1
|
Wang P, Dong S, Liu F, Liu A, Wang Z. MicroRNA-140-5p shuttled by microglia-derived extracellular vesicles attenuates subarachnoid hemorrhage-induced microglia activation and inflammatory response via MMD downregulation. Exp Neurol 2023; 359:114265. [PMID: 36336031 DOI: 10.1016/j.expneurol.2022.114265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND It is documented that microglia-secreted extracellular vesicles (microglia-EVs) exert neuroprotection which is important following subarachnoid hemorrhage (SAH). Herein, we focused on the mechanism of microglia-EVs harboring microRNA-140-5p (miR-140-5p) in SAH development. METHODS After the successful establishment of SAH rats, neurological function was evaluated, and behaviors were observed. Serum inflammatory factors (IL-1β and TNF-α) were quantified by ELISA, followed by the detection of microglial polarization by immunofluorescence. The relationship between miR-140-5p and monocyte to macrophage differentiation-associated (MMD) was evaluated using luciferase assay. Following the extraction of microglia and microglia-EVs, the transferring of miR-140-5p by microglia-EVs was assessed by co-culture experiments. SAH rats were treated with the EVs sourced from microglia overexpressing miR-140-5p (microglia-EVs-miR-140-5p) or EVs sourced from miR-140-5p-deficient microglia (microglia-EVs-miR-140-5p inhibitor) for in vivo effect assessment. RESULTS Microglia-EVs inhibited microglia activation and secretion of TNF-α and IL-1β by delivering miR-140-5p. Microglia-EVs could transmit miR-140-5p into microglia. Furthermore, microglia-EVs-miR-140-5p reduced the expression of its target MMD, resulting in blocked inflammatory response and activation of microglia in SAH rats by disrupting the PI3K/AKT and Erk1/2 signaling. CONCLUSION In summary, microglia-EVs transmitted miR-140-5p into microglia to downregulate MMD and finally contributed to neuroprotection in SAH rats.
Collapse
Affiliation(s)
- Pinyan Wang
- Department of Neurosurgery, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Siyuan Dong
- Department of Neurosurgery, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Fei Liu
- Department of Neurosurgery, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China; Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, PR China.
| | - Aihua Liu
- Department of Neurosurgery, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China; Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China.
| | - Zhifei Wang
- Department of Neurosurgery, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China.
| |
Collapse
|
2
|
Favié LMA, Peeters-Scholte CMPCD, Bakker A, Tjabbes H, Egberts TCG, van Bel F, Rademaker CMA, Vis P, Groenendaal F. Pharmacokinetics and short-term safety of the selective NOS inhibitor 2-iminobiotin in asphyxiated neonates treated with therapeutic hypothermia. Pediatr Res 2020; 87:689-696. [PMID: 31578035 DOI: 10.1038/s41390-019-0587-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Neonatal encephalopathy following perinatal asphyxia is a leading cause for neonatal death and disability, despite treatment with therapeutic hypothermia. 2-Iminobiotin is a promising neuroprotective agent additional to therapeutic hypothermia to improve the outcome of these neonates. METHODS In an open-label study, pharmacokinetics and short-term safety of 2-iminobiotin were investigated in neonates treated with therapeutic hypothermia. Group A (n = 6) received four doses of 0.16 mg/kg intravenously q6h. Blood sampling for pharmacokinetic analysis and monitoring of vital signs for short-term safety analysis were performed. Data from group A was used to determine the dose for group B, aiming at an AUC0-48 h of 4800 ng*h/mL. RESULTS Exposure in group A was higher than targeted (median AUC0-48 h 9522 ng*h/mL); subsequently, group B (n = 6) received eight doses of 0.08 mg/kg q6h (median AUC0-48 h 4465 ng*h/mL). No changes in vital signs were observed and no adverse events related to 2-iminobiotin occurred. CONCLUSION This study indicates that 2-iminobiotin is well tolerated and not associated with any adverse events in neonates treated with therapeutic hypothermia after perinatal asphyxia. Target exposure was achieved with eight doses of 0.08 mg/kg q6h. Optimal duration of therapy for clinical efficacy needs to be determined in future clinical trials.
Collapse
Affiliation(s)
- Laurent M A Favié
- Department of Clinical Pharmacy, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands. .,Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.
| | | | - Anouk Bakker
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | | | - Toine C G Egberts
- Department of Clinical Pharmacy, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.,Department of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Frank van Bel
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.,UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Carin M A Rademaker
- Department of Clinical Pharmacy, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Peter Vis
- LAP&P Consultants BV, Leiden, the Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.,UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
3
|
Abstract
The application of targeted temperature management has become common practice in the neurocritical care setting. It is important to recognize the pathophysiologic mechanisms by which temperature control impacts acute neurologic injury, as well as the clinical limitations to its application. Nonetheless, when utilizing temperature modulation, an organized approach is required in order to avoid complications and minimize side-effects. The most common clinically relevant complications are related to the impact of cooling on hemodynamics and electrolytes. In both instances, the rate of complications is often related to the depth and rate of cooling or rewarming. Shivering is the most common side-effect of hypothermia and is best managed by adequate monitoring and stepwise administration of medications specifically targeting the shivering response. Due to the impact cooling can have upon pharmacokinetics of commonly used sedatives and analgesics, there can be significant delays in the return of the neurologic examination. As a result, early prognostication posthypothermia should be avoided.
Collapse
Affiliation(s)
- N Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Forreider B, Pozivilko D, Kawaji Q, Geng X, Ding Y. Hibernation-like neuroprotection in stroke by attenuating brain metabolic dysfunction. Prog Neurobiol 2016; 157:174-187. [PMID: 26965388 DOI: 10.1016/j.pneurobio.2016.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/24/2022]
Abstract
Many mammalian species naturally undergo hibernation, a process that is associated with drastic changes in metabolism and systemic physiology. Their ability to retain an undamaged central nervous system during severely reduced cerebral blood flow has been studied for possible therapeutic application in human ischemic stroke. By inducing a less extreme 'hibernation-like' state, it has been hypothesized that similar neuroprotective effects reduce ischemia-mediated tissue damage in stroke patients. This manuscript includes reviews and evaluations of: (1) true hibernation, (2) hibernation-like state and its neuroprotective characteristics, (3) the preclinical and clinical methods for induction of artificial hibernation (i.e., therapeutic hypothermia, phenothiazine drugs, and ethanol), and (4) the mechanisms by which cerebral ischemia leads to tissue damage and how the above-mentioned induction methods function to inhibit those processes.
