1
|
Nakayama T, Abe T, Masuda H, Asahara T, Takizawa S, Nagata E. Intravenous Regeneration-associated Cell Transplantation Enhances Tissue Recovery in Mice with Acute Ischemic Stroke. Keio J Med 2024:2024-0005-OA. [PMID: 39496397 DOI: 10.2302/kjm.2024-0005-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Previously, we reported that transplantation of regeneration-associated cells (RACs) via the ipsilateral external carotid artery reduced stroke volume in mice with permanent occlusion of the middle cerebral artery (MCA). However, intracarotid arterial transplantation is invasive and requires skill, and severe complications may occur, such as thromboembolism, infection, and decreased cerebral blood flow. This study aimed to investigate the efficacy of intravenous injection of RACs in reducing stroke volume and increasing anti-inflammatory and angiogenic factors in mice with focal cerebral ischemia. Mice with occluded MCAs received intravenous injections of phosphate-buffered saline (PBS) (control), low-dose RACs, or high-dose RACs. The proximal part of the left MCA was occluded to induce permanent focal ischemia. After 3 days, we administered PBS or low-dose (1 × 104 /50 µL) or high-dose RACs (1 × 105 /50 µL) through the tail vein and assessed the infarct volume on day 7. High-dose RACs significantly decreased infarct volume compared to PBS, whereas low-dose RACs showed no effect. The number of interleukin-10 (IL-10)-positive and vascular endothelial growth factor (VEGF)-positive cells in the peri-infarct area on day 7 was significantly higher in mice treated with low-dose and high-dose RACs than in the PBS control group. Intravenous injection of RACs can reduce ischemic stroke volume; however, a higher dose of RACs is required than the dose used in intraarterial transplantation. By assessing IL-10 and VEGF expression, the study sheds light on the underlying mechanisms of RAC therapy, revealing its potential anti-inflammatory and angiogenic properties in the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Taira Nakayama
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Takato Abe
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Haruchika Masuda
- Center for Clinical and Translational Science, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Takayuki Asahara
- Center for Clinical and Translational Science, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
2
|
Fernandez-Muñoz B, Garcia-Delgado AB, Arribas-Arribas B, Sanchez-Pernaute R. Human Neural Stem Cells for Cell-Based Medicinal Products. Cells 2021; 10:2377. [PMID: 34572024 PMCID: PMC8469920 DOI: 10.3390/cells10092377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Neural stem cells represent an attractive tool for the development of regenerative therapies and are being tested in clinical trials for several neurological disorders. Human neural stem cells can be isolated from the central nervous system or can be derived in vitro from pluripotent stem cells. Embryonic sources are ethically controversial and other sources are less well characterized and/or inefficient. Recently, isolation of NSC from the cerebrospinal fluid of patients with spina bifida and with intracerebroventricular hemorrhage has been reported. Direct reprogramming may become another alternative if genetic and phenotypic stability of the reprogrammed cells is ensured. Here, we discuss the advantages and disadvantages of available sources of neural stem cells for the production of cell-based therapies for clinical applications. We review available safety and efficacy clinical data and discuss scalability and quality control considerations for manufacturing clinical grade cell products for successful clinical application.
Collapse
Affiliation(s)
- Beatriz Fernandez-Muñoz
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
| | - Ana Belen Garcia-Delgado
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
| | - Blanca Arribas-Arribas
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Rosario Sanchez-Pernaute
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
| |
Collapse
|
3
|
Ding K, Lai Z, Yang G, Zeng L. MiR-140-5p targets Prox1 to regulate the proliferation and differentiation of neural stem cells through the ERK/MAPK signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:671. [PMID: 33987369 PMCID: PMC8106095 DOI: 10.21037/atm-21-597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/04/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The expression of miR-140-5p increased in the brain tissue of a bilateral common carotid artery ligation model, while the overexpression of miR-140-5p significantly decreased the number of neurons. The luciferase report experiment in the previous study proved that miR-140-5p negatively regulated one of the potential targets of Prospero-related homeobox 1 (Prox1). Therefore, we want to investigate the effect of miR-140-5p on the proliferation and differentiation of neural stem cells (NSCs) and the underlying mechanism. METHODS Primary NSCs were extracted from pregnant ICR mice aged 16-18 days and induced to differentiate. After transient transfection with miR-140-5p mimic and inhibitor into NSCs, the cells were divided into five groups: blank, mimic normal control, mimic, inhibitor normal control, and inhibitor. Cell Counting Kit-8 (CCK-8) and 5-Bromo-2-deoxyUridine (BrDU), Ki-67 were used, and the diameter of neural spheres was measured to observe proliferation ability 48 h later. Doublecortin (DCX), glial fibrillary acidic protein (GFAP), microtubule-associated proteins 2 (MAP-2), synapsin I (SYN1), and postsynaptic density protein-95 (PSD-95) were stained to identify the effect of miR-140-5p on the differentiation ability of NSCs into neural precursor cells, astrocytes, and neurons and the expression of synapse-associated proteins. The expression of miR-140-5p, Prox1, p-ERK1/2, and ERK1/2 was analyzed by real time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. RESULTS While the expression of miR-140-5p decreased after NSC differentiation (P<0.05), the results of CCK-8, BrDU, and Ki-67 staining showed no significant difference in cell viability and the percentage of NSCs with proliferation ability (P>0.05). However, the neural spheres were shorter in the miR-140-5p overexpression group (P<0.05) and the expression of DCX, MAP2, synapsin I, and PSD-95 decreased, while the expression of GFAP increased after differentiation in the mimic group (P<0.05). In addition, the expression of Prox1 decreased and the expression of p-ERK1/2 protein increased (P<0.05), but the expression of ERK1/2 showed no significant difference (P>0.05) in the miR-140-5p overexpression group. CONCLUSIONS MiR-140-5p reduced the proliferation rate of NSCs, inhibited their differentiation into neurons, produced synapse-associated proteins, and promoted their differentiation into astrocytes. MiR-140-5p negatively regulated downstream target Prox1 and activated the ERK/MAPK signaling pathway.
Collapse
Affiliation(s)
- Kaiqi Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zehua Lai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyuan Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Zeng
- Department of Neurology and Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Abstract
Ischemic brain injury is a common cause of long-term neurological deficits in children as well as adults, and no efficient treatments could reverse the sequelae in clinic till now. Stem cells have the capacity of self-renewal and multilineage differentiation. The therapeutic efficacy of stem cell transplantation for ischemic brain injury have been tested for many years. The grafts could survive and mature in the ischemic brain environment. Stem cell transplantation could improve functional recovery of ischemic brain injury models in pre-clinical trials. The potential mechanisms included cell replacement, release of neurotrophic and anti-inflammatory factors, immunoregulation as well as activation of endogenous neurogenesis. Besides, many clinical trials were conducted and some of trials already had preliminary results. From the current published data, cell transplantation for clinical application is safe and feasible. No severe adverse events and tumorigenesis were reported. While the therapeutic efficacy of stem cell therapy in clinic still needs more evidences. In this review, we overviewed the studies about stem cell therapy for ischemic brain injury. Different types of stem cells used for transplantation as well as the therapeutic mechanisms were discussed in detail. The related pre-clinical and clinical trials were summarized into two separate tables. In addition, we also discussed the unsolved problems and concerns about stem cell therapy for ischemic brain injury that need to be overcome before clinic transformation.
