1
|
Chen X, Luo J, Song M, Pan L, Qu Z, Huang B, Yu S, Shu H. Challenges and prospects in geriatric epilepsy treatment: the role of the blood-brain barrier in pharmacotherapy and drug delivery. Front Aging Neurosci 2024; 16:1342366. [PMID: 38389560 PMCID: PMC10882099 DOI: 10.3389/fnagi.2024.1342366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
The blood-brain barrier (BBB) is pivotal in maintaining neuronal physiology within the brain. This review delves into the alterations of the BBB specifically in the context of geriatric epilepsy. We examine how age-related changes in the BBB contribute to the pathogenesis of epilepsy in the elderly and present significant challenges in pharmacotherapy. Subsequently, we evaluate recent advancements in drug delivery methods targeting the BBB, as well as alternative approaches that could bypass the BBB's restrictive nature. We particularly highlight the use of neurotropic viruses and various synthetic nanoparticles that have been investigated for delivering a range of antiepileptic drugs. Additionally, the advantage and limitation of these diverse delivery methods are discussed. Finally, we analyze the potential efficacy of different drug delivery approaches in the treatment of geriatric epilepsy, aiming to provide insights into more effective management of this condition in the elderly population.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan, China
| | - Juan Luo
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Min Song
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan, China
| | - Liang Pan
- Department of Pediatrics, Western Theater General Hospital, Chengdu, Sichuan, China
| | - Zhichuang Qu
- Department of Neurosurgery, Meishan City People's Hospital, Meishan, Sichuan, China
| | - Bo Huang
- Department of Burn and Plastic, Western Theater General Hospital, Chengdu, Sichuan, China
| | - Sixun Yu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan, China
| | - Haifeng Shu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Chen L, Zhou Y, Wang J, Li K, Zhang Z, Peng M. The adenosine A 2A receptor alleviates postoperative delirium-like behaviors by restoring blood cerebrospinal barrier permeability in rats. J Neurochem 2021; 158:980-996. [PMID: 34033116 DOI: 10.1111/jnc.15436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Postoperative delirium (POD) is a common post-operative complication in elderly patients that is associated with increased morbidity and mortality. However, the neuropathogenesis of this complication remains unknown. The blood-cerebrospinal fluid barrier (BCB) and brain-blood barrier (BBB) are composed of tight junctions between cells that form physical barriers, and BBB damage plays an important role in the neuropathogenesis of POD. Nevertheless, the role of BCB in POD remains to be elucidated. Herein, we investigated the effect of adenosine A2A receptor (A2A R), a key regulator of the permeability of barriers, on surgery-induced increased permeability of BCB and POD-like behaviors. Open field, buried food, and Y maze tests were used to evaluate behavioral changes in rats after surgery. Levels of tight junction proteins, adherens junction proteins, A2A R, GTP-RhoA, and ROCK2 in the choroid plexus were assessed by western blotting. The concentrations of NaFI and FITC-dextran in the cerebrospinal fluid (CSF) were detected by fluorescence spectrophotometry. Transmission electron microscopy was applied to observe the ultrastructure of the choroid plexus. Surgery/anesthesia decreased the levels of tight junction (e.g., ZO-1, occludin, and claudin1) proteins, increased concentrations of NaFI and FITC-dextran in CSF, damaged the ultrastructure of choroid plexus, and induced POD-like behaviors in rats. An A2A R antagonist alleviated POD-like behaviors in rats. Furthermore, the A2A R antagonist increased the levels of tight junction proteins and restored the permeability of BCB in rats with POD. Fasudil, a selective Rho-associated protein kinase 2 (ROCK2) inhibitor, ameliorated POD-like behaviors induced by A2A R activation. Moreover, fasudil also abolished the increased levels of GTP-RhoA/ROCK2, decreased levels of tight junction proteins, and increased permeability of BCB caused by A2A R activation. Our findings demonstrate that A2A R might participate in regulating BCB permeability in rats with POD via the RhoA/ROCK2 signaling pathway, which suggests the potential of A2A R as a therapeutic target for POD.
