, temporal or spatial precision. In this review, we describe Taylor dispersion, sampling theory, and Laplace pressure, and give examples of sampling probes that have used droplets to sample or/and transport fluid from a continuous medium, such as cell culture or nerve tissue, for external analysis. The examples are categorized, as follows: (1) Aqueous-phase sampling with downstream droplet formation; (2) preformed droplets for sampling; and (3) droplets formed near the analyte source. Finally, strategies for downstream sample recovery for conventional analysis are described.
Collapse
Affiliation(s)
- Shilun Feng
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia.
| | - Elham Shirani
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - David W Inglis
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
19
|
Dyhrfort P, Shen Q, Clausen F, Thulin M, Enblad P, Kamali-Moghaddam M, Lewén A, Hillered L. Monitoring of Protein Biomarkers of Inflammation in Human Traumatic Brain Injury Using Microdialysis and Proximity Extension Assay Technology in Neurointensive Care. J Neurotrauma 2019; 36:2872-2885. [PMID: 31017044 PMCID: PMC6761596 DOI: 10.1089/neu.2018.6320] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Traumatic brain injury (TBI) is followed by secondary injury mechanisms strongly involving neuroinflammation. To monitor the complex inflammatory cascade in human TBI, we used cerebral microdialysis (MD) and multiplex proximity extension assay (PEA) technology and simultaneously measured levels of 92 protein biomarkers of inflammation in MD samples every three hours for five days in 10 patients with severe TBI under neurointensive care. One μL MD samples were incubated with paired oligonucleotide-conjugated antibodies binding to each protein, allowing quantification by real-time quantitative polymerase chain reaction. Sixty-nine proteins were suitable for statistical analysis. We found five different patterns with either early (<48 h; e.g., CCL20, IL6, LIF, CCL3), mid (48–96 h; e.g., CCL19, CXCL5, CXCL10, MMP1), late (>96 h; e.g., CD40, MCP2, MCP3), biphasic peaks (e.g., CXCL1, CXCL5, IL8) or stable (e.g., CCL4, DNER, VEGFA)/low trends. High protein levels were observed for e.g., CXCL1, CXCL10, MCP1, MCP2, IL8, while e.g., CCL28 and MCP4 were detected at low levels. Several proteins (CCL8, -19, -20, -23, CXCL1, -5, -6, -9, -11, CST5, DNER, Flt3L, and SIRT2) have not been studied previously in human TBI. Cross-correlation analysis revealed that LIF and CXCL5 may play a central role in the inflammatory cascade. This study provides a unique data set with individual temporal trends for potential inflammatory biomarkers in patients with TBI. We conclude that the combination of MD and PEA is a powerful tool to map the complex inflammatory cascade in the injured human brain. The technique offers new possibilities of protein profiling of complex secondary injury pathways.
Collapse
Affiliation(s)
- Philip Dyhrfort
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Qiujin Shen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik Clausen
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Måns Thulin
- Department of Statistics Uppsala University, Uppsala, Sweden.,School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
|
21
|
Abstract
PURPOSE OF REVIEW Here, we review the present state-of-the-art of microdialysis for monitoring patients with severe traumatic brain injury, highlighting the newest developments. Microdialysis has evolved in neurocritical care to become an established bedside monitoring modality that can reveal unique information on brain chemistry. RECENT FINDINGS A major advance is recent consensus guidelines for microdialysis use and interpretation. Other advances include insight obtained from microdialysis into the complex, interlinked traumatic brain injury disorders of electrophysiological changes, white matter injury, inflammation and metabolism. SUMMARY Microdialysis has matured into being a standard clinical monitoring modality that takes its place alongside intracranial pressure and brain tissue oxygen tension measurement in specialist neurocritical care centres, as well as being a research tool able to shed light on brain metabolism, inflammation, therapeutic approaches, blood-brain barrier transit and drug effects on downstream targets. Recent consensus on microdialysis monitoring is paving the way for improved neurocritical care protocols. Furthermore, there is scope for future improvements both in terms of the catheters and microdialysate analyser technology, which may further enhance its applicability.
Collapse
|
22
|
Cerebrospinal fluid and brain extracellular fluid in severe brain trauma. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:237-258. [DOI: 10.1016/b978-0-12-804279-3.00014-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Helbok R, Kofler M, Schiefecker AJ, Gaasch M, Rass V, Pfausler B, Beer R, Schmutzhard E. Clinical Use of Cerebral Microdialysis in Patients with Aneurysmal Subarachnoid Hemorrhage-State of the Art. Front Neurol 2017; 8:565. [PMID: 29163332 PMCID: PMC5676489 DOI: 10.3389/fneur.2017.00565] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 10/09/2017] [Indexed: 01/04/2023] Open
Abstract
Objective To review the published literature on the clinical application of cerebral microdialysis (CMD) in aneurysmal subarachnoid hemorrhage (SAH) patients and to summarize the evidence relating cerebral metabolism to pathophysiology, secondary brain injury, and outcome. Methods Study selection: Two reviewers identified all manuscripts reporting on the clinical use of CMD in aneurysmal SAH patients from MEDLINE. All identified studies were grouped according to their focus on brain metabolic changes during the early and subacute phase after SAH, their association with mechanisms of secondary brain injury and outcome. Results The review demonstrated: (1) limited literature is available in the very early phase before the aneurysm is secured. (2) Brain metabolic changes related to early and delayed secondary injury mechanisms may be used in addition to other neuromonitoring parameters in the critical care management of SAH patients. (3) CMD markers of ischemia may detect delayed cerebral ischemia early (up to 16 h before onset), underlining the importance of trend analysis. (4) Various CMD-derived parameters may be associated with patient outcome at 3–12 months, including CMD-lactate-to-pyruvate-ratio, CMD-glucose, and CMD-glutamate. Conclusion The clinical use of CMD is an emerging area in the literature of aneurysmal SAH patients. Larger prospective multi-center studies on interventions based on CMD findings are needed.