Collapse
Affiliation(s)
- Xiao-Li Ji
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China
| | - Ling Ma
- Stem Cell Research Center, Institute of Pediatrics, Children's Hospital, Fudan University, Shanghai, China
| | - Wen-Hao Zhou
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China
| | - Man Xiong
- Stem Cell Research Center, Institute of Pediatrics, Children's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Fernández-Susavila H, Bugallo-Casal A, Castillo J, Campos F. Adult Stem Cells and Induced Pluripotent Stem Cells for Stroke Treatment. Front Neurol 2019; 10:908. [PMID: 31555195 PMCID: PMC6722184 DOI: 10.3389/fneur.2019.00908] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Stroke is the main cause of disability and death in the world within neurological diseases. Despite such a huge impact, enzymatic, and mechanical recanalization are the only treatments available so far for ischemic stroke, but only <20% of patients can benefit from them. The use of stem cells as a possible cell therapy in stroke has been tested for years. The results obtained from these studies, although conflicting or controversial in some aspects, are promising. In the last few years, the recent development of the induced pluripotent stem cells has opened new possibilities to find new cell therapies against stroke. In this review, we will provide an overview of the state of the art of cell therapy in stroke. We will describe the current situation of the most employed stem cells and the use of induced pluripotent stem cells in stroke pathology. We will also present a summary of the different clinical trials that are being carried out or that already have results on the use of stem cells as a potential therapeutic intervention for stroke.
Collapse
Affiliation(s)
- Héctor Fernández-Susavila
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ana Bugallo-Casal
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Castillo
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
6
|
Neural stem cell therapies and hypoxic-ischemic brain injury. Prog Neurobiol 2018; 173:1-17. [PMID: 29758244 DOI: 10.1016/j.pneurobio.2018.05.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 03/06/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Hypoxic-ischemic brain injury is a significant cause of morbidity and mortality in the adult as well as in the neonate. Extensive pre-clinical studies have shown promising therapeutic effects of neural stem cell-based treatments for hypoxic-ischemic brain injury. There are two major strategies of neural stem cell-based therapies: transplanting exogenous neural stem cells and boosting self-repair of endogenous neural stem cells. Neural stem cell transplantation has been proved to improve functional recovery after brain injury through multiple by-stander mechanisms (e.g., neuroprotection, immunomodulation), rather than simple cell-replacement. Endogenous neural stem cells reside in certain neurogenic niches of the brain and response to brain injury. Many molecules (e.g., neurotrophic factors) can stimulate or enhance proliferation and differentiation of endogenous neural stem cells after injury. In this review, we first present an overview of neural stem cells during normal brain development and the effect of hypoxic-ischemic injury on the activation and function of endogenous neural stem cells in the brain. We then summarize and discuss the current knowledge of strategies and mechanisms for neural stem cell-based therapies on brain hypoxic-ischemic injury, including neonatal hypoxic-ischemic brain injury and adult ischemic stroke.
Collapse
|
7
|
Yang J, Menges S, Gu P, Tongbai R, Samuel M, Prather RS, Klassen H. Porcine Neural Progenitor Cells Derived from Tissue at Different Gestational Ages Can Be Distinguished by Global Transcriptome. Cell Transplant 2017; 26:1582-1595. [PMID: 29113465 PMCID: PMC5524599 DOI: 10.1177/0963689717723015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The impact of gestational age on mammalian neural progenitor cells is potentially important for both an understanding of neural development and the selection of donor cells for novel cell-based treatment strategies. In terms of the latter, it can be problematic to rely entirely on rodent models in which the gestational period is significantly shorter and the brain much smaller than is the case in humans. Here, we analyzed pig brain progenitor cells (pBPCs) harvested at 2 different gestational ages (E45 and E60) using gene expression profiles, obtained by microarray analysis and quantitative polymerase chain reaction (qPCR), across time in culture. Comparison of the global transcriptome of pBPCs from age-matched transgenic green flourescent protein (GFP)-expressing fetuses versus non-GFP-expressing fetuses did not reveal significant differences between the 2 cell types, whereas comparison between E45 and E60 pBPCs did show separation between the data sets by principle component analysis. Further examination by qPCR showed evidence of relative downregulation of proliferation markers and upregulation of glial markers in the gestationally older (E60) cells. Additional comparisons were made. This study provides evidence of age-related changes in the gene expression of cultured fetal porcine neural progenitors that are potentially relevant to the role of these cells during development and as donor cells for transplantation studies.
Collapse
Affiliation(s)
- Jing Yang
- 1 Stem Cell Research Center, University of California, Irvine, CA, USA.,2 Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - Steven Menges
- 1 Stem Cell Research Center, University of California, Irvine, CA, USA.,2 Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - Ping Gu
- 1 Stem Cell Research Center, University of California, Irvine, CA, USA.,2 Gavin Herbert Eye Institute, University of California, Irvine, CA, USA.,3 Present Address: Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ronald Tongbai
- 1 Stem Cell Research Center, University of California, Irvine, CA, USA.,4 Present Address: Huntington Beach Eye Consultants, Huntington Beach, CA, USA
| | - Melissa Samuel
- 5 National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Randall S Prather
- 5 National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Henry Klassen
- 1 Stem Cell Research Center, University of California, Irvine, CA, USA.,2 Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| |
Collapse
|
8
|
Sarmah D, Kaur H, Saraf J, Pravalika K, Goswami A, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Getting Closer to an Effective Intervention of Ischemic Stroke: The Big Promise of Stem Cell. Transl Stroke Res 2017; 9:356-374. [PMID: 29075984 DOI: 10.1007/s12975-017-0580-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
Stem cell therapy for ischemic stroke has widely been explored. Results from both preclinical and clinical studies have immensely supported the judicious use of stem cells as therapy. These provide an attractive means for preserving and replacing the damaged brain tissues following an ischemic attack. Since the past few years, researchers have used various types of stem cells to replenish insulted neuronal and glial cells in neurological disorders. In the present review, we discuss different types of stem cells employed for the treatment of ischemic stroke and mechanisms and challenges these cells face once introduced into the living system. Further, we also present different ways to maneuver and overcome challenges to translate the advances made at the preclinical level to clinics.
Collapse
Affiliation(s)
- Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Jackson Saraf
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Kanta Pravalika
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Avirag Goswami
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kunjan R Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dileep R Yavagal
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India.
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Tang Y, Yasuhara T, Hara K, Matsukawa N, Maki M, Yu G, Xu L, Hess DC, Borlongan CV. Transplantation of Bone Marrow-Derived Stem Cells: A Promising Therapy for Stroke. Cell Transplant 2017. [DOI: 10.3727/000000007783464614] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Stroke remains a major cause of death in the US and around the world. Over the last decade, stem cell therapy has been introduced as an experimental treatment for stroke. Transplantation of stem cells or progenitors into the injured site to replace the nonfunctional cells, and enhancement of proliferation or differentiation of endogenous stem or progenitor cells stand as the two major cell-based strategies. Potential sources of stem/progenitor cells for stroke include fetal neural stem cells, embryonic stem cells, neuroteratocarcinoma cells, umbilical cord blood-derived nonhematopoietic stem cells, and bone marrow-derived stem cells. The goal of this article is to provide an update on the preclinical use of bone marrow-derived stem cells with major emphasis on mesenchymal stem cells (MSCs) and multipotent adult progenitor cells (MAPCs) because they are currently most widely applied in experimental stroke studies and are now being phased into early clinical trials. The phenotypic features of MSCs and MAPCs, as well as their application in stroke, are described.
Collapse
Affiliation(s)
- Yamei Tang
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Takao Yasuhara
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | - Koichi Hara
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | | | - Mina Maki
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | - Guolong Yu
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | - Lin Xu
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
- Research & Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Cesario V. Borlongan
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
- Research & Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| |
Collapse
|
10
|
Maass K, Shekhar A, Lu J, Kang G, See F, Kim EE, Delgado C, Shen S, Cohen L, Fishman GI. Isolation and characterization of embryonic stem cell-derived cardiac Purkinje cells. Stem Cells 2016; 33:1102-12. [PMID: 25524238 DOI: 10.1002/stem.1921] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 12/16/2022]
Abstract
The cardiac Purkinje fiber network is composed of highly specialized cardiomyocytes responsible for the synchronous excitation and contraction of the ventricles. Computational modeling, experimental animal studies, and intracardiac electrical recordings from patients with heritable and acquired forms of heart disease suggest that Purkinje cells (PCs) may also serve as critical triggers of life-threatening arrhythmias. Nonetheless, owing to the difficulty in isolating and studying this rare population of cells, the precise role of PC in arrhythmogenesis and the underlying molecular mechanisms responsible for their proarrhythmic behavior are not fully characterized. Conceptually, a stem cell-based model system might facilitate studies of PC-dependent arrhythmia mechanisms and serve as a platform to test novel therapeutics. Here, we describe the generation of murine embryonic stem cells (ESC) harboring pan-cardiomyocyte and PC-specific reporter genes. We demonstrate that the dual reporter gene strategy may be used to identify and isolate the rare ESC-derived PC (ESC-PC) from a mixed population of cardiogenic cells. ESC-PC display transcriptional signatures and functional properties, including action potentials, intracellular calcium cycling, and chronotropic behavior comparable to endogenous PC. Our results suggest that stem-cell derived PC are a feasible new platform for studies of developmental biology, disease pathogenesis, and screening for novel antiarrhythmic therapies.