Collapse
Affiliation(s)
- Lei Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Zhou
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiayu Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ke Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mian Peng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Andrikopoulou E, Hage FG. Adverse effects associated with regadenoson myocardial perfusion imaging. J Nucl Cardiol 2018; 25:1724-1731. [PMID: 29468467 DOI: 10.1007/s12350-018-1218-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Efstathia Andrikopoulou
- Sub-division of Non-Invasive Cardiovascular Imaging, Division of Cardiovascular Disease, Department of Medicine, Brigham and Women's Hospital, 75 Francis street, ABI L1-027, Boston, MA, 02115, USA.
| | - Fadi G Hage
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| |
Collapse
|
4
|
Janigro D. Are you in or out? Leukocyte, ion, and neurotransmitter permeability across the epileptic blood-brain barrier. Epilepsia 2012; 53 Suppl 1:26-34. [PMID: 22612806 PMCID: PMC4093790 DOI: 10.1111/j.1528-1167.2012.03472.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The credo that epileptic seizures can be initiated only by "epileptic" neurons has been recently challenged. The recognition of key astrocytic-neuronal communication, and the close interaction and crosstalk between astrocytes and brain endothelial cells, has shifted attention to the blood-brain barrier (BBB) and the "neurovascular unit." Therefore, the pursuit of mechanisms of seizure generation and epileptogenesis now includes investigations of cerebral blood flow and permeability of cerebral microvessels. For example, leukocyte adhesion molecules at the BBB have been proposed to play a role as an initiating factor for pilocarpine-induced status epilepticus, and a viral infection model with a strong BBB etiology has been used to study epileptogenesis. Finally, the fact that in nonepileptic subjects seizures can be triggered by BBB disruption, together with the antiseizure effects obtained by administration of potent antiinflammatory "BBB repair" drugs, has increased the interest in neuroinflammation; both circulating leukocytes and resident microglia have been studied in this context. The dual scope of this review is the following: (1) outline the proposed role of BBB damage and immune cell activation in seizure disorders; and (2) explain how increased cerebrovascular permeability causes neuronal misfiring. The temporal sequence linking seizures to peripheral inflammation and BBB dysfunction remains to be clarified. For example, it is still debated whether seizures cause systemic inflammation or vice versa. The topographic localization of fundamental triggers of epileptic seizures also remains controversial: Are immunologic mechanisms required for seizure generation brain-specific or is systemic activation of immunity sufficient to alter neuronal excitability? Finally, the causative role of "BBB leakage" remains a largely unresolved issue.
Collapse
Affiliation(s)
- Damir Janigro
- Departments of Neurological Surgery, Molecular Medicine and Cell Biology, ClevelandClinic Foundation, Euclid Avenue, Cleveland, OH 44195, U.S.A.
| |
Collapse
|
5
|
Page RL, Spurck P, Bainbridge JL, Michalek J, Quaife RA. Seizures associated with regadenoson: a case series. J Nucl Cardiol 2012; 19:389-91. [PMID: 22002651 DOI: 10.1007/s12350-011-9461-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Robert Lee Page
- Department of Clinical Pharmacy, School of Pharmacy, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
6
|
Yang T, Zhou D, Stefan H. Why mesial temporal lobe epilepsy with hippocampal sclerosis is progressive: uncontrolled inflammation drives disease progression? J Neurol Sci 2010; 296:1-6. [PMID: 20663517 DOI: 10.1016/j.jns.2010.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 05/28/2010] [Accepted: 06/02/2010] [Indexed: 02/05/2023]
Abstract
Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is a group of chronic disorders characterized by prominent neuronal loss and gliosis in the hippocampus and amygdala. Newly published data indicate that it may be a progressive disease, but the mechanism underlying the progressive nature remains unknown. Recently, substantial evidence for an inflammatory mechanism in MTLE has been documented. We are therefore presenting a review of literature concerning the effects of uncontrolled inflammation on the disease progression of MTLE-HS. We found that increasing amounts of evidence support the association between uncontrolled inflammation and progression of the disease. Uncontrolled inflammatory processes may be a main mechanism underlying the self-propagating cycle of uncontrolled inflammation, blood-brain barrier damage, and seizures that drive the progressive nature. Thus it is important to unravel the principles of communication between the different factors in this cycle. The dynamic modulation of inflammatory processes aimed at preventing or interrupting this cycle has the potential to emerge as a novel therapeutic strategy. This line of therapy might offer new perspectives on the pharmacologic treatment of seizures, and possibly on delaying disease progression or retarding epileptogenesis as well.