Collapse
Affiliation(s)
- Raimund Helbok
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mario Kofler
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alois Josef Schiefecker
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Maxime Gaasch
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Rass
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Pfausler
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ronny Beer
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Erich Schmutzhard
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
24
|
Sánchez-Guerrero A, Mur-Bonet G, Vidal-Jorge M, Gándara-Sabatini D, Chocrón I, Cordero E, Poca MA, Mullen K, Sahuquillo J. Reappraisal of the reference levels for energy metabolites in the extracellular fluid of the human brain. J Cereb Blood Flow Metab 2017; 37:2742-2755. [PMID: 27742889 PMCID: PMC5536785 DOI: 10.1177/0271678x16674222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/21/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022]
Abstract
Cerebral microdialysis is widely used in neurocritical care units. The goal of this study was to establish the reference interval for the interstitial fluid concentrations of energy metabolites and glycerol by using the extrapolation to zero-flow methodology in anesthetized patients and by constant perfusion at 0.3 µL/min in awake patients. A CMA-71 probe was implanted during surgery in normal white matter of patients with posterior fossa or supratentorial lesions, and the perfusion flow rate was randomized to 0.1, 0.3, 0.6, 1.2, and 2.4 µL/min. Within 24 h of surgery, perfusion was restarted at a constant 0.3 µL/min in fully awake patients. The actual interstitial fluid metabolite concentrations were calculated using the zero-flow methodology. In vitro experiments were also conducted to evaluate the reproducibility of the in vivo methodology. Nineteen patients (seven males) with a median age of 44 years (range: 21-69) were included in the in vivo study. The median (lower-upper) reference interval values were 1.57 (1.15-4.13 mmol/L) for glucose, 2.01 (1.30-5.31 mmol/L) for lactate, 80.0 (54.4-197.0 µmol/L) for pyruvate, and 49.9 (23.6-227.3 µmol/L) for glycerol. The reference intervals reported raises the need to reconsider traditional definitions of brain metabolic disturbances and emphasize the importance of using different thresholds for awake patients and patients under anesthesia.
Collapse
Affiliation(s)
- Angela Sánchez-Guerrero
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Mur-Bonet
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marian Vidal-Jorge
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ivette Chocrón
- Department of Anesthesiology, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Esteban Cordero
- Department of Neurosurgery, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Maria-Antonia Poca
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d’Hebron University Hospital, Barcelona, Spain
| | | | - Juan Sahuquillo
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d’Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
25
|
Thelin EP, Tajsic T, Zeiler FA, Menon DK, Hutchinson PJA, Carpenter KLH, Morganti-Kossmann MC, Helmy A. Monitoring the Neuroinflammatory Response Following Acute Brain Injury. Front Neurol 2017; 8:351. [PMID: 28775710 PMCID: PMC5517395 DOI: 10.3389/fneur.2017.00351] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) are major contributors to morbidity and mortality. Following the initial insult, patients may deteriorate due to secondary brain damage. The underlying molecular and cellular cascades incorporate components of the innate immune system. There are different approaches to assess and monitor cerebral inflammation in the neuro intensive care unit. The aim of this narrative review is to describe techniques to monitor inflammatory activity in patients with TBI and SAH in the acute setting. The analysis of pro- and anti-inflammatory cytokines in compartments of the central nervous system (CNS), including the cerebrospinal fluid and the extracellular fluid, represent the most common approaches to monitor surrogate markers of cerebral inflammatory activity. Each of these compartments has a distinct biology that reflects local processes and the cross-talk between systemic and CNS inflammation. Cytokines have been correlated to outcomes as well as ongoing, secondary injury progression. Alongside the dynamic, focal assay of humoral mediators, imaging, through positron emission tomography, can provide a global in vivo measurement of inflammatory cell activity, which reveals long-lasting processes following the initial injury. Compared to the innate immune system activated acutely after brain injury, the adaptive immune system is likely to play a greater role in the chronic phase as evidenced by T-cell-mediated autoreactivity toward brain-specific proteins. The most difficult aspect of assessing neuroinflammation is to determine whether the processes monitored are harmful or beneficial to the brain as accumulating data indicate a dual role for these inflammatory cascades following injury. In summary, the inflammatory component of the complex injury cascade following brain injury may be monitored using different modalities. Using a multimodal monitoring approach can potentially aid in the development of therapeutics targeting different aspects of the inflammatory cascade and improve the outcome following TBI and SAH.
Collapse
Affiliation(s)
- Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tamara Tajsic
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Frederick Adam Zeiler
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Rady Faculty of Health Sciences, Department of Surgery, University of Manitoba, Winnipeg, MB, Canada.,Clinician Investigator Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter J A Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Maria Cristina Morganti-Kossmann
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,Department of Child Health, Barrow Neurological Institute at Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, United States
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
Nordström CH, Koskinen LO, Olivecrona M. Aspects on the Physiological and Biochemical Foundations of Neurocritical Care. Front Neurol 2017; 8:274. [PMID: 28674514 PMCID: PMC5474476 DOI: 10.3389/fneur.2017.00274] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/29/2017] [Indexed: 12/25/2022] Open
Abstract
Neurocritical care (NCC) is a branch of intensive care medicine characterized by specific physiological and biochemical monitoring techniques necessary for identifying cerebral adverse events and for evaluating specific therapies. Information is primarily obtained from physiological variables related to intracranial pressure (ICP) and cerebral blood flow (CBF) and from physiological and biochemical variables related to cerebral energy metabolism. Non-surgical therapies developed for treating increased ICP are based on knowledge regarding transport of water across the intact and injured blood-brain barrier (BBB) and the regulation of CBF. Brain volume is strictly controlled as the BBB permeability to crystalloids is very low restricting net transport of water across the capillary wall. Cerebral pressure autoregulation prevents changes in intracranial blood volume and intracapillary hydrostatic pressure at variations in arterial blood pressure. Information regarding cerebral oxidative metabolism is obtained from measurements of brain tissue oxygen tension (PbtO2) and biochemical data obtained from intracerebral microdialysis. As interstitial lactate/pyruvate (LP) ratio instantaneously reflects shifts in intracellular cytoplasmatic redox state, it is an important indicator of compromised cerebral oxidative metabolism. The combined information obtained from PbtO2, LP ratio, and the pattern of biochemical variables reveals whether impaired oxidative metabolism is due to insufficient perfusion (ischemia) or mitochondrial dysfunction. Intracerebral microdialysis and PbtO2 give information from a very small volume of tissue. Accordingly, clinical interpretation of the data must be based on information of the probe location in relation to focal brain damage. Attempts to evaluate global cerebral energy state from microdialysis of intraventricular fluid and from the LP ratio of the draining venous blood have recently been presented. To be of clinical relevance, the information from all monitoring techniques should be presented bedside online. Accordingly, in the future, the chemical variables obtained from microdialysis will probably be analyzed by biochemical sensors.