Collapse
Affiliation(s)
- Karen Maass
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tang YH, Ma YY, Zhang ZJ, Wang YT, Yang GY. Opportunities and challenges: stem cell-based therapy for the treatment of ischemic stroke. CNS Neurosci Ther 2015; 21:337-47. [PMID: 25676164 DOI: 10.1111/cns.12386] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 01/01/2023] Open
Abstract
Stem cell-based therapy for ischemic stroke has been widely explored in animal models and provides strong evidence of benefits. In this review, we summarize the types of stem cells, various delivery routes, and tracking tools for stem cell therapy of ischemic stroke. MSCs, EPCs, and NSCs are the most explored cell types for ischemic stroke treatment. Although the mechanisms of stem cell-based therapies are not fully understood, the most possible functions of the transplanted cells are releasing growth factors and regulating microenvironment through paracrine mechanism. Clinical application of stem cell-based therapy is still in its infancy. The next decade of stem cell research in stroke field needs to focus on combining different stem cells and different imaging modalities to fully explore the potential of this therapeutic avenue: from bench to bedside and vice versa.
Collapse
Affiliation(s)
- Yao-Hui Tang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | |
Collapse
|
12
|
Tajiri N, Duncan K, Borlongan MC, Pabon M, Acosta S, de la Pena I, Hernadez-Ontiveros D, Lozano D, Aguirre D, Reyes S, Sanberg PR, Eve DJ, Borlongan CV, Kaneko Y. Adult stem cell transplantation: is gender a factor in stemness? Int J Mol Sci 2014; 15:15225-43. [PMID: 25170809 PMCID: PMC4200754 DOI: 10.3390/ijms150915225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 01/23/2023] Open
Abstract
Cell therapy now constitutes an important area of regenerative medicine. The aging of the population has mandated the discovery and development of new and innovative therapeutic modalities to combat devastating disorders such as stroke. Menstrual blood and Sertoli cells represent two sources of viable transplantable cells that are gender-specific, both of which appear to have potential as donor cells for transplantation in stroke. During the subacute phase of stroke, the use of autologous cells offers effective and practical clinical application and is suggestive of the many benefits of using the aforementioned gender-specific cells. For example, in addition to being exceptionally immunosuppressive, testis-derived Sertoli cells secrete many growth and trophic factors and have been shown to aid in the functional recovery of animals transplanted with fetal dopaminergic cells. Correspondingly, menstrual blood cells are easily obtainable and exhibit angiogenic characteristics, proliferative capability, and pluripotency. Of further interest is the ability of menstrual blood cells, following transplantation in stroke models, to migrate to the infarct site, secrete neurotrophic factors, regulate the inflammatory response, and be steered towards neural differentiation. From cell isolation to transplantation, we emphasize in this review paper the practicality and relevance of the experimental and clinical use of gender-specific stem cells, such as Sertoli cells and menstrual blood cells, in the treatment of stroke.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Kelsey Duncan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Mia C Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Mibel Pabon
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Sandra Acosta
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Ike de la Pena
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Diana Hernadez-Ontiveros
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Diego Lozano
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Daniela Aguirre
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Stephanny Reyes
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA. psanberg@.usf.edu
| | - David J Eve
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Cesar V Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Yuji Kaneko
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
13
|
Lee SJ, Park SH, Kim YI, Hwang S, Kwon PM, Han IS, Kwon BS. Adult stem cells from the hyaluronic acid-rich node and duct system differentiate into neuronal cells and repair brain injury. Stem Cells Dev 2014; 23:2831-40. [PMID: 25027245 DOI: 10.1089/scd.2014.0142] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The existence of a hyaluronic acid-rich node and duct system (HAR-NDS) within the lymphatic and blood vessels was demonstrated previously. The HAR-NDS was enriched with small (3.0-5.0 μm in diameter), adult stem cells with properties similar to those of the very small embryonic-like stem cells (VSELs). Sca-1(+)Lin(-)CD45(-) cells were enriched approximately 100-fold in the intravascular HAR-NDS compared with the bone marrow. We named these adult stem cells "node and duct stem cells (NDSCs)." NDSCs formed colonies on C2C12 feeder layers, were positive for fetal alkaline phosphatase, and could be subcultured on the feeder layers. NDSCs were Oct4(+)Nanog(+)SSEA-1(+)Sox2(+), while VSELs were Oct4(+)Nanog(+)SSEA-1(+)Sox2(-). NDSCs had higher sphere-forming efficiency and proliferative potential than VSELs, and they were found to differentiate into neuronal cells in vitro. Injection of NDSCs into mice partially repaired ischemic brain damage. Thus, we report the discovery of potential adult stem cells that may be involved in tissue regeneration. The intravascular HAR-NDS may serve as a route that delivers these stem cells to their target tissues.
Collapse
Affiliation(s)
- Seung J Lee
- 1 Cancer Immunology Branch, National Cancer Center , Ilsan, Gyeonggi, Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Kaneko Y, Dailey T, Weinbren NL, Rizzi J, Tamboli C, Allickson JG, Kuzmin-Nichols N, Sanberg PR, Eve DJ, Tajiri N, Borlongan CV. The battle of the sexes for stroke therapy: female- versus male-derived stem cells. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:405-412. [PMID: 23469849 DOI: 10.2174/1871527311312030013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 12/14/2022]
Abstract
Cell therapy is a major discipline of regenerative medicine that has been continually growing over the last two decades. The aging of the population necessitates discovery of therapeutic innovations to combat debilitating disorders, such as stroke. Menstrual blood and Sertoli cells are two gender-specific sources of viable transplantable cells for stroke therapy. The use of autologous cells for the subacute phase of stroke offers practical clinical application. Menstrual blood cells are readily available, display proliferative capacity, pluripotency and angiogenic features, and, following transplantation in stroke models, have the ability to migrate to the infarct site, regulate the inflammatory response, secrete neurotrophic factors, and have the possibility to differentiate into neural lineage. Similarly, the testis-derived Sertoli cells secrete many growth and trophic factors, are highly immunosuppressive, and exert neuroprotective effects in animal models of neurological disorders. We highlight the practicality of experimental and clinical application of menstrual blood cells and Sertoli cells to treat stroke, from cell isolation and cryopreservation to administration.
Collapse
Affiliation(s)
- Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Travis Dailey
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Nathan L Weinbren
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Jessica Rizzi
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Cyrus Tamboli
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | | | | | - Paul R Sanberg
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - David J Eve
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| |
Collapse
|
15
|
Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, Fan X, Jiang Y, Stetler RA, Liu G, Chen J. Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol 2013; 115:92-115. [PMID: 24333397 DOI: 10.1016/j.pneurobio.2013.11.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/11/2013] [Accepted: 11/26/2013] [Indexed: 12/20/2022]
Abstract
Cell therapy is emerging as a viable therapy to restore neurological function after stroke. Many types of stem/progenitor cells from different sources have been explored for their feasibility and efficacy for the treatment of stroke. Transplanted cells not only have the potential to replace the lost circuitry, but also produce growth and trophic factors, or stimulate the release of such factors from host brain cells, thereby enhancing endogenous brain repair processes. Although stem/progenitor cells have shown a promising role in ischemic stroke in experimental studies as well as initial clinical pilot studies, cellular therapy is still at an early stage in humans. Many critical issues need to be addressed including the therapeutic time window, cell type selection, delivery route, and in vivo monitoring of their migration pattern. This review attempts to provide a comprehensive synopsis of preclinical evidence and clinical experience of various donor cell types, their restorative mechanisms, delivery routes, imaging strategies, future prospects and challenges for translating cell therapies as a neurorestorative regimen in clinical applications.