Collapse
Affiliation(s)
- Brian Forreider
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - David Pozivilko
- Michigan State University College of Human Medicine, East Lansing, MI, USA
| | - Qingwen Kawaji
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA; China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA; China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Wei D, Xiong X, Zhao H. Tim-3 cell signaling and iNOS are involved in the protective effects of ischemic postconditioning against focal ischemia in rats. Metab Brain Dis 2015; 30:483-90. [PMID: 24771108 PMCID: PMC4213319 DOI: 10.1007/s11011-014-9543-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/04/2014] [Indexed: 11/28/2022]
Abstract
The protective effect of ischemic postconditioning (IPostC) against stroke has been well-established, and the underlying mechanisms are known to involve inhibited-inflammation and free radical production. Nevertheless, how IPostC affects protein expression of iNOS, nitrotyrosine, and COX-2 has not been characterized. In addition, the role of the galectin-9/Tim-3 cell signaling pathway--a novel inflammatory pathway--in IPostC has not been studied. We examined whether iNOS, nitrotyrosine, and COX-2, as well as galectin-9/Tim-3 are involved in the protective effects of IpostC in a rat focal ischemia model. Western blot and confocal immunofluoresent staining results indicate that IPostC significantly inhibited Tim-3 expression, and that galectin-9 expression was also inhibited. In addition, IPostC attenuated production of iNOS and nitrotyrosine, but not COX-2, suggesting that IPostC has distinct effects on these inflammatory factors. Furthermore, the inflammation inhibitor minocycline blocked Tim-3 and iNOS expression induced by stroke. Taken together, we show that the galectin-9/Tim-3 cell signaling pathway is involved in inflammation induced by stroke, and IPostC may reduce infarction by attenuating this novel pathway as well as the inflammatory factors iNOS and nitrotyrosine, but not COX-2.
Collapse
Affiliation(s)
- Dingtai Wei
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Fujian Medical University Ningde Hospital, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Heng Zhao
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Drury PP, Davidson JO, Mathai S, van den Heuij LG, Ji H, Bennet L, Tan S, Silverman RB, Gunn AJ. nNOS inhibition during profound asphyxia reduces seizure burden and improves survival of striatal phenotypic neurons in preterm fetal sheep. Neuropharmacology 2014; 83:62-70. [PMID: 24726307 DOI: 10.1016/j.neuropharm.2014.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/17/2014] [Accepted: 03/31/2014] [Indexed: 12/01/2022]
Abstract
Basal ganglia injury after hypoxia-ischemia remains common in preterm infants, and is closely associated with later cerebral palsy. In the present study we tested the hypothesis that a highly selective neuronal nitric oxide synthase (nNOS) inhibitor, JI-10, would improve survival of striatal phenotypic neurons after profound asphyxia, and that the subsequent seizure burden and recovery of EEG are associated with neural outcome. 24 chronically instrumented preterm fetal sheep were randomized to either JI-10 (3 ml of 0.022 mg/ml, n = 8) or saline (n = 8) infusion 15 min before 25 min complete umbilical cord occlusion, or saline plus sham-occlusion (n = 8). Umbilical cord occlusion was associated with reduced numbers of calbindin-28k-, GAD-, NPY-, PV-, Calretinin- and nNOS-positive striatal neurons (p < 0.05 vs. sham occlusion) but not ChAT-positive neurons. JI-10 was associated with increased numbers of calbindin-28k-, GAD-, nNOS-, NPY-, PV-, Calretinin- and ChAT-positive striatal neurons (p < 0.05 vs. saline + occlusion). Seizure burden was strongly associated with loss of calbindin-positive cells (p < 0.05), greater seizure amplitude was associated with loss of GAD-positive cells (p < 0.05), and with more activated microglia in the white matter tracts (p < 0.05). There was no relationship between EEG power after 7 days recovery and total striatal cell loss, but better survival of NPY-positive neurons was associated with lower EEG power. In summary, these findings suggest that selective nNOS inhibition during asphyxia is associated with protection of phenotypic striatal projection neurons and has potential to help reduce basal ganglia injury in some premature babies.
Collapse
Affiliation(s)
- Paul P Drury
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Sam Mathai
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | - Haitao Ji
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208-3113, USA; Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Sidhartha Tan
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Richard B Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208-3113, USA
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
7
|
Oxidative stress and antioxidant activity in hypothermia and rewarming: can RONS modulate the beneficial effects of therapeutic hypothermia? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:957054. [PMID: 24363826 PMCID: PMC3865646 DOI: 10.1155/2013/957054] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 10/21/2013] [Indexed: 12/12/2022]
Abstract
Hypothermia is a condition in which core temperature drops below the level necessary to maintain bodily functions. The decrease in temperature may disrupt some physiological systems of the body, including alterations in microcirculation and reduction of oxygen supply to tissues. The lack of oxygen can induce the generation of reactive oxygen and nitrogen free radicals (RONS), followed by oxidative stress, and finally, apoptosis and/or necrosis. Furthermore, since the hypothermia is inevitably followed by a rewarming process, we should also consider its effects. Despite hypothermia and rewarming inducing injury, many benefits of hypothermia have been demonstrated when used to preserve brain, cardiac, hepatic, and intestinal function against ischemic injury. This review gives an overview of the effects of hypothermia and rewarming on the oxidant/antioxidant balance and provides hypothesis for the role of reactive oxygen species in therapeutic hypothermia.
Collapse
|
8
|
Bao L, Xu F. Fundamental research progress of mild hypothermia in cerebral protection. SPRINGERPLUS 2013; 2:306. [PMID: 23888277 PMCID: PMC3710408 DOI: 10.1186/2193-1801-2-306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/03/2013] [Indexed: 11/27/2022]
Abstract
Through the years, the clinical application of mild hypothermia has been carried out worldwide and is built from the exploration and cognition of neuroprotection mechanisms by hypothermia. However, within the last decade, extensive and fundamental researches in this area have been conducted. In addition to aspects of the previous findings, scholars have discovered several new contents and uncertain results. This article reviews and summarizes this decade’s progression of mild hypothermia in lowering the cerebral oxygen metabolism, protecting the blood–brain-barrier, regulating the inflammatory response, regulating the excessive release of neurotransmitters, inhibiting calcium overload, and reducing neuronal apoptosis. In many aspects, particularly in regulating inflammatory reverse reaction, various results have been reported and therefore guide scholars to conduct more detailed analysis and investigation in order to discover the inherent theories surrounding the effect of mild hypothermia, and for better clinical services.