Collapse
Affiliation(s)
| | - Lars-Owe Koskinen
- Department of Clinical Neuroscience, Division of Neurosurgery, Umeå University, Umeå, Sweden
| | - Magnus Olivecrona
- Faculty of Health and Medicine, Department of Anesthesia and Intensive Care, Section for Neurosurgery Örebro University Hospital, Örebro University, Örebro, Sweden
- Department for Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
27
|
Thelin EP, Carpenter KLH, Hutchinson PJ, Helmy A. Microdialysis Monitoring in Clinical Traumatic Brain Injury and Its Role in Neuroprotective Drug Development. AAPS JOURNAL 2017; 19:367-376. [PMID: 28070712 DOI: 10.1208/s12248-016-0027-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/07/2016] [Indexed: 11/30/2022]
Abstract
Injuries to the central nervous system continue to be vast contributors to morbidity and mortality; specifically, traumatic brain injury (TBI) is the most common cause of death during the first four decades of life. Several modalities are used to monitor patients suffering from TBI in order to prevent detrimental secondary injuries. The microdialysis (MD) technique, introduced during the 1990s, presents the treating physician with a robust monitoring tool for brain chemistry in addition to conventional intracranial pressure monitoring. Nevertheless, some limitations remain, such as limited spatial resolution. Moreover, while there have been several attempts to develop new potential pharmacological therapies in TBI, there are currently no available drugs which have shown clinical efficacy that targets the underlying pathophysiology, despite various trials investigating a plethora of pharmaceuticals. Specifically in the brain, MD is able to demonstrate penetration of the drug through the blood-brain barrier into the brain extracellular space at potential site of action. In addition, the downstream effects of drug action can be monitored directly. In the future, clinical MD, together with other monitoring modalities, can identify specific pathological substrates which require tailored treatment strategies for patients suffering from TBI.
Collapse
Affiliation(s)
- Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK. .,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
28
|
Martínez-Valverde T, Sánchez-Guerrero A, Vidal-Jorge M, Torné R, Castro L, Gandara D, Munar F, Poca MA, Sahuquillo J. Characterization of the Ionic Profile of the Extracellular Space of the Injured and Ischemic Brain: A Microdialysis Study. J Neurotrauma 2017; 34:74-85. [DOI: 10.1089/neu.2015.4334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Tamara Martínez-Valverde
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Angela Sánchez-Guerrero
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Marian Vidal-Jorge
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Ramon Torné
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Lidia Castro
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Dario Gandara
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Francisca Munar
- Department of Anesthesiology, Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Maria-Antonia Poca
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Juan Sahuquillo
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Association of brain metabolites with blood lactate and glucose levels with respect to neurological outcomes after out-of-hospital cardiac arrest: A preliminary microdialysis study. Resuscitation 2017; 110:26-31. [DOI: 10.1016/j.resuscitation.2016.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/22/2016] [Accepted: 10/09/2016] [Indexed: 12/13/2022]
|
30
|
Hatefi M, Dastjerdi MM, Ghiasi B, Rahmani A. Association of Serum Uric Acid Level with the Severity of Brain Injury and Patient's Outcome in Severe Traumatic Brain Injury. J Clin Diagn Res 2016; 10:OC20-OC24. [PMID: 28208906 DOI: 10.7860/jcdr/2016/21918.8993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/25/2016] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The prognostic value of serum Uric Acid (UA) levels in Traumatic Brain Injury (TBI) is unclear. AIM To investigate the relationship between serum UA levels and prognosis of patients with TBI when in hospital and at six months after discharge. MATERIALS AND METHODS All patients attended our emergency department during July 2014 and December 2015 and were consecutively entered into the study and among 890 evaluated candidates based on inclusion criteria we finally investigated the serum UA levels of 725 TBI patients. Computed Tomography (CT) images of the brain were obtained within the first 24 hours of hospitalization. Outcome was assessed using the Glasgow Outcome Scale (GOS) score at discharge and at six months after discharge. RESULTS Data of 725 patients (42.89% men; mean age: 54.69±12.37 years) were analyzed. Mean±Standard Deviation (SD) of Glasgow Coma Scale (GCS) scores was 4.65±1.76. Serum levels of UA, when in hospital and at six months after discharge, among those who died were lower than those who survived (in hospital: 0.126±0.026 vs. 0.243±0.942 mmol/l, p = 0.000; 6 months post-discharge: 0.130±0.044 vs. 0.286±0.069 mmol/l, p<0.001). The mean UA plasma was significantly different between deceased and alive patients according to GOS scores (p<0.001 and p=0.030, respectively). The UA levels showed a significant relationship with GCS scores and severity of brain injury assessed using the Marshall Classification Score (p=0.005). CONCLUSION Our results showed a strong relationship between UA levels and patients' outcomes either in hospital or at six months after discharge. Serum UA level could be considered as a valuable marker for evaluating the severity of brain injury and outcomes of TBI.
Collapse
Affiliation(s)
- Masoud Hatefi
- Assistant Professor, Department of Neurosurgery, Faculty of Medicine, Ilam University of Medical Science , Ilam, Iran
| | - Masoud Moghadas Dastjerdi
- Assistant Professor, Department of Emergency Medicine, School of Medicine, Isfahan University of Medical Science , Isfahan, Iran
| | - Bahareh Ghiasi
- Assistant Professor, Department of Nephrology, Faculty of Medicine, Ilam University of Medical Science , Ilam, Iran
| | - Asghar Rahmani
- Student's Researches Committee, Ilam University of Medical Sciences , Ilam, Iran
| |
Collapse
|
31
|
Phang I, Zoumprouli A, Papadopoulos MC, Saadoun S. Microdialysis to Optimize Cord Perfusion and Drug Delivery in Spinal Cord Injury. Ann Neurol 2016; 80:522-31. [DOI: 10.1002/ana.24750] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 07/16/2016] [Accepted: 07/24/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Isaac Phang
- Academic Neurosurgery Unit, St. George's, University of London; London United Kingdom
| | - Argyro Zoumprouli
- Neurointensive Care Unit, St. George's Hospital; London United Kingdom
| | | | - Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London; London United Kingdom
| |
Collapse
|
32
|
Cerebral Glucose Metabolism and Sedation in Brain-injured Patients: A Microdialysis Study. J Neurosurg Anesthesiol 2016; 27:187-93. [PMID: 25144502 DOI: 10.1097/ana.0000000000000107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Disturbed brain metabolism is a signature of primary damage and/or precipitates secondary injury processes after severe brain injury. Sedatives and analgesics target electrophysiological functioning and are as such well-known modulators of brain energy metabolism. Still unclear, however, is how sedatives impact glucose metabolism and whether they differentially influence brain metabolism in normally active, healthy brain and critically impaired, injured brain. We therefore examined and compared the effects of anesthetic drugs under both critical (<1 mmol/L) and noncritical (>1 mmol/L) extracellular brain glucose levels. METHODS We performed an explorative, retrospective analysis of anesthetic drug administration and brain glucose concentrations, obtained by bedside microdialysis, in 19 brain-injured patients. RESULT Our investigations revealed an inverse linear correlation between brain glucose and both the concentration of extracellular glutamate (Pearson r=-0.58, P=0.01) and the lactate/glucose ratio (Pearson r=-0.55, P=0.01). For noncritical brain glucose levels, we observed a positive linear correlation between midazolam dose and brain glucose (P<0.05). For critical brain glucose levels, extracellular brain glucose was unaffected by any type of sedative. CONCLUSIONS These findings suggest that the use of anesthetic drugs may be of limited value in attempts to influence brain glucose metabolism in injured brain tissue.