Collapse
Affiliation(s)
- Xinfeng Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Ruidong Ye
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Tao Yan
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Neurology, Tianjin General Hospital, Tianjin University School of Medicine, Tianjin, China
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xinying Fan
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yongjun Jiang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - R Anne Stetler
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - George Liu
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| |
Collapse
|
16
|
Borlongan CV, Glover LE, Sanberg PR, Hess DC. Permeating the blood brain barrier and abrogating the inflammation in stroke: implications for stroke therapy. Curr Pharm Des 2012; 18:3670-6. [PMID: 22574981 DOI: 10.2174/138161212802002841] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/24/2012] [Indexed: 01/18/2023]
Abstract
Cell therapy has been shown as a potential treatment for stroke and other neurological disorders. Human umbilical cord blood (HUCB) may be a promising source of stem cells for cell therapy. The most desired outcomes occur when stem cells cross the blood brain barrier (BBB) and eventually reach the injured brain site. We propose, from our previous studies, that mannitol is capable of disrupting the BBB, allowing the transplanted cells to enter the brain from the periphery. However, when the BBB is compromised, the inflammatory response from circulation may also be able to penetrate the brain and thus may actually exacerbate the stroke rather than afford therapeutic effects. We discuss how an NF-kB decoy can inhibit the inflammatory responses in the stroke brain thereby reducing the negative effects associated with BBB disruption. In this review, we propose the combination of mannitol-induced BBB permeation and NF-kB decoy for enhancing the therapeutic benefits of cell therapy in stroke.
Collapse
Affiliation(s)
- Cesar V Borlongan
- Department of Neurology, Georgia Health Sciences University, Augusta, Georgia 30912, USA.
| | | | | | | |
Collapse
|
17
|
Mesenchymal stem cells as therapeutic agents and potential targeted gene delivery vehicle for brain diseases. J Control Release 2012; 162:464-73. [DOI: 10.1016/j.jconrel.2012.07.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 01/01/2023]
|
18
|
Muñetón-Gómez VC, Doncel-Pérez E, Fernandez AP, Serrano J, Pozo-Rodrigálvarez A, Vellosillo-Huerta L, Taylor JS, Cardona-Gómez GP, Nieto-Sampedro M, Martínez-Murillo R. Neural differentiation of transplanted neural stem cells in a rat model of striatal lacunar infarction: light and electron microscopic observations. Front Cell Neurosci 2012; 6:30. [PMID: 22876219 PMCID: PMC3410634 DOI: 10.3389/fncel.2012.00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/12/2012] [Indexed: 12/14/2022] Open
Abstract
The increased risk and prevalence of lacunar stroke and Parkinson's disease (PD) makes the search for better experimental models an important requirement for translational research. In this study we assess ischemic damage of the nigrostriatal pathway in a model of lacunar stroke evoked by damaging the perforating arteries in the territory of the substantia nigra (SN) of the rat after stereotaxic administration of endothelin-1 (ET-1), a potent vasoconstrictor peptide. We hypothesized that transplantation of neural stem cells (NSCs) with the capacity of differentiating into diverse cell types such as neurons and glia, but with limited proliferation potential, would constitute an alternative and/or adjuvant therapy for lacunar stroke. These cells showed neuritogenic activity in vitro and a high potential for neural differentiation. Light and electron microscopy immunocytochemistry was used to characterize GFP-positive neurons derived from the transplants. 48 h after ET-1 injection, we characterized an area of selective degeneration of dopaminergic neurons within the nigrostriatal pathway characterized with tissue necrosis and glial scar formation, with subsequent behavioral signs of Parkinsonism. Light microscopy showed that grafted cells within the striatal infarction zone differentiated with a high yield into mature glial cells (GFAP-positive) and neuron types present in the normal striatum. Electron microscopy revealed that NSCs-derived neurons integrated into the host circuitry establishing synaptic contacts, mostly of the asymmetric type. Astrocytes were closely associated with normal small-sized blood vessels in the area of infarct, suggesting a possible role in the regulation of the blood brain barrier and angiogenesis. Our results encourage the use of NSCs as a cell-replacement therapy for the treatment of human vascular Parkinsonism.
Collapse
Affiliation(s)
- Vilma C Muñetón-Gómez
- Neurovascular Research Group, Department of Molecular, Cellular, and Developmental Neurobiology, Spanish Council for Scientific Research (CSIC), Instituto Cajal Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
RODRIGUES MARIACAROLINAO, DMITRIEV DMITRIY, RODRIGUES ANTONIO, GLOVER LORENE, SANBERG PAULR, ALLICKSON JULIEG, KUZMIN-NICHOLS NICOLE, TAJIRI NAOKI, SHINOZUKA KAZUTAKA, GARBUZOVA-DAVIS SVITLANA, KANEKO YUJI, BORLONGAN CESARV. Menstrual blood transplantation for ischemic stroke: Therapeutic mechanisms and practical issues. Interv Med Appl Sci 2012; 4:59-68. [PMID: 25267932 PMCID: PMC4177033 DOI: 10.1556/imas.4.2012.2.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cerebrovascular diseases are a major cause of death and long-term disability in developed countries. Tissue plasmin activator (tPA) is the only approved therapy for ischemic stroke, strongly limited by the short therapeutic window and hemorrhagic complications, therefore excluding most patients from its benefits. The rescue of the penumbra area of the ischemic infarct is decisive for functional recovery after stroke. Inflammation is a key feature in the penumbra area and it plays a dual role, improving injury in early phases but impairing neural survival at later stages. Stem cells can be opportunely used to modulate inflammation, abrogate cell death and, therefore, preserve neural function. We here discuss the possible role of stem cells derived from menstrual blood as restorative treatment for stroke. We highlight the availability, proliferative capacity, pluripotentiality and angiogenic features of these cells and explore their present and future experimental and clinical applications.
Collapse
Affiliation(s)
- MARIA CAROLINA O. RODRIGUES
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - DMITRIY DMITRIEV
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - ANTONIO RODRIGUES
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - LOREN E. GLOVER
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - PAUL R. SANBERG
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | | | | | - NAOKI TAJIRI
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - KAZUTAKA SHINOZUKA
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - SVITLANA GARBUZOVA-DAVIS
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - YUJI KANEKO
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - CESAR V. BORLONGAN
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| |
Collapse
|
20
|
Transplantation of telencephalic neural progenitors induced from embryonic stem cells into subacute phase of focal cerebral ischemia. J Transl Med 2012; 92:522-31. [PMID: 22330341 DOI: 10.1038/labinvest.2012.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cerebral ischemia causes neuronal death and disruption of neural circuits in the central nervous system. Various neurological disorders caused by cerebral infarction can severely impair quality of life and are potentially fatal. Functional recovery in the chronic stage mainly depends on physical treatment and rehabilitation. We aim to establish cell therapy for cerebral ischemia using embryonic stem (ES) cells, which have self-renewing and pluripotent capacities. We previously reported that the transplanted monkey and mouse ES cell-derived neural progenitors, by stromal cell-derived inducing activity method, could survive and differentiate into various types of neurons and glial cells, and form the neuronal network in basal ganglia. In this report, we induced the differentiation of the neural progenitors from mouse ES cells using the serum-free suspension culture method and confirmed the expression of various basal ganglial neuronal markers and neurotransmitter-related markers both in vitro and in vivo, which was thought to be suitable for replacing damaged striatum after middle cerebral artery occlusion. This is the first report that used selectively induced telencephalic neural progenitors into ischemia model. Furthermore, we purified the progenitors expressing the neural progenitor marker Sox1 by fluorescence-activated cell sorting and Sox1-positive neural progenitors prevented tumor formation in ischemic brain for 2 months. We also analyzed survival and differentiation of transplanted cells and functional recovery from ischemic damage.