Collapse
Affiliation(s)
- Long Bao
- Department of Emergency medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | | |
Collapse
|
9
|
Seo JW, Kim JH, Kim JH, Seo M, Han HS, Park J, Suk K. Time-dependent effects of hypothermia on microglial activation and migration. J Neuroinflammation 2012; 9:164. [PMID: 22776061 PMCID: PMC3470995 DOI: 10.1186/1742-2094-9-164] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/14/2012] [Indexed: 12/02/2022] Open
Abstract
Background Therapeutic hypothermia is one of the neuroprotective strategies that improve neurological outcomes after brain damage in ischemic stroke and traumatic brain injury. Microglial cells become activated following brain injury and play an important role in neuroinflammation and subsequent brain damage. The aim of this study was to determine the time-dependent effects of hypothermia on microglial cell activation and migration, which are accompanied by neuroinflammation. Methods Microglial cells in culture were subjected to mild (33 °C) or moderate (29 °C) hypothermic conditions before, during, or after lipopolysaccharide (LPS) or hypoxic stimulation, and the production of nitric oxide (NO), proinflammatory cytokines, reactive oxygen species, and neurotoxicity was evaluated. Effects of hypothermia on microglial migration were also determined in in vitro as well as in vivo settings. Results Early-, co-, and delayed-hypothermic treatments inhibited microglial production of inflammatory mediators to varying degrees: early treatment was the most efficient, and delayed treatment showed time-dependent effects. Delayed hypothermia also suppressed the mRNA levels of proinflammatory cytokines and iNOS, and attenuated microglial neurotoxicity in microglia-neuron co-cultures. Furthermore, delayed hypothermia reduced microglial migration in the Boyden chamber assay and wound healing assay. In a stab injury model, delayed local hypothermia reduced migration of microglia toward the injury site in the rat brain. Conclusion Taken together, our results indicate that delayed hypothermia is sufficient to attenuate microglial activation and migration, and provide the basis of determining the optimal time window for therapeutic hypothermia. Delayed hypothermia may be neuroprotective by inhibiting microglia-mediated neuroinflammation, indicating the therapeutic potential of post-injury hypothermia for patients with brain damages exhibiting some of the inflammatory components.
Collapse
Affiliation(s)
- Jung-Wan Seo
- Department of Pharmacology, Brain Science & Engineering Institute, CMRI, Kyungpook National University School of Medicine, 101 Dong-In, Daegu, Joong-gu, 700-422, South Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Krüger A, Ošťádal P, Vondráková D, Janotka M, Herget J. Nitrotyrosine and nitrate/nitrite levels in cardiac arrest survivors treated with endovascular hypothermia. Physiol Res 2012; 61:425-30. [PMID: 22670696 DOI: 10.33549/physiolres.932308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The protective effect of therapeutic hypothermia in cardiac arrest survivors (CAS) has been previously well documented. Animal studies have indicated that attenuation of tissue oxidative stress (OS) may be involved in the mechanisms that lead to the beneficial effect of hypothermia. The extent of OS and nitric oxide (NO) production in adult CAS treated with endovascular hypothermia is, however, unknown. A total of 11 adult patients who experienced cardiac arrest out of hospital were included in the present study, and all were treated with mild hypothermia using the Thermogard XP (Alsius, USA) endovascular system. A target core temperature of 33 °C was maintained for 24 hours, with a subsequent rewarming rate of 0.15 °C per hour, followed by normothermia at 36.8 °C. Blood samples for the measurement of nitrotyrosine and nitrate/nitrite levels were drawn at admission and every 6 hours thereafter for two days. During the hypothermic period, the levels of nitrotyrosine and nitrates/nitrites were comparable with baseline values. During the rewarming period, serum levels of both parameters gradually increased and, during the normothermic period, the levels were significantly higher compared with hypothermic levels (nitrotyrosine, P<0.001; nitrates/nitrites, P<0.05). In our study, significantly lower levels of nitrotyrosine and nitrates/nitrites were demonstrated during hypothermia compared with levels during the normothermic period in adult CAS. These data suggest that attenuation of OS and NO production may be involved in the protective effect of hypothermia in adult CAS.
Collapse
Affiliation(s)
- A Krüger
- Cardiovascular Center, Department of Cardiology, Na Homolce Hospital, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
11
|
Wei D, Ren C, Chen X, Zhao H. The chronic protective effects of limb remote preconditioning and the underlying mechanisms involved in inflammatory factors in rat stroke. PLoS One 2012; 7:e30892. [PMID: 22347410 PMCID: PMC3275571 DOI: 10.1371/journal.pone.0030892] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/23/2011] [Indexed: 11/19/2022] Open
Abstract
We recently demonstrated that limb remote preconditioning (LRP) protects against focal ischemia measured 2 days post-stroke. Here, we studied whether LRP provides long-term protection and improves neurological function. We also investigated whether LRP transmits its protective signaling via the afferent nerve pathways from the preconditioned limb to the ischemic brain and whether inflammatory factors are involved in LRP, including the novel galectin-9/Tim-3 inflammatory cell signaling pathway, which induces cell death in lymphocytes. LRP in the left hind femoral artery was performed immediately before stroke. LRP reduced brain injury size both at 2 days and 60 days post-stroke and improved behavioral outcomes for up to 2 months. The sensory nerve inhibitors capsaicin and hexamethonium, a ganglion blocker, abolished the protective effects of LRP. In addition, LRP inhibited edema formation and blood-brain barrier (BBB) permeability measured 2 days post-stroke. Western blot and immunostaining analysis showed that LRP inhibited protein expression of both galectin-9 and T-cell immunoglobulin domain and mucin domain 3 (Tim-3), which were increased after stroke. In addition, LRP decreased iNOS and nitrotyrosine protein expression after stroke. In conclusion, LRP executes long-term protective effects against stroke and may block brain injury by inhibiting activities of the galectin-9/Tim-3 pathway, iNOS, and nitrotyrosine.
Collapse
Affiliation(s)
- Dingtai Wei
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
- Stroke Center, Stanford University, Stanford, California, United States of America
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Radiology, Fujian Medical University Ningde Hospital, Fujian, China
| | - Chuancheng Ren
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
- Stroke Center, Stanford University, Stanford, California, United States of America
- Shanghai No.5 Hospital, Fudan University, Shanghai, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
- Stroke Center, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Hypothermia enhances the colocalization of calmodulin kinase IIα with neuronal nitric oxide synthase in the hippocampus following cerebral ischemia. Neurosci Lett 2011; 505:228-32. [PMID: 22015767 DOI: 10.1016/j.neulet.2011.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 12/16/2022]
Abstract
Hypothermia has been shown to have neuroprotective effects against neurotrauma and cerebrovascular disease. Cerebral ischemia induces the activation of calcium/calmodulin kinase II (CaM-KII), which modulates many enzymes. We have previously demonstrated that CaM-KIIα downregulates neuronal nitric oxide synthase (nNOS) activity. However, precise details regarding the neuroprotective mechanism of hypothermia largely remain to be elucidated. Therefore, in this study, we investigated the neuroprotective mechanism of hypothermia, focusing on the association between CaM-KIIα and nNOS in CA1 hippocampus after focal cerebral ischemia in mice. The temperature was maintained at normothermia (36.5-37.5°C) or mild hypothermia (31.5-32.5°C) during these procedures. Focal cerebral ischemia induced significant dissociation of CaM-KIIα from nNOS in the CA1 hippocampus but not in the cerebral cortex under normothermia. Hypothermia did not change the expression of nNOS, but it significantly induced the colocalization of CaM-KIIα with nNOS in CA1 hippocampus immediately after cerebral ischemia. These results presumably result in the attenuation of nNOS activity and could contribute to the tolerance to post-ischemic damage. This effect could be one of the neuroprotective mechanisms of hypothermia.