Collapse
|
33
|
Bartek J, Thelin EP, Ghatan PH, Glimaker M, Bellander BM. Neuron-Specific Enolase Is Correlated to Compromised Cerebral Metabolism in Patients Suffering from Acute Bacterial Meningitis; An Observational Cohort Study. PLoS One 2016; 11:e0152268. [PMID: 27019200 PMCID: PMC4809596 DOI: 10.1371/journal.pone.0152268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/13/2016] [Indexed: 11/19/2022] Open
Abstract
Introduction Patients suffering from acute bacterial meningitis (ABM) with a decreased level of consciousness have been shown to have an improved clinical outcome if treated with an intracranial pressure (ICP) guided therapy. By using intracranial microdialysis (MD) to monitor cerebral metabolism in combination with serum samples of biomarkers indicating brain tissue injury, S100B and Neuron Specific Enolase (NSE), additional information might be provided. The aim of this study was to evaluate biomarkers in serum and MD parameters in patients with ABM. Methods From a prior study on patients (n = 52) with a confirmed ABM and impaired consciousness (GCS ≤ 9, or GCS = 10 combined with lumbar spinal opening pressure > 400 mmH2O), a subgroup of patients (n = 21) monitored with intracerebral MD and biomarkers was included in the present study. All patients were treated in the NICU with intracranial pressure (ICP) guided therapy. Serum biomarkers were obtained at admission and every 12 hours. The MD parameters glucose, lactate, pyruvate and glycerol were analyzed. Outcome was assessed at 12–55 months after discharge from hospital. Mann-Whitney U-Test and Wilcoxon matched-pairs signed rank test were applied. Results The included patients had a mean GCS of 8 (range, 3–10) on admission and increased ICP (>20 mmHg) was observed in 62% (n = 13/21) of the patients. Patients with a lactate:pyruvate ratio (LPR) >40 (n = 9/21, 43%) had significantly higher peak levels of serum NSE (p = 0.03), with similar, although non-significant observations made in patients with high levels of glycerol (>500 μmol/L, p = 0.11) and those with a metabolic crisis (Glucose <0.8 mmol/L, LPR >25, p = 0.09). No associations between serum S100B and MD parameters were found. Furthermore, median MD glucose levels decreased significantly between day 1 (0–24h) and day 3 (48–72h) after admission to the NICU (p = 0.0001). No correlation between MD parameters or biomarkers and outcome was found. Conclusion In this observational cohort study, we were able to show that cerebral metabolism is frequently affected in patients with ABM. Furthermore, patients with high LPR (LPR>40) had significantly higher levels of NSE, suggesting ongoing deterioration in compromised cerebral tissue. However, the potential clinical impact of MD and biomarker monitoring in ABM patients will need to be further elaborated in larger clinical trials.
Collapse
Affiliation(s)
- Jiri Bartek
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Per Hamid Ghatan
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Glimaker
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Hinzman JM, Wilson JA, Mazzeo AT, Bullock MR, Hartings JA. Excitotoxicity and Metabolic Crisis Are Associated with Spreading Depolarizations in Severe Traumatic Brain Injury Patients. J Neurotrauma 2016; 33:1775-1783. [PMID: 26586606 DOI: 10.1089/neu.2015.4226] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cerebral microdialysis has enabled the clinical characterization of excitotoxicity (glutamate >10 μM) and non-ischemic metabolic crisis (lactate/pyruvate ratio [LPR] >40) as important components of secondary damage in severe traumatic brain injury (TBI). Spreading depolarizations (SD) are pathological waves that occur in many patients in the days following TBI and, in animal models, cause elevations in extracellular glutamate, increased anaerobic metabolism, and energy substrate depletion. Here, we examined the association of SD with changes in cerebral neurochemistry by placing a microdialysis probe alongside a subdural electrode strip in peri-lesional cortex of 16 TBI patients requiring neurosurgery. In 107 h (median; range: 76-117 h) of monitoring, 135 SDs were recorded in six patients. Glutamate (50 μmol/L) and lactate (3.7 mmol/L) were significantly elevated on day 0 in patients with SD compared with subsequent days and with patients without SD, whereas pyruvate was decreased in the latter group on days 0 and 1 (two-way analysis of variance [ANOVA], p values <0.05). In patients with SD, both glutamate and LPR increased in a dose-dependent manner with the number of SDs in the microdialysis sampling period (0, 1, ≥2 SD) [glutamate: 2.1→7.0→52.3 μmol/L; LPR: 27.8→29.9→45.0, p values <0.05]. In these patients, there was a 10% probability of SD occurring when glutamate and LPR were in normal ranges, but a 60% probability when both variables were abnormal (>10 μmol/L and >40 μmol/L, respectively). Taken together with previous studies, these preliminary clinical results suggest SDs are a key pathophysiological process of secondary brain injury associated with non-ischemic glutamate excitotoxicity and severe metabolic crisis in severe TBI patients.