Collapse
Affiliation(s)
- Tianhua Yang
- Department of Neurology, West China Hospital, Si Chuan University, Cheng du, Sichuan, China
| | | | | |
Collapse
|
7
|
von Versen-Höynck F, Rajakumar A, Bainbridge SA, Gallaher MJ, Roberts JM, Powers RW. Human placental adenosine receptor expression is elevated in preeclampsia and hypoxia increases expression of the A2A receptor. Placenta 2009; 30:434-42. [PMID: 19303140 DOI: 10.1016/j.placenta.2009.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/22/2009] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
Abstract
Placental hypoxia as a result of impaired trophoblast invasion is suggested to be involved in the pathophysiology of preeclampsia. Hypoxia is a potent stimulus for the release of adenosine, and the actions of adenosine are mediated through four adenosine receptors, A(1), A(2A), A(2B) and A(3). We investigated the presence, distribution and expression of adenosine receptor subtypes in the human placenta, the expression of the adenosine receptors in placentas from pregnancies complicated by preeclampsia, small for gestational age (SGA) infants and uncomplicated pregnancies, and the effect of hypoxia on placental adenosine receptor expression. Immunofluorescent microscopy localized A(1), A(2A), A(2B) and A(3) adenosine receptors to the syncytiotrophoblast, endothelial cells and myofibroblasts within the human placenta. Adenosine receptor protein and message expression levels were significantly higher in placentas from preeclamptic pregnancies with or without SGA infants, but not different in pregnancies with SGA infants alone. In vitro exposure of placental villous explants to hypoxia (2% oxygen) increased the expression of A(2A) adenosine receptor 50%. These data indicate that all four known adenosine receptors are expressed in the human placenta and adenosine receptor expression is significantly higher in pregnancies complicated by preeclampsia. These data are consistent with the hypothesis that differences in placental adenosine receptors may contribute to alterations in placental function in preeclampsia.
Collapse
Affiliation(s)
- F von Versen-Höynck
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
8
|
Reece TB, Tribble CG, Okonkwo DO, Davis JD, Maxey TS, Gazoni LM, Linden J, Kron IL, Kern JA. Early adenosine receptor activation ameliorates spinal cord reperfusion injury. J Cardiovasc Med (Hagerstown) 2008; 9:363-7. [PMID: 18334890 DOI: 10.2459/jcm.0b013e3282eee836] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Adenosine receptor activation at reperfusion has been shown to ameliorate ischemia-reperfusion injury of the spinal cord, but the effects of therapy given in response to ischemic injury are unknown. We hypothesized that adenosine receptor activation with ATL-146e would produce similar protection from ischemic spinal cord injury, whether given at reperfusion or in a delayed fashion. METHODS Twenty-two New Zealand white rabbits were divided into three groups. All three groups, including the ischemia-reperfusion group (IR, n = 8), underwent 45 min of infrarenal aortic occlusion. The early treatment group (early, n = 8) received 0.06 mug/kg/min of ATL-146e for 3 h beginning 10 min prior to reperfusion. The delayed treatment group (delayed, n = 6) received ATL-146e starting 1 h after reperfusion. After 48 h, hind limb function was graded using the Tarlov score. Finally, lumbar spinal cord neuronal cytoarchitecture was evaluated. RESULTS Hemodynamic parameters were similar among the groups. Hind limb function at 48 h was significantly better in the early group (3.5 +/- 1.0) compared to the IR group (0.625 +/- 0.5, P < or = 0.01). There was a trend towards better hind limb function in the early group compared to the delayed group (2.4 +/- 1.1, P = 0.08). Hind limb function was similar between delayed and IR groups. Hematoxylin-eosin spinal cord sections demonstrated preservation of viable motor neurons in the early group compared to the delayed and IR groups. CONCLUSIONS Early therapy with ATL-146e provided better protection in this study; therefore, therapy should not be delayed until there is evidence of ischemic neurological deficit. This study suggests that adenosine receptor activation is most effective as a preventive strategy at reperfusion for optimal protection in spinal cord ischemia-reperfusion injury.