Collapse
|
13
|
Shintani Y, Terao Y, Ohta H. Molecular mechanisms underlying hypothermia-induced neuroprotection. Stroke Res Treat 2010; 2011:809874. [PMID: 21151700 PMCID: PMC2995905 DOI: 10.4061/2011/809874] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/12/2010] [Indexed: 01/25/2023] Open
Abstract
Stroke is a dynamic event in the brain involving heterogeneous cells. There is now compelling clinical evidence that prolonged, moderate cerebral hypothermia initiated within a few hours after severe ischemia can reduce subsequent neuronal death and improve behavioral recovery. The neuroprotective role of hypothermia is also well established in experimental animals. However, the mechanism of hypothermic neuroprotection remains unclear, although, presumably involves the ability of hypothermia to suppress a broad range of injurious factors. In this paper, we addressed this issue by utilizing comprehensive gene and protein expression analyses of ischemic rat brains. To predict precise target molecules, we took advantage of the therapeutic time window and duration of hypothermia necessary to exert neuroprotective effects. We proposed that hypothermia contributes to protect neuroinflammation, and identified candidate molecules such as MIP-3α and Hsp70 that warrant further investigation as targets for therapeutic drugs acting as “hypothermia-like neuroprotectants.”
Collapse
Affiliation(s)
- Yasushi Shintani
- Pharmacology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-17-85, Jusohonmachi, Yodogawa-ku, Osaka 532-8686, Japan
| | | | | |
Collapse
|
14
|
Dietrich WD, Atkins CM, Bramlett HM. Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia. J Neurotrauma 2009; 26:301-12. [PMID: 19245308 DOI: 10.1089/neu.2008.0806] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
For the past 20 years, various laboratories throughout the world have shown that mild to moderate levels of hypothermia lead to neuroprotection and improved functional outcome in various models of brain and spinal cord injury (SCI). Although the potential neuroprotective effects of profound hypothermia during and following central nervous system (CNS) injury have long been recognized, more recent studies have described clinically feasible strategies for protecting the brain and spinal cord using hypothermia following a variety of CNS insults. In some cases, only a one or two degree decrease in brain or core temperature can be effective in protecting the CNS from injury. Alternatively, raising brain temperature only a couple of degrees above normothermia levels worsens outcome in a variety of injury models. Based on these data, resurgence has occurred in the potential use of therapeutic hypothermia in experimental and clinical settings. The study of therapeutic hypothermia is now an international area of investigation with scientists and clinicians from every part of the world contributing to this important, promising therapeutic intervention. This paper reviews the experimental data obtained in animal models of brain and SCI demonstrating the benefits of mild to moderate hypothermia. These studies have provided critical data for the translation of this therapy to the clinical arena. The mechanisms underlying the beneficial effects of mild hypothermia are also summarized.
Collapse
Affiliation(s)
- W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136-1060, USA.
| | | | | |
Collapse
|
15
|
Hauck EF, Wei J, Quast MJ, Nauta HJW. A new technique allowing prolonged temporary cerebral artery occlusion. J Neurosurg 2008; 109:1127-33. [PMID: 19035732 DOI: 10.3171/jns.2008.109.12.1127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Clipping of complex cerebral aneurysms often requires temporary vessel occlusion. The risk of stroke, however, increases exponentially with occlusion time. The authors hypothesized that prolonged temporary occlusion might be tolerated if the occluded vessels were perfused with cold physiological saline solution (CPSS). A low-flow perfusion rate would permit surgical manipulation of an aneurysm distal to the occlusion. METHODS To test this hypothesis, the authors temporarily occluded the middle cerebral artery (MCA) with an endovascular catheter in 6 rats. Three animals, the treatment group, were perfused with 5-ml CPSS/hour through the occluding endovascular catheter into the MCA, and the other 3 served as an ischemic control group. In both groups, the catheter was removed after 90 minutes of occlusion. The brain temperature was monitored with a stereotactically placed probe in the caudate-putamen in 2 separate experimental groups (11 animals). RESULTS Magnetic resonance imaging perfusion scanning during vessel occlusion confirmed similar reduction of cerebral blood flow during MCA occlusion in both the simple-occlusion and perfusion-occlusion groups. Magnetic resonance imaging diffusion scans performed 24 hours after temporary occlusion revealed infarcts in the ischemic control group of 138.3 +/- 28.0 mm(3) versus 9.9 +/- 9.9 mm(3) in the cold saline group (p < 0.005). A focal cooling effect during perfusion with CPSS was demonstrated (p < 0.05). CONCLUSIONS Prolonged temporary cerebral vessel occlusion can be tolerated using superselective CPSS perfusion through an occluding endovascular catheter into the ischemic territory. This technique could possibly be applied in neurosurgery practice to the management of complex intracranial aneurysms.
Collapse
Affiliation(s)
- Erik F Hauck
- Division of Neurosurgery, University of Texas Medical Branch at Galveston, Texas, USA.
| | | | | | | |
Collapse
|
16
|
Hare GMT, Tsui AKY, McLaren AT, Ragoonanan TE, Yu J, Mazer CD. Anemia and cerebral outcomes: many questions, fewer answers. Anesth Analg 2008; 107:1356-70. [PMID: 18806052 DOI: 10.1213/ane.0b013e318184cfe9] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A number of clinical studies have associated acute anemia with cerebral injury in perioperative patients. Evidence of such injury has been observed near the currently accepted transfusion threshold (hemoglobin [Hb] concentration, 7-8 g/dL), and well above the threshold for cerebral tissue hypoxia (Hb 3-4 g/dL). However, hypoxic and nonhypoxic mechanisms of anemia-induced cerebral injury have not been clearly elucidated. In addition, protective mechanisms which may minimize cerebral injury during acute anemia have not been well defined. Vasodilatory mechanisms, including nitric oxide (NO), may help to maintain cerebral oxygen delivery during anemia as all three NO synthase (NOS) isoforms (neuronal, endothelial, and inducible NOS) have been shown to be up-regulated in different experimental models of acute hemodilutional anemia. Recent experimental evidence has also demonstrated an increase in an important transcription factor, hypoxia inducible factor (HIF)-1alpha, in the cerebral cortex of anemic rodents at clinically relevant Hb concentrations (Hb 6-7 g/dL). This suggests that cerebral oxygen homeostasis may be in jeopardy during acute anemia. Under hypoxic conditions, cytoplasmic HIF-1alpha degradation is inhibited, thereby allowing it to accumulate, dimerize, and translocate into the nucleus to promote transcription of a number of hypoxic molecules. Many of these molecules, including erythropoietin, vascular endothelial growth factor, and inducible NOS have also been shown to be up-regulated in the anemic brain. In addition, HIF-1alpha transcription can be increased by nonhypoxic mediators including cytokines and vascular hormones. Furthermore, NOS-derived NO may also stabilize HIF-1alpha in the absence of tissue hypoxia. Thus, during anemia, HIF-1alpha has the potential to regulate cerebral cellular responses under both hypoxic and normoxic conditions. Experimental studies have demonstrated that HIF-1alpha may have either neuroprotective or neurotoxic capacity depending on the cell type in which it is up-regulated. In the current review, we characterize these cellular processes to promote a clearer understanding of anemia-induced cerebral injury and protection. Potential mechanisms of anemia-induced injury include cerebral emboli, tissue hypoxia, inflammation, reactive oxygen species generation, and excitotoxicity. Potential mechanisms of cerebral protection include NOS/NO-dependent optimization of cerebral oxygen delivery and cytoprotective mechanisms including HIF-1alpha, erythropoietin, and vascular endothelial growth factor. The overall balance of these activated cellular mechanisms may dictate whether or not their up-regulation leads to cytoprotection or cellular injury during anemia. A clearer understanding of these mechanisms may help us target therapies that will minimize anemia-induced cerebral injury in perioperative patients.