Collapse
Affiliation(s)
- Jason M Hinzman
- 1 Department of Neurosurgery, University of Cincinnati (UC) College of Medicine , Cincinnati, Ohio
| | - J Adam Wilson
- 1 Department of Neurosurgery, University of Cincinnati (UC) College of Medicine , Cincinnati, Ohio
| | - Anna Teresa Mazzeo
- 2 Division of Neurosurgery, Virginia Commonwealth University , Richmond, Virginia.,3 Department Anesthesia and Intensive Care, University of Torino , Torino, Italy
| | - M Ross Bullock
- 2 Division of Neurosurgery, Virginia Commonwealth University , Richmond, Virginia.,4 Department of Neurosurgery, University of Miami , Miami, Florida
| | - Jed A Hartings
- 1 Department of Neurosurgery, University of Cincinnati (UC) College of Medicine , Cincinnati, Ohio.,5 Neurotrauma Center, UC Neuroscience Institute , Cincinnati, Ohio.,6 Mayfield Clinic , Cincinnati, Ohio
| |
Collapse
|
35
|
Young B, Kalanuria A, Kumar M, Burke K, Balu R, Amendolia O, McNulty K, Marion B, Beckmann B, Ciocco L, Miller K, Schuele D, Maloney-Wilensky E, Frangos S, Wright D. Cerebral Microdialysis. Crit Care Nurs Clin North Am 2016; 28:109-24. [DOI: 10.1016/j.cnc.2015.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Hosmann A, Schober A, Gruber A, Sterz F, Testori C, Warenits A, Weihs W, Högler S, Scherer T, Janata A, Laggner A, Zeitlinger M. Cerebral and Peripheral Metabolism to Predict Successful Reperfusion After Cardiac Arrest in Rats: A Microdialysis Study. Neurocrit Care 2015; 24:283-93. [DOI: 10.1007/s12028-015-0214-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Martínez-Valverde T, Vidal-Jorge M, Montoya N, Sánchez-Guerrero A, Manrique S, Munar F, Pellegri MD, Poca MA, Sahuquillo J. Brain microdialysis as a tool to explore the ionic profile of the brain extracellular space in neurocritical patients: a methodological approach and feasibility study. J Neurotrauma 2015; 32:7-16. [PMID: 25019674 DOI: 10.1089/neu.2014.3473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Our aim is to determine whether the ionic concentration in brain microdialysate enables calculations of the actual Na(+), K(+), and Cl(-) concentrations in vitro and whether this method can be applied to determine the ionic concentrations in the brain extracellular fluid. We designed an experiment using CMA-71 probes (M Dialysis, Stockholm, Sweden) and the standard conditions used in a clinical setting. Nine CMA-71 probes were inserted in different matrices and perfused with mock cerebrospinal fluid containing 3% albumin at the standard infusion rate used in the clinical setting (0.3 μL/min). Microvials were replaced every 12 h, and the ionic concentrations, both in the dialysate and the matrix, were analyzed. For each ion, scatter plots were built, with [Na(+)], [K(+)], and [Cl(-)] in the dialysate as the predictor variables and the matrix concentrations as the outcome variables. A linear regression model allowed us to calculate the true ionic concentrations in the matrix. To demonstrate the feasibility of the method, we present the calculated ionic profile of one patient with a malignant infarction and a second with a severe traumatic brain injury. Our results confirm that the ionic concentration in microdialysate can be used to calculate the true concentrations of ions in a matrix and the actual concentrations in the extracellular fluid. Microdialysis offers the unique possibility of monitoring the dynamic changes of ions in the brain over time and opens a new avenue to explore the brain's ionic profile, its changes in brain edema, and how this profile can be modified with different therapies.
Collapse
Affiliation(s)
- Tamara Martínez-Valverde
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital , Universidad Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shannon RJ, van der Heide S, Carter EL, Jalloh I, Menon DK, Hutchinson PJ, Carpenter KLH. Extracellular N-Acetylaspartate in Human Traumatic Brain Injury. J Neurotrauma 2015; 33:319-29. [PMID: 26159566 PMCID: PMC4761801 DOI: 10.1089/neu.2015.3950] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
N-acetylaspartate (NAA) is an amino acid derivative primarily located in the neurons of the adult brain. The function of NAA is incompletely understood. Decrease in brain tissue NAA is presently considered symptomatic and a potential biomarker of acute and chronic neuropathological conditions. The aim of this study was to use microdialysis to investigate the behavior of extracellular NAA (eNAA) levels after traumatic brain injury (TBI). Sampling for this study was performed using cerebral microdialysis catheters (M Dialysis 71) perfused at 0.3 μL/min. Extracellular NAA was measured in microdialysates by high-performance liquid chromatography in 30 patients with severe TBI and for comparison, in radiographically “normal” areas of brain in six non-TBI neurosurgical patients. We established a detailed temporal eNAA profile in eight of the severe TBI patients. Microdialysate concentrations of glucose, lactate, pyruvate, glutamate, and glycerol were measured on an ISCUS clinical microdialysis analyzer. Here, we show that the temporal profile of microdialysate eNAA was characterized by highest levels in the earliest time-points post-injury, followed by a steady decline; beyond 70 h post-injury, average levels were 40% lower than those measured in non-TBI patients. There was a significant inverse correlation between concentrations of eNAA and pyruvate; eNAA showed significant positive correlations with glycerol and the lactate/pyruvate (L/P) ratio measured in microdialysates. The results of this on-going study suggest that changes in eNAA after TBI relate to the release of intracellular components, possibly due to neuronal death or injury, as well as to adverse brain energy metabolism.
Collapse
Affiliation(s)
- Richard J Shannon
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Susan van der Heide
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Eleanor L Carter
- 3 Division of Anaesthesia, Department of Medicine, University of Cambridge , Cambridge, United Kingdom
| | - Ibrahim Jalloh
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - David K Menon
- 2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom .,3 Division of Anaesthesia, Department of Medicine, University of Cambridge , Cambridge, United Kingdom
| | - Peter J Hutchinson
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom .,2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Keri L H Carpenter
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom .,2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| |
Collapse
|
39
|
Shannon RJ, Timofeev I, Nortje J, Hutchinson PJ, Carpenter KLH. Monitoring vigabatrin in head injury patients by cerebral microdialysis: obtaining pharmacokinetic measurements in a neurocritical care setting. Br J Clin Pharmacol 2015; 78:981-95. [PMID: 24802902 PMCID: PMC4243872 DOI: 10.1111/bcp.12414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 04/28/2014] [Indexed: 01/16/2023] Open
Abstract
Aims The aims were to determine blood–brain barrier penetration and brain extracellular pharmacokinetics for the anticonvulsant vigabatrin (VGB; γ-vinyl-γ-aminobutyric acid) in brain extracellular fluid and plasma from severe traumatic brain injury (TBI) patients, and to measure the response of γ-aminobutyric acid (GABA) concentration in brain extracellular fluid. Methods Severe TBI patients (n = 10) received VGB (0.5 g enterally, every 12 h). Each patient had a cerebral microdialysis catheter; two patients had a second catheter in a different region of the brain. Plasma samples were collected 0.5 h before and 2, 4 and 11.5 h after the first VGB dose. Cerebral microdialysis commenced before the first VGB dose and continued through at least three doses of VGB. Controls were seven severe TBI patients with microdialysis, without VGB. Results After the first VGB dose, the maximum concentration of VGB (Cmax) was 31.7 (26.9–42.6) μmol l−1 (median and interquartile range for eight patients) in plasma and 2.41 (2.03–5.94) μmol l−1 in brain microdialysates (nine patients, 11 catheters), without significant plasma–brain correlation. After three doses, median Cmax in microdialysates increased to 5.22 (4.24–7.14) μmol l−1 (eight patients, 10 catheters). Microdialysate VGB concentrations were higher close to focal lesions than in distant sites. Microdialysate GABA concentrations increased modestly in some of the patients after VGB administration. Conclusions Vigabatrin, given enterally to severe TBI patients, crosses the blood–brain barrier into the brain extracellular fluid, where it accumulates with multiple dosing. Pharmacokinetics suggest delayed uptake from the blood.