Collapse
Affiliation(s)
- T Brett Reece
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Marchi N, Oby E, Batra A, Uva L, De Curtis M, Hernandez N, Van Boxel-Dezaire A, Najm I, Janigro D. In vivo and in vitro effects of pilocarpine: relevance to ictogenesis. Epilepsia 2007; 48:1934-46. [PMID: 17645533 PMCID: PMC3900294 DOI: 10.1111/j.1528-1167.2007.01185.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES A common experimental model of status epilepticus (SE) utilizes intraperitoneal administration of the cholinergic agonist pilocarpine preceded by methyl-scopolamine treatment. Currently, activation of cholinergic neurons is recognized as the only factor triggering pilocarpine SE. However, cholinergic receptors are also widely distributed systemically and pretreatment with methyl-scopolamine may not be sufficient to counteract the effects of systemically injected pilocarpine. The extent of such peripheral events and the contribution to SE are unknown and the possibility that pilocarpine also induces SE by peripheral actions is yet untested. METHODS We measured in vivo at onset of SE: brain and blood pilocarpine levels, blood-brain barrier (BBB) permeability, T-lymphocyte activation and serum levels of IL-1beta and TNF-alpha. The effects of pilocarpine on neuronal excitability was assessed in vitro on hippocampal slices or whole guinea pig brain preparations in presence of physiologic or elevated [K+](out). RESULTS Pilocarpine blood and brain levels at SE were 1400 +/- 200 microM and 200 +/- 80 microM, respectively. In vivo, after pilocarpine injection, increased serum IL-1beta, decreased CD4:CD8 T-lymphocyte ratios and focal BBB leakage were observed. In vitro, pilocarpine failed to exert significant synchronized epileptiform activity when applied at concentrations identical or higher to levels measured in vivo. Intense electrographic seizure-like events occurred only in the copresence of levels of K+ (6 mM) mimicking BBB leakage. CONCLUSIONS Early systemic events increasing BBB permeability may promote entry of cofactors (e. g. K+) into the brain leading to pilocarpine-induced SE. Disturbance of brain homeostasis represents an etiological factor contributing to pilocarpine seizures.
Collapse
Affiliation(s)
- Nicola Marchi
- Department of Cerebrovascular Research, The Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Emily Oby
- Department of Cerebrovascular Research, The Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Ayush Batra
- Department of Cerebrovascular Research, The Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Laura Uva
- Department of Experimental Neurophysiology, Neurological Institute “C. Besta,” Milano, Italy
| | - Marco De Curtis
- Department of Experimental Neurophysiology, Neurological Institute “C. Besta,” Milano, Italy
| | - Nadia Hernandez
- Department of Cerebrovascular Research, The Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | | | - Imad Najm
- Department of Neurology, The Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Damir Janigro
- Department of Cerebrovascular Research, The Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Department of Molecular Medicine, The Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Department of Neurology, The Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| |
Collapse
|
10
|
Parkinson FE, Friesen J, Krizanac-Bengez L, Janigro D. Use of a three-dimensional in vitro model of the rat blood-brain barrier to assay nucleoside efflux from brain. Brain Res 2003; 980:233-41. [PMID: 12867263 DOI: 10.1016/s0006-8993(03)02980-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Extracellular adenosine is produced in brain during physiological and pathophysiological conditions. Once produced, this adenosine can undergo one or more of the following fates: it can interact with its receptors, it can be scavenged by astrocytes and/or neurons for ATP resynthesis, it can be transported across the blood-brain barrier and lost from the central nervous system, or it can be metabolized to inosine and hypoxanthine. The present study used a three-dimensional in vitro cell culture model of the rat blood-brain barrier, in which forebrain astrocytes and microvascular endothelial cells were cultured in cartridges containing multiple parallel polypropylene hollow fibers. Endothelial cells were cultured on the inner surfaces and astrocytes on the outer surfaces of these fibers. Growth medium was constantly perfused through the lumen of the fibers to mimic blood flow across endothelial cells in vivo. This co-culture system was used to examine the permeation of adenosine, and its metabolite inosine, from the astrocyte compartment to the endothelial cell compartment. Dipyridamole was added to the media perfusing the endothelial cell compartment to test whether it could decrease permeation of adenosine and inosine across the in vitro blood-brain barrier. Our results indicate that dipyridamole decreased permeation of total purines, especially inosine, across the barrier. Furthermore, permeation of fluorescein isothiocyanate-labeled albumin and radiolabeled sucrose, markers of the paracellular permeation pathway, were also decreased by dipyridamole. In conclusion, these data indicate that in addition to inhibiting nucleoside efflux across the barrier, dipyridamole can also improve blood-brain barrier function in this model.
Collapse
Affiliation(s)
- Fiona E Parkinson
- Department of Pharmacology, University of Manitoba, A403, 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| | | | | | | |
Collapse
|