Collapse
Affiliation(s)
- Gregory M T Hare
- Department of Anesthesia, University of Toronto, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada.
| | | | | | | | | | | |
Collapse
|
17
|
Hutchison JS, Doherty DR, Orlowski JP, Kissoon N. Hypothermia therapy for cardiac arrest in pediatric patients. Pediatr Clin North Am 2008; 55:529-44, ix. [PMID: 18501753 DOI: 10.1016/j.pcl.2008.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cardiac arrest is associated with high morbidity and mortality in children. Hypothermia therapy has theoretical benefits on brain preservation and has the potential to decrease morbidity and mortality in children following cardiac arrest. The American Heart Association guidelines recommend that it should be considered in children after cardiac arrest. Methods of inducing hypothermia include simple surface cooling techniques, intravenous boluses of cold saline, gastric lavage with ice-cold normal saline, and using the temperature control device with extracorporeal life support. We recommend further study before a strong recommendation can be made to use hypothermia therapy in children with cardiac arrest.
Collapse
Affiliation(s)
- James S Hutchison
- Department of Critical Care Medicine, University of Toronto and Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| | | | | | | |
Collapse
|
18
|
Fujioka H, Shintaku H, Nakanishi H, Kim TJ, Kusuda S, Yamano T. Biopterin in the acute phase of hypoxia-ischemia in a neonatal pig model. Brain Dev 2008; 30:1-6. [PMID: 17573222 DOI: 10.1016/j.braindev.2007.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/27/2007] [Accepted: 04/29/2007] [Indexed: 02/05/2023]
Abstract
To clarify the participation of inducible NOS (iNOS) in the hypoxia-ischemia, we examined iNOS and its tetrahydrobiopterin co-factor in the cerebral cortex and plasma in a newborn-piglet model. We also investigated the role of hypothermia in iNOS expression and biopterin production. Male newborn piglets were ventilated 6% oxygen for 45 min. Their common carotid arteries were clamped during hypoxia. Then they were resuscitated with 30% oxygen (HI group). Piglets of the hypothermia group were treated as the HI group and their body was cooled to 35.5 degrees C after hypoxic-ischemic insults. Sham-treated piglets were also reserved. In the HI group, iNOS was present in neurons and macrophages of the cerebral cortex 12h after the insult. The concentrations of nitrite and nitrate were elevated in the cerebral cortex 12h after hypoxic-ischemic insults but the biopterin level was unchanged. The plasma biopterin concentration after the insult (377.9+/-78.7 nM) was five times higher than before the insult (80.1+/-4.3 nM); this level peaked 4h after the insult (604.8+/-200.9 nM) and only slightly decreased after 12h (445.9+/-57.8 nM). In the hypothermia group, no iNOS expression was observed 12h after the insult. The plasma biopterin concentration after the insult (464.2+/-92.3 nM) was similar to that in the HI group, but was suppressed by 4h of hypothermia (229.3+/-106.8 nM). In this study, neuronal iNOS expression and increase of NO production were found in the acute phase of hypoxia-ischemia. Brain biopterin did not increase in hypoxia-ischemia although plasma biopterin was five-fold elevated. The discrepancy may also affect hypoxic-ischemic organ damage.
Collapse
Affiliation(s)
- Hiroki Fujioka
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi Abeno-ku, Osaka 545-8585, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Zhao H, Steinberg GK, Sapolsky RM. General versus specific actions of mild-moderate hypothermia in attenuating cerebral ischemic damage. J Cereb Blood Flow Metab 2007; 27:1879-94. [PMID: 17684517 DOI: 10.1038/sj.jcbfm.9600540] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mild or moderate hypothermia is generally thought to block all changes in signaling events that are detrimental to ischemic brain, including ATP depletion, glutamate release, Ca(2+) mobilization, anoxic depolarization, free radical generation, inflammation, blood-brain barrier permeability, necrotic, and apoptotic pathways. However, the effects and mechanisms of hypothermia are, in fact, variable. We emphasize that, even in the laboratory, hypothermic protection is limited. In certain models of permanent focal ischemia, hypothermia may not protect at all. In cases where hypothermia reduces infarct, some studies have overemphasized its ability to maintain cerebral blood flow and ATP levels, and to prevent anoxic depolarization, glutamate release during ischemia. Instead, hypothermia may protect against ischemia by regulating cascades that occur after reperfusion, including blood-brain barrier permeability and the changes in gene and protein expressions associated with necrotic and apoptotic pathways. Hypothermia not only blocks multiple damaging cascades after stroke, but also selectively upregulates some protective genes. However, most of these mechanisms are addressed in models with intraischemic hypothermia; much less information is available in models with postischemic hypothermia. Moreover, although it has been confirmed that mild hypothermia is clinically feasible for acute focal stroke treatment, no definite beneficial effect has been reported yet. This lack of clinical protection may result from suboptimal criteria for patient entrance into clinical trials. To facilitate clinical translation, future efforts in the laboratory should focus more on the protective mechanisms of postischemic hypothermia, as well as on the effects of sex, age and rewarming during reperfusion on hypothermic protection.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, California 94305-5327, USA.