Collapse
Affiliation(s)
- Richard J Shannon
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
40
|
Perioperative microdialysis in meningioma surgery: correlation of cerebral metabolites with clinical outcome. Acta Neurochir (Wien) 2014; 156:2275-82; discussion 2282. [PMID: 25305088 DOI: 10.1007/s00701-014-2242-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Brain tumour resection requires surgical manoeuvres that may cause an ischaemic injury to peritumoral tissue. The aim of the present study was to examine whether putative alterations in peritumoral tissue biochemistry, monitored by microdialysis, correlate with clinical outcome in patients undergoing craniotomy for meningioma resection. METHODS In 34 patients undergoing meningioma resection (35 % male; mean age ± SD: 54.3 ± 12.1 years), microdialysis measurements were taken perioperatively from peritumoral brain parenchyma. Standard metabolites (glucose, lactate, pyruvate, glycerol and the lactate:pyruvate ratio) were quantified in relation to clinical outcome assessed by the Glasgow Coma Scale (GCS) and the Karnofsky Performance Status scale. RESULTS Higher postoperative glucose and pyruvate levels were found in patients with a favourable outcome (GCS not deteriorated or Karnofsky score > 80). Multiple logistic regression analysis (age, preoperative physical status, metabolite levels as independent variables) showed that lower postoperative glucose and pyruvate levels as well as higher lactate:pyruvate ratio values were independently associated with an unfavourable outcome as defined by Karnofsky score <80 [(OR: 0.084, 95 % CI: 0.01-0.98, p = 0.049), (OR: 0.97, 95 % CI: 0.95-0.99, p = 0.050), (OR: 1.21, 95 % CI: 1.04-1.42, p = 0.015) respectively], as well as with death [(OR: 0.08, 95 % CI: 0.01-0.97, p = 0.046), (OR: 0.94, 95 % CI: 0.89-0.99, p = 0.016), (OR: 1.07, 95 % CI: 1.00-1.15, p = 0.05) respectively]. CONCLUSIONS Postoperative levels of glucose and pyruvate and the lactate:pyruvate ratio appear to correlate with clinical outcome in patients undergoing meningioma resection. The present findings provide support for the utility of microdialysis as a prognostic tool in brain tumour surgery.
Collapse
|
41
|
Lactate shuttling and lactate use as fuel after traumatic brain injury: metabolic considerations. J Cereb Blood Flow Metab 2014; 34:1736-48. [PMID: 25204393 PMCID: PMC4269761 DOI: 10.1038/jcbfm.2014.153] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/31/2014] [Indexed: 11/08/2022]
Abstract
Lactate is proposed to be generated by astrocytes during glutamatergic neurotransmission and shuttled to neurons as 'preferred' oxidative fuel. However, a large body of evidence demonstrates that metabolic changes during activation of living brain disprove essential components of the astrocyte-neuron lactate shuttle model. For example, some glutamate is oxidized to generate ATP after its uptake into astrocytes and neuronal glucose phosphorylation rises during activation and provides pyruvate for oxidation. Extension of the notion that lactate is a preferential fuel into the traumatic brain injury (TBI) field has important clinical implications, and the concept must, therefore, be carefully evaluated before implementation into patient care. Microdialysis studies in TBI patients demonstrate that lactate and pyruvate levels and lactate/pyruvate ratios, along with other data, have important diagnostic value to distinguish between ischemia and mitochondrial dysfunction. Results show that lactate release from human brain to blood predominates over its uptake after TBI, and strong evidence for lactate metabolism is lacking; mitochondrial dysfunction may inhibit lactate oxidation. Claims that exogenous lactate infusion is energetically beneficial for TBI patients are not based on metabolic assays and data are incorrectly interpreted.
Collapse
|
42
|
Thelin EP, Nelson DW, Ghatan PH, Bellander BM. Microdialysis Monitoring of CSF Parameters in Severe Traumatic Brain Injury Patients: A Novel Approach. Front Neurol 2014; 5:159. [PMID: 25228896 PMCID: PMC4151035 DOI: 10.3389/fneur.2014.00159] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/06/2014] [Indexed: 01/22/2023] Open
Abstract
Background: Neuro-intensive care following traumatic brain injury (TBI) is focused on preventing secondary insults that may lead to irreversible brain damage. Microdialysis (MD) is used to detect deranged cerebral metabolism. The clinical usefulness of the MD is dependent on the regional localization of the MD catheter. The aim of this study was to analyze a new method of continuous cerebrospinal fluid (CSF) monitoring using the MD technique. The method was validated using conventional laboratory analysis of CSF samples. MD-CSF and regional MD-Brain samples were correlated to patient outcome. Materials and Methods: A total of 14 patients suffering from severe TBI were analyzed. They were monitored using (1) a MD catheter (CMA64-iView, n = 7448 MD samples) located in a CSF-pump connected to the ventricular drain and (2) an intraparenchymal MD catheter (CMA70, n = 8358 MD samples). CSF-lactate and CSF-glucose levels were monitored and were compared to MD-CSF samples. MD-CSF and MD-Brain parameters were correlated to favorable (Glasgow Outcome Score extended, GOSe 6–8) and unfavorable (GOSe 1–5) outcome. Results: Levels of glucose and lactate acquired with the CSF-MD technique could be correlated to conventional levels. The median MD recovery using the CMA64 catheter in CSF was 0.98 and 0.97 for glucose and lactate, respectively. Median MD-CSF (CMA 64) lactate (p = 0.0057) and pyruvate (p = 0.0011) levels were significantly lower in the favorable outcome group compared to the unfavorable group. No significant difference in outcome was found using the lactate:pyruvate ratio (LPR), or any of the regional MD-Brain monitoring in our analyzed cohort. Conclusion: This new technique of global MD-CSF monitoring correlates with conventional CSF levels of glucose and lactate, and the MD recovery is higher than previously described. Increase in lactate and pyruvate, without any effect on the LPR, correlates to unfavorable outcome, perhaps related to the presence of erythrocytes in the CSF.