Collapse
|
21
|
Functional recovery of the murine brain ischemia model using human induced pluripotent stem cell-derived telencephalic progenitors. Brain Res 2012; 1459:52-60. [PMID: 22572083 DOI: 10.1016/j.brainres.2012.03.049] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 03/01/2012] [Accepted: 03/20/2012] [Indexed: 01/19/2023]
Abstract
Induced pluripotent stem (iPS) cells possess the properties of self-renewal and pluripotency, similar to embryonic stem cells. They are a good candidate as a source of suitable cells for cell replacement therapy. In this study, we transplanted human iPS cell-derived neural progenitors into an ischemic mouse brain. Human iPS cells were differentiated into neuronal progenitors by serum-free culture of embryoid body-like aggregates (SFEBs). Focal cerebral ischemia was induced by occluding the middle cerebral artery using the intraluminal filament technique. Donor cells were transplanted into the ischemic lateral striatum 1 week after ischemia induction. Cells survived at the transplantation site, with migration of a proportion of cells along the external capsule and corpus callosum. Cells that were positive for the basal telencephalon marker, Nkx2.1, migrated into the basal part of the telencephalon. The pallial telencephalon marker, Emx1, was detected in cells that had migrated into the pallial part of the telencephalon. SFEBs differentiated into various types of neurons, and a retrograde tracer labeling study showed that differentiated cells integrated into host neural circuitry. Behavioral recovery was significantly enhanced in the transplanted group. Our results suggest that human iPS cell-derived neuronal progenitors survive and migrate in the ischemic brain, and contribute toward functional recovery via neural circuit reconstitution.
Collapse
|
22
|
Rodrigues MCO, Glover LE, Weinbren N, Rizzi JA, Ishikawa H, Shinozuka K, Tajiri N, Kaneko Y, Sanberg PR, Allickson JG, Kuzmin-Nichols N, Garbuzova-Davis S, Voltarelli JC, Cruz E, Borlongan CV. Toward personalized cell therapies: autologous menstrual blood cells for stroke. J Biomed Biotechnol 2011; 2011:194720. [PMID: 22162629 PMCID: PMC3227246 DOI: 10.1155/2011/194720] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 09/12/2011] [Indexed: 01/14/2023] Open
Abstract
Cell therapy has been established as an important field of research with considerable progress in the last years. At the same time, the progressive aging of the population has highlighted the importance of discovering therapeutic alternatives for diseases of high incidence and disability, such as stroke. Menstrual blood is a recently discovered source of stem cells with potential relevance for the treatment of stroke. Migration to the infarct site, modulation of the inflammatory reaction, secretion of neurotrophic factors, and possible differentiation warrant these cells as therapeutic tools. We here propose the use of autologous menstrual blood cells in the restorative treatment of the subacute phase of stroke. We highlight the availability, proliferative capacity, pluripotency, and angiogenic features of these cells and explore their mechanistic pathways of repair. Practical aspects of clinical application of menstrual blood cells for stroke will be discussed, from cell harvesting and cryopreservation to administration to the patient.
Collapse
Affiliation(s)
- Maria Carolina O. Rodrigues
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Loren E. Glover
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Nathan Weinbren
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Jessica A. Rizzi
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Hiroto Ishikawa
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Kazutaka Shinozuka
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Paul R. Sanberg
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | | | | | - Svitlana Garbuzova-Davis
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Julio Cesar Voltarelli
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Eduardo Cruz
- Cryopraxis, Cell Praxis, BioRio, Póde Biotechnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| |
Collapse
|
23
|
Recent progress in cell therapy for basal ganglia disorders with emphasis on menstrual blood transplantation in stroke. Neurosci Biobehav Rev 2011; 36:177-90. [PMID: 21645544 DOI: 10.1016/j.neubiorev.2011.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/25/2011] [Accepted: 05/20/2011] [Indexed: 12/13/2022]
Abstract
Cerebrovascular diseases are the third leading cause of death and the primary cause of long-term disability in the United States. The only approved therapy for stroke is tPA, strongly limited by the short therapeutic window and hemorrhagic complications, therefore excluding most patients from its benefits. Parkinson's and Huntington's disease are the other two most studied basal ganglia diseases and, as stroke, have very limited treatment options. Inflammation is a key feature in central nervous system disorders and it plays a dual role, either improving injury in early phases or impairing neural survival at later stages. Stem cells can be opportunely used to modulate inflammation, abrogate cell death and, therefore, preserve neural function. We here discuss the role of stem cells as restorative treatments for basal ganglia disorders, including Parkinson's disease, Huntington's disease and stroke, with special emphasis to the recently investigated menstrual blood stem cells. We highlight the availability, proliferative capacity, pluripotentiality and angiogenic features of these cells and explore their present and future experimental and clinical applications.
Collapse
|
24
|
No shortcuts to pig embryonic stem cells. Theriogenology 2010; 74:544-50. [DOI: 10.1016/j.theriogenology.2010.04.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 04/16/2010] [Accepted: 04/18/2010] [Indexed: 12/15/2022]
|
25
|
Kang HC, Kim DS, Kim JY, Kim HS, Lim BY, Kim HD, Lee JS, Eun BL, Kim DW. Behavioral improvement after transplantation of neural precursors derived from embryonic stem cells into the globally ischemic brain of adolescent rats. Brain Dev 2010; 32:658-68. [PMID: 19854013 DOI: 10.1016/j.braindev.2009.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 09/11/2009] [Accepted: 09/11/2009] [Indexed: 01/19/2023]
Abstract
PURPOSE We intended to determine whether transplanted neural precursors, derived from mouse embryonic stem (ES) cells, can migrate and differentiate into mature neurons and glial cells in damaged brains and improve functional deficits caused by global cerebral ischemic injury in adolescent rats. METHODS Global ischemia was induced using the four-vessel occlusion method. ES cells that display enhanced expression of yellow fluorescent protein were co-cultured in N2 supplemented media with PA6 cells that had stromal derived inducing activity. Neural precursor cells were directly transplanted bilaterally into hippocampal C3 areas 2 weeks after induction of global ischemia. Assessments of the Morris water-maze test at eight weeks and, the Open field activity levels at two, four, six and eight weeks after transplantation were carried out according to standard methods. RESULTS From neural precursors, we were able to generate neural lineages, including neurons and glial cells in vitro. Eight weeks following transplantation, cellular migration as well as generation of neural cells including neurons, astrocytes, and oligodendrocytes developed from the grafted ES cell-derived neural precursors were observed. Cell-transplanted animals exhibited enhanced functional recovery on sensorimotor and behavioral tests, compared to vehicle-treated control animals. CONCLUSION Therefore, transplantation of mouse ES cell-derived neural precursor cells shows promise for improving recovery after global ischemia in adolescent rats.
Collapse
Affiliation(s)
- Hoon-Chul Kang
- Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children's Hospital, Brain Research Institute, Yonsei University College of Medicine, 134 Shinchon Dong, Seodaemun Gu, Seoul 120-752, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kawai H, Yamashita T, Ohta Y, Deguchi K, Nagotani S, Zhang X, Ikeda Y, Matsuura T, Abe K. Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J Cereb Blood Flow Metab 2010; 30:1487-93. [PMID: 20216552 PMCID: PMC2949240 DOI: 10.1038/jcbfm.2010.32] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stroke is a major neurologic disorder. Induced pluripotent stem (iPS) cells can be produced from basically any part of patients, with high reproduction ability and pluripotency to differentiate into various types of cells, suggesting that iPS cells can provide a hopeful therapy for cell transplantation. However, transplantation of iPS cells into ischemic brain has not been reported. In this study, we showed that the iPS cells fate in a mouse model of transient middle cerebral artery occlusion (MCAO). Undifferentiated iPS cells (5 x 10(5)) were transplanted into ipsilateral striatum and cortex at 24 h after 30 mins of transient MCAO. Behavioral and histologic analyses were performed at 28 day after the cell transplantation. To our surprise, the transplanted iPS cells expanded and formed much larger tumors in mice postischemic brain than in sham-operated brain. The clinical recovery of the MCAO+iPS group was delayed as compared with the MCAO+PBS (phosphate-buffered saline) group. iPS cells formed tridermal teratoma, but could supply a great number of Dcx-positive neuroblasts and a few mature neurons in the ischemic lesion. iPS cells have a promising potential to provide neural cells after ischemic brain injury, if tumorigenesis is properly controlled.