| | | | | |
Collapse
|
20
|
Tsai SK, Hung LM, Fu YT, Cheng H, Nien MW, Liu HY, Zhang FBY, Huang SS. Resveratrol neuroprotective effects during focal cerebral ischemia injury via nitric oxide mechanism in rats. J Vasc Surg 2007; 46:346-53. [PMID: 17600658 DOI: 10.1016/j.jvs.2007.04.044] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 04/16/2007] [Indexed: 01/29/2023]
Abstract
BACKGROUND Our prior study showed that resveratrol could suppress infarct volume and exert neuroprotective effect on rats subjected to focal cerebral ischemia (FCI) injury. Recently, it has been reported in some literature that resveratrol protects the spinal cord, kidney, and heart from ischemia-reperfusion injury through upregulation of nitric oxide (NO). Therefore, this study was designed to investigate the role of nitric oxide on the neuroprotective mechanisms of resveratrol on rats after FCI injury. METHODS The FCI injury was induced by the middle cerebral artery (MCA) occlusion for 1 hour and then a 24-hour reperfusion followed in the anesthetized Long-Evans rats. Resveratrol was intravenously injected after 1 hour MCA occlusion. RESULTS Treatment of resveratrol (0.1 and 1 microg/kg) decreased the lactate dehydrogenase (LDH) in plasma and malondialdehyde (MDA) in FCI injury brain tissue, whereas the level of NO in plasma was increased. In addition, resveratrol downregulated protein and mRNA expression of inducible nitric oxide synthase (iNOS), and upregulated protein and mRNA expression of endothelial nitric oxide synthase (eNOS), while the expression of protein and mRNA of neuronal nitric oxide synthase (nNOS) was unchanged. Pretreatment with N(G)-nitro-L-arginine methyl ester (L-NAME, the nonselective NOS inhibitor) or L-N(5)-(1-iminoethyl)-ornithine (L-NIO, the eNOS selective inhibitor) completely blocked the effect of resveratrol in decreasing infarction volumes. CONCLUSIONS This study demonstrated the important role of NO in the neuroprotective effect of resveratrol in FCI injury.
Collapse
Affiliation(s)
- Shen-Kou Tsai
- Department of Anesthesiology, College of Medicine, Buddhist Tzu-Chi University and Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Han HS, Yenari MA. Effect on gene expression of therapeutic hypothermia in cerebral ischemia. FUTURE NEUROLOGY 2007. [DOI: 10.2217/14796708.2.4.435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Therapeutic hypothermia has gained considerable interest, given that it appears to improve neurological outcomes in patients who have suffered cardiac arrest. In spite of its remarkable beneficial effect, the mechanism of protection by brain cooling is still unclear. Hypothermia is known to alter gene expression; thus, gene profiling may help to identify relevant mechanisms of neuroprotection. Recent studies have demonstrated that brain ischemia-induced gene expression is modulated by hypothermia, but the mechanism of hypothermic gene regulation is quite diverse. Hypothermia can alter transcription factors, leading to changes in gene and protein expression. Enhanced or reduced mRNA stability can also influence gene transcription. This review will summarize reports of altered gene expression following hypothermic treatment in brain ischemia.
Collapse
Affiliation(s)
- Hyung Soo Han
- Assistant Professor Kyungpook National University School of Medicine, Department of Physiology, 101 Dongin 2 Ga, Jung Gu, Daegu, 700–422, Korea
| | - Midori A Yenari
- Associate Professor University of California, San Francisco, Department of Neurology, Neurology (127) VAMC 4150 Clement St, San Francisco, CA 94121, USA
| |
Collapse
|
22
|
Ohta H, Terao Y, Shintani Y, Kiyota Y. Therapeutic time window of post-ischemic mild hypothermia and the gene expression associated with the neuroprotection in rat focal cerebral ischemia. Neurosci Res 2007; 57:424-33. [PMID: 17212971 DOI: 10.1016/j.neures.2006.12.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 11/28/2006] [Accepted: 12/03/2006] [Indexed: 01/08/2023]
Abstract
Hypothermia is the only neuroprotective therapy proven to be clinically effective. Identifying the molecules that play important roles in the efficacy of hypothermia, we developed a multi-channel computer-controlled system, in which the brain temperatures of freely moving rats were telemetrically monitored and maintained below 35 degrees C, and examined the time window necessary to exert its significant neuroprotective effects. Eight-week-old SD rats were subjected to a 2h middle cerebral artery occlusion (MCAO) with an intraluminal filament, and post-ischemic hypothermia was introduced at 0, 2, 4, or 6h after reperfusion until the rats were killed 2 days after MCAO. Since a significant protection was observed when hypothermia was started within 4h after reperfusion, it was concluded that the therapeutic time window of mild hypothermia lasts for 4h after reperfusion in our model. On the basis of the window, comprehensive gene expression analyses using oligonucleotide microarrays were conducted and identified potential genes related to the efficacy of hypothermia, which included inflammatory genes like osteopontin, early growth response-1, or macrophage inflammatory protein-3alpha. Therefore, the neuroprotective effects of post-ischemic mild hypothermia were strongly suggested to be mainly associated with the reduction of neuronal inflammation.
Collapse
Affiliation(s)
- Hiroyuki Ohta
- Pharmacology Research Laboratories III, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 17-85, Jusohonmachi 2-Chome, Osaka, Japan
| | | | | | | |
Collapse
|
23
|
George S, Scotter J, Dean JM, Bennet L, Waldvogel HJ, Guan J, Faull RLM, Gunn AJ. Induced cerebral hypothermia reduces post-hypoxic loss of phenotypic striatal neurons in preterm fetal sheep. Exp Neurol 2007; 203:137-47. [PMID: 16962098 DOI: 10.1016/j.expneurol.2006.07.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 07/17/2006] [Accepted: 07/28/2006] [Indexed: 12/20/2022]
Abstract
Perinatal hypoxic-ischemic injury of the basal ganglia is a significant cause of disability in premature infants. Prolonged, moderate cerebral hypothermia has been shown to be neuroprotective after experimental hypoxia-ischemia; however, it has not been tested in the preterm brain. We therefore examined the effects of severe hypoxia and the potential neuroprotective effects of delayed hypothermia on phenotypic striatal neurons. Preterm (0.7 gestation) fetal sheep received complete umbilical cord occlusion for 25 min followed by cerebral hypothermia (fetal extradural temperature reduced from 39.4+/-0.3 degrees C to 29.5+/-2.6 degrees C) from 90 min to 70 h after the end of occlusion. Hypothermia was associated with a significant overall reduction in striatal neuronal loss compared with normothermia-occlusion fetuses (mean+/-SEM, 5.5+/-1.2% vs. 38.1+/-6.5%, P<0.01). Immunohistochemical studies showed that occlusion resulted in a significant loss of calbindin-28 kd, glutamic acid decarboxylase isoform 67 and neuronal nitric oxide synthase-immunopositive neurons (n=7, P<0.05), but not choline acetyltransferase-positive neurons, compared with sham controls (n=7). Hypothermia (n=7) significantly reduced the loss of calbindin-28 kd and neuronal nitric oxide synthase, but not glutamic acid decarboxylase-immunopositive neurons. In conclusion, delayed, prolonged moderate head cooling was associated with selective protection of particular phenotypic striatal projection neurons after severe hypoxia in the preterm fetus. These findings suggest that head cooling may help reduce basal ganglia injury in some premature babies.
Collapse
Affiliation(s)
- S George
- Department of Physiology, Faculty of Medicine and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Vereczki V, Martin E, Rosenthal RE, Hof PR, Hoffman GE, Fiskum G. Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic dysfunction, and neuronal death. J Cereb Blood Flow Metab 2006; 26:821-35. [PMID: 16251887 PMCID: PMC2570707 DOI: 10.1038/sj.jcbfm.9600234] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resuscitation and prolonged ventilation using 100% oxygen after cardiac arrest is standard clinical practice despite evidence from animal models indicating that neurologic outcome is improved using normoxic compared with hyperoxic resuscitation. This study tested the hypothesis that normoxic ventilation during the first hour after cardiac arrest in dogs protects against prelethal oxidative stress to proteins, loss of the critical metabolic enzyme pyruvate dehydrogenase complex (PDHC), and minimizes subsequent neuronal death in the hippocampus. Anesthetized beagles underwent 10 mins ventricular fibrillation cardiac arrest, followed by defibrillation and ventilation with either 21% or 100% O2. At 1 h after resuscitation, the ventilator was adjusted to maintain normal blood gas levels in both groups. Brains were perfusion-fixed at 2 h reperfusion and used for immunohistochemical measurements of hippocampal nitrotyrosine, a product of protein oxidation, and the E1alpha subunit of PDHC. In hyperoxic dogs, PDHC immunostaining diminished by approximately 90% compared with sham-operated dogs, while staining in normoxic animals was not significantly different from nonischemic dogs. Protein nitration in the hippocampal neurons of hyperoxic animals was 2-3 times greater than either sham-operated or normoxic resuscitated animals at 2 h reperfusion. Stereologic quantification of neuronal death at 24 h reperfusion showed a 40% reduction using normoxic compared with hyperoxic resuscitation. These results indicate that postischemic hyperoxic ventilation promotes oxidative stress that exacerbates prelethal loss of pyruvate dehydrogenase and delayed hippocampal neuronal cell death. Moreover, these findings indicate the need for clinical trials comparing the effects of different ventilatory oxygen levels on neurologic outcome after cardiac arrest.
Collapse
Affiliation(s)
- Viktoria Vereczki
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
25
|
Zhang L, Kumar S, Kaminski A, Kasch C, Sponholz C, Stamm C, Ladilov Y, Steinhoff G. Importance of endothelial nitric oxide synthase for the hypothermic protection of lungs against ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2006; 131:969-74. [PMID: 16678577 DOI: 10.1016/j.jtcvs.2005.12.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/12/2005] [Accepted: 12/16/2005] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The hypothesis that the protective effects of mild hypothermia against the pulmonary ischemia-reperfusion injury are mediated by endothelial nitric oxide synthase was tested. METHODS Endothelial nitric oxide synthase knock-out and wild-type mice were sham operated or underwent a 1-hour occlusion of the left pulmonary hilum, followed by 5 hours of reperfusion. Temperature in the left pleural cavity during ischemia was maintained at either 36 degrees C (normothermia) or 32 degrees C (hypothermia). Inflammatory response (myeloperoxidase activity), endothelial barrier function (extravasation of Evans blue-labeled albumin), and endothelial nitric oxide synthase expression and phosphorylation were determined at the end of reperfusion. RESULTS After normothermic ischemia both strains had a similar mortality (wild-type, 22.9%; knock-out, 15.4%), which was completely abolished by hypothermia. Endothelial barrier function was disturbed after normothermic ischemia in both wild-type and knock-out mice. Mild hypothermia significantly reduced pulmonary Evans blue extravasation in wild-type mice, but not in knock-out mice. Myeloperoxidase activity increased after normothermic ischemia to the same degree in both strains. This response was significantly attenuated by hypothermia in wild-type mice, but not in knock-out mice. In wild-type mice, endothelial nitric oxide synthase expression and phosphorylation were higher after hypothermic ischemia than after normothermic ischemia. No effect of ischemia on expression of inducible nitric oxide synthase was found in wild-type or knock-out mice. CONCLUSION Hypothermic protection against pulmonary ischemia-reperfusion injury is dependent on endothelial nitric oxide synthase and is associated with increased expression and phosphorylation of endothelial nitric oxide synthase.
Collapse
Affiliation(s)
- Li Zhang
- Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kawamura N, Schmelzer JD, Wang Y, Schmeichel AM, Low PA. The therapeutic window of hypothermic neuroprotection in experimental ischemic neuropathy: Protection in ischemic phase and potential deterioration in later reperfusion phase. Exp Neurol 2005; 195:305-12. [PMID: 15950971 DOI: 10.1016/j.expneurol.2005.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 05/03/2005] [Accepted: 05/11/2005] [Indexed: 01/28/2023]
Abstract
Hypothermia will neuroprotect peripheral nerve from ischemia-reperfusion (IR) injury, but the therapeutic window of hypothermic neuroprotection has not been defined. Unilateral IR injury was produced by the ligation and release of nooses tied around supplying arteries to the right sciatic-tibial nerve of the rat. Using this model, 114 rats were divided into 12 groups according to the delay (0, 1, 3, and 4 h) and the depth of hypothermia (28, 32, and 35 degrees C). All rats were subjected to 3 h ischemia and 7 days reperfusion followed by behavioral, electrophysiological, and pathological evaluations. We demonstrated significant hypothermic neuroprotection with both deep (28 degrees C) and mild (32 degrees C) hypothermia initiated during ischemia (0 and 1 h delay), but not hypothermia initiated during reperfusion (3 and 4 h delay) in both behavioral and electrophysiological evaluations. In addition, the pathologically significant differences were observed between deep hypothermia (28 degrees C) and normothermia (35 degrees C) initiated during ischemia. We conclude that the therapeutic window of hypothermic neuroprotection is optimal during the intraischemic period and that mild and deep hypothermia provide neuroprotection. Prolonged delay of hypothermic treatment results in worsening of IR injury.
Collapse
Affiliation(s)
- Nobutoshi Kawamura
- Department of Neurology, Mayo Clinic, 811 Guggenheim Building, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
27
|
Wagner KR, Zuccarello M. Local brain hypothermia for neuroprotection in stroke treatment and aneurysm repair. Neurol Res 2005; 27:238-45. [PMID: 15845207 DOI: 10.1179/016164105x25261] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hypothermia is well known to provide neuroprotection following various brain insults in experimental animals. Two recently completed clinical trials of whole body hypothermia in out-of-hospital cardiac arrest patients' demonstrated significantly improved survival rates and neurologic outcomes. These results provide new excitement and encouragement for clinical application of hypothermia in cerebrovascular disease. However, the intensive care challenges and adverse events (e.g. prolonged times to target temperatures, shivering and sedation, pneumonia) during the management of hypothermia, dampen enthusiasm for widespread application especially in elderly stroke patients. In this manuscript, we review recent hypothermia trials for stroke. We describe an alternate approach, i.e. local brain cooling, and discuss this new technique with reference to the extensive literature on the marked efficacy of hypothermia. We describe a new technology, the ChillerPad(TM) and ChillerStrip(TM) Systems developed by Seacoast Technologies, Inc. (Portsmouth, NH, USA). The latter device has received FDA approval and will be employed in a trial of local hypothermia for cerebral aneurysm repair. We present our experimental findings that profound local hypothermia does not damage cortical neurons. We also report that local hypothermia protects the blood-brain barrier and markedly reduces vasogenic edema development in an experimental intracerebral hemorrhage model. Lastly, we review potential mechanisms through which hypothermia provides blood-brain barrier protection and reduces edema formation. Clearly, hypothermia has a bright future for cerebrovascular disease treatment if brain cooling can be delivered in a manner that does not compromise the patient or the neurosurgical and intensive care settings. Local brain cooling may be just that new treatment approach.