Collapse
Affiliation(s)
- Eric P Thelin
- Section for Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital Solna , Stockholm , Sweden
| | - David W Nelson
- Section of Anesthesiology and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| | - Per Hamid Ghatan
- Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Bo-Michael Bellander
- Section for Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital Solna , Stockholm , Sweden
| |
Collapse
|
43
|
Lactate and the lactate-to-pyruvate molar ratio cannot be used as independent biomarkers for monitoring brain energetic metabolism: a microdialysis study in patients with traumatic brain injuries. PLoS One 2014; 9:e102540. [PMID: 25025772 PMCID: PMC4099374 DOI: 10.1371/journal.pone.0102540] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/20/2014] [Indexed: 12/11/2022] Open
Abstract
Background For decades, lactate has been considered an excellent biomarker for oxygen limitation and therefore of organ ischemia. The aim of the present study was to evaluate the frequency of increased brain lactate levels and the LP ratio (LPR) in a cohort of patients with severe or moderate traumatic brain injury (TBI) subjected to brain microdialysis monitoring to analyze the agreement between these two biomarkers and to indicate brain energy metabolism dysfunction. Methods Forty-six patients with an admission Glasgow coma scale score of ≤13 after resuscitation admitted to a dedicated 10-bed Neurotraumatology Intensive Care Unit were included, and 5305 verified samples of good microdialysis data were analyzed. Results Lactate levels were above 2.5 mmol/L in 56.9% of the samples. The relationships between lactate and the LPR could not be adequately modeled by any linear or non-linear model. Neither Cohen’s kappa nor Gwet’s statistic showed an acceptable agreement between both biomarkers to classify the samples in regard to normal or abnormal metabolism. The dataset was divided into four patterns defined by the lactate concentrations and the LPR. A potential interpretation for these patterns is suggested and discussed. Pattern 4 (low pyruvate levels) was found in 10.7% of the samples and was characterized by a significantly low concentration of brain glucose compared with the other groups. Conclusions Our study shows that metabolic abnormalities are frequent in the macroscopically normal brain in patients with traumatic brain injuries and a very poor agreement between lactate and the LPR when classifying metabolism. The concentration of lactate in the dialysates must be interpreted while taking into consideration the LPR to distinguish between anaerobic metabolism and aerobic hyperglycolysis.
Collapse
|
44
|
Nyberg C, Karlsson T, Hillered L, Engström ER. Metabolic pattern of the acute phase of subarachnoid hemorrhage in a novel porcine model: studies with cerebral microdialysis with high temporal resolution. PLoS One 2014; 9:e99904. [PMID: 24940881 PMCID: PMC4062436 DOI: 10.1371/journal.pone.0099904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/19/2014] [Indexed: 12/30/2022] Open
Abstract
Background Aneurysmal subarachnoid hemorrhage (SAH) may produce cerebral ischemia and systemic responses including stress. To study immediate cerebral and systemic changes in response to aneurysm rupture, animal models are needed. Objective To study early cerebral energy changes in an animal model. Methods Experimental SAH was induced in 11 pigs by autologous blood injection to the anterior skull base, with simultaneous control of intracranial and cerebral perfusion pressures. Intracerebral microdialysis was used to monitor concentrations of glucose, pyruvate and lactate. Results In nine of the pigs, a pattern of transient ischemia was produced, with a dramatic reduction of cerebral perfusion pressure soon after blood injection, associated with a quick glucose and pyruvate decrease. This was followed by a lactate increase and a delayed pyruvate increase, producing a marked but short elevation of the lactate/pyruvate ratio. Glucose, pyruvate, lactate and lactate/pyruvate ratio thereafter returned toward baseline. The two remaining pigs had a more severe metabolic reaction with glucose and pyruvate rapidly decreasing to undetectable levels while lactate increased and remained elevated, suggesting persisting ischemia. Conclusion The animal model simulates the conditions of SAH not only by deposition of blood in the basal cisterns, but also creating the transient global ischemic impact of aneurysmal SAH. The metabolic cerebral changes suggest immediate transient substrate failure followed by hypermetabolism of glucose upon reperfusion. The model has features that resemble spontaneous bleeding, and is suitable for future research of the early cerebral and systemic responses to SAH that are difficult to study in humans.
Collapse
Affiliation(s)
- Christoffer Nyberg
- Department of Neuroscience, section of Neurosurgery, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Torbjörn Karlsson
- Department of Surgical Sciences, section of Anesthesiology and Intensive care, Uppsala University, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
45
|
Skoglund K, Hillered L, Purins K, Tsitsopoulos PP, Flygt J, Engquist H, Lewén A, Enblad P, Marklund N. The neurological wake-up test does not alter cerebral energy metabolism and oxygenation in patients with severe traumatic brain injury. Neurocrit Care 2014; 20:413-26. [PMID: 23934408 DOI: 10.1007/s12028-013-9876-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The neurological wake-up test (NWT) is used to monitor the level of consciousness in patients with traumatic brain injury (TBI). However, it requires interruption of sedation and may elicit a stress response. We evaluated the effects of the NWT using cerebral microdialysis (MD), brain tissue oxygenation (PbtiO2), jugular venous oxygen saturation (SjvO2), and/or arterial-venous difference (AVD) for glucose, lactate, and oxygen in patients with severe TBI. METHODS Seventeen intubated TBI patients (age 16-74 years) were sedated using continuous propofol infusion. All patients received intracranial pressure (ICP) and cerebral perfusion pressure (CPP) monitoring in addition to MD, PbtiO2 and/or SjvO2. Up to 10 days post-injury, ICP, CPP, PbtiO2 (51 NWTs), MD (49 NWTs), and/or SjvO2 (18 NWTs) levels during propofol sedation (baseline) and NWT were compared. MD was evaluated at a flow rate of 1.0 μL/min (28 NWTs) or the routine 0.3 μL/min rate (21 NWTs). RESULTS The NWT increased ICP and CPP levels (p < 0.05). Compared to baseline, interstitial levels of glucose, lactate, pyruvate, glutamate, glycerol, and the lactate/pyruvate ratio were unaltered by the NWT. Pathological SjvO2 (<50 % or >71 %; n = 2 NWTs) and PbtiO2 (<10 mmHg; n = 3 NWTs) values were rare at baseline and did not change following NWT. Finally, the NWT did not alter the AVD of glucose, lactate, or oxygen. CONCLUSIONS The NWT-induced stress response resulted in increased ICP and CPP levels although it did not negatively alter focal neurochemistry or cerebral oxygenation in TBI patients.