Collapse
Affiliation(s)
- Hiromi Kawai
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Urbaniak Hunter K, Yarbrough C, Ciacci J. Stem cells in the treatment of stroke. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 671:105-16. [PMID: 20455499 DOI: 10.1007/978-1-4419-5819-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stroke is an often devastating insult resulting in neurological deficit lasting greater than 24 hours. In the United States, stroke is the third leading cause of death. In those who do not succumb, any outcome from total recovery over a period of weeks to months to persistent profound neurological deficits is possible. Present treatment centers on the decision to administer tissue plasminogen activator, subsequent medical stabilization and early intervention with rehabilitation and risk factor management. The advent of stem cell therapy presents an exciting new frontier for research in stroke treatment, with the potential to cause a paradigm shift from symptomatic control and secondary prevention to reconstitution of neural networks and prevention of neuronal cell death after neurologic injury.
Collapse
Affiliation(s)
- Klaudia Urbaniak Hunter
- University of Michigan, Department of Radiation Oncology, UH B2C490, 1500 E. Medical Center Dr., Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|
28
|
Yang T, Tsang KS, Poon WS, Ng HK. Neurotrophism of bone marrow stromal cells to embryonic stem cells: noncontact induction and transplantation to a mouse ischemic stroke model. Cell Transplant 2009; 18:391-404. [PMID: 19622227 DOI: 10.3727/096368909788809767] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Embryonic stem (ES) cell-derived cell products may serve as a source of cells for regenerative medicine. Currently available technologies for the induction of ES cells into neural lineage cells require extended culturing in vitro and complex procedural manipulations, with variable yields of heterogeneous cells, which have hindered the prospective use of cell derivatives for treatment of ischemic stroke. We established a simple and efficient method to derive mouse ES cells into neural lineage cells using an 8-day coculture with the bone marrow stromal cells MS5, followed by a 6-day propagation culture and a 4-day selection culture. The protocol generated a relatively high yield of neural lineage cells without any mesodermal and endodermal lineage commitment. In in vivo study, these derived cells could improve the cognitive function of ischemic stroke mice. Three weeks after transplantation, migration of implanted cells to lesioned areas was noted. It was also evident of a normalization of pyramidal neuron density and morphology in hippocampal CA1 region. One (1/17) episode of teratoma development was noted. Data suggested that MS5 cells may exert a neurotrophic effect to enhance neural differentiation of ES cells and MS5-induced ES cell-derived cells appeared to be applicable to cell therapy for ischemic stroke.
Collapse
Affiliation(s)
- Tao Yang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong; Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
| | | | | | | |
Collapse
|
29
|
Hayase M, Kitada M, Wakao S, Itokazu Y, Nozaki K, Hashimoto N, Takagi Y, Dezawa M. Committed neural progenitor cells derived from genetically modified bone marrow stromal cells ameliorate deficits in a rat model of stroke. J Cereb Blood Flow Metab 2009; 29:1409-20. [PMID: 19436312 DOI: 10.1038/jcbfm.2009.62] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bone marrow stromal cells (MSCs) are an excellent source of cells for treating a variety of central nervous system diseases. In this study, we report the efficient induction of committed neural progenitor cells from rat and human MSCs (NS-MSCs) by introduction of cells with the intracellular domain of Notch-1 followed by growth in the free-floating culture system. NS-MSCs successfully formed spheres, in which cells highly expressed the neural precursor cell markers. The commitment of spheres to neural lineage cells was confirmed by their successful differentiation into neuronal cells when exposed to a differentiation medium. To determine the therapeutic potential of NS-MSCs, cells were transplanted into the cortex and striatum in a rat model of focal cerebral ischemia. The survival, distribution, and integration of NS-MSCs in the host brain were very high, and at day 100, grafted NS-MSCs were positive for dopaminergic, glutamatergic, and gamma-amino butyric acid(GABA)ergic neuronal markers. They extended long neurites for nearly 6.3 mm and many of these expressed synaptophysin. Significant behavioral recovery was also observed in limb-placing and water-maze tests. These suggest a high potential for this MSC approach in the replenishment of neural cells for stroke and for a wide range of neurodegenerative conditions that require various types of neural cells.
Collapse
Affiliation(s)
- Makoto Hayase
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 , Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The prevalence of chronic kidney disease has been growing consistently for the past decades. Renal failure is often associated with defective angiogenesis, and recognition of the contribution of the renal microcirculation to the progression of chronic renal disease may aid in the development of therapeutic interventions. RECENT FINDINGS Intra-renal proliferation, remodeling, and/or rarefaction of microvessels in response to injury can all aggravate nephron damage, and experimental evidence suggests that they may constitute the early steps in the complex pathways involved in progressive renal injury. Recent studies showed the benefits of targeted interventions deemed to promote neovascularization (e.g. progenitor cells, growth factors) on the ischemic myocardium and brain and in a few models of renal disease. SUMMARY Evidence of aberrant renal microvascular architecture in various forms of renal disease provides the impetus to attempt modulating the renal microcirculation to interfere with the disease process. Targeted interventions to preserve the renal microcirculation may not only decrease the evolving injury in renal vascular disease but also potentially constitute a coadjuvant intervention to become part of a comprehensive management plan to improve the success of parallel strategies to preserve renal function, such as revascularization.
Collapse
|
31
|
Daadi MM, Steinberg GK. Manufacturing neurons from human embryonic stem cells: biological and regulatory aspects to develop a safe cellular product for stroke cell therapy. Regen Med 2009; 4:251-63. [PMID: 19317644 DOI: 10.2217/17460751.4.2.251] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Demographic trends, particularly those related to longer life expectancy, suggest that the demand for tissue and organ transplants will further increase since many disorders result from degeneration, injury or organ failure. The most urgent problem in transplantation medicine is the shortage or lack of suitable donor organs and tissue, leading to ethical and societal problems such as organ trafficking. The discovery of stem cells in the inner cell mass of developing embryos and in adult tissue has revolutionized the medical field by introducing new therapeutic dimensions to consider for previously untreatable diseases and injuries. The unlimited self-renewal ability and pluripotent capacity to become any cell type of the organism make human embryonic stem cells (hESCs) a compelling source of cells to study tissue histogenesis and to apply in a wide array of tissue engineering, cell transplantation therapy and drug discovery applications. In this article, we will focus on hESCs and address the derivation of therapeutic neural stem cell lines from hESCs, as well as the biological and regulatory aspects to developing a safe cellular product for stroke cell therapy.
Collapse
Affiliation(s)
- Marcel M Daadi
- Department of Neurosurgery and Stanford Stroke Center, MSLS P309, 1201 Welch Road, Stanford University School of Medicine, Stanford, CA 94305-5487, USA.
| | | |
Collapse
|
32
|
The potential of neural stem cells to repair stroke-induced brain damage. Acta Neuropathol 2009; 117:469-80. [PMID: 19283395 DOI: 10.1007/s00401-009-0516-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 01/19/2023]
Abstract
Acute injuries to CNS such as stroke induce neural progenitor proliferation in adult brain which might be an endogenous attempt to self-repair. This process is known to be altered by several exogenous and endogenous modulators including growth factors that could help to reinforce the post-stroke neurogenesis. Increasing the neurogenesis may be a future therapeutic option to decrease the cognitive and behavioral deficits following stroke. In addition, transplantation of various types of stem cells into the injured brain is currently thought to be an exciting option to replace the neurons lost in the post-ischemic brain. These include immortalized stem cell lines, neural progenitors prepared from embryonic and adult animals and mesenchymal stem cells. Using exogenous stem cells in addition to modulating endogenous neurogenesis, we may be able to repair the injured brain after a devastating stroke. This article reviewed the current literature of these two issues.