Collapse
Affiliation(s)
- Kenneth R Wagner
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA.
| | | |
Collapse
|
28
|
Casas CE, Herrera LP, Prusmack C, Ruenes G, Marcillo A, Guest JD. Effects of epidural hypothermic saline infusion on locomotor outcome and tissue preservation after moderate thoracic spinal cord contusion in rats. J Neurosurg Spine 2005; 2:308-18. [PMID: 15796356 DOI: 10.3171/spi.2005.2.3.0308] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Object. Regionally delivered hypothermia has advantages over systemic hypothermia for clinical application following spinal cord injury (SCI). The effects of local hypothermia on tissue sparing, neuronal preservation, and locomotor outcome were studied in a moderate thoracic spinal cord contusion model.
Methods. Rats were randomized to four treatment groups and data were collected and analyzed in a blinded fashion. Chilled saline was perfused into the epidural space 30 minutes postcontusion to achieve the following epidural temperatures: 24 ± 2.3°C (16 rats), 30 ± 2.4°C (13 rats), and 35 ± 0.9°C (13 rats). Hypothermia was continued for 3 hours when a 45-minute period of rewarming was instituted. In a fourth group a moderate contusion only was induced in 14 animals. Rectal (core) and T9–10 (epidural) temperatures were measured continuously. Locomotor testing, using the Basso-Beattie-Bresnahan (Ba-Be-Br) scale, was performed for 6 weeks, and rats were videotaped for subsequent analysis. The lesion/preserved tissue ratio was calculated throughout the entire lesion cavity and the total lesion, spinal cord, and spared tissue volumes were determined. The rostral and caudal extent of gray matter loss was also measured. At 6 weeks locomotor recovery was similar in all groups (mean Ba-Be-Br Scale scores 14.88 ± 3.71, 14.83 ± 2.81, 14.50 ± 2.24, and 14.07 ± 2.39 [p = 0.77] for all four groups, respectively). No significant differences in spared tissue volumes were found when control and treatment groups were compared, but gray matter preservation was reduced in the infusion-treated groups.
Conclusions. Regional cooling applied 30 minutes after a moderate contusive SCI was not beneficial in terms of tissue sparing, neuronal preservation, or locomotor outcome. This method of cooling may reduce blood flow in the injured spinal cord and exacerbate secondary injury.
Collapse
Affiliation(s)
- Carlos E Casas
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Florida 33136, USA
| | | | | | | | | | | |
Collapse
|
29
|
Liu Y, Barks JD, Xu G, Silverstein FS. Topiramate Extends the Therapeutic Window for Hypothermia-Mediated Neuroprotection After Stroke in Neonatal Rats. Stroke 2004; 35:1460-5. [PMID: 15105511 DOI: 10.1161/01.str.0000128029.50221.fa] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Critical factors influencing the neuroprotective efficacy of postischemic hypothermia include depth, duration, and time of onset of cooling. In clinical practice, there is an unavoidable lag between the hypoxic-ischemic (HI) insult and the opportunity to initiate cooling. We hypothesized that early administration of a neuroprotective agent in combination with later-onset cooling could represent an effective therapeutic intervention after neonatal HI. We evaluated whether treatment with topiramate, a clinically available anticonvulsant, increased the efficacy of delayed post-HI hypothermia in a neonatal rat stroke model.
Methods—
Postnatal day 7 (P7) rats underwent right carotid artery ligation followed by 1.5 hours of exposure to 8% oxygen. Fifteen minutes post-HI, animals received injections of topiramate (30 mg/kg) or PBS. Cooling was initiated 3 hours later (“delayed hypothermia”) in all animals (3 hours, in 27°C incubator). Functional outcome (forepaw response to vibrissae stimulation) and pathology (morphometric lesion measurements) were evaluated at P15 and P35.
Results—
Neither topiramate nor delayed hypothermia alone conferred protection in this protocol. Combined treatment with topiramate and delayed hypothermia improved both performance and pathological outcome in P15 and P35 rats compared with PBS-treated animals that underwent delayed hypothermia concurrently. At P15, functional measures were better in topiramate-treated animals (mean correct forepaw response 9.3/10 versus 4.8/10;
P
<0.001), and there was >50% reduction in tissue loss (
P
<0.001); trends were similar at P35.
Conclusions—
Our data provide the impetus for further evaluation of therapeutic approaches that combine drug therapy with delayed-onset cooling after neonatal HI brain injury.
Collapse
Affiliation(s)
- YiQing Liu
- Department of Pediatrics, University of Michigan, Ann Arbor, Mich, USA
| | | | | | | |
Collapse
|
30
|
Zhao H, Yenari MA, Sapolsky RM, Steinberg GK. Mild postischemic hypothermia prolongs the time window for gene therapy by inhibiting cytochrome C release. Stroke 2004; 35:572-7. [PMID: 14726551 DOI: 10.1161/01.str.0000110787.42083.58] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE We showed previously that Bcl-2 overexpression with the use of herpes simplex viral (HSV) vectors improved striatal neuron survival when delivered 1.5 hours after stroke but not when delivered 5 hours after stroke onset. Here we determine whether hypothermia prolongs the therapeutic window for gene therapy. METHODS Rats were subjected to focal ischemia for 1 hour. Hypothermia (33 degrees C) was induced 2 hours after insult and maintained for 3 hours. Five hours after ischemia onset, HSV vectors expressing Bcl-2 plus beta-gal or beta-gal alone were injected into each striatum. Rats were killed 2 days later. RESULTS Striatal neuron survival of Bcl-2-treated, hypothermic animals was improved 2- to 3-fold over control-treated, hypothermic animals and Bcl-2-treated, normothermic animals. Neuron survival among normothermic, Bcl-2-treated animals was not different from control normothermics or control hypothermics. Double immunostaining of cytochrome c and beta-gal demonstrated that Bcl-2 plus hypothermia significantly reduced cytochrome c release. CONCLUSIONS Postischemic mild hypothermia extended the time window for gene therapy neuroprotection using Bcl-2 and reduced cytochrome c release.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, CA 94305-5327, USA
| | | | | | | |
Collapse
|