Collapse
Affiliation(s)
- Karin Skoglund
- Department of Neuroscience, Neurosurgery, Uppsala University Hospital, Uppsala University, 75185, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Schroeder U, Himpe B, Pries R, Vonthein R, Nitsch S, Wollenberg B. Decline of lactate in tumor tissue after ketogenic diet: in vivo microdialysis study in patients with head and neck cancer. Nutr Cancer 2014; 65:843-9. [PMID: 23909728 DOI: 10.1080/01635581.2013.804579] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In head and neck squamous cell carcinoma (HNSCC) aerobic glycolysis is the key feature for energy supply of the tumor. Quantitative microdialysis (μD) offers an online method to measure parameters of the carbohydrate metabolism in vivo. The aim was to standardize a quantitative μD-study in patients with HNSCC and to prove if a ketogenic diet would differently influence the carbohydrate metabolism of the tumor tissue. Commercially available 100 kDa-CMA71-μD- catheters were implanted in tumor-free and in tumor tissue in patients with HNSCC for simultaneous measurements up to 5 days. The metabolic pattern and circadian rhythm of urea, glucose, lactate, and pyruvate was monitored during 24 h of western diet and subsequent up to 4 days of ketogenic diet. After 3 days of ketogenic diet the mean lactate concentration declines to a greater extent in the tumor tissue than in the tumor-free mucosa, whereas the mean glucose and pyruvate concentrations rise. The in vivo glucose metabolism of the tumor tissue is clearly influenced by nutrition. The decline of mean lactate concentration in the tumor tissue after ketogenic diet supports the hypothesis that HNSCC tumor cells might use lactate as fuel for oxidative glucose metabolism.
Collapse
Affiliation(s)
- U Schroeder
- Department of Ear, Nose and Throat, University Hospital Schleswig-Holstein, Luebeck, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Hwang CS, Marymont MH, Muro K. Photon radiotherapy for the treatment of high-grade gliomas. Expert Rev Anticancer Ther 2014; 7:S37-43. [DOI: 10.1586/14737140.7.12s.s37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Jalloh I, Helmy A, Shannon RJ, Gallagher CN, Menon DK, Carpenter KLH, Hutchinson PJ. Lactate uptake by the injured human brain: evidence from an arteriovenous gradient and cerebral microdialysis study. J Neurotrauma 2013; 30:2031-7. [PMID: 23968221 DOI: 10.1089/neu.2013.2947] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lactate has been regarded as a waste product of anaerobic metabolism of glucose. Evidence also suggests, however, that the brain may use lactate as an alternative fuel. Our aim was to determine the extent of lactate uptake from the circulation into the brain after traumatic brain injury (TBI) and to compare it with levels of lactate in the brain extracellular fluid. We recruited 19 patients with diffuse TBI, monitored with cerebral microdialysis and jugular bulb catheters. Serial arteriovenous (AV) concentration differences of glucose and lactate were calculated from arterial and jugular blood samples, providing a measure of net uptake or export by the brain. Microdialysis was used to measure brain extracellular glucose and lactate. In 17/19 patients studied for 5 days post-injury, there were periods of net lactate uptake into the brain, most frequently on day 3 after injury. Brain microdialysate lactate had a median (interquartile range [IQR]) concentration of 2.5 (1.5-3.2) mmol/L during lactate uptake and 2.2 (1.7-3.0) mmol/L during lactate export. Lactate uptake into the brain occurred at a median (IQR) arterial lactate concentration of 1.6 (1.0-2.2) mmol/L. Lactate uptake was associated with significantly higher AV difference in glucose values with a median (IQR) of 0.4 (0.03-0.7) mmol/L during uptake and 0.1 (-0.2-0.3) mmol/L during lactate export (Mann-Whitney U p=0.003). Despite relatively high brain lactate compared with arterial lactate concentrations, the brain appears to up-regulate lactate transport into the brain after TBI. This may serve to satisfy greater demands for energy substrate from the brain after TBI.
Collapse
Affiliation(s)
- Ibrahim Jalloh
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
49
|
Brophy GM, Mazzeo AT, Brar S, Alves OL, Bunnell K, Gilman C, Karnes T, Hayes RL, Bullock R. Exposure of cyclosporin A in whole blood, cerebral spinal fluid, and brain extracellular fluid dialysate in adults with traumatic brain injury. J Neurotrauma 2013; 30:1484-9. [PMID: 23540442 DOI: 10.1089/neu.2012.2524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cyclosporin A (CsA), an immunosuppressive medication traditionally used in the prevention of post-transplant rejection, is a promising neuroprotective agent for traumatic brain injury (TBI). Preliminary studies in animals and humans describe the efficacy and safety of CsA when administered following neurotrauma. The objective of this study is to describe CsA exposure in adults with severe TBI by assessing concentrations in whole blood, cerebrospinal fluid (CSF), and brain extracellular fluid (ECF) dialysate as measured by brain microdialysis. Severe TBI patients were enrolled in a randomized controlled trial following the written informed consent of their legal guardians. Patients received either CsA 5 mg/kg as a continuous infusion over 24 h, or matching placebo. Noncompartmental exposure analyses were performed using CsA concentrations in whole blood, CSF, and ECF dialysate. There were 37 patients randomized to the CsA arm of the trial and included in this exposure analysis. CsA was detected in the ECF dialysate and CSF at a fraction of the whole blood concentration. Mean CsA maximum concentrations were achieved at 24 and 30 h from the start of the 24 h infusion, in the CSF and ECF dialysate, respectively. A correlation was found between ECF dialysate and CSF concentrations. CsA was detected in the blood, CSF, and brain ECF dialysate. CsA exposure characteristic differences exist for whole blood, CSF, and ECF dialysate in severe TBI patients when administered as a continuous intravenous infusion. These exposure characteristics should be used for safer CsA dose optimization to achieve target CsA concentrations for neuroprotection in future TBI studies.
Collapse
Affiliation(s)
- Gretchen M Brophy
- Department of Pharmacotherapy and Outcomes Science, Medical College of Virginia Campus, Richmond, Virginia 23298-0533, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Graetz D, Nagel A, Schlenk F, Sakowitz O, Vajkoczy P, Sarrafzadeh A. High ICP as trigger of proinflammatory IL-6 cytokine activation in aneurysmal subarachnoid hemorrhage. Neurol Res 2013; 32:728-35. [DOI: 10.1179/016164109x12464612122650] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|