Collapse
|
33
|
Daadi MM, Lee SH, Arac A, Grueter BA, Bhatnagar R, Maag AL, Schaar B, Malenka RC, Palmer TD, Steinberg GK. Functional engraftment of the medial ganglionic eminence cells in experimental stroke model. Cell Transplant 2009; 18:815-26. [PMID: 19500468 DOI: 10.3727/096368909x470829] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Currently there are no effective treatments targeting residual anatomical and behavioral deficits resulting from stroke. Evidence suggests that cell transplantation therapy may enhance functional recovery after stroke through multiple mechanisms. We used a syngeneic model of neural transplantation to explore graft-host communications that enhance cellular engraftment.The medial ganglionic eminence (MGE) cells were derived from 15-day-old transgenic rat embryos carrying green fluorescent protein (GFP), a marker, to easily track the transplanted cells. Adult rats were subjected to transient intraluminal occlusion of the medial cerebral artery. Two weeks after stroke, the grafts were deposited into four sites, along the rostro-caudal axis and medially to the stroke in the penumbra zone. Control groups included vehicle and fibroblast transplants. Animals were subjected to motor behavioral tests at 4 week posttransplant survival time. Morphological analysis demonstrated that the grafted MGE cells differentiated into multiple neuronal subtypes, established synaptic contact with host cells, increased the expression of synaptic markers, and enhanced axonal reorganization in the injured area. Initial patch-clamp recording demonstrated that the MGE cells received postsynaptic currents from host cells. Behavioral analysis showed reduced motor deficits in the rotarod and elevated body swing tests. These findings suggest that graft-host interactions influence the fate of grafted neural precursors and that functional recovery could be mediated by neurotrophic support, new synaptic circuit elaboration, and enhancement of the stroke-induced neuroplasticity.
Collapse
Affiliation(s)
- Marcel M Daadi
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305-5487, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Stem Cells and Organ Replacement. Artif Organs 2009. [DOI: 10.1007/978-1-84882-283-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Husseini L, Schmandt T, Scheffler B, Schröder W, Seifert G, Brüstle O, Steinhäuser C. Functional Analysis of Embryonic Stem Cell–Derived Glial Cells after Integration into Hippocampal Slice Cultures. Stem Cells Dev 2008; 17:1141-52. [DOI: 10.1089/scd.2007.0244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Leila Husseini
- Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
| | - Tanja Schmandt
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Björn Scheffler
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Wolfgang Schröder
- Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
- Present address: Department of Pharmacology, Grünenthal GmbH, Aachen, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | | |
Collapse
|
36
|
Tondreau T, Dejeneffe M, Meuleman N, Stamatopoulos B, Delforge A, Martiat P, Bron D, Lagneaux L. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells. BMC Genomics 2008; 9:166. [PMID: 18405367 PMCID: PMC2358905 DOI: 10.1186/1471-2164-9-166] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 04/11/2008] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Neuronal tissue has limited potential to self-renew or repair after neurological diseases. Cellular therapies using stem cells are promising approaches for the treatment of neurological diseases. However, the clinical use of embryonic stem cells or foetal tissues is limited by ethical considerations and other scientific problems. Thus, bone marrow mesenchymal stomal cells (BM-MSC) could represent an alternative source of stem cells for cell replacement therapies. Indeed, many studies have demonstrated that MSC can give rise to neuronal cells as well as many tissue-specific cell phenotypes. METHODS BM-MSC were differentiated in neuron-like cells under specific induction (NPBM + cAMP + IBMX + NGF + Insulin). By day ten, differentiated cells presented an expression profile of real neurons. Functionality of these differentiated cells was evaluated by calcium influx through glutamate receptor AMPA3. RESULTS Using microarray analysis, we compared gene expression profile of these different samples, before and after neurogenic differentiation. Among the 1943 genes differentially expressed, genes down-regulated are involved in osteogenesis, chondrogenesis, adipogenesis, myogenesis and extracellular matrix component (tuftelin, AGC1, FADS3, tropomyosin, fibronectin, ECM2, HAPLN1, vimentin). Interestingly, genes implicated in neurogenesis are increased. Most of them are involved in the synaptic transmission and long term potentialisation as cortactin, CASK, SYNCRIP, SYNTL4 and STX1. Other genes are involved in neurite outgrowth, early neuronal cell development, neuropeptide signaling/synthesis and neuronal receptor (FK506, ARHGAP6, CDKRAP2, PMCH, GFPT2, GRIA3, MCT6, BDNF, PENK, amphiregulin, neurofilament 3, Epha4, synaptotagmin). Using real time RT-PCR, we confirmed the expression of selected neuronal genes: NEGR1, GRIA3 (AMPA3), NEF3, PENK and Epha4. Functionality of these neuron-like cells was demonstrated by Ca2+ influx through glutamate receptor channel (AMPA3) in the presence of two agonist glutamate, AMPA or CNQX antagonist. CONCLUSION Our results demonstrate that BM-MSC have the potential to differentiate in neuronal cells with specific gene expression and functional properties. BM-MSC are thus promising candidates for cell-based therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Tatiana Tondreau
- Institut Jules Bordet, Université Libre de Bruxelles, Laboratory of Experimental Hematology, 121, Bd de Waterloo, 1000 Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat Rev Drug Discov 2008; 7:131-42. [PMID: 18079756 DOI: 10.1038/nrd2403] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although great progress has been made in the isolation and culture of stem cells, the future of stem-cell-based therapies and their productive use in drug discovery and regenerative medicine depends on two key factors: finding reliable sources of multipotent and pluripotent cells and the ability to control their differentiation to generate desired derivatives. It is essential for clinical applications to establish reliable sources of pathogen-free human embryonic stem cells (ESCs) and develop suitable differentiation techniques. Here, we address some of the problems associated with the sourcing of human ESCs and discuss the current status of stem-cell differentiation technology.
Collapse
|
38
|
Vives J, Sasajala P, Chang KH, Zhao S, Li M. A mouse model for tracking nigrostriatal dopamine neuron axon growth. Genesis 2008; 46:125-31. [DOI: 10.1002/dvg.20375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Fong SP, Tsang KS, Chan ABW, Lu G, Poon WS, Li K, Baum LW, Ng HK. Trophism of neural progenitor cells to embryonic stem cells: neural induction and transplantation in a mouse ischemic stroke model. J Neurosci Res 2007; 85:1851-62. [PMID: 17492787 DOI: 10.1002/jnr.21319] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Embryonic stem cell (ESC)-derived products have emerged as a promising cell source for neuroregeneration. C17.2 neural precursor cells were noted to express genes of neurotrophins and neuroprotective factors and to be enable to enhance proliferation, neuritogenesis, and differentiation of SH-SY5Y and SK-N-AS neuroblasts, suggesting their neurotrophic potential. We used C17.2 cells as neurotrophic chaperones to induce ESCs, D3, and E14TG2a into neural lineage cells. Significantly greater numbers of Sox-2(+), Musashi-1(+), and nestin(+) neurospheres developed in noncontact cocultures than in cultures of ESCs without C17.2 support or with 50% conditioned medium after 8 days. Immunoreactivity of the neuronal, astrocytic and oligodendrocytic markers was evident in cultures further differentiated for 10 days. Expression of Pax-6, Otx-1, and Nurr-1 genes suggested neuroectodermal precursors in products encompassing neural stem cells, dopaminergic neurons, astrocytes, and oligodendrocytes. Alpha-fetoprotein, GATA-4, Brachyury, Nkx-2.5, and Myf-5 genes were not detected, indicating any mesodermal and endodermal cells. However, weak expression of Oct-4 was noted. Behavioral assessment of ischemic mice 2 weeks after transplantation revealed significant improvement in cognitive function compared with that in ischemic sham-operated mice. Tracking bromodeoxyuridine-labeled products demonstrated that mostly implanted cells were localized along the needle track of the injection in the brain parenchyma, whereas some migrated to the striatum, cortex, nerve fiber bundle of the corpus callosum, and hippocampus in the ipsilateral hemisphere. One episode (of 22) of teratoma development was noted. Data from this study suggest a paradigm of trophism of neural progenitor cells for induction of ESCs into neural lineage cells.
Collapse
Affiliation(s)
- Shu Pan Fong
- Department of Anatomical & Cellular Pathology, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ma J, Wang Y, Yang J, Yang M, Chang KA, Zhang L, Jiang F, Li Y, Zhang Z, Heo C, Suh YH. Treatment of hypoxic–ischemic encephalopathy in mouse by transplantation of embryonic stem cell-derived cells. Neurochem Int 2007; 51:57-65. [PMID: 17531351 DOI: 10.1016/j.neuint.2007.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 04/12/2007] [Accepted: 04/16/2007] [Indexed: 12/13/2022]
Abstract
A 7-day-old hypoxic-ischemic encephalopathy (HIE) mouse model was used to study the effect of transplantation of embryonic stem (ES) cell-derived cells on the HIE. After the inducement in vitro, the ES cell-derived cells expressed Nestin and MAP-2, rather than GFAP mRNA. After transplantation, ES cell-derived cells can survive, migrate into the injury site, and specifically differentiate into neurons, showing improvement of the learning ability and memory of the HIE mouse at 8 months post-transplantation. The non-grafted HIE mouse brain showed typical pathological changes in the hippocampus and cerebral cortex, where the number of neurons was reduced, while in the cell graft group, number of the neurons increased in the same regions. Although further study is necessary to elucidate the precise mechanisms responsible for this functional recovery, we believe that ES cells have advantages for use as a donor source in HIE.
Collapse
Affiliation(s)
- Jie Ma
- Department of Pediatric Neurosurgery, Xinhua Hospital of Shanghai Jiaotong University, Shanghai 200092, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
No treatment currently exists to restore lost neurological function after stroke. A growing number of studies highlight the potential of stem cell transplantation as a novel therapeutic approach for stroke. In this review we summarize these studies, discuss potential mechanisms of action of the transplanted cells, and emphasize the need to determine parameters that are critical for transplantation success.
Collapse
Affiliation(s)
- Tonya Bliss
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
42
|
Fomchenko EI, Holland EC. Platelet-derived growth factor-mediated gliomagenesis and brain tumor recruitment. Neurosurg Clin N Am 2007; 18:39-58, viii. [PMID: 17244553 DOI: 10.1016/j.nec.2006.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Platelet-derived growth factor (PDGF) is a growth factor family of ligands and receptors known to activate phosphatidylinositol 3-kinase, mitogen-activated protein kinase, Jak family kinase, Src family kinase, and phospholipase Cgamma signal transduction pathways, some of which have been causally linked to glioma formation. Extensive involvement of PDGF in development and its implication in a variety of pathologic conditions, including gliomagenesis, are mediated not only by autocrine effects but by paracrine effects. Many researchers view brain tumors as clonal entities derived from the cancer stem cell; however, recent documentation of the importance of the tumor microenvironment for glioma initiation and progression as well as the ability of neural stem or progenitor cells to migrate toward the sites of injury or tumor formation reveals additional complexities in brain tumorigenesis. Paracrine effects of PDGF in animal models of gliomagenesis, continued adult neurogenesis capable of increasing in response to brain injury, and the growth factor-rich environment of brain tumors suggest that recruitment may play a role in gliomagenesis. In this view, glioma formation involves recruitment of cells from the adjacent brain and possibly other sites.
Collapse
Affiliation(s)
- Elena I Fomchenko
- Department of Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
43
|
Ohta T, Kikuta KI, Imamura H, Takagi Y, Nishimura M, Arakawa Y, Hashimoto N, Nozaki K. Administration of Ex Vivo-expanded Bone Marrow-derived Endothelial Progenitor Cells Attenuates Focal Cerebral Ischemia-reperfusion Injury in Rats. Neurosurgery 2006; 59:679-86; discussion 679-86. [PMID: 16955050 DOI: 10.1227/01.neu.0000229058.08706.88] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This study aimed to examine early effects of ex vivo-expanded bone marrow-derived endothelial progenitor cells (EPCs) on focal cerebral ischemia-reperfusion injury. METHODS EPCs were obtained from mononuclear cells of autologous bone marrow of a rat. After culture on fibronectin-coated dishes for 10 to 14 days, 2.5 x 10 cells of EPCs were administered transarterially after 90 minute occlusion of the middle cerebral artery. RESULTS Administration of EPCs significantly reduced both the infarct volume and the scores of neurological deficits at 24 and 48 hours. EPCs administered 2 hours after insult did not reduce infarct volume, but attenuated neurological deficits at 24 hours. Administration of EPCs significantly reduced the number of myeloperoxidase-immunoreactive cells in the ischemic lesion at 24 hours and increased regional cortical blood flow at 48 hours. EPCs were observed in the ischemic hemisphere and around the endothelial layer of the pial arteries. Most of them expressed endothelial nitric oxide synthase. CONCLUSION Administration of ex vivo-expanded bone marrow-derived EPCs reduced infarct volume and neurological deficits in acute focal brain ischemia-reperfusion injury caused, at least in part, by attenuation of endothelial dysfunction.
Collapse
Affiliation(s)
- Tsuyoshi Ohta
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hayashi J, Takagi Y, Fukuda H, Imazato T, Nishimura M, Fujimoto M, Takahashi J, Hashimoto N, Nozaki K. Primate embryonic stem cell-derived neuronal progenitors transplanted into ischemic brain. J Cereb Blood Flow Metab 2006; 26:906-14. [PMID: 16395293 DOI: 10.1038/sj.jcbfm.9600247] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transplantation of stem cells has the possibility of restoring neural functions after stroke damage. Therefore, we transplanted neuronal progenitors generated from monkey embryonic stem (ES) cells into the ischemic mouse brain to test this possibility. Monkey ES cells were caused to differentiate into neuronal progenitors by the stromal cell-derived inducing activity method. Focal cerebral ischemia was induced by occluding the middle cerebral artery by the intraluminal filament technique. The donor cells were transplanted into the ischemic lateral striatum at 24 h after the start of reperfusion. The cells transplanted into the ischemic brain became located widely around the ischemic area, and, moreover, the transplanted cells differentiated into various types of neurons and glial cells. Furthermore, at 28 days after the transplantation, over 10 times more cells in the graft were labeled with Fluorogold (FG) by stereotactic focal injection of FG into the anterior thalamus and substantia nigra on the grafted side when compared with the number at 14 days. From these results we confirmed the survival and differentiation of, as well as network formation by, monkey ES-cell-derived neuronal progenitors transplanted into the ischemic mouse brain.
Collapse
Affiliation(s)
- Junya Hayashi
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hall VJ, Stojkovic P, Stojkovic M. Using therapeutic cloning to fight human disease: a conundrum or reality? Stem Cells 2006; 24:1628-37. [PMID: 16556706 DOI: 10.1634/stemcells.2005-0592] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development and transplantation of autologous cells derived from nuclear transfer embryonic stem cell (NT-ESC) lines to treat patients suffering from disease has been termed therapeutic cloning. Human NT is still a developing field, with further research required to improve somatic cell NT and human embryonic stem cell differentiation to deliver safe and effective cell replacement therapies. Furthermore, the implications of transferring mitochondrial heteroplasmic cells, which may harbor aberrant epigenetic gene expression profiles, are of concern. The production of human NT-ESC lines also remains plagued by ethical dilemmas, societal concerns, and controversies. Recently, a number of alternate therapeutic strategies have been proposed to circumvent the moral implications surrounding human nuclear transfer. It will be critical to overcome these biological, legislative, and moral restraints to maximize the potential of this therapeutic strategy and to alleviate human disease.
Collapse
Affiliation(s)
- Vanessa J Hall
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Sweden.
| | | | | |
Collapse
|
46
|
Rafael H. Neural transplantation. J Neurosurg 2006; 104:336-7; author reply 337-8. [PMID: 16509511 DOI: 10.3171/jns.2006.104.2.